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Local Root Numbers of Elliptic Curves

over Dyadic Fields

By Naoki Imai

With a great respect for Professor Kunihiko Kodaira

Abstract. We consider an elliptic curve over a dyadic field with
additive, potentially good reduction. We study the finite Galois ex-
tension of the dyadic field generated by the three-torsion points of the
elliptic curve. As an application, we give a formula to calculate the
local root number of the elliptic curve over the dyadic field.

Introduction

Let K be a non-archimedean local field with residue field k. Let E be an

elliptic curve over K. If E has potentially multiplicative reduction, then E

has split multiplicative reduction over a quadratic extension of K (cf. Propo-

sition 1.1). On the other hand, if E has potentially good reduction, then

we need a bigger extension to get good reduction in general.

We assume that E has potentially good reduction. Let p be the char-

acteristic of k. We consider a finite Galois extension L of K, which is

obtained by adding the coordinates of the (p+1)-torsion points of E. Then

E has good reduction over L (cf. Proposition 1.2). The inertia subgroup

of Gal(L/K) is studied by Kraus in [Kra90] if the characteristic of K is

zero. We will extend the results to positive characteristic cases. Actually,

if p ≥ 3, the proof in [Kra90] works without change. Hence, we focus on

the case where p = 2. If p = 2, then K is called a dyadic field. Further, we

study the Galois group itself not only the inertia subgroup.

The local root numbers of elliptic curves are studied by many people. If

the characteristic of K is zero, they are calculated by Rohrlich in [Roh96]

except the case where p = 2, 3 and the elliptic curves have additive poten-

tially good reduction. Halberstadt gives a table of local root numbers of
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elliptic curves in [Hal98] if K is Q2 or Q3. Kobayashi calculates them in

[Kob02] in the case where p ≥ 3 and E has potentially good reduction. Us-

ing a result of [Kra90], Dokchitser-Dokchitser shows a formula calculating

the local root numbers of elliptic curves over 2-adic fields in [DD08]. In

this paper, we extend the formula of Dokchitser-Dokchitser to the positive

characteristic cases using the study of the Galois extension L over K. See

Theorem 4.6 for details of the formula.

In Section 1, we recall basic facts on elliptic curves over non-archimedean

local fields. In Section 3, we study the Galois group Gal(L/K) and give a

classification in Theorem 3.8. In Section 4, we show a formula calculating

the root numbers of elliptic curves over dyadic fields. The proof of the

formula is rather independent of the classification in Theorem 3.8.

Acknowledgment . The author is grateful to a referee for careful reading

and a number of suggestions for improvements.

Notation. In this paper, we use the following notation. Let K be a

non-archimedean local field with a residue field k of characteristic p. We

write OK for the ring of integers in K. Let v be the normalized valuation

of K. We take an algebraic closure Kac of K. For any finite extension F of

K, let WF denote the Weil group of F .

1. Elliptic Curve

Let E be an elliptic curve over K. Then E has a minimal Weierstrass

equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

with a1, . . . , a4, a6 ∈ OK . We put

b2 = a2
1 + 4a2,

b4 = a1a3 + 2a4,

b6 = a2
3 + 4a6,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6,

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6,
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j = c34/∆.

Then we have

4b8 = b2b6 − b24,(1.1)

1728∆ = c34 − c26.(1.2)

as in [Tat75, (1.3)]. Then E has potentially good reduction if and only if

v(j) ≥ 0 (cf. [Sil09, VII. Proposition 5.5]).

The following fact is due to Tate:

Proposition 1.1 (cf. [Sil09, Appendix C. Theorem 14.1.(d)]). If

v(j) < 0, then E has split multiplicative reduction over a quadratic ex-

tension of K.

For a finite extension F over K inside Kac and a set S of points of

E(Kac), let F (S) be the extension of F inside Kac obtained by adding the

x and y coordinates of the points of S to F . For such an F and a point P

of E, we simply write F (P ) for F ({P}). For a positive integer m, let E[m]

denote the kernel of the m-multiplication map on E(Kac).

Proposition 1.2. Let m ≥ 3 be an integer that is prime to p. If

v(j) ≥ 0, then E has good reduction over K(E[m]).

Proof. This follows from [ST68, Corollary 3] and [Sil09, VII. Propo-

sition 5.4.(a)]. �

2. Group Theory

For a natural number n, we write Sn for the symmetric group of degree

n, Cn for the cyclic group of order n, D2n for the dihedral group of order 2n,

SD2n for the semidihedral group of order 2n. We write Q8 for the quaternion

group. Here we recall an elementary fact on group theory.

