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Mori Fibre Spaces for Kähler Threefolds

By Andreas Höring and Thomas Peternell

In memory of Professor Kunihiko Kodaira

Abstract. Let X be a compact Kähler threefold such that the
base of the MRC-fibration has dimension two. We prove that X is
bimeromorphic to a Mori fibre space. Together with our earlier re-
sult [HP13] this completes the MMP for compact Kähler threefolds:
let X be a non-projective compact Kähler threefold. Then X has a
minimal model or X is bimeromorphic to a Mori fibre space over a
non-projective Kähler surface.

1. Introduction

This paper continues our study of the minimal model program (MMP)

for compact Kähler threefolds. In [HP13] we established the existence of

minimal models for compact Kähler threefolds such that KX is pseudoef-

fective. More precisely, minimal models are obtained, as in the projective

setting, by a sequence of contractions of extremal rays (in a suitable cone)

and flips. By a theorem of Brunella [Bru06] a smooth compact Kähler three-

fold has pseudoeffective KX if and only if X is not uniruled. In the present

work we deal with the remaining case where X is uniruled. The general

fibre of the MRC-fibration X ��� Z is rationally connected, so carries no

holomorphic forms [Deb01, Cor.4.18]. Thus if the base Z has dimension

at most one, then we obtain H2(X,OX) = H0(X,Ω2
X) = 0. In particular

the Kähler manifold X is projective by Kodaira’s criterion. Since our main

interest is the study of non-projective Kähler threefolds, we focus on the

case where Z has dimension two:

1.1. Theorem. Let X be a normal Q-factorial compact Kähler three-

fold with at most terminal singularities. Suppose that the base of the MRC-

fibration X ��� Z has dimension two.
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Then X is bimeromorphic to a Mori fibre space, i.e. there exists a MMP

X ��� X ′,

consisting of contractions of extremal rays and flips, such that X ′ admits

a fibration ϕ : X ′ → S onto a normal compact Q−factorial Kähler surface

with at most klt singularities such that −KX′ is ϕ-ample and ρ(X ′/S) = 1.

It will be important to work with a special type of Kähler classes:

1.2. Definition. Let X be a normal Q-factorial compact Kähler

threefold with at most terminal singularities. Suppose that the base of the

MRC-fibration X ��� Z has dimension two, and let F � P1 be a general

fibre. A Kähler class ω on X is normalised if ω · F = 2.

Since the canonical class KX has degree −2 on F , the adjoint class

KX +ω is trivial on F . Using a recent result of Pǎun [Pău12] we first prove

that KX + ω is pseudoeffective. The proof of Theorem 1.1 then proceeds

in two steps, the first being the existence of a MMP for the adjoint class

KX + ω:

1.3. Theorem. Let X be a normal Q-factorial compact Kähler three-

fold with at most terminal singularities. Suppose that the base of the MRC-

fibration X ��� Z has dimension two. Then there exists a MMP

X ��� X ′

such that for every normalised Kähler class ω′ on X ′ the adjoint class KX′ +

ω′ is nef.

Once we have a normalised Kähler class ω such that KX + ω is nef, the

adjoint class KX + ω is a natural candidate for the “nef supporting class”

that defines a Mori fibre space structure.

The second step is to prove an analogue of the base-point free theorem

for the adjoint class KX + ω.

1.4. Theorem. Let X be a normal Q-factorial compact Kähler three-

fold with at most terminal singularities. Suppose that the base of the MRC-

fibration X ��� Z has dimension two. Let ω be a normalised Kähler class

on X such that KX + ω is nef.
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Then there exists a holomorphic fibration ϕ : X → S onto a normal

compact Kähler surface S such that KX + ω is ϕ-trivial.

By construction, the anticanonical class −KX is ample with respect to

the fibration X → S, so we can use the cone and contraction theorem for

projective morphisms ([Nak87], [KM98]) to run a relative MMP. This MMP

terminates with the Mori fibre space we are looking for.

In the situation of Theorem 1.4 one can prove that S is Q-factorial with

at most rational singularities, but it is not quite clear whether S is klt.

However we can prove this property for an elementary contraction of fibre

type, cf. Lemma 4.1.

Acknowledgements. We thank the Forschergruppe 790 “Classification

of algebraic surfaces and compact complex manifolds” of the Deutsche

Forschungsgemeinschaft for financial support. A. Höring was partially also

supported by the A.N.R. project CLASS1.

2. Notation

We use the same notation as in [HP13]. For the convenience of the

reader we recall the most important definitions and basic results.

2.1. Definition. An irreducible and reduced complex space X is

Kähler if there exists a Kähler form ω, i.e. a positive closed real (1, 1)-

form ω ∈ A1,1
R (X), such that the following holds: for every point x ∈ Xsing

there exists an open neighbourhood x ∈ U ⊂ X and a closed embedding

iU : U ⊂ V into an open set V ⊂ CN , and a strictly plurisubharmonic

C∞-function f : V → C with ω|U∩Xnons = (i∂∂f)|U∩Xnons .

In the same manner one can define (p, q)−forms on an irreducible re-

duced complex space [Dem85], by duality we obtain the usual notions of

currents.

We will next define the appropriate analogue of the Néron-Severi space

N1(X) for a normal compact Kähler space, as well as the cones NE(X) and

NA(X) contained in its dual N1(X). For any details we refer to [HP13,

Sect.3].

1ANR-10-JCJC-0111.
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2.2. Definition. [BPEG13, Defn. 4.6.2] [HP13, Defn.3.6] Let X be

an irreducible reduced complex space. Let HX be the sheaf of real parts of

holomorphic functions multiplied with i. A (1, 1)-form with local potentials

on X is a global section of the quotient sheaf A0
X/HX . We define the Bott-

Chern cohomology

N1(X) := H1(X,HX).

2.3. Remark. Using the exact sequence

0 → HX → A0
X → A0

X/HX → 0,

and the fact that A0
X is acyclic, we obtain a surjective map

H0(X,A0
X/HX) → H1(X,HX).

