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Examples of Vanishing Gromov–Witten–Welschinger

Invariants

By János Kollár

In memory of Professor Kunihiko Kodaira

The aim of this note is to give examples of real enumerative problems

without real solutions. Methods to define and compute real enumerative

invariants in dimensions 2 and 3 were developed by [Wel05] and partially

extended to higher dimensions in [GZ13]. The number of real solutions was

determined or estimated in many cases; see [IKS05, Wel10, IKS13b, FK13,

IKS13a, GZ13, GZ14]. Computations using tropical methods are given in

[BM07, FM10, ABLdM11, BP13, Bru14].

The number of rational curves of degree d defined over R in P
2 that

pass through a given real set of 3d− 1 points is almost always nonzero; see

the extensive tables in [ABLdM11]. By contrast, the predicted number of

rational curves of degree d in P
3, defined over R, that pass through a given

real set of 2d points is always 0 for d even; see [Wel05, 2.4] or [GZ13, Cor.1.4].

These formulas count curves with signs, thus it is not clear that there are

no such curves when the predicted number is 0. For d = 4 Mikhalkin found

configurations of 8 points in P
3 without any degree 4 real curve of genus 0

through them; see [Wel05, 2.6].

The main aim of this note is to show that, for any even d, there are cer-

tain types of configurations of 2d points in general position with no rational

curves of degree d defined over R passing through them; see Theorem 10.

We cover all numerical possibilities where some of the 2d points are real.

(We have no such examples for d conjugate point pairs for d > 4.)

The key to the examples is the study of a degenerate situation when all

the points lie on a degree 4 elliptic curve in P
3. It turns out that, in this

case, all the curves in question lie on some quadric surface; these in turn
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can be understood by studying the torsion points on the elliptic curve. The

geometry of the situation is summarized in Proposition 3.

In the first non-trivial case, when d = 4, the point-octet P8 always lies on

a degree 4 elliptic curve. In Section 2 we describe all possibilities. There are

4 topologically distinct types if P8 consists of 4 conjugate pairs of complex

points and 11 topologically distinct types if P8 consists of 8 real points.

Already for d = 6 the method is unlikely to cover all cases.

More examples of enumerative problems without real solutions are given

in Section 4. In most cases we study what happens when all the constraints

lie on a quadric hypersurface. This is similar to the method used in [Wel07]

for surfaces. Our examples account for all configurations involving rational

curves of degree ≤ 3 in P
3. We also get two infinite series: lines in P

4n−1

that meet 4 linear subspaces of dimension 2n−1 (Example 12) and rational

curves of degree 2d + 1 in P
3 that pass through 4d points and meet 4 lines

(Example 18); the latter pointed out by Zinger.

1. Degree 4 Elliptic Curves in P
3

1 (Eight points in P
3). Let P8 be 8 general points in P

3. The space

of quadrics in P
3 is isomorphic to P

9, hence P8 lies on a unique pencil of

quadrics |Qλ| whose base locus is a degree 4 elliptic curve E4.

Let C4 ⊂ P
3 be any irreducible, degree 4 curve through P8. Working

over an algebraically closed field, any point of C4 \ P8 is contained in some

Q = Qλ. Then C4 and Q meet in ≥ 9 points, hence C4 ⊂ Q. A smooth

quadric is isomorphic to P
1 ×P

1 and linear equivalence classes are classified

by their bidegree. (See Definition 2 for our conventions for marked quadrics

and bidegree.) Since C4 has degree 4, it has bidegree either (2, 2) or (1, 3)

(up to changing the marking of Q). In the first case, C4 ∼ 2HQ where

HQ is the hyperplane class. Except when C4 = E4, this implies that P8 =

(C4 ∩ E4) ∼ 2HQ|E4 This is not the case for general P8. Indeed, fix 7 of

the points and move the eighth in E4. Then [P8] ∈ Pic(E4) varies but

2HQ ∈ Pic(E4) stays fixed.

If the quadric Q is singular then 2C4 ∼ 4HQ. As before this would give

2P8 ∼ 4HQ|E4 , which is again not the case for general P8. Thus the quadric

Q is smooth if it contains a curve C4 �= E4 and, for a suitable choice of the

marking, C4 has bidegree (1, 3) on Q. The marking of Q gives a line bundle

L2 := π∗
1OP1(1)|E4 of degree 2 on E4. Conversely, a degree 2 line bundle L2
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on E4 determines a quadric surface that is swept out by the lines 〈p1, p2〉
where p1, p2 ∈ E4 are points such that OE4(p1 + p2) ∼= L2.