Proposition 2.1. The natural action of GL2(F3) on P1(F3) defines a

surjection GL2(F3) → S4. Furthermore, 2-2 partitions of the 4 point set

{1, 2, 3, 4} defines a surjection S4 → S3 = D6. For a subgroup of GL2(F3),

we consider the image and kernel of the restriction of GL2(F3) → D6 to the

subgroup. Then a list of the isomorphism classes of subgroups of GL2(F3)

is given by the following table:
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❍❍❍❍❍❍Ker

Im
C1 C2 C3 D6

C1 C1 C2 C3 D6

C2 C2 C2 × C2 C6 D12

C4 C4 C8, D8 - -

Q8 Q8 SD16 SL2(F3) GL2(F3)

Further, the images under the surjection GL2(F3) → S4 of subgroups

that are isomorphic to C8 and D8 are isomorphic to C4 and C2×C2 respec-

tively.

Proof. We treat only distinction between C8, D8 and Q8. It is well-

known that the kernel of the surjection GL2(F3) → D6 is the unique sub-

group that is isomorphic to Q8. The subgroups that are isomorphic to C8

are conjugate to the subgroup generated by

(
0 1

1 1

)
.

Hence, their images in S4 are isomorphic to C4. On the other hand, the sub-

groups that are isomorphic to D8 are conjugate to the subgroup generated

by

(
1 0

0 −1

)
and

(
0 1

1 0

)
.

Hence, their images in S4 are isomorphic to C2 × C2. �

3. Galois Group

We assume that p 	= 3. Let E be an elliptic curve over K with additive,

potentially good reduction. We put L = K(E[3]) and G = Gal(L/K). Then

E has good reduction over L by Proposition 1.2.

We put

g(x) = 3x4 + b2x
3 + 3b4x

2 + 3b6x + b8.

Let α1, α2, α3, α4 be the roots of g(x) in Kac.
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Proposition 3.1. (1) The x coordinates of the 8 non-trivial points of

E[3] are the roots of g(x).

(2) The set of the third roots of ∆ is{
b4 − 3(α1α2 + α3α4), b4 − 3(α1α3 + α2α4), b4 − 3(α1α4 + α2α3)

}
.

(3) The degree [L : K] is not divided by 3 if and only if ∆ ∈ (K×)3.

Proof. These are proved in [Ser72, 5.3.b)]. �

We take ∆1/3 ∈ Kac so that ∆1/3 ∈ K if ∆ ∈ (K×)3. We assume

that ∆1/3 = b4 − 3(α1α2 + α3α4) by renumbering α1, α2, α3, α4. We put

K1 = K(∆1/3), s = α1 + α2 and t = α1α2.

Lemma 3.2. (1) We have

g(x) = (x2 − sx + t)
(
3x2 + (3s + b2)x− (3t + ∆1/3 − b4)

)
.

(2) We have [K1(s, t) : K1] ≤ 2.

Proof. The claim (1) follows from b2 = −3(α1 + α2 + α3 + α4) and

∆1/3 = b4 − 3(α1α2 + α3α4).

We take a basis of E[3]. Then we have an embedding G ↪→ GL2(F3),

and the roots of g(x) correspond the elements of P1(F3). By considering

S4 as the automorphism group of {α1, α2, α3, α4}, we have a surjection

GL2(F3) → S4 as in Proposition 2.1.

Then K1 corresponds to the stabilizer in G of the partition {{α1, α2},
{α3, α4}}, which is the intersection of G and a subgroup of GL2(F3) that

is isomorphic to SD16. On the other hand, K1(s, t) corresponds to the

stabilizer in G of the subset {α1, α2}, which is the intersection of G and a

subgroup of GL2(F3) that is isomorphic to D8. Therefore, we have [K1(s, t) :

K1] ≤ |SD16/D8| = 2. �

We take a non-trivial third root of unity ζ3 ∈ Kac.

Lemma 3.3. We have ζ3,∆
1/3 ∈ L.

Proof. We have ζ3 ∈ L by the existence of the Weil pairing, and

∆1/3 ∈ L by ∆1/3 = b4 − 3(α1α2 + α3α4). �
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The following lemma and proposition are variants of results in [Kra90].

The proofs in [Kra90] work also in our situation. We recall the proofs for

completeness.

Lemma 3.4 (cf. [Kra90, Lemme 5]). Let P be a non trivial element of

E[3]. Then [L : K(ζ3, P )] divides 3.