Thus we can see an element of the Bott-Chern cohomology group as a closed

(1, 1)-form with local potentials modulo all the forms that are globally of

the form ddcu.

Let DX be the sheaf of distributions. Using the exact sequence

0 → HX → DX → DX/HX → 0,

we see that one obtains the same Bott-Chern group, considering (1, 1)−
currents T with local potentials, which is to say that locally T = ddcu with

u a distribution.

Dually we define

2.4. Definition. Let X be a normal compact complex space. Then

N1(X) is the vector space of real closed currents of bidimension (1, 1) modulo

the following equivalence relation: T1 ∼ T2 if and only if

T1(η) = T2(η)

for all real closed (1, 1)-forms η.

In [HP13, Prop.3.9] we established a canonical isomorphism

Φ : N1(X) → N1(X)∗(1)
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for any normal compact complex space X in the Fujiki class C, i.e., for those

X which are bimeromorphic to a Kähler space.

2.5. Definition. Let X be a normal compact complex space in class

C. We define NA(X) ⊂ N1(X) as the cone generated by the positive closed

currents of bidimension (1, 1).

Given an irreducible curve C ⊂ X, we associate to C the current of

integration TC . In the case of isolated singularities, which is the only case

relevant in our setting, we define

TC(ω) =

∫
C
ω =

∫
Ĉ
π∗(ω),

where π : X̂ → X is a resolution of singularities, the curve Ĉ is the strict

transform of C, and ω a d-closed (1, 1)-form on X. We define the Mori cone

NE(X) ⊂ N1(X) as the closure of the cone generated by the currents TC
and clearly have an inclusion

NE(X) ⊂ NA(X).

2.6. Definition. Let X be an irreducible reduced compact complex

space in class C. We denote by Nef(X) ⊂ N1(X) the cone generated by

cohomology classes which are nef in the sense of [Pău98, Defn.3]: let u ∈
N1(X) be a class represented by a form α with local potentials. Then u is

nef if for some positive (1, 1)−form ω on X and for every ε > 0 there exists

fε ∈ A0(X) such that

α+ i∂∂fε ≥ −εω.
The class u is pseudo-effective, if it can be represented by a current T which

is locally of the form T = ∂∂ϕ with ϕ a plurisubharmonic function.

If X is a normal compact Kähler space, we can also consider the open

cone K generated by the classes of Kähler forms. In this case we know by

[Dem92, Prop.6.1]2 that

Nef(X) = K.
2The statement in [Dem92, Prop.6.1.iii)] is for compact manifolds, but the proof

works in the singular setting, cf. also [HP13, Rem.3.5] for regularisation arguments in the
singular setting.
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As in the projective setting, we have a duality statement:

2.7. Proposition. [HP13, Prop.3.15] Let X be a normal compact

threefold in class C. Then the cones Nef(X) and NA(X) are dual via the

canonical isomorphism Φ : N1(X) → N1(X)∗ given by (1).

Finally we define the notion of the contraction of an extremal ray R. It

is very important to consider extremal rays in the dual Kähler cone NA(X)

rather than in the Mori cone NE(X).

2.8. Definition. LetX be a normal Q-factorial compact Kähler space

with at most terminal singularities, and let ω be a Kähler class on X. Let

R be a (KX + ω)-negative extremal ray in NA(X). A contraction of the

extremal ray R is a morphism ϕ : X → Y onto a normal compact Kähler

space Y , such that −(KX + ω) is a Kähler class on every fibre and a curve

C ⊂ X is contracted if and only if [C] ∈ R.

3. MMP for the Adjoint Class

In order to simplify the statements we will work under the following

3.1. Assumption. Let X be a normal Q-factorial compact Kähler

threefold with at most terminal singularities. Suppose that the base of the

MRC-fibration X ��� Z has dimension two, and let ω be a normalised

Kähler class on X.

3.2. Remark. Observe that the surface Z is not uniruled: since this

is a bimeromorphic statement we can suppose that X and Z are smooth

and the MRC-fibration is a morphism ϕ : X → Z. If (Ct)t∈T ⊂ Z is a

dominant family of rational curves, the surface ϕ−1(Ct) is uniruled by the

fibres of ϕ−1(Ct) → Ct. Thus it carries no holomorphic 2-form, in particular

ϕ−1(Ct) is projective by Kodaira’ s criterion. Thus Tsen’s theorem applies

and we obtain that ϕ−1(Ct) is rationally connected. Now we conclude as

in the algebraic case that ϕ is not the MRC-fibration. The same line of

arguments also shows that the theorem of Graber-Harris-Starr [GHS03] is

also true in Kähler category.
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3.A. Remarks on adjunction

Let X be a normal Q-factorial compact Kähler threefold with at most

terminal singularities. Let S ⊂ X be a prime divisor, i.e. an irreducible and

reduced compact surface. Let m ∈ N be the smallest positive integer such

that both mKX and mS are Cartier divisors on X. Then the canonical

class KS ∈ Pic(S) ⊗ Q is defined by

KS :=
1

m
(mKX +mS)|S .

Since X is smooth in codimension two, there exist at most finitely many

points {p1, . . . pq} where KX and S are not Cartier. Thus by the adjunction

formula KS is isomorphic to the dualising sheaf ωS on S \ {p1, . . . pq}.
Let now ν : S̃ → S be the normalisation. Then we have

KS̃ ∼Q ν
∗KS −N,(2)

where N is an effective Weil divisor defined by the conductor ideal. Indeed

this formula holds by [Rei94] for the dualising sheaves. Since OS̃(ν∗KS) is

isomorphic to ν∗ωS on the complement of ν−1(p1, . . . pq), the formula holds

for the canonical classes.