Set H4 := HQ|E4 ; this is the hyperplane class on E4, independent of the

choice of Q. The other coordinate projection π2 : Q → P
1 corresponds to

H4 − L2 and so

(1.1) P8 = (E4 · C4) ∼ 3L2 + (H4 − L2) = H4 + 2L2.

Thus a marked quadric Q ∈ |Qλ| that contains a curve C4 corresponds to a

solution of the equation

(1.2) 2L2 ∼ P8 −H4 where L2 ∈ Pic(E4).

Over an algebraically closed field (of characteristic �= 2) there are 4 solutions

L1
2, . . . , L

4
2 of the equation (1.2); any two solutions differ by a 2-torsion point

of Pic(E4). We get 4 different quadric surfaces Q1, . . . , Q4 ∈ |Qλ|.
We claim that on each quadric Qi there is a unique curve Ci

4 that passes

through P8. To see this note that a curve of bidegree (1, 3) in P
1 × P

1 can

be viewed as the graph of a degree 3 map

P
1 → P

1 given by (s:t) �→
(
g1(s, t):g2(s, t)

)
,

where g1, g2 are cubic forms. Passing through any given point gives a lin-

ear equation on the 8 coefficients of g1, g2. Thus passing through 7 points

p1, . . . , p7 of P8 gives a unique pair g1, g2, up to scalar.

A nice feature is that passing through the 8th point p8 on E4 comes for

free. Indeed, if the resulting curve passes through an 8th point q ∈ E4, then

p1 + · · · + p7 + q = (E4 · C4) ∼ 3L2 + (H4 − L2) ∼ p1 + · · · + p7 + p8

shows that q ∼ p8 hence q = p8 since E4 is elliptic. Thus we get 4 curves

Ci
4 ⊂ Qi for i = 1, . . . , 4.

Furthermore, a curve Ci
4 is defined over a subfield k ⇔ the corresponding

quadric surface Qi is defined over k ⇔ the corresponding [Li
2] ∈ Pic(E4) is a

k-point. (Note that even for k = R it can happen that a k-point of Pic(E4)

does not correspond to an actual line bundle on E4 that is defined over k.

In this case necessarily E4(k) = ∅; see (5.3).)

For d > 4, general point sets P2d ⊂ P
3 do not lie on a degree 4 elliptic

curve. However, it turns out that point sets P2d that do lie on a degree 4
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elliptic curve can be studied the same way. The equation (1.2) is replaced

by a similar one. A new complication that arises is that on a given quadric

surface Qi there are usually many curves Cij
d .

Definition 2. A marked quadric surface Q ⊂ P
3 is a smooth quadric

plus a choice of a coordinate projection π1 : Q ∼= P
1 × P

1 → P
1. The other

coordinate projection is denoted by π2. This choice is equivalent to fixing

an isomorphism Pic(Q) ∼= Z
2 such that both (1, 0) and (0, 1) correspond to

lines.

We say that a curve B on Q has type (a, b) if OQ(B) ∼= π∗
1OP1(a) ⊗

π∗
2OP1(b).

Proposition 3. Let k be an algebraically closed field and |Qλ| a pencil

of quadrics in P
3 whose base locus is an elliptic curve E. Let P2d ⊂ E be a

set of 2d general points and Cd a connected curve of degree d through P2d

not containing E.

Then Cd is irreducible and is contained in one of the quadrics Q = Qλ.

Furthermore, such marked quadrics Q = Q(a, L2) correspond to

(1) a choice of 0 < a < d/2 and

(2) a solution of (d − 2a)L2 ∼ P2d − aH4 where L2 ∈ Pic2(E) and H4 is

the hyperplane class on E.

For a fixed marked quadric Q = Q(a, L2) there can be many such curves Cd

but they all have type (a, d− a) in Pic(Q).

Proof. Assume first that Cd is irreducible. Any point of Cd \ P2d is

contained in some Q = Qλ. Then Cd and Q meet in ≥ 2d+ 1 points, hence

Cd ⊂ Q. Thus Cd has type (a, d − a) for some 0 < a ≤ d/2 and suitable

choice of the marking.