Proof. We take a point Q of E[3] so that (P,Q) is an ordered basis

of E[3]. Then it gives an injective group homomorphism ρ : G → GL2(F3).

Then the image of Gal
(
L/K(ζ3, P )

)
under ρ is contained in

{(
1 b

0 1

) ∣∣∣∣ b ∈ F3

}
,

because det ρ is the mod 3 cyclotomic character. Hence, we have the

claim. �

Proposition 3.5 (cf. [Kra90, Proposition 3]). Let K ′ be an extension

of K1(ζ3) contained in L. Then the followings are equivalent:

(1) [L : K ′] ≤ 2.

(2) g(x) has a root in K ′.

(3) g(x) has the all roots in K ′.

Proof. It is trivial that (3) implies (2). We assume (2). Let α be a

root of g(x) in K. Let P be a point of E[3] whose x coordinate is α. Then

we have [L : K ′(P )] = 1 by Proposition 3.1.(3) and Lemma 3.4. Hence we

have (1).

We assume (1). Taking a basis of E[3], we have an injective group

homomorphism ρ : G → GL2(F3). Then the image of Gal(L/K ′) under ρ is

contained in {(
1 0

0 1

)
,

(
−1 0

0 −1

)}
.

Then, the all roots of g(x) is fixed by the action of Gal(L/K ′). Hence, we

have (3). �
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The following lemma is also a variant of a lemma in [Kra90]. Our proof

is different from that in [Kra90].

Lemma 3.6 (cf. [Kra90, Lemme 6]). Let α0 ∈ Kac be a root of g(x).

Then K1(ζ3, α0) contains s and t.

Proof. By Lemma 3.5, K1(ζ3, α0) contains the all roots of g(x). Hence

the claim follows. �

We simply write α for α1, and take β ∈ Kac such that

β2 + a1αβ + a3β = α3 + a2α
2 + a4α + a6.

Lemma 3.7. We have L = K1(ζ3, α, β).

Proof. By Lemma 3.4, [L : K1(ζ3, α, β)] divides 3. On the other

hand, 3 does not divide [L : K1] by Proposition 3.1.(2). Hence the claim

follows. �

Theorem 3.8. (1) Suppose ζ3 ∈ K and ∆1/3 ∈ K.

(a) If α ∈ K, then G � C2.

(b) If α /∈ K and s, t ∈ K, then G � C4.

(c) If K(s, t) 	= K and α ∈ K(s, t), then G � C4.

(d) If K(s, t) 	= K and α /∈ K(s, t), then G � Q8.

(2) Suppose ζ3 ∈ K and ∆1/3 /∈ K.

(a) If α, β ∈ K1, then G � C3.

(b) If α ∈ K1 and β /∈ K1, then G � C6.

(c) If K1(s, t) 	= K1, then G � SL2(F3).

(3) Suppose ζ3 /∈ K and ∆1/3 ∈ K.

(a) If α ∈ K(ζ3), then G � C2 × C2.
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(b) If α /∈ K(ζ3), s, t ∈ K(ζ3) and K(s, t) 	= K, then G � C8.

(c) If α /∈ K(ζ3) and s, t ∈ K, then G � D8.

(d) If K(ζ3, s, t) 	= K(ζ3) and α ∈ K(ζ3, s, t), then G � D8.

(e) If K(ζ3, s, t) 	= K(ζ3), then α /∈ K(ζ3) and G � SD16.

(4) Suppose ζ3 /∈ K and ∆1/3 /∈ K.

(a) If α, β ∈ K1(ζ3), then G � D6.

(b) If α ∈ K1(ζ3) and β /∈ K1(ζ3), then G � D12.

(c) If K1(ζ3, s, t) 	= K1(ζ3), then α /∈ K1(ζ3) and G � GL2(F3).

Proof. By taking a basis of E[3], we consider G as a subgroup of

GL2(F3). We note that (1), (2), (3) and (4) in this theorem correspond

the 1st, 3rd, 2nd and 4th column in Proposition 2.1 respectively. We use

Proposition 2.1 without mention.

We prove (1). Since E has bad reduction, the claim (1a) follows from

Lemma 3.5. If α /∈ K, then [L : K] ≥ 4 by Proposition 3.1.(3) and Lemma

3.5. On the other hand, if s, t ∈ K, then [L : K] ≤ 4 by Lemma 3.7. Hence

the claim (1b) follows. By applying Lemma 3.5 to K(s, t), we have the

claims (1c) and (1d).