Let µ : Ŝ → S̃ be the minimal resolution of the normal surface S̃, then

we have

KŜ ∼Q µ
∗KS̃ −N ′,

where N ′ is an effective µ-exceptional Q-divisor [Sak84, 4.1]. Thus if π :

Ŝ → S is the composition ν ◦µ, there exists an effective, canonically defined

Q-divisor E ⊂ Ŝ such that

KŜ ∼Q π
∗KS − E.(3)

Let C ⊂ S be a curve such that C �⊂ Ssing. Then the morphism π is an

isomorphism at the general point of C, and we can define the strict transform

Ĉ ⊂ Ŝ as the closure of C \ Ssing. Since Ĉ is an (irreducible) curve that is

not contained in the divisor N defined by the conductor, we have Ĉ �⊂ E.

By the projection formula and (3) we obtain

KŜ · Ĉ ≤ KS · C.(4)
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3.B. Divisorial Zariski decomposition for KX + ω

The starting point of our investigation is the following observation:

3.3. Lemma. Under the Assumption 3.1 the adjoint class KX + ω is

pseudoeffective.

Proof. Being pseudoeffective is a closed property in N1(X), so it

is sufficient to prove that for every ε > 0, the class KX + (1 + ε)ω is

pseudoeffective. Let µ : X ′ → X be a bimeromorphic morphism from a

smooth Kähler threefold X ′ such that the MRC-fibration is a morphism

ϕ′ : X ′ → Z ′ onto a smooth surface Z ′. The projection formula yields

µ∗ (KX′ + (1 + ε)µ∗ω) = KX + (1 + ε)ω,

so it is sufficient to prove that KX′ +(1+ε)µ∗ω is pseudoeffective. However

by a recent result of Pǎun [Pău12, Thm.1.1], the class KX′/Z′ + (1 + ε)µ∗ω
is pseudoeffective. Since the surface Z ′ is not uniruled (cf. Remark 3.2) and

Kähler by [Var86, Thm.3], the canonical class KZ′ is pseudoeffective. Thus

KX′ + (1 + ε)µ∗ω is pseudoeffective. �

Since KX + ω is pseudoeffective, we may apply [Bou04, Thm.3.12] to

obtain a divisorial Zariski decomposition3

KX + ω =
r∑

j=1

λjSj + Pω,(5)

where the Sj are integral surfaces in X, the coefficients λj ∈ R+ and Pω is

a pseudoeffective class which is nef in codimension one [Bou04, Prop.2.4],

that is for every surface S ⊂ X the restriction Pω|S is pseudoeffective.

3.4. Lemma. Under the Assumption 3.1, let S be a surface such that

(KX + ω)|S is not pseudoeffective. Then S is one of the surfaces Sj in

3The statements in [Bou04] are for complex compact manifolds, but generalise im-
mediately to our situation: take µ : X ′ → X a desingularisation, and let m ∈ N be
the Cartier index of KX . Then µ∗(m(KX + ω)) is a pseudoeffective class with divisorial
Zariski decomposition µ∗(m(KX + ω)) =

∑
ηjS

′
j + P ′

ω. The decomposition of KX + ω is
defined by the push-forwards µ∗(

1
m

∑
ηjS

′
j) and µ∗(

1
m
P ′
ω). Since a prime divisor D ⊂ X

is not contained in the singular locus of X, the decomposition has the stated properties.
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the divisorial Zariski decomposition (5) of KX + ω. Moreover S = Sj is

Moishezon and any desingularisation Ŝj is a uniruled projective surface.

Proof. The proof that S = Sj for some j is analogous to the proof in

[HP13, Lemma 4.1], thus (up to renumbering) we may suppose that S = S1.

We have

S = S1 =
1

λ1
(KX + ω) − 1

λ1
(

r∑
j=2

λjSj + Pω),

so by adjunction

KS = (KX + S)|S = (
λ1 + 1

λ1
KX |S +

1

λ1
ω|S) − 1

λ1
(

r∑
j=2

λj(Sj ∩ S) + Pω|S).

Note now that λ1+1
λ1
KX |S + 1

λ1
ω|S is not pseudoeffective: otherwise

(
λ1 + 1

λ1
KX |S +

1

λ1
ω|S

)
+ ω|S =

λ1 + 1

λ1
(KX + ω)|S

would be pseudoeffective, in contradiction to our assumption. Since

1

λ1
(

r∑
j=2

λj(Sj ∩ S) + Pω|S)

is pseudoeffective, the class KS cannot be pseudoeffective.

Let now π : Ŝ → S be the composition of the normalisation and the

minimal resolution of the surface S, then by (3) there exists an effective

divisor E such that

KŜ ∼Q π
∗KS − E.

Thus KŜ is not pseudoeffective, in particular κ(Ŝ) = −∞. It follows from

the Castelnuovo-Kodaira classification that Ŝ is covered by rational curves,

in particular Ŝ is a projective surface [BHPVdV04]. Thus S is Moishezon. �

3.5. Corollary. Under the Assumption 3.1, the adjoint class KX +ω

is nef if and only if

(KX + ω) · C ≥ 0

for every curve C ⊂ X.
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Proof. We prove the non-trivial implication by contradiction, so sup-

pose that KX + ω is not nef, but (KX + ω) · C ≥ 0 for all curves C ⊂ X.

Since KX + ω is pseudoeffective by Lemma 3.3 and the restriction to every

curve is nef, there exists by [Pău98], [Bou04, Prop.3.4] an irreducible surface

S ⊂ X such that (KX +ω)|S is not pseudoeffective. Fix a desingularisation

π : Ŝ → S of the surface S. By Lemma 3.4 the surface Ŝ is projective

and uniruled. The class π∗(KX + ω)|S is not pseudoeffective and, since

H2(Ŝ,OŜ) = 0, the class is represented by an R-divisor. Thus there exists

a covering family of curves Ct ⊂ S such that

(KX + ω) · Ct = π∗(KX + ω)|S · Ĉt < 0,

where Ĉt denotes the strict transform of Ct in Ŝ. This contradicts our as-

sumption that (KX + ω) · C ≥ 0 for all curves C ⊂ X. �

3.C. The adjoint cone theorem

The goal of this subsection is to prove a cone theorem for the adjoint

class KX + ω:

3.6. Theorem. Under the Assumption 3.1 there exists a countable

family (Γi)i∈I of rational curves on X such that

0 < −(KX + ω) · Γi ≤ 4

and

NA(X) = NA(X)(KX+ω)≥0 +
∑
i∈I

R+[Γi]

The proof of Theorem 3.6 is quite similar to the proof of [HP13,

Thm.1.2.]; for sakes of completeness we explain the main steps:

3.7. Lemma. Under the Assumption 3.1, let C ⊂ X be a curve such

that (KX + ω) · C < 0 and dimC Chow(X) > 0.