The choice of Q plus the projection Q → P
1 corresponds to a line bundle

L2 ∈ Pic2(E). The other projection Q → P
1 corresponds to H4 −L2 and so

(3.3) P2d = (E · Cd) ∼ (d− a)L2 + a(H4 − L2) = aH4 + (d− 2a)L2.

If a = d/2 then this gives P2d ∼ aH4, which is not the case for general P2d.

Thus the case a = d/2 is excluded and the rest of (1–2) is clear.
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In order to complete the proof, we need to exclude the reducible cases.

Let now
∑

Ci be a degree d, connected but possibly reducible curve passing

through P2d. If one of the Ci passes through more than 2 degCi points of P2d

then it has > 2 degCi intersection with every Qλ, thus Ci = E. Otherwise,

every Ci passes through exactly 2 degCi points P i
2d ⊂ P2d, thus it is a curve

as described above. Since the union of the P i
2d is P2d, the P i

2d are disjoint

from each other, hence the different Ci pass through different points of P2d.

If two curves Ci, Cj are contained in different quadric surfaces Qi �= Qj ,

then the curve is disconnected since Ci∩Cj ⊂ Qi∩Qj = E4 but the different

Ci pass through different points. Thus
∑

Ci is contained in a single quadric

surface Q.

If Ci is of type (ai, di − ai) then we get subsets P i ⊂ P2d of degree 2di

such that

(3.4) P i ∼ (di − 2ai)L2 + aiH4.

Together with (3.3) we get

(3.5) (d− 2a)P i ∼ (di − 2ai)P2d +
(
ai(d− 2a) − a(di − 2ai)

)
H4.

If k is not an algebraic closure of a finite field, then we can choose the

points pi such that p1, . . . , p2d and H4 generate a free subgroup of rank

2d + 1 in Pic(E4), thus (3.5) is impossible unless P i = P2d. Thus there

are no reducible curves Cd for a very general choice of the points P2d. The

conclusion then holds in a Zariski open set of E2d. (If k is an algebraic

closure of a finite field then first we find P2d over the algebraic closure of

k(x) and then note that the above Zariski open set of E2d must contain

k-points.) �

Remark 4. The above method reduces the computation of GW-in-

variants on P
3 (with 0-dimensional constraints) to GW-invariants on P

1×P
1.

It would be interesting to work this out in detail.

This should work over the reals as well, but there is a subtle point that

I find confusing. Following the method gives that, on the quadric surface Q

we need to find curves of degree d passing through P2d. However, the space

of rational curves of degree d on Q has dimension 2d− 1, thus GW-theory

counts the number of curves that pass through a subset P2d−1 ⊂ P2d. As

we noted at the end of Paragraph 1, these curves then automatically pass
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through the last point of P2d as well. However, in the case when we start

with conjugate point pairs, we can not choose P2d−1 to be real. Nonetheless,

the answer has a real structure.

I also have not computed the normal bundle of the resulting curves; this

also effects the count.

2. Real Point-Octets in P
3

Starting with a real point-octet in P
3, we analyze the number and types

of real curves Ci
4 in (6) to get a complete list of possibilities.

5 (Picard group of a real elliptic curve). Let E be a real elliptic curve.

The Picard group of the corresponding complex elliptic curve is denoted by

Pic = Pic(E). Let Picr ⊂ Pic denote the set of complex line bundles of

degree r.

The set of real points of Pic is denoted by Pic(R). Corresponding to the

3 different topological types of E(R), there are 3 different descriptions for

Pic(R).

(5.1) E(R) ∼ S
1. In this case Pic0

r(R) := Picr(R) ∼ S
1 for every r.

(5.2) E(R) ∼ S
1 � S

1. In this case Picr(R) ∼ S
1 � S

1 for every r.

If r is even, then one of these components, denoted by Pic0
r(R) consists of

line bundles that are topologically trivial on both components of E(R). We

call this component and the line bundles in it even. The other component,

denoted by Pic1
r(R) consists of line bundles that are topologically nontrivial

on both components of E(R). We call this component and the line bundles

in it odd.

For any complex line bundle L, the tensor product L ⊗ L̄ is real and

even. Restricting to Pic(R) this is the same as multiplication by 2, denoted

by m2. Thus the image of m2 : Pic(R) → Pic(R) is the union of the even

components.

(5.3) E(R) = ∅. In this case Picr(R) = ∅ for odd r and Picr(R) ∼ S
1�S

1

for even r.