We prove (2). The claims (2a) and (2b) follows from Lemma 3.7. If

K1(s, t) 	= K1, [L : K1] ≥ 4 by (1c) and (1d). Hence we have (2c), because

there is no subgroup of SL2(F3) with order 12.

We prove (3). By replacing K by K(ζ3) in (1), we have (3a), (3e),

and [L : K] = 8 in the case (3b), (3c) and (3d). In the case (3b), g(x)

is irreducible by Lemma 3.2.(1). Then G act transitively on the roots of

g(x). Hence we have (3b). In the case (3c), we have two distinct quadratic

extensions K(ζ3) and K(α) of K. In the case (3d), we have two distinct

quadratic extensions K(ζ3) and K(s, t) of K. Hence we have (3c) and (3d).

By replacing K by K(ζ3) in (2), we obtain (4). �

Remark 3.9. In some case, the inertia subgroup I of G is determined

by the Kodaira-Néron type of E. In fact, I � Z/3Z if and only if the

Kodaira-Néron type of E is IV or IV ∗, where we use the Kodaira symbol

after [Kod64]. This fact can be proved similarly as [Kra90, Théorème 2]

also in the positive characteristic case.
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4. Root Number

We assume that K is a dyadic field. Let φ : F2 → C× be the non-trivial

character. We take an additive character ψ : K → C× such that ψ(a) =

φ(Trk/F2
(ā)) for a ∈ OK , where ā denotes the image of a in k. Let dµ be a

Haar measure on K. Let σ be a finite dimensional smooth representation

of WK over C. Then we can consider a local ε-factor ε(σ, ψ, dµ) ∈ C× as in

[Del73, §4]. We put

w(σ, ψ) =
ε(σ, ψ, dµ)

|ε(σ, ψ, dµ)| ,

which is independent of the choice of dµ. We call w(σ, ψ) the local root

number of σ with respect to ψ. For a finite extension F over K and a finite

dimensional smooth representation of WF over C, we always consider the

root number with respect to ψ ◦ TrF/K . We simply write w(σ) for w(σ, ψ)

in the sequel.

Let T3(E) be the 3-adic Tate module of E. We put V3(E) = T3(E) ⊗Z3

Q3. We take an embedding Q3 → C. Then the natural action of WK on

V3(E) induces a smooth representations

σE : WK → Aut(V3(E) ⊗Q3 C),

because E has potentially good reduction. We put w(E/K) = w(σE), which

is called the local root number of E.

Using results in Section 3, we can extend results in [DD08] to positive

characteristic cases. Here, we treat only the most non-trivial case, where

G � GL2(F3).

Remark 4.1. Our choice of ψ is different from that in [DD08]. It is

the reason why the formulas in Lemma 4.2 and Theorem 4.6 look different

from those in [DD08].

We assume that G � GL2(F3). We put f = [k : F2] and n(E) = v(∆).

We note that f is odd and K(ζ3) is the unramified quadratic extension by

the assumption. Let η : WK → C× be the unramified character that sends

the arithmetic Frobenius to (
√

2i)f . We put σE,η = σ ⊗ η−1.
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Lemma 4.2 (cf. [DD08, Lemma 1]). The WK-representation σE,η fac-

tors through G. Moreover, we have

w(E/K) = (−i)f(n(E)−2)w(σE,η).

Proof. The proof in [DD08, Lemma 1] works also in our situation. �

Lemma 4.3. The discriminant of g(x) is equal to −27∆2.

Proof. Using Proposition 3.1.(2), we see that the discriminant of g(x)

is equal to

36
∏

1≤i<j≤4

(αi − αj)
2

= (∆1/3 − ζ3∆
1/3)2(∆1/3 − ζ2

3∆1/3)2(ζ3∆
1/3 − ζ2

3∆1/3)2

= −27∆2. �

We put

s′ = ζ3(α1 + α2) + ζ2
3 (α3 + α4),

t′ = ζ3α1α2 + ζ2
3α3α4

and M = K1(s
′, t′).

Lemma 4.4. We have an isomorphism Gal(L/M) � C8.

Proof. Let h0 be the element of S4 = Aut({α1, α2, α3, α4}) defined

by

α1 �→ α3 �→ α2 �→ α4 �→ α1.

Let H be the preimage of the subgroup generated by h0 under G → S4.

Then H is isomorphic to C8 by Proposition 2.1. Any lift of h0 in G send

ζ3 to ζ2
3 , because it fixes ∆1/3 and permutes ζ3∆

1/3 and ζ2
3∆1/3. Hence,
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H fixes s′ and t′ by the definition. This implies that H ⊂ Gal(L/M) and

[M : K1] ≤ 2. Therefore, it suffices to show M 	= K1.