Then there exists a unique surface Sj from the divisorial Zariski decom-

position (5) such that C and its deformations are contained in the surface

Sj. Moreover we have

KSj · C < KX · C.(6)
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Proof. Identical to the proof of [HP13, Lemma 5.4], simply replace

KX by KX + ω. �

3.8. Lemma. Under the Assumption 3.1, let S1, . . . , Sr be the surfaces

appearing in the divisorial Zariski decomposition (5). Set

b := max{1,−(KX+ω)·Z |Z a curve s.t. Z ⊂ Sj,sing or Z ⊂ Sj∩Sj′ , j �= j′}.

If C ⊂ X is a curve such that

−(KX + ω) · C > b,

then we have dimC Chow(X) > 0.

In the proof we will use the following deformation property:

3.9. Definition. [HP13, Defn.4.3] Let X be a normal Q-factorial

Kähler threefold with at most terminal singularities. We say that a curve

C is very rigid if

dimmC Chow(X) = 0

for all m > 0.

Proof of Lemma 3.8. Since ω is nef, we have −KX · C > b. The

condition b ≥ 1 implies that the curve C is not very rigid (cf. [HP13,

Thm.4.5]). We can now argue exactly as in [HP13, Lemma 5.6] to deduce

Pω · C ≥ 0.

Since (KX + ω) · C < 0, the divisorial Zariski decomposition implies that

there exists a number j ∈ {1, . . . , r} such that Sj · C < 0. In particular we

have C ⊂ Sj . The class ω being nef, we thus obtain

KSj · C < KX · C < −b.

By definition of b, the curve C is not contained in the singular locus of

Sj . Let πj : Ŝj → Sj be the composition of normalisation and minimal

resolution (cf. Subsection 3.A). Then the strict transform Ĉ of C is well-

defined and from (4) we deduce

KŜj
· Ĉ ≤ KSj · C < −b.
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Since b ≥ 1, [Kol96, Thm.1.15] yields

dimĈ Chow(Ŝ) > 0,

so Ĉ deforms. Thus its push-forward π∗Ĉ = C deforms. �

3.10. Corollary. Under the Assumption 3.1, let b be the constant

from Lemma 3.8 and set

d := max{3, b}.

If C ⊂ X is a curve such that −(KX + ω) · C > d, we have

[C] = [C1] + [C2]

with C1 and C2 effective 1-cycles (with integer coefficients) on X.

Proof. Since ω is nef, we have −KX · C > d. Using the Lemmas 3.7

and 3.8, the proof of [HP13, Cor.5.7] applies without changes. �

3.11. Lemma. Under the Assumption 3.1, let R+[Γi] be a (KX + ω)-

negative extremal ray in NE(X), where Γi is a curve that is not very rigid

(cf. Definition 3.9). Then the following holds:

a) There exists a curve C ⊂ X such that [C] ∈ R+[Γi] and

dimC Chow(X) > 0.

b) There exists a rational curve C ⊂ X such that [C] ∈ R+[Γi].

Proof. This is completely analogous to [HP13, Lemma 5.8] since the

existence of the rational curve C ⊂ X such that [C] ∈ R+[Γi] is a conse-

quence of [HP13, Lemma 5.5 a)] which contains no assumption on KX . �

Following the strategy of [HP13, Thm.6.2] we first establish the cone

theorem for the Mori cone.

3.12. Theorem. Under the Assumption 3.1, there exists a number d ∈
N and a countable family (Γi)i∈I of curves on X such that

0 < −(KX + ω) · Γi ≤ d
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and

NE(X) = NE(X)(KX+ω)≥0 +
∑
i∈I

R+[Γi].

If the ray R+[Γi] is extremal in NE(X), there exists a rational curve Ci on

X such that [Ci] ∈ R+[Γi].

Proof. Let d ∈ N be the bound from Corollary 3.10. There are only

countably many curve classes [C] ∈ NE(X), such that

0 < −(KX + ω) · C ≤ d.

We choose a representative Γi for each such class [C] and set

V := NE(X)(KX+ω)≥0 +
∑

0<−(KX+ω)·Γi≤d

R+[Γi].

Fix a Kähler class η on X such that η · C ≥ 1 for every curve C ⊂ X

Step 1 We have NE(X) = V . By [HP13, Lemma 6.1] it is sufficient to

prove that NE(X) = V , i.e. the class [C] of every irreducible curve C ⊂ X
is contained in V . We will prove the statement by induction on the degree

l := η · C. The start of the induction for l = 0 is trivial. Suppose now that

we have shown the statement for all curves of degree at most l−1 and let C

be a curve such that l−1 < η ·C ≤ l. If −(KX +ω) ·C ≤ d we have [C] ∈ V
by definition. Otherwise there exists by Corollary 3.10 a decomposition

[C] = [C1] + [C2]

with C1 and C2 effective 1-cycles (with integer coefficients) on X. Since

η · Ci ≥ 1 for i = 1, 2 we have η · Ci ≤ l − 1 for i = 1, 2. By induction both

classes are in V , so [C] is in V .