If r is even, then one of these components, denoted by Pic0
r(R) consists of

real line bundles. (For r = 2 these correspond to degree 2 maps to P
1.) We

call this component and the line bundles in it even. The other component,

denoted by Pic∗r(R) consists of points that do not correspond to real line

bundles. (For r = 2 these correspond to degree 2 maps to the “empty”
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conic P̃
1 := (x2

0 +x2
1 +x2

2 = 0).) We call this component twisted. As before,

the image of m2 : Pic(R) → Pic(R) is the union of the even components.

6 (Counting quartic curves through 8 points in P
3). Let P8 ⊂ P

3 be a

real set of 8 points in general position, that is, P8 is made up of real points

and complex conjugate point pairs.

If P8 is real then so is E4. The answer to our problem of counting real

curves C4 of degree 4 passing through P8 is determined by the topological

type of E4(R) and the positions of H4 ∈ Pic4(R) and [P8] ∈ Pic8(R).

There are 3 possibilities for E4(R).

(6.1) E4(R) = S
1. Then necessarily H4 ∈ Pic0

4(R) and [P8] ∈ Pic0
8(R).

Thus P8 −H4 ∈ Pic0
4(R) and 2L2 ∼ P8 −H4 has 2 real solutions. This gives

2 real curves C1
4 , C

2
4 .

(6.2) E4(R) = S
1 � S

1. There are 4 sub-cases.

a) H4 is odd P8 is even. Then P8 −H4 is odd, thus 2L2 ∼ P8 −H4 has

no real solutions. There are no degree 4 rational curves C4 defined over R.

b) H4 is even P8 is odd. Again P8 −H4 is odd and no real curves.

c) H4 and P8 are both even. Then P8 −H4 is even, 4 real curves.

d) H4 and P8 are both odd. Then P8 −H4 is even, 4 real curves.

(Note that a) and c) can happen if there are no real points in P8 and

also if all points of P8 are real while P8 must have at least 2 real points in

cases b) and d).)

(6.3) E4(R) = ∅. Then P8 has no real points hence [P8] ∈ Pic0
8(R) and

also H4 ∈ Pic0
4(R). Thus P8−H4 is even and 2L2 ∼ P8−H4 has 4 solutions

in Pic2(R).

Note that 2 of these solutions correspond to real line bundles, giving

quadrics Q ∼= P
1 × P

1 and curves C4
∼= P

1. The other 2 solutions do

not correspond to real line bundles. These give “empty” quadrics Q ∼=
(x2

0 + x2
1 + x2

2 + x2
3 = 0) and “empty” curves C4

∼= (x2
0 + x2

1 + x2
2 = 0).

Thus we get 2 real curves C4
∼= P

1 and 2 real curves C4
∼= P̃

1 :=

(x2
0 + x2

1 + x2
2 = 0).

Remark 7. There is a twisted form of (6.3) when E4 is inside the

twisted projective space P̃
3 := S3

P̃
1. Necessarily E4(R) = ∅. Then H4

sits in Pic∗4(R) but P8 is in Pic0
8(R). Thus 2L2 ∼ P8 − H4 has no real

solutions. This is, however, not surprising since there are no even degree

rational curves in P̃
3.
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3. Even Degree Rational Curves in P
3

Of the cases studied in Section 2, only one yields a simple answer for

d > 4.

Proposition 8. Let E ⊂ P
3 be a real elliptic curve of degree 4 such

that E(R) = S
1�S

1 and H4 = OP3(1)|E is even. (Equivalently, both compo-

nents of E(R) are trivial in π1(RP
3).) Let P4d ⊂ E be a general real subset

that has an odd number of points on both components of E(R). Let C2d be

a connected real curve of degree ≤ 2d that contains P4d. Then E ⊂ C2d.

Proof. Assume that E �⊂ C2d. By Proposition 3, C2d is geometrically

irreducible and it is contained in a quadric Q(a, L2) as in (3.2). Since C2d is

real, so is the quadric Q(a, L2). By (3.2), such quadrics correspond to the

solutions of the equation

(8.1) (2d− 2a)L2 ∼ P4d − aH4.

Here P4d is odd and H4 is even, thus P4d − aH4 is odd. As we noted in

(5.2), P4d − aH4 is not an even multiple of a real point of Pic(E). �

Remark 9. Once we have established that such a curve C2d must lie

on a quadric surface, a simple topological argument also shows that (8.1)

has no solutions, not even for homology classes with Z/2-coefficients.