Since K1(s, t) 	= K1 by the assumption G ∼= GL2(F3), either

α1 + α2 	= α3 + α4 or α1α2 	= α3α4

holds. Hence, M is not fixed by Gal(L/K1). This show M 	= K1. �

Let E be the elliptic curve over F2 defined by x3 = y2 +y. The following

fact is well-known:

Lemma 4.5 (cf. [IT12]). Let m be a positive integer. Then we have

3E(F2m) = 2m + 1 − (
√

2i)m − (−
√

2i)m.

By Lemma 4.2, we consider ΣE,η as a representation of G. We take a

character χ : Gal(L/M) → C× such that ΣE,η|Gal(L/M) is the direct sum

of χ and its conjugate. For a character φ of a subgroup of G, let w(φ)

denote the root number of the character of the Weil group corresponding to

φ. For a finite extension F of K and its quadratic extension F ′, let wF ′/F

be the root number of the non-trivial character of WF that factors through

Gal(F ′/F ). The following is a main theorem, which is proved at [DD08,

Theorem 7] in the case where K is of characteristic 0.

Theorem 4.6. We have

w(E/K) = (−i)f(n(E)−2) w(χ)

wK(α,β)/K(α)
,

where f and n(E) are defined after Remark 4.1.

Proof. We take an ordered basis (P,Q) of E[3] such that the coordi-

nate of P is (α, β). We identify G with GL2(F3) by this ordered basis. By

Lemma 4.2, it suffices to show

w(σE,η) =
w(χ)

wK(α,β)/K(α)
.(4.1)

Let B12 ⊂ GL2(F3) be the F3-rational points of the upper triangle Borel

subgroup of GL2. Let detB12 be the determinant character, and σB12 be the

non-trivial character that factors through

B12 → F×
3 ;

(
a b

0 d

)
�→ a.
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We take a non-trivial character τ of SL(F3). (We note that the abelianiza-

tion of SL(F3) is isomorphic to Z/3Z.) Let k2 be the residue field of K(ζ3).

By the local class field theory, τ corresponds to a non trivial character χτ

of k×2 /(k×2 )3. Then the formula

w(σE,η) =
w(χ)w(detB12)w(τ)

w(σB12)
(4.2)

is proved in the proof of [DD08, Theorem 7] without using the assumption

that the characteristic of K is 0. Since B12 is the subgroup of G preserving

the subgroup of E[3] generated by P , we have w(σB12) = wK(α,β)/K(α). We

have

w(detB12) = wK(α,ζ)/K(α) = (−1)[K(α):K]−v(D(K(α)/K)) = 1,

where we have the second equality by [BH06, 23.5. Lemma 1 and Proposi-

tion], and the third equality holds since v(D(K(α)/K)) is even by Lemma

4.3. We put q = pf . We have

w(τ) = q−1
∑
x∈k×2

χτ (x)−1φ(Trk2/F2
(x))

= q−1

{ ∑
x∈(k×2 )3

φ(Trk2/F2
(x)) −

∑
x∈ζ3(k×2 )3

φ(Trk2/F2
(x))

}
(4.3)

using [BH06, 23.5. Theorem] and that{
x ∈ ζ3(k

×
2 )3

∣∣ Trk2/F2
(x) = 0

}
→

{
x ∈ ζ2

3 (k×2 )3
∣∣ Trk2/F2

(x) = 0
}
; x �→ x2

is a bijection. We put

N1 = 3
{
y ∈ k2

∣∣ y + y2 ∈ (k×2 )3
}
,

N2 = 3
{
y ∈ k2

∣∣ y + y2 ∈ ζ3(k
×
2 )3

}
.

We note that N2 = (q2 − 2 −N1)/2. Then (4.3) is equal to

q−1

{(
N1

2
−

(q2 − 1

3
− N1

2

))
−

(
N2

2
−

(q2 − 1

3
− N2

2

))}

=
3N1 − q2 + 2

2q
= 1,
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because N1 = (q2 + 2q − 2)/3 by Lemma 4.5. Therefore (4.1) follows from

(4.2). �

Remark 4.7. The elliptic curve E appears in a semi-stable reduction

of a Lubin-Tate curve over a dyadic field (cf. [IT11]). Hence, it is studied

in [IT12]. Actually, a similar calculation as the calculation of w(τ) in the

proof of Theorem 4.6 appears in [IT12].
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