Step 2 Every extremal ray contains the class of a rational curve. If the

ray R+[Γi] is extremal in NE(X), we know by [HP13, Thm.4.5] and Lemma

3.11 that there exists a rational curve Ci such that [Ci] is in the extremal

ray. �

We next pass from NE(X) to NA(X) :
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3.13. Theorem. Under the Assumption 3.1 there exists a number d ∈
N and a countable family (Γi)i∈I of curves on X such that

0 < −(KX + ω) · Γi ≤ d

and

NA(X) = NA(X)(KX+ω)≥0 +
∑
i∈I

R+[Γi].

If the ray R+[Γi] is extremal in NA(X), there exists a rational curve Ci on

X such that [Ci] ∈ R+[Γi].

Theorem 3.13 is a consequence of Theorem 3.12 and the following propo-

sition.

3.14. Proposition. Under the Assumption 3.1, suppose that there ex-

ists a d ∈ N and a countable family (Γi)i∈I of curves on X such that

0 < −(KX + ω) · Γi ≤ d

and

NE(X) = NE(X)(KX+ω)≥0 +
∑
i∈I

R+[Γi].

Then we have

NA(X) = NA(X)(KX+ω)≥0 +
∑
i∈I

R+[Γi].

Proof. Identical to the proof of [HP13, Prop.6.4]: simply replace KX

by KX + ω and note that the uniruledness of a surface S ⊂ X such that

(KX + ω)|S is not pseudoeffective is proven in Lemma 3.4. �

Finally, Theorem 3.6 follows from Theorem 3.13 in the same way as

[HP13, Thm.1.2] is deduced from [HP13, Thm.6.3].
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3.D. The adjoint contraction theorem

In this subsection we prove the contraction theorem:

3.15. Theorem. Under the Assumption 3.1, let R+[Γi] be a (KX +ω)-

negative extremal ray in NA(X). Then the contraction of R+[Γi] exists in

the Kähler category.

For the rest of this subsection we fix R := R+[Γi0 ] a (KX + ω)-negative

extremal ray in NA(X).

3.16. Definition. We say that the (KX + ω)-negative extremal ray

R is small if every curve C ⊂ X with [C] ∈ R is very rigid in the sense of

Definition 3.9. Otherwise we say that the extremal ray R is divisorial.

3.17. Remark. Notice that, due to Assumption 3.1 and Lemma 3.3,

through a general point x ∈ X there is no curve C belonging to R. Hence

the curves belonging to R cover at most a divisor.

If the extremal ray R is small, standard arguments show that there are

only finitely many curves C ⊂ X such that [C] ∈ R (cf. [HP13, Rem.7.2]).

If the extremal ray R is divisorial, we can argue as in [HP13, Lemma

7.5] that there exists a unique surface S ⊂ X such that

S ·R < 0.

In particular any curve C ⊂ X with [C] ∈ R is contained in S.

The following proposition is a well-known consequence of the cone the-

orem 3.13, cf. [HP13, Prop.7.3] for details:

3.18. Proposition. There exists a nef class α ∈ N1(X) such that

R = {z ∈ NA(X) | α · z = 0},

and such that, using the notation of Theorem 3.13, the class α is strictly

positive on 
NA(X)(KX+ω)≥0 +

∑
i∈I,i
=i0

R+[Γi]


 \ {0}.

We call α a nef supporting class for the extremal ray R = R+[Γi0 ].
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In what follows we will use at several places the following theorem, stated

in [BCE+02, Thm.2.6] for projective manifolds:

3.19. Theorem. Let X be a normal compact Kähler space, and let α

be a nef cohomology class on X. Then there exists an almost holomorphic,

dominant meromorphic map f : X ��� Y with connected fibers, such that

a) α is numerically trivial on all compact fibers F of f with dimF =

dimX − dimY

b) for every general point x ∈ X and every irreducible curve C passing

through x with dim f(C) > 0, we have α · C > 0.

In particular, if two general points of X can be joined by a chain C of curves

such that α · C = 0, then α ≡ 0.

For the convenience of the reader we sketch how to adapt the proof from

[BCE+02] to this setting.

Proof. We define that two points x, y ∈ X are equivalent if they can

be joined by a connected curve C such that α ·C = 0. By [Cam04, Thm.1.1]

there exists an almost holomorphic map f : X ��� Y with connected fibers

to a normal compact Kähler space Y such that two general points x and y

are equivalent if and only if f(x) = f(y). By construction a general f -fibre

F0 is a normal compact Kähler space such that two general points can be

connected by a curve, thus F0 is algebraic [Cam81, p.212, Cor.]. Hence we

can apply [BCE+02, Thm.2.4] to see that α|F0 = 0. In particular for any

Kähler form ω on X we have α · ωd−1 · F0 = 0 where d := dimX − dimY .

Since any compact f -fibre F of dimension d is homologous to some multiple

of F0 and α is nef we see that α|F = 0. �

3.20. Notation. Suppose that the extremal ray R = R+[Γi0 ] is diviso-

rial, and let S be the surface such that S · R < 0 (cf. Remark 3.17). Let

ν : S̃ → S ⊂ X be the normalisation. By Lemma 3.11(a) there exists a

curve C ⊂ X such that [C] ∈ R and dimC Chow(X) > 0. Since we have

S ·C < 0, the deformations (Ct)t∈T of C induce a dominating family (C̃t)t∈T ′

of S̃ such that ν∗(α) · C̃t = 0. The class ν∗(α) is a nef class on S̃ and we

may consider the nef reduction

f̃ : S̃ → B̃
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with respect to ν∗(α), cf. Theorem 3.19. By definition of the nef reduction

this implies

n(α) := dim B̃ ∈ {0, 1}.

3.21. Lemma.

a) Suppose that the extremal ray R is divisorial and n(α) = 0. Then

the surface S can be blown down to a point p: there exists a bimero-

morphic morphism ϕ : X → Y to a normal compact threefold Y with

dimϕ(S) = 0 such that ϕ|X\S is an isomorphism onto Y \ {p}.

b) Suppose that the extremal ray R is divisorial and n(α) = 1. Then there

exists a fibration f : S → B onto a curve B such that a curve C ⊂ S
is contracted if and only if [C] ∈ R. Moreover the surface S can

be contracted onto a curve: there exists a bimeromorphic morphism

ϕ : X → Y to a normal compact threefold Y such that ϕ|S = f and

ϕ|X\S is an isomorphism onto Y \B.

Proof. The proof is identical to the proofs of [HP13, Cor.7.7, Lemma

7.8, Cor.7.9] which only use properties of the nef class α and KX · R < 0

which holds since ω ·R > 0. �

3.22. Notation. Suppose that the extremal ray R = R+[Γi0 ] is small.

Set

C := ∪Cl⊂X,[Cl]∈RCl,

then C is a finite union of curves by Remark 3.17. We say that C is con-

tractible if there exists a bimeromorphic morphism ϕ : X → Y onto a

normal threefold Y with dimϕ(C) = 0 such that ϕ|X\C is an isomorphism

onto Y \ ϕ(C).

The following statement is a variant of [HP13, Prop.7.11].

3.23. Proposition. Suppose that the extremal ray R = R+[Γi] is

small. Let S ⊂ X be an irreducible surface. Then we have α2 · S > 0.
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Proof. By hypothesis, the cohomology class α− (KX +ω) is positive

on the extremal ray R, moreover we know by Proposition 3.18 that α is

positive on 
NA(X)(KX+ω)≥0 +

∑
i∈I,i
=i0

R+[Γi]


 \ {0}.

Thus, up to replacing α by some positive multiple, we may suppose that

α − (KX + ω) is positive on NA(X) \ {0}. Since X is a Kähler space, this

implies by [HP13, Cor.3.16] that

η := α− (KX + ω)

is a Kähler class. Arguing by contradiction we suppose that α2 · S = 0.

We first claim that (KX + ω)|S is not pseudoeffective. If α|S = 0 this is

obvious, so suppose α|S �= 0. Then we have

0 = α2 · S = (KX + ω) · α · S + η · α · S

and

η · α · S = η|S · α|S > 0

by the Hodge index theorem (note hat if π : S′ → S is a desingularisation,

then π∗(η|S) is nef and big and π∗(α|S) is nef, so the “smooth” Hodge index

theorem applies). Thus we have

(KX + ω) · α · S = (KX + ω)|S · α|S < 0.(7)

In particular (KX + ω)|S is not pseudoeffective, the class α|S being nef.

Since (KX + ω)|S is not pseudoeffective, we know by Lemma 3.4 that

S is uniruled and one of the surfaces in the Zariski decomposition (5). In

particular we cannot have α|S = 0 since S contains infinitely many curves

(recall that the ray R is small, hence α · C = 0 can occur only for finitely

many curves C). Using the decomposition (5) and (7) we obtain α ·S2 < 0,

hence

(KX + ω + S) · α · S < 0.(8)

Let π : Ŝ → S be the composition of the normalisation and the minimal

resolution (cf. Subsection 3.A), then (3) and (8) imply that

(KŜ + π∗ω|S) · π∗α|S < 0.(9)
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Since the surface Ŝ is projective, the nef class π∗α|S is represented by an

R-divisor. The extremal ray R contains only the classes of finitely many

curves, so π∗α is strictly positive on every movable curve in Ŝ.

Fix an ample divisor A on Ŝ. By [Ara10, Thm.1.3] for every ε > 0 we

have a decomposition

π∗α|S = Cε +
∑

λi,εMi,ε

where λi,ε ≥ 0, the Mi,ε are movable curves and (KŜ + εA) · Cε ≥ 0. The

class π∗α|S is strictly positive on every movable curve in Ŝ, so we have

π∗α|S ·Mi,ε > 0. Since (π∗α|S)2 = 0 and π∗α|S ·Mi,ε > 0 we must have

π∗α|S = Cε for all ε > 0. Passing to the limit we obtain KŜ · π∗α|S ≥ 0, a

contradiction to (9). �

3.24. Theorem. Suppose that the extremal ray R is small. Then C is

contractible.

Proof. Let α ∈ N1(X) be the nef class supporting R as in Propo-

sition 3.18. We claim that the class α is big, i.e., if π : X ′ → X is a

desingularisation then the pull-back π∗α is a big cohomology class. Once

we have shown this property, the proof of [HP13, Thm.7.12] applies.

Proof of the Claim. By definition of the class α, the class −(KX +

ω) + α is positive on the extremal ray R. Since α is strictly positive on


NA(X)(KX+ω)≥0 +

∑
i∈I,i
=i0

R+[Γi]


 \ {0},

we may suppose, up to replacing α by some positive multiple, that −(KX +

ω) + α is strictly positive on this cone. In total, −(KX + ω) + α is strictly

positive on NA(X) \ {0}. Thus −(KX + ω) + α is a Kähler class by [HP13,

Cor.3.16], i.e., we may write

α = (KX + ω) + η,

where η is a Kähler class. We know by Lemma 3.3 that KX + ω is pseudo-

effective. Thus π∗α is the sum of the pseudoeffective class π∗(KX + ω) and

the nef and big class π∗η, hence it is big. �
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Proof of Theorem 3.15. The existence of a morphism ϕ : X → Y

contracting exactly the curves in the extremal ray is established in Lemma

3.21 and in Theorem 3.24. Since ω is nef, the extremal ray R+[Γi] is KX -

negative. Therefore, applying [HP13, Cor.8.2], it follows that Y is a Kähler

space. �

3.E. Proof of Theorem 1.3

Proof. Step 1 Running the MMP. If KX + ω is nef for every nor-

malised Kähler class ω, we are finished. Suppose therefore that KX + ω is

not nef. Then there exists by Theorem 3.6 a (KX + ω)-negative extremal

ray R in NA(X). By Theorem 3.15 the contraction ϕ : X → Y of R exists

in the Kähler category. Note that since ω is nef, the canonical class KX is

negative on the extremal ray R.

If R is divisorial we can continue the MMP with Y by [HP13,

Prop.8.1.c)]. If R is small, we know by Mori’s flip theorem [Mor88,

Thm.0.4.1] that the flip ϕ+ : X+ → Y exists, and by [HP13, Prop.8.1.d)]

we can continue the MMP with X+ (which is again Kähler).

Step 2 Termination of the MMP. Recall that for a normal compact

threefold X with at most terminal singularities, the difficulty d(X) [Sho85]

is defined by

d(X) := #{i | ai < 1},

where KY = µ∗KX +
∑
aiEi and µ : Y → X is any resolution of singulari-

ties. Recall that any contraction in our MMP is a KX -negative contraction,

so by [KMM87, Lemma 5.1.16]4, [Sho85] we have d(X) > d(X+), if X+ is

the flip of a small contraction. Since the Picard number and the difficulty

are non-negative integers, any MMP terminates after finitely many steps. �

4. The Base-point Free Theorem

We first prove Theorem 1.4, which is the analogue of the base point free

theorem in the non-algebraic case.

4The proof is local in a neighbourhood of the flipping locus, so it holds without change
in the analytic setting.
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4.A. Proof of Theorem 1.4

Proof. We will use the nef reduction of X with respect to the coho-

mology class KX + ω, cf. Theorem 3.19. We denote by n(KX + ω) the

dimension of the base of the nef reduction of KX + ω and claim that

n(KX + ω) = 2.

Notice first that the general fibres of the MRC-fibration provide a dominat-

ing family of curves which is KX + ω-trivial, so n(KX + ω) ≤ 2.

If n(KX + ω) = 1 the nef reduction is a holomorphic fibration X → C

(cf. [BCE+02, 2.4.3]) and KX +ω is numerically trivial on the general fibre

by Theorem 3.19. In particular the general fiber is a smooth Fano surface,

hence rationally connected, a contradiction to our assumption on the base

of the MRC-fibration.

If n(KX + ω) = 0, then KX + ω ≡ 0, hence X is Fano and rationally

connected, again a contradiction.

Let Z be a resolution of singularities of the unique irreducible component

of Chow(X) such that the general point corresponds to the general fibre of

the MRC-fibration. Let Γ be the normalisation of the pull-back of the

universal family and denote by p : Γ → X and q : Γ → Z the natural

morphisms. Since Γ is in Fujiki’s class C, the surface Z is in the class C by

[Var86, Thm. 3]. A smooth surface in the class C is Kähler, so Z is Kähler.

We claim that there exists a big and nef class α on Z such that

p∗(KX + ω) = q∗α.

Step 1 Construction of the class α. Set Γz = q−1(z) for z ∈ Z. Note

first that we have R1q∗(OΓ) = 0 (the morphism q is projective, so we can

apply [Kol96, II, 2.8.6.2]). Using the exponential sequence this implies

R1q∗(Z) = 0 and hence R1q∗(R) = 0 by the universal coefficient theorem.

Now we apply the Leray spectral sequence for q and the sheaf R. By what

precedes we have

E0,1
2 = H0(Z,R1q∗(R)) = 0

and

E1,1
2 = H1(Z,R1q∗(R)) = 0.
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Therefore E2,0
2 = H2(Z,R) embeds into H2(Γ,R), and it suffices to show

that the section s ∈ E0,2
2 = H0(Z,R2q∗(R)) which is given by the class

s(z) = [p∗(KX + ω)|Γz] ∈ H2(Γz,R),

vanishes for every z ∈ Z. By definition of a normalised Kähler class we have

s(z) = 0 for z ∈ Z general. Since p∗(KX + ω) is nef, this implies that the

class p∗(KX + ω) is zero on all the irreducible components of any fibre Γz.

Thus we have s(z) = 0 for all z ∈ Z proving the existence of α. Note that

since q∗α is nef, the class α is nef [Pău98, Thm.1].

Step 2 Intersection numbers. Let D ⊂ Γ be an irreducible component

(possibly of dimension 1) of the p-exceptional locus. Since p is finite on the

fibres of q, there exists a curve C ⊂ D that is contracted by p and such that

q(C) is not a point. In particular we have

α · q(C) = q∗α · C = p∗(KX + ω) · C = 0.

Since the meromorphic map X ��� Z is almost holomorphic, D does not

surject onto Z. Thus we have q(D) = q(C), and by what precedes we obtain

(q∗α)|D = 0.

Note now that, Γ being a modification of a threefold which has a finite sin-

gular locus, the singular locus of Γ is a union of curves which are contained

in the p-exceptional locus and finitely many points. Let µ : X̂ → Γ be a

desingularisation such the exceptional set of p̂ := p◦µ has pure codimension

one. Set moreover q̂ := q ◦ µ. By what precedes,

q̂∗α · D̂ = 0 in N1(X̂)(10)

for every irreducible component D̂ of the p̂-exceptional locus.

Step 3 The class α is big, i.e. we have α2 > 0. Since ω is a Kähler

class, we know that, up to replacing X̂ by some further blowup, there exists

an effective Q-divisor F with support in the p̂-exceptional locus such that

p̂∗ω − F
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is a Kähler class. Being a Kähler class is an open property, so there exists

a Kähler class ηZ on Z such that

p̂∗ω − F − q̂∗ηZ

is a Kähler class. Using Pǎun’s theorem [Pău12, Thm.1.1] as in the proof

of Lemma 3.3, we conclude that

KX̂/Z + p̂∗ω − F − q̂∗ηZ

is pseudoeffective. Since X has terminal singularities,

KX̂ = p̂∗KX + E

with E an effective Q-divisor supported on the p̂-exceptional locus. Consider

now the decomposition

p̂∗(KX + ω) = [KX̂/Z + p̂∗ω − F − q̂∗ηZ ] − E + F + q̂∗KZ + q̂∗ηZ .(11)

We are going to intersect this equation with q̂∗(α) in order to compute

q̂∗α2 = q̂∗α · p̂∗(KX + ω).

Since α is nef, the intersection product

q̂∗α · [KX̂/Z + p̂∗ω − F − q̂∗ηZ ]

is an element of NA(X̂). By (10) we have q̂∗α · (−E + F ) = 0. The surface

Z is not uniruled since it is the base of the MRC-fibration (cf. Remark 3.2).

ThusKZ is pseudoeffective, in particular the intersection product q̂∗α·q̂∗KZ

is an element of NA(X̂). Recall now that α �= 0 since KX + ω �= 0. Since

ηZ is a Kähler class and α is a non-zero nef class, the Hodge index theorem

yields ηZ · α > 0. Thus

q∗α · q∗ηZ
is a non-zero element of NA(X̂). In total we obtain that

q̂∗α2 = q̂∗α · p̂∗(KX + ω)

is a non-zero element of NA(X̂). Thus we have α2 �= 0.
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Step 4 Construction of the fibration ϕ. Let

E := ∪Ej ⊂ Z

be the union of curves Ej ⊂ Z such that α ·Ej = 0. Since α is nef and big,

the Hodge index theorem implies that the intersection form on E is negative

definite. In particular E is a finite set. By Grauert’s criterion there exists a

bimeromorphic morphism ν : Z → S such that E equals the ν-exceptional

locus. Since Z is a Kähler surface and ν contracts only subvarieties onto

points, the surface S is Kähler. In fact, take any Kähler form ω on Z. Then

the class of the Kähler current ν∗(ω) contains a Kähler form by [DP04,

Prop.3.3(iii)].

We claim that the fibration ν ◦ q : Γ → S factors through the bimero-

morphic map p, i.e., there exists a holomorphic fibration ϕ : X → S such

that ν◦q = ϕ◦p. By the rigidity lemma [BS95, Lemma 4.1.13] it is sufficient

to prove that every p-fibre is contracted by ν ◦ q. Since p is a Moishezon

morphism, it moreover suffices to show that every curve C ⊂ Γ such that

p(C) is a point is contracted by ν ◦ q. Yet for such a curve C we have

q∗α · C = p∗(KX + ω) · C = 0.

It follows that q(C) ⊂ E, hence q(C) is a point. This shows the existence

of the fibration ϕ; by construction the class KX + ω is ϕ-trivial. �

4.B. MMP for uniruled Kähler threefolds

Recall that in our context a normal Kähler space X is Q-factorial if

every Weil divisor D ⊂ X is Q-Cartier and some reflexive power ω
[m]
X of the

dualising sheaf ωX is locally free.

4.1. Lemma. Let X be a normal Q-factorial compact Kähler threefold

with at most terminal singularities. Let ϕ : X → S be an elementary Mori

contraction onto a normal compact surface, i.e., ρ(X/S) = 1 and −KX is

ϕ-ample.

Then S is Q-factorial and has at most klt singularities.

4.2. Remark. In the situation above, the fibration ϕ is equidimen-

sional since an elementary contraction of fibre type does not contract a

divisor. For a point s ∈ S denote by Xs the fibre over s, and let A ⊂ S
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be the set of all s such that the fiber Xs is singular at some point x0 and

such that X is not smooth at x0. Then A is finite, set S0 = S \ A and

X0 = X \ ϕ−1(A). The fiber space f0 : X0 → S0 is a conic bundle. The

sheaf f∗(ωX/S) is reflexive, but might have singularities on A, so that f

might globally not be a conic bundle. However, H1(Xs,OXs) = 0, in par-

ticular, every irreducible component of any fiber Xs is a smooth rational

curve.

Proof of Lemma 4.1. Arguing as in [KMM87, 5-1-5], every Weil

divisor D ⊂ S is Q-Cartier.

In order to see that S has at most klt singularities we proceed as in the

algebraic case. The claim is local on the base S, so given a point 0 ∈ Ssing

we fix a small analytic neighbourhood 0 ∈ U ⊂ S. Since X is smooth in

codimension two and, by Remark 4.2 the projective morphism ϕ is a conic

bundle in the complement of the fibre X0, there exists a smooth analytic

subvariety H ⊂ ϕ−1(U) such that H → U is finite and étale in codimension

one. By [KM98, Prop.5.20] the surface U has at most klt singularities. In

particular some reflexive power ω
[m]
X of the dualising sheaf ωX is locally

free. �

Proof of Theorem 1.1. By Theorem 1.3, there exists a MMPX ���
X ′ such that KX′ +ω′ is nef for all normalised Kähler classes ω′ on X ′. Fix

such a Kähler class ω′. Then apply the base point free theorem 1.4 to

the variety X ′ to obtain a fibration ϕ : X ′ → S′ onto a surface S′ such

that −KX′ is ϕ-ample. In particular ϕ is a projective morphism. Thus we

can run the MMP of X ′ over S′ using the relative version of the cone and

contraction theorem as in [Nak87, Sect.4], [KM98, Sect.3.6]. As in the proof

of Theorem 1.3 we can use the Picard number ρ(X ′) and the difficulty d(X ′)
to show that the MMP terminates. Since KX′ is not pseudoeffective over

S′, the outcome of the MMP

X ′ ��� X ′′

is a Mori fibre space X ′′ → S′′ over S′, with S′′ a normal compact com-

plex surface that dominates S′. Since S′ is Kähler, and the bimeromorphic

morphism S′′ → S′ is projective (we can always find an anti-effective ex-

ceptional divisor that is relatively ample), the surface S′′ is Kähler. The

properties of S′′ are proven in Lemma 4.1. �
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[Cam81] Campana, F., Coréduction algébrique d’un espace analytique faible-
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ométrique des variétés algébriques affines, Mém. Soc. Math. France
(N.S.) 19 (1985), 124.

[Dem92] Demailly, J.-P., Regularization of closed positive currents and in-
tersection theory, J. Algebraic Geom. 1(3) (1992), 361–409.
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Université de Nice Sophia-Antipolis
06108 Nice, Cedex 02, France
E-mail: hoering@unice.fr
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