Under the natural homeomorphism Q(R) ∼ S
1 × S

1 the homology class

of each component of Ei ⊂ E(R) is either (0, 0) or (1, 1) in H1

(
Q(R),Z/2

)
.

Since C2d has even degree, the homology class of C2d(R) is again either (0, 0)

or (1, 1). Thus Ei ∩ C2d(R) is always even.

Theorem 10. Let E ⊂ P
3 and P4d ⊂ E be as in Proposition 8. Then

there is a (semialgebraic) open subset [P4d] ∈ U ⊂ (S4d
P

3)(R) such that if

R4d is a real set of 4d points in P
3 and [R4d] ∈ U , then there is no connected

real curve of degree ≤ 2d with geometrically rational irreducible components

that contains R4d.

Proof. Note that 4d-element subsets of P
3 are parametrized by the

points of the symmetric power S4d
P

3 and real 4d-element subsets correspond

to the real points of the symmetric power (S4d
P

3)(R) (which is not the same

as the symmetric power of the real points S4d(RP
3)).
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Let W ⊂ (S4d
P

3)(R) denote the set of points [R4d] such that there is a

connected real curve of degree ≤ 2d with geometrically rational components

that contains R4d. By (8) we know that [P4d] �∈ W . We claim that W is

a closed semialgebraic subset of (S4d
P

3)(R). If this holds then we can take

U := (S4d
P

3)(R) \W .

The claim about W follows a standard argument. Let Chowe(P
3) denote

the Chow variety of curves (or 1-cycles) of degree ≤ e in P
3 [Kol96, Sec.I.3].

Let RatCyclese ⊂ Chowe(P
3) denote the subset corresponding to curves

that are connected with rational irreducible components. RatCyclese is a

Zariski closed subset by [Kol96, II.2.2].

Next consider (S4d
P

3) × RatCycles2d×P
3 with coordinate projections

πi. Let U4d ⊂ (S4d
P

3) × P
3 be the universal family of 4d-element subsets

of P
3 and C2d ⊂ RatCycles2d×P

3 the universal family of 1-cycles [Kol96,

I.3.21].

Let Y2d ⊂ (S4d
P

3)×RatCycles2d be the set of pairs
(
[R4d], C2d

)
satisfy-

ing R4d ⊂ C2d. Then Y2d is a Zariski closed subset since it is the complement

of the Zariski open subset

(π1 × π2)
(
(π1 × π3)

−1
(
U2d

)
\ (π2 × π3)

−1
(
C4d

))
.

Finally W = π1

(
Y2d(R)

)
⊂ (S4d

P
3)(R) is a closed semialgebraic subset by

the Tarski–Seidenberg theorem; cf. [BCR98, 2.2.1]. �

4. Other Examples with Linear Constraints

We get more examples without real solutions by studying what happens

when we choose the linear constraints to lie on a quadric hypersurface.

11 (Linear subspaces on quadric hypersurfaces). [HP47, Book IV,

Sec.XIII.4]

Let Q2n ⊂ P
2n+1 be a smooth quadric hypersurface over C. It contains 2

families of n-dimensional linear subspaces and two subspaces Ln
1 , L

n
2 belong

to the same family iff

dim
(
Ln

1 ∩ Ln
2

)
≡ n mod 2

(where the empty set has dimension −1). If n is odd then two general linear

subspaces in the same family are disjoint from each other.
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We are especially interested in the “empty” real quadric

(11.1) Q2n
E := (x2

0 + · · · + x2
2n+1 = 0) ⊂ P

2n+1,

which contains the conjugate pair of n-dimensional linear subspaces

L± := (x0 ±
√
−1x1 = · · · = x2n ±

√
−1x2n+1 = 0)

which are disjoint from each other. Thus, if n is odd then they are members

of the same family. Therefore both families are defined over R. If n is

even, then L± are members of different families, hence the two families are

conjugate.

Example 12 (Lines in P
4n−1). For every n ≥ 1 there are generic con-

figurations

L2n−1
1 , L̄2n−1

1 , L2n−1
2 , L̄2n−1

2 ⊂ P
4n−1

such that no real line intersects all 4 subspaces.

Proof. Let Q4n−2
E ⊂ P

4n−1 be the empty quadric (11.1). Take first a

special configuration where L2n−1
1 , L̄2n−1

1 , L2n−1
2 , L̄2n−1

2 ⊂ Q4n−2
E are disjoint

members of the same family.

We claim that there is no real line L that intersects all 4 subspaces.

Indeed, any line that intersects all 4 subspaces has 4 points in common with

the quadric Q4n−2
E , thus it is contained in Q4n−2

E . However, Q4n−2
E has no

real points hence the line can not be real.

Since a limit of real lines is a real line, any small perturbation of the

configuration has the required property. �

Remark 13 (Lines in P
4n+1). It has been known classically that in

general there are r+1 complex lines intersecting 4 linear subspaces Lr
1, . . . ,

Lr
4 ⊂ P

2r+1. Thus if r = 2n is even and Lr
1, . . . , L

r
4 is a real configuration

then there is at least 1 real line meeting all 4 subspaces.

Example 14 (Lines in P
3). Another interesting degenerate situation is

given by taking the lines to lie on a cubic surface in P
3.

Take a real set of 4 points p1, . . . , p4 in P
2 plus two more points p5, p6.

By blowing up the 6 points, we get a cubic surface S3 ⊂ P
3; the first 4 points
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give 4 lines L1, . . . , L4 ⊂ S3. Any line meeting these 4 meets the cubic in 4

points, thus it is contained in it.

Thus the 2 lines meeting L1, . . . , L4 are obtained as the birational trans-

forms of the conics through the points p1, . . . , p4, p5 resp. p1, . . . , p4, p6. If

p5, p6 are real, we get real lines. If they are complex conjugates, we get

complex conjugate lines.

Note that, unlike in (12), here we can choose 4 or 2 of the lines to be

real.

Example 15 (Conics in P
4n−1). For every n ≥ 1 there are generic con-

figurations

L2n−1
1 , L̄2n−1

1 , L2n−1
2 , L̄2n−1

2 , L2n−1
3 , L̄2n−1

3 ⊂ P
4n−1

such that no real conic with real points intersects all 6 subspaces. (Note

that these constraints define a 2-dimensional moduli space.)

Proof. Take first a special configuration where all 6 subspaces are

disjoint members of the same family on Q4n−2
E ⊂ P

4n−1.

A conic C that intersects all 6 subspaces has 6 points in common with

the quadric Q4n−2
E . If C is irreducible (over R) then it is contained in Q4n−2

E .

Since Q4n−2
E has no real points, C is an empty conic.

If C is reducible (over R) then its irreducible components are real lines

and at least one of them must be contained in Q4n−2
E , which is impossible.

Since a limit of real conics with real points is a real conic with real points,

any small perturbation of the configuration has the required property. �

We can add either a pair of real subspaces L4n−3
4 , L4n−3

5 or a single real

subspace L4n−4 to the constraints in (15) to get a vanishing GWW-invariant,

but the example does not show what happens if we add a conjugate pair of

subspaces L4n−3
4 , L̄4n−3

4 . In P
3 a different example excludes all real conics.

Example 16 (Conics in P
3). The space of conics in P

3 has dimension

8. Thus, working with conjugate pairs of linear constraints, we get a GWW-

invariant in the following cases

(1) p1, p̄1, p2, p̄2,

(2) p1, p̄1, L1, L̄1, L2, L̄2,
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(3) L1, L̄1, . . . , L4, L̄4,

Every conic lies in a unique plane and 4 general points of P
3 do not lie in a

plane. Thus there are no conics through 4 general pints.

In the remaining 2 cases there are always complex conics, but we claim

that there are generic configurations such that no real conic intersects all of

the constraints.

Case 2. p1, p̄1, L1, L̄1, L2, L̄2 ⊂ P
3.

We start with the construction over C. Two points p1, p2 determine a

line and projecting from it gives π1 : P
3 ��� P

1. Given two points p1, p2 and

two lines L1, L2, there is a 1-dimensional family of quadrics passing through

them; this gives π2 : P
3 ��� P

1. The product of these gives a map

π := π1 × π2 : P
3 ��� P

1 × P
1.

The fibers of π are the conics that pass through p1, p2 and intersect L1, L2.

Given any other line L3, it intersects the fibers of π1 (which are planes)

in 1 point and the fibers of π2 (which are quadrics) in 2 points. Thus

π(L) ⊂ P
1 × P

1 is a curve of bidegree (2, 1). Two curves of bidegree (2, 1)

intersect in 4 points, giving 4 conics that pass through 2 points and intersect

4 lines.

If p1 ∪ p2 and L1 ∪ L2 are real, then π is defined over R. In P
1 × P

1

it is easy to write down examples of two curves of bidegree (2, 1) (real or

conjugate pairs) that have no real intersections points.

Case 3. L1, L̄1, . . . , L4, L̄4 ⊂ P
3.

Again we start with the construction over C. A line ! in P
3 determines

a projection π(!) : P
3 ��� P

1. If C ⊂ P
3 is a smooth conic then π(!)|C :

C → P
1 has degree 2 if C is disjoint from ! and degree 1 or 0 if C intersects

!.

Using this for a pair of disjoint lines !1, !2 ⊂ P
3 we get a map

π := π(!1) × π(!2) : P
3 ��� P

1 × P
1.

The fibers of π are lines that connect a point of !1 to a point of !2. Thinking

of P
1 × P

1 as a quadric surface in P
3, the resulting map

π : P
3 ��� P

1 × P
1 ↪→ P

3
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is given by the quadratic forms on P
3 that vanish on both lines.

Choose 8 lines L1, . . . , L8 to be fibers of π in general position. Then a

conic C that intersects all 8 lines corresponds to a rational curve of bidegree

(2, 2) on P
1 × P

1 passing through 8 general points. However, the space of

rational curves of bidegree (2, 2) has dimension 7, thus there are no such

curves through 8 general points. Thus we conclude that if a degree 2 curve

C ⊂ P
3 meets all 8 lines then either !1 or !2 is an irreducible component of

C.

To get an example over R, use the above construction for a conjugate

pair of disjoint lines !, !̄ ⊂ P
3. Choose linear forms α, β such that ! = (α =

β = 0). Then !̄ = (ᾱ = β̄ = 0) and the space of quadratic forms that

vanish on both !, !̄ is spanned by αᾱ, ββ̄, αβ̄, βᾱ. These satisfy the obvious

equation

(αᾱ)(ββ̄) = (αβ̄)(βᾱ).

To get a real basis, we change to

〈αᾱ + ββ̄, αᾱ− ββ̄, αβ̄ + βᾱ,
√
−1(αβ̄ − βᾱ).

These satisfy the equation

(αᾱ + ββ̄)2 − (αᾱ− ββ̄)2 = (αβ̄ + βᾱ)2 +
(√

−1(αβ̄ − βᾱ)
)2
.

Thus π can be thought of as a map

π := π(!) × π(!̄) : P
3 ��� Q,

where Q is isomorphic to the “sphere” (x2 + y2 + z2 = t2).

Now choose L1, L̄1, . . . , L4, L̄4 to be fibers of π in general position. By

the above considerations, a degree 2 curve C meets all 8 lines iff either ! or

!̄ is an irreducible component of C. The only real degree 2 curve with this

property is ! + !̄. This is, however, geometrically disconnected and not a

limit of conics.

Example 17 (Cubics in P
3). The space of rational cubics in P

3 has

dimension 12. Thus, working with conjugate pairs of linear constraints, we

get a GWW-invariant in the following cases

(1) p1, p̄1, p2, p̄2, p3, p̄3,
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(2) p1, p̄1, p2, p̄2, L1, L̄1, L2, L̄2,

(3) p1, p̄1, L1, L̄1, . . . , L4, L̄4,

(4) L1, L̄1, . . . , L6, L̄6.

It has been classically known that there is a unique rational normal curve

through 6 general points in P
3. This curve is real whenever the 6 points

form a real set.

We claim that in the remaining cases there are generic configurations

such that no degree 3 rational curve defined over R intersects all of the

constraints.

Again we work on the empty quadric Q2
E := (x2

0 + · · · + x2
3 = 0) ⊂ P

3

and choose special configurations as follows.

(2’) We choose L1, L̄1, L2, L̄2 to be disjoint members in one family of lines

and the points in general position on Q2
E .

(3’) We choose L1, L̄1, L2, L̄2, L3, L̄3 to be disjoint members in one family

of lines, L4, L̄4 are chosen from the other family and the points in

general position on Q2
E .

(4’) We choose L1, L̄1, . . . , L4, L̄4 to be disjoint members in one family

of lines and the remaining lines to be disjoint members of the other

family.

In all of these cases, the following 2 properties hold

(a) there are at least 8 disjoint constraints and

(b) for both coordinate projections πi : Q2
E → Q1

E at least 4 fibers contain

a constraint.

Let B be a real cubic curve that meets all the constraints. By (a), B and

Q2
E have at least 8 points in common, thus at least 1 of the irreducible

components of B is contained in Q2
E . Since Q2

E does not contain odd degree

real curves, B decomposes as C + L where C is a degree 2 curve contained

in Q2
E and L is a real line.

There are 2 possibilities for C.
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(i) C is a smooth conic. Note that C +L can not be written as the image

of a geometrically connected real curve of arithmetic genus 0 since we

would need to resolve 1 of the nodes, but they form a conjugate pair.

Thus C +L can not be obtained as a limit of real cubics of geometric

genus 0.

(ii) C is a conjugate pair of lines. Then Q2
E ∩ (C +L) = C but (b) shows

that C can not meet all the constraints.

Thus, after a general perturbation we get no real curves.

The following generalization of (17.2) was pointed out by Zinger.

Example 18 (Odd degree rational curves in P
3). For every odd d ≥ 1

there are generic configurations

p1, p̄1, . . . , pd−1, p̄d−1, L1, L̄1, L2, L̄2 ⊂ P
3

such that no degree d rational curve defined over R intersects all of the

constraints.

Set P2d−2 := {p1, p̄1, . . . , pd−1, p̄d−1}. As in (17.2’) we choose L1, L̄1,

L2, L̄2 ⊂ Q2
E to be disjoint members in one family of lines and the points in

general position on Q2
E . Let Cd be a real curve of degree d with geometrically

rational irreducible components that intersects all of the constraints.

Note that Cd and Q2
E have at least (2d− 2) + 4 points in common, thus

at least 1 irreducible component of Cd is contained in Q2
E . Every real curve

contained in Q2
E has even degree, thus Cd can not be contained in Q2

E . We

can thus write Cd = C2e + Cd−2e where C2e is contained in Q2
E and none

of the irreducible components of Cd−2e is contained in Q2
E . The subscripts

indicate the degree.

For general choice of the points, C2e can pass through at most a 4e −
2 element subset P4e−2 of P2d−2 and Cd−2e can pass through at most a

2d − 4e element subset P2d−4e of P2d−2. Thus P2d−2 is a disjoint union

P4e−2 ∪ P2d−4e. Note further that Cd−2e ∩ Q2
E = P2d−4e which is disjoint

from C2e. Thus Cd = C2e + Cd−2e is disconnected and it is not a limit of

geometrically connected real curves.

[Wel07] shows that the GWW-invariants for curves of any degree in P
2

give the optimal value if the constraints (with at most 1 exception) lie near
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an empty conic. The results of [Wel07] apply to many other surfaces as well.

The next examples illustrate this approach by considering the two known

vanishing GWW-invariants for curves in P
2; see the tables in [ABLdM11].

Example 19 (Cubics in P
2). There are generic configurations p1,

p̄1, . . . , p4, p̄4 ∈ P
2 such that no degree 3 rational curve defined over R

passes through all 8 points.

Proof. First choose all 8 points on the empty conic Q1
E := (x2 + y2 +

z2 = 0). Any cubic that contains the 8 points is of the form Q1
E + L where

L is a line. This leads to a contradiction as in (17). �

Example 20 (Quartics in P
2). There are generic configurations p1,

p̄1, . . . , p5, p̄5 ∈ P
2 such that there is no degree 4 map P

1 → P
2 defined over

R whose image passes through all 10 points. (Note that these constraints

define a 1-dimensional moduli space.)

Proof. First choose all 10 points on the empty conic Q1
E := (x2 +

y2 + z2 = 0). Then any quartic that contains the 10 points is of the form

Q1
E + Q′ where Q′ is a conic.

A quick case analysis shows that Q1
E +Q′ can be written as the image of

a real curve of arithmetic genus 0 only when Q′ is a conjugate pair of lines

L+ L̄. (In this case we can remove the singular point of Q′ and one each of

the intersections Q1
E ∩ L,Q1

E ∩ L̄.)

Thus Q1
E+Q′ can only be obtained as a limit of real quartics of geometric

genus 0 if their normalization has no real points. �

Remark 21. A degeneration argument as in (20) fails to work for

higher degree curves. The curve 2Q1
E + L is the image of a genus 0 curve

consisting of L and a conjugate pair of complex conics, both mapping iso-

morphically to Q1
E .
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