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Abstract. We describe the differential graded Lie algebras gov-
erning Poisson deformations of a holomorphic Poisson manifold and
coisotropic embedded deformations of a coisotropic holomorphic sub-
manifold. In both cases, under some mild additional assumption, we
show that the infinitesimal first order deformations induced by the
anchor map are unobstructed. Applications include the analog of
Kodaira stability theorem for coisotropic deformation and a gener-
alization of McLean-Voisin’s theorem about the local moduli space of
Lagrangian submanifold. Finally it is shown that our construction
is homotopy equivalent to the homotopy Lie algebroid of Oh, Park,
Cattaneo and Felder, in the cases where this is defined.

1. Introduction

The classical notion of coisotropic submanifold of a symplectic manifold

extends immediately to the setup of Poisson geometry. More precisely, a

closed submanifold Z ⊂ X is called coisotropic if the ideal of Z is stable

under the Poisson bracket. In recent years coisotropic submanifolds, and

their cohomology, have received a lot of attention in view of their importance

in mathematics and physics (see e.g. [4]). The definition of coisotropic

submanifolds extends literally to the complex holomorphic case and more

generally to every algebraic Poisson variety over a field.

The goal of this paper is to study deformation theory of holomorphic

coisotropic submanifolds. The existing approach to deformations of dif-

ferentiable coisotropic submanifolds, based on the notion of homotopy Lie
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algebroid of Oh, Park, Cattaneo and Felder [5, 6, 37], does not extend im-

mediately to the holomorphic case since it relies on the identification of a

neigbourhood with the total space of the normal bundle.

In the attempt of looking for a different and more general argument,

we soon realized that the classical Kodaira’s approach to deformation the-

ory of manifolds and submanifolds [22, 23], enriched with the formalism of

differential graded Lie algebras and Hinich’s theorem on descent of Deligne

groupoids [14], was very powerful and perfectly suitable to address the study

of deformations of holomorphic Poisson manifolds and coisotropic submani-

folds. Moreover, this approach is in great part purely algebraic and therefore

most of the results of this paper also works for algebraic Poisson manifolds

over a field of characteristic 0.

Given a holomorphic Poisson bivector π on a holomorphic manifold X,

the Lichnerowicz-Poisson differential dπ = [π, ·]SN is a square zero operator

on the sheaf of holomorphic polyvector fields on X. Then a closed subman-

ifold Z ⊂ X is coisotropic if and only if dπ factors to a differential on the

exterior algebra of the normal sheaf NZ|X of Z in X.

In the first part of the paper we show that the functor Hilbco
Z|X of in-

finitesimal embedded coisotropic deformations of Z in X is governed by a

differential graded Lie algebra K, explicitly described, having cohomology

isomorphic to the hypercohomology of the complex of sheaves:

∧≥1
NZ|X : NZ|X

dπ−→
∧2

NZ|X
dπ−→ · · · ,

where
∧iNZ|X is considered in degree i. In particular, the space of infinites-

imal first order deformations is isomorphic to

H
1(Z,

∧≥1
NZ|X) = ker(dπ : H0(Z,NZ|X) → H0(Z,

∧2
NZ|X))

and there exists a complete obstruction theory with values in

H
2(Z,

∧≥1NZ|X). As a byproduct we also obtained the explicit description

of two differential graded Lie algebras governing respectively the deforma-

tions of the pair (X,π), i.e., the deformations of X as a Poisson manifold

and the deformations of the triple (X,Z, π).

In the second part we consider the effect of the anchor map π# : Ω∗
X →∧∗ ΘX on deformations of coisotropic submanifolds: by definition π# is the

unique morphism of sheaves of graded OX -algebras such that π#(df) =
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dπ(f) ∈ ΘX for every f ∈ OX . Very recently, N. Hitchin [16] has proved

that, if X is a compact Kähler Poisson manifold, then every element in

the image of π# : H1(X,Ω1
X) → H1(X,ΘX) is the Kodaira-Spencer class

of a deformation of the pair (X,π) over a germ of smooth curve. Here we

prove a similar statement for embedded coisotropic deformations: given a

coisotropic submanifold Z ⊂ X, the anchor map factors to a morphism of

sheaves of graded OZ-algebras π# : Ω∗
Z →

∧∗NZ|X . If the Hodge to de

Rham spectral sequence of Z degenerate at E1, then every element in the

image of π# : H0(Z,Ω1
Z) → H0(Z,NZ|X) is the Kodaira-Spencer class of

a coisotropic embedded deformation of Z in (X,π) over a germ of smooth

curve. As a particular case, for a compact Kähler Lagrangian submanifold Z

of a holomorphic symplectic manifoldX we get that every small deformation

in X of Z is Lagrangian and the Hilbert scheme of X is smooth at Z; when

X is compact Kähler we recover in this way a classical result by Voisin and

McLean [34, 40].

The underlying idea of proof, borrowed from [10], is to show that the

anchor map is equivalent, in the homotopy category of differential graded

Lie algebras, to a morphism π# : J → K, where the cohomology of J is

isomorphic to the hypercohomology of the complex of sheaves on Z

Ω≥1
Z : Ω1

Z
d−→ Ω2

Z
d−→ · · ·

where Ωi
Z is considered in degree i. The formality criterion of [10] applies

and, whenever the Hodge to de Rham spectral sequence of Z degenerates

at E1, the differential graded Lie algebra J is homotopy abelian, hence

governing unobstructed deformations.

In the last part of the paper we compare our construction with the ho-

motopy Lie algebroid in the situation where the latter may be defined. As

expected, the two constructions are homotopy equivalent and then, accord-

ing to the general principles of derived deformation theory, they define the

same deformation problem, both classical and extended. It is worth to men-

tion here that our construction provides the basic data for the local study

of the extended moduli space of coisotropic submanifolds, extending the

Lagrangian case carried out by Merkulov [35].

Acknowledgments. The authors thank Domenico Fiorenza and Rita

Pardini for useful discussions on the subject of this paper.
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2. Review of Deligne Groupoids and Totalization

Denote by Set the category of sets (in a fixed universe) and by Grpd

the category of groupoids; we shall consider, in the obvious way, Set as a

full subcategory of Grpd.

Given a field K we shall denote by ArtK the category of local Artin K -

algebras with residue field K . Unless otherwise specified, for every object

A ∈ ArtK , we denote by mA its maximal ideal.

In order to simplify the terminology, by a formal pointed groupoid we

shall mean a covariant functor F : ArtK → Grpd such that F(K ) = ∗ is the

one-point set. Similarly a formal pointed set is a functor F : ArtK → Set

such that F (K ) = ∗, also called a functor of Artin rings. A morphism of

formal pointed groupoid η : F → G is called an equivalence if F(A) → G(A)

is an equivalence of groupoids for every A ∈ ArtK .

It is a nowadays standard to consider the pout of view that every defor-

mation problem over a field of characteristic 0 is controlled by a differential

graded Lie algebra (DGLA); we refer to the existing literature and in par-

ticular to [13, 25, 33] for the definition and main properties of differential

graded Lie algebