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Two Semi-Continuity Results for the Algebraic

Dimension of Compact Complex Manifolds

By Daniel BARLET
En hommage a la mémoire du professeur Kunihiko Kodaira

Abstract. Using some relative codimension 1 cycle-space
method, we give, following the ideas of D. Popovici [P.13], semiconti-
nuity results for the algebraic dimension in a family a compact complex
manifolds parametrized by a reduced complex space.
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1. Statement of Results

This Note is inspired by Dan Popovici article [P.13]. We show here
that using relative codimension 1 cycle-space, we may give another proof of
his theorem 1.2 and 1.4 and also obtain from this alternative proof much
more general results. In fact, very few is new in this approach, because we
simply use the ideas in [P.13] and combine them with the classical tools
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introduced in [B.75], [B.78] and [C.80]; see also [B-M.14]. This gives a more
geometric view on the use of the existence of a strongly Gauduchon form
(see definition below) and of the existence of a relative Gauduchon metric
on a holomorphic family of compact complex manifolds using a geometric
approach to (relative) algebraic reduction in term of codimension 1 (relative)
cycles.

We shall prove the following generalizations of Theorem 1.2 and 1.4 of
[P.13] using the definition :

DEerFINITION 1.0.1. A proper surjective holomorphic map =« : X — S
between two irreducible complex spaces will be a holomorphic family of
compact complex connected manifolds of dimension n parame-
trized by S when each fiber of 7 is a compact complex connected manifold
of dimension n and when this family is locally 6€°°—trivial on S.

Note that the local €°°—triviality is automatic for S smooth assuming
that each fiber is reduced (or that 7 is a submersion).

So we may consider that we have a fix compact connected 6°°—manifold
X and a holomorphic family of complex structures on X parametrized by

S.

THEOREM 1.0.2. Let w: X — S be a holomorphic family of compact
complex connected manifolds of dimension n parametrized by an irreducible
complex space S. Let so in S such that the manifold X, admits a
(smooth) sG-form. Then there exists an open neighbourhood Sy of so, a
countable union X of closed irreducible analytic subsets in Sy with no
interior point and a non negative integer a such that

(i) For any s €Sy we have a(Xs) > a.

(ii) For any s € Sop\ X we have a(X;) = a.

Note that the proof contains the construction of a smooth relative sG-
form on 771(Sp) where Sy is an open set containing so in S, and
this implies the Sp—properness of the connected components of the space
Cn-1(ms,) of relative (n —1)—cycles of mg,.

In our second theorem we shall assume that a smooth relative sG-form
exists on an dense Zariski open set S’; this is true if for each s € S’ the
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manifold X admits a smooth sG-form (see the final remark of section 3).

THEOREM 1.0.3. Let m: X — S be a holomorphic family of compact
complex connected manifolds of dimension n parametrized by an irreducible
complex space S. Assume that there exists a dense Zariski open set S’ in
S such that for each s in S’ the manifold X, satisfies the 00—lemma'
and such that there exists a (smooth) relative sG-form for the family mg
Ajgr — S§'. Assume also that the function s h%1(s) is constant on S.

Then if a:=infscg[a(Xs)] we have a(Xs) > a for each s € S.

SOME REMARKS.

1. When the map =« is weakly kdhlerian in the sense of [C.81], which
implies that X, isin the class € of A. Fujiki? for all s € S, then
the semi-continuity result of the algebraic dimension (in the sense of
theorem 1.0.2) of the fibers of 7 is proved in [C.81].

But the weak kahlerian assumption for 7 is rather strong as it implies
the class ‘€ property for all X, s € S and also properness of the
irreducible components of the relative cycles spaces for any dimension
of the cycles. Here we only consider the properness for relative codi-
mension 1 cycles and no kéhler type assumption on X, for s € S\S".

2. In the absolute case, this compactness for irreducible components of
the codimension 1 cycle space is always true for any compact complex
space (see [C.82]) but this is far to be true for smaller cycles of positive
dimension.

3. In the second theorem, the existence of a smooth relative sG-form on
771(S’) is only used to obtain the properness of the relative cycle-
space Cp—1(m|g/)-

As the 90—lemma is satisfied by any complex manifold in the class
% of Fujiki (see [V.86]), the assumption that g is weakly kihler
in the sense of [C.81] gives a simple weak version of this result.

!See for instance [Va.86].
2Note that it is proved in [Va.89] that a compact complex manifold is in the class @
if and only if it is bimeromorphic to a compact Ké&hler manifold.
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4. In both cases the key point is to produce a (n — 1,n — 1) smooth
positive S—relative form in X such that its integral on a dense set
of members of an analytic family of relative (n — 1)—cycles giving for
general s € S’ an algebraic reduction for X, is locally bounded near
s0. In the first case this is an easy consequence of the dg—closedness
of a relative sG-form ; in the second case, it uses the 9g0g—closedness
of a relative G-form combined with a nice argument of D. Popovici
[P.13] using the constancy of the numbers h%!(s) near sy and the
00—lemma.

5. Using theorem 1.0.2 we know that in the situation of theorem 1.0.3
there exists a general subset S” C S’ such that a(X,) = a for all
s € 5. As we prove in fact that the constancy of h%!(s) implies that
the closure of any irreducible component of C,—1(mg/) is a S—proper
irreducible component of C,_1(w), the complement of S” in S is
also a countable union of closed analytic subsets in S with no interior
points.

6. Of course, in the case where X, is Moishezon for s general in 5,
our results imply that all fibers are Moishezon !

We thank the referee who suggested that the 1-dimensional parameter
space case can be extended with little work into a statement for general
parameter spaces, and also helped to improve the English style.

2. Algebraic Reduction

2.1. Absolute case

For a compact irreducible complex space X of dimension n the irre-
ducible components of the complex space C,,—1(X) are compact Moishezon
spaces. As it is difficult to find an explicit proof of this result, (despite the
fact that it has been well-known to the experts for more than 30 years, see
[C.82]), we will give a proof in the appendix.

Note that for codimension > 1 cycles the irreducible components of
the cycle-space are not compact in general.

For any compact irreducible analytic subset I' of dimension v > 1 in
Cn—1(X) there exists a “natural” meromorphic map

KF X --» 7,1(]:‘)
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called the Kodaira map of I'. This means that there exists a (natural)
proper (thanks to [B.78]) modification 7 : Xr — X and a holomorphic
map (also denote Kr)

Kr: Xp — Cy—1(I)

associating to the generic point x of X the (y—1)—cyclein I' which
is the subset of I' parametrizing the (n —1)—cycles containing x.

We shall denote its image by @r. Note that Qr is always a compact
irreducible Moishezon space. We shall recall some more details on this
construction in the relative case in the next section.

The algebraic dimension a(X) of X is the maximum of the dimension
of the @Qr when I' is an irreducible component of C,,—1(X). In fact, for a
given X there exists a I' such its Kodaira map is an algebraic reduction
(see [C.80] or [C.81]).

LEmMA 2.1.1. For any compact irreducible analytic subset T' in
Cn—1(X), the algebraic dimension of X s at least the dimension of Qr.

ProOOF. If the generic member of I'is not irreducible (but reduced),
there exists a proper finite map ¢ : I’ — I' and an analytic family of (n—
1)—cycles parametrized by T, with generic irreducible member, obtained
by Stein factorization of the projection Gr — I' of the graph Gr of the
tautological family of (n — 1)—cycles parametrized by T'. If T is the
image of T' by the corresponding classifying map, we have a direct image
g« : Co—1(T') — C,_1(T") which is proper and finite and induces a generically
finite surjective meromorphic map

Qr --» Qr.

So the dimension of Qr is again bounded by the algebraic dimension of
X.

In the case of non reduced generic member in the family parametrized
by I' we may consider the pull back of the set theoretic graph |Gr| on
the normalisation I'y of I' which is the graph of an analytic family of
(n —1)—cycles (see [B.75] or [B-M.14]) and replace I' by the image I” of
'y in C,—1(X) by the corresponding classifying map. Then it is easy to
see that Qr and @ps are bimeromorphic, so again dim Qr is at most
the algebraic dimension of X. [
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2.2. The relative case
We consider now a proper surjective n—equidimensional holomorphic
map

T:X — S

between two irreducible complex spaces X and S, such that the generic
fiber is irreducible®. Let dim X = n + o, and assume that dim S := o > 1.
Consider then an irreducible S—proper analytic subset I' C C,—1(7) of
dimension v of the space of S—relative (n —1)—cycles in X. We say
that I' is a good filling for w: X — S if the following conditions are
satisfied

i) The generic member of the tautological family parametrized by IT" is
irreducible.

ii) The graph Gr C I' xg X of the tautological family parametrized by
I' projects surjectively on X by the second projection.

Then it is clear that Gp is irreducible, proper on S and has dimension
v+ n — 1. Note that condition ii) implies that v+ n —1 > n+ o, so that
v>o0+ 1.

LEMMA 2.2.1. Let T' be a good filling for m: X — S andlet Y C X
the set of points = in X such that dimpr—'(x) > v — o, where pr :
Gr — X is the projection. Define

TFZ:{SGS/XSCYF}.

Then Tr is a closed analytic subset in S with codimension at least equal
to 2. In particular, for dim S =1, the set Tr is empty for all good filling
r.

PrRoOOF. The fact that 1T is a closed analytic subset is classical. Let
T be an irreducible component of 71 of dimension d. Then 7~!(T) has
dimension d+n and pr~!'(7x=Y(T)) has dimension at least d+n+~vy—o.
Butif d >o0c—-1 wehave d+n+~v—0c>n+v—1=dimGr. As
Gr is irreducible, this implies the equality. In the case d = 0 —1 then
Gr cannot be surjective on X. If T'=S the dimension of pr—!(7=(T))

3Using a Stein reduction of 7, this assumption is not restrictive.
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would be strictly bigger that the dimension of Gr. So we have d < o —2. [J

Then, for each ( S—proper) good filling I' we have a proper S—modi-
fication 7 : X — X and a holomorphic S—map

Krys: &r — Cy—s-1(T'/5)

obtained by composition of the “fiber-map” of pr : Gr — X and the
S—relative direct-image map of relative (v — o — 1)—cycles via the S—map
p:Gr — T (see [B.75] or [B-M.14]).

LEMMA 2.2.2. Assume that T' is S—proper and is a good filling for
m. The S—map Kr,gs is proper, and so the image Qr of Kr;s is proper
over S.

PROOF. Let K be a compact set in Cy_s—1(I'/S) and let L be its
projection on S. Then any relative cycle in K is contained in p~'(L)
where p:I' — S is the projection (which is assumed to be proper). Then
the pull-back of the compact set p~'(L) on Gr is a compact set M and
also its image pr(M) is compact. Now K /ls(K ) C pr(M) is compact.
The properness of Qr on S is then easy. [J

As for each s € S\ 11 the set I'(s) is a finite union of irreducible
compact analytic subsets in C,_1(X;) and has dimension at least equal
to 1, the compact analytic set Qr(s) is a positive dimensional compact
Moishezon space for each s € S\ Tr.

Assume now that for a given I' which is a S—proper good filling for
7, there exists a dense subset Dr in S\ 7t such that for each s € Dr,
the set I'(s) gives an algebraic reduction of X,. Then we have, for such
s € Dr

dim QF(S) - a(Xs)'

This implies, by semi-continuity of the dimension of the fibers of the pro-
jection Qr — S, using the result at the end of paragraph 2.1, that for each
s in S\ Tr, we have

dima(Xs) > dim Qr(s) > SierbfF dim Qr(s) = siergF a(Xs).

Tt induces a proper modification on each X;,s € S\ Tr.
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This proves the following lemma.

LEMMA 2.2.3. Assume that :

i) the irreducible analytic subset T of Cn_1(mw) is a S—proper good
filling for m.

ii) there exists a dense subset Dr such that

Sielgr[dim Qr(s)] =a.

Then for each s € S\ Tr the inequality a(Xs) > a holds.

Note that for dim S =1 the set 11 is always empty, so the conclusion
a(Xs) > a holds for each s € S.

3. A Sufficient Condition for Properness of the Connected Com-
ponents of the Space of Relative Codimension 1 Cycles

We begin by a definition which is equivalent to the notion of a “strongly
Gauduchon metric” introduced in [P.13].

DEFINITION 3.0.4. Let X be areduced complex space of pure dimen-
sion n. A 2n —2 smooth form w on X will be called a sG-form on X
when it satisfies:

i) The form w is d—closed.

ii) The (n—1,n—1) part of w is positive definite on X.

Recall that the strict positivity above means that in a local embedding
in an open set U of some C¥, the (n—1,n—1) part of w may
be induced on X by a smooth, strictly positive in the sense of Lelong
(n—1,n—1)—form on U.

We also need the relative version of this notion :

DEerFINITION 3.0.5. Let 7 : X — S be a surjective proper n—equidi-
mensional morphism of reduced complex spaces. A smooth S—relative
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2n — 2 form w/g will be called a S—relative sG-form for = if it
induces a sG-form on each X := 771(s).

The existence of a S—relative sG-form for a proper n—equidimensional
surjective map 7 : X — S implies a relative version of the compactness of
the irreducible components of the space C,—1(X) of compact (n—1)—cycles
of a compact pure n—dimensional complex space X.

ProprosITION 3.0.6. Let m: X — S be a surjective proper n— equidi-
mensional morphism of reduced complex spaces admitting a S—relative sG-
form w. Then each connected component of the S—relative cycle space
Cn—1(m) s proper over S.

PROOF. For a (n—1)—relative cycle C' of 7 define F(C):= [, w.
This is a continuous function of C (see [B.75] or [B-M.14]) and on any
given compact set K in S, this function is bigger than ex times the
volume of C' for a continuous hermitian metric defined on X', because in
the integration, only the (n — 1,n — 1) part of w/g is relevant. As the
function F' is locally constant on the fibers of the projection C,_i(7w) — S
thanks to the d,g—closeness of w/g, this implies the properness of the
projection C,_1(w) — S thanks to E. Bishop’s theorem (for instance, see
[B-M.14]). O

LEMMA 3.0.7 [see [P.13]]. Let m: X — S be a proper holomorphic
family of compact connected complex manifolds of dimension n parame-
trized by an irreducible complex space S. Assume that for a point sg € S,
the manifold X, := 7 1(so) has a sG-form wo. Then we can find a small
open neighbourhood S’ of sq in S and a relative sG-form w on w(S')
inducing wy on Xg,.

PROOF. Thanks the local €°°—triviality of m, there exists an
open neighbourhood S; of sy in S and a €% trivialisation
0 : 71(S) — S1 x Xy, of the fibration 7 inducing the identity on
Xs,- Define w :=0"(wp). As wp is d—closed, so is w. We shall consider
w as a relative d—closed form. It induces wg on Xj. As the complex
structure of X varies continuously with s € Si, the (n—1,n—1) part of
the relative form w varies continuously. As it is positive definite at s = sg
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there exists an open neighbourhood S’ C S; of sy where it stays positive
definite on each fiber ; so w induces a relative sG-form on 7~1(S’). O

In the situation of the previous lemma the proposition 3.0.6 gives that
the connected components of C,_1(7’) are proper over S’

Remark. Using the previous lemma and a smooth partition of unity on
S, if we assume that each X admits a smooth sG-form, we can construct
a smooth global S—relative sG-form on X.

4. Proof of Theorem 1.0.2

The following proposition is an easy generalization of a result of [C.81].

PROPOSITION 4.0.8. Let w:X — S a proper surjective holomorphic
n—equidimensional map between two irreducible compler spaces. Assume
that any irreducible component of the complex space C,,—1(m) is proper over
S. Then there exists a countable union % of closed irreducible analytic
subsets with no interior point in S and a nmon negative integer a such
that

(i) For any s€ S\X we have a(Xs) = a.

(ii) For any s € S we have a(Xs) > a.

PROOF. Denote by A the set of irreducible components I" of C,,—1(m)
with generic irreducible cycle such that the projection I' — S is not
surjective, and define Sr as the image in S of such a I'. Denote by B
the set of irreducible components I' of C,_i(m) with generic irreducible
cycle such that the projection I' — S is surjective. Then the corresponding
map Qr — S is proper and surjective.

Note that, as C,—1(7) has a countable set of irreducible components,
the sets A and B are countable.

For I' € B let Vpr C S be the closed analytic subset of S corresponding
to big fibers® of the projection Qr — S. Then define :

% := (Urea Sr) U (Ures Tr) U (Ures V1)

®So s € Vi if and only if the dimension of Qr(s) is strictly bigger than dim Qr —o.
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and let a := inf,cq\nla(Xs)].

Remark that if a = 0 for each I' € B the projection Qr — S is
generically finite. So conditions i) and ii) are clearly satisfied. So we may
assume a > 1.

Choose a point sp € S\ . There exists a good filling Ty C Cp—1(Xs,)
for X,, giving an algebraic reduction for X, andlet I" be an irreducible
component of C,_1(m) containing T'g. Then T' isin B because sy & X,
and the fiber at sg of Qr has dimension a(Xs,) because sg isnotin Tr.
Then any fiber of Qr has dimension at least a(Xs,) because the point s
is not in Vp by definition. Condition i) follows as well as condition ii) for
all points in S\ 7t by the semi-continuity of the dimension of the fibers
of Qr and results of the section 2.2.

This prove the theorem in the case dim S =1 because the set Tt is
empty in this case.

To obtain ii) for a point s € T, choose an open neighbourhood S’ of
this point in S an a closed analytic irreducible curve C' in S’ containing
this point and not contained in 3. This is possible thanks to the corollary
4.0.11 below. Now the previous argument applies to the holomorphic family
T : Xjz-1(c) — C because we are in the case of a 1-dimensional parameter
space. [J

LEMMA 4.0.9. Let U be an open polydisc with center 0 in C" and
let S be a closed analytic subset in U with no interior point in U. Then
the set A of the points in P,_1 such that the corresponding line A in
C™ s such that ANU C S s a closed analytic subset with no interior
point in Pp_1q.

ProoF. As P,_; parametrizes an analytic family of 1—cycles in U
the condition ANU C S is a closed analytic condition on A € P,_1. The
fact that A has no interior point in P,_; is obvious from the assumption
S#AU.0

COROLLARY 4.0.10. Let U be an open polydisc with center 0 in C"
and let (S,)veN be a sequence of closed analytic subsets in U with no
interior point in U. Then there exists a line A € P,,_1 such that ANU
18 not contained in U,eN Sy .
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ProoOF. This is an easy consequence of the previous lemma and Baire’s
theorem apply to P,_1. O

COROLLARY 4.0.11. Let S be a reduced complex space of pure dimen-
sion n and let (T,),eN be a sequence of closed analytic subsets in S with
no interior point in S. For any sg € S there exists an open neighbourhood
V of sog in S and a closed analytic irreducible curve C in V containing
so and not contained in UyeN Ty .

PrROOF. Choose V such that there exists a proper finite surjective
map 7:V — U where U is an open polydisc with center 0 in C" and
7(s9) = 0. Apply now the previous corollary to the sequence (S,),cN where
Sy :=m(T,). So we find a line A containing 0 such ANU ¢ U,en Sy.
Now any irreducible component C of the curve 771(A) containing sg
satisfies C' ¢ Uyen Ty,. O

5. Proof of Theorem 1.0.3

Remark that the statement is empty if a =0 so we may assume a > 1.
Recall that in our situation there exists, thanks to [G.77], a smooth relative
Gauduchon metric on X. So there exists a smooth family s of positive
definite (1,1)—forms on Xj,s € S, with the condition : 950, ’ysA(n_l) =0
for each s € S. Thanks to theorem 1.0.2, we can choose also a S’—proper
good filling T" for the family 7' :=mg : &|gy — S’, such that for general
s € 5" wehave dim Qr(s) = a(Xs). Let o € H*(X,Z) be the fundamental
class of the relative (n —1)—cycles in the family parametrized by I". Note
[Cs] the integration current on X of a member of the family I contained
in X, for s € S’. We shall prove that, as h%!(s) is independent of s € S,
there exists, for each sy € S a constant C' > 0 such that for s € S near
enough sg the estimate

([Cs],70m= 1y <C < 4oo

holds, where 79("71)

chon metric on X.

is the (n—1)—th exterior power of a relative Gaudu-

This will be enough to conclude that the closure T' of T” in Cp,_1(w) is
S—proper irreducible component of C,_i(7), thanks to Bishop’s theorem,
and will finish the proof, because the semi-continuity of the dimension of
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the fibers of the projection Qp — S allows to conclude, first on S\ Tr
and then for every s € S as in the proof of theorem 1.0.2.

Let &y be a smooth d—closed real 2—form on X which is a de Rham
representative of the class o € H%(X,Z). Fix a point sy € S. Using the
local “€°°—triviality of 7 we can find an open neighbourhood Sy of s
in S and a smooth d—closed 2-form @ on 7 !(Sp) inducing @y on
Xs,. Put S :=5yNS’". Foreach s € S) there exists areal 1—current [

on X, such that [Cs] =@ +dsfs. As [, is real, we have [y = §’°+ﬁ§’°.

Note that type consideration shows that @9’1 = ﬁi’o
the equation

is a solution of

95801 = —202.
So following [P.13], we shall define 39" as the (unique) solution of this
equation with minimal L? norm defined by the Gauduchon metric s on
X, for se 5’6. Defining Bs = i?’l +B§”1 we have now that the real current

[Cs) — @5 — ds(Bs)

is ds—exact and of type (1,1) on Xg. Then, as the complex compact
manifold X, satisfies the J;0;—lemma for s € S, there exists a 0—current
ps on X, such that

[Cy] = @5 + dy(Bs) + 10,0505 Vs €S

(n—1)

Now, as 050, vé\ = 0, an easy consequence is that

([Cs], 0™ Yy = (@5, 72" + (ds(Bs), 0™ ) Vs e S

As the function s +—< @, 7,1 > is continuous on Sy, to bound the left
handside, it is enough to bound near sy on the dense set S{, the term

< d(Bs), V" >= < By, dy [T >

S

Then it is enough to follow the argument concluding the proof of the propo-
sition 3.1 in [P.13], showing that under the assumption that h%!(s) is
constant, s — s depends continuously of s € Sy to conclude. [

As it is not easy to find a reference for 99—lemma for currents, we give
a proof for the convenience of the reader of what we used in the proof above.
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LEMMA 5.0.12. Let X be a compact connected complex manifold of
dimension n and assume that X satisfies the property of the 00— lemmab .
Let T be a d—ezact (1,1)—current on X. Then there exists a (0,0)—

current © on X such that 00O =T.

PROOF. As the vector space :
coker [85 : (600’(”_1’”_1)()() _, go0s(nm) (X)]

is finite dimensional, it is enough, thanks to the Hahn-Banach theorem, to
show that for any 0d—closed smooth (n — 1,n — 1)—form ¢ we have
(T, ) =0. B B

As dy isin kerdNkerdNImd we may write diyp = 00n where n
is a smooth form. Then the form 1 — dn is d—closed. As 9T = 0 and
T is d—exact we obtain

concluding the proof. [J
6. Appendix

We give here a proof of the following (classical) statement (compare with
[F.82]) :

THEOREM 6.0.13. Let X be a compact irreducible complex space of
dimension n. Then the irreducible components of the space Cp_1(X) of
(n —1)—cycles in X are compact and Moishezon.

Proor. Using Hironaka’s desingularization theorem it is not restrictive
to assume that X is a compact connected manifold of dimension n and
that we have a holomorphic surjective map r : X — P where P is a
projective manifold of dimension a where a is the algebraic dimension of
X. This comes from the fact that by a proper modification of X we add
only finitely many effective irreducible (n — 1)—cycles, and then, for any
irreducible component T' of the space of (n — 1)—cycle of our initial X,

5We define here this property as the equality kerdNkerdNImd = Im &9 for smooth
forms on X.
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there exists an irreducible component I' of the space of (n — 1)—cycles of
the smooth modification of X such that the direct image of cycles gives a
modification T' — T.

Recall now that the number of non polar effective irreducible divisors in
X is bounded thanks to [C.82]. Let now I' be an irreducible component
of Cn—1(X) of positive dimension with generic member irreducible”. Then
each member of the corresponding family is polar and so has a
(a — 1)—dimensional image in P. This means that the image of the graph
Gr C I'x X by the map idp xr is proper and (a—1)—equidimensional on
I'. Up to replace I' by its normalization, we have the graph of an analytic
family of (a—1)—cyclesin P. As I' isirreducible and P projective, the
volume of these cycles in P is uniformly bounded.

Now using any continuous hermitian metric on X, we have a uniform
bound for the volume of the generic fibers of r thanks to [B.78]. Then
a Fubini type argument implies that the volume of the generic member of
our initial family, which is bounded by the volume of the pull-back by r
of its image by r is uniformely bounded. Now Bishop’s theorem implies
that T' is relatively compact in C,_1(X), and as it is closed, it is compact.
To conclude we have to remember that the normalization of I' dominates
a compact analytic subspace of an irreducible component of C,_1(P) and
that this map is generically finite, because the pull-back by r of an ir-
reducible effective divisor in P contains only finitely many irreducible
effective divisors in X. So I' is a compact irreducible Moishezon space. [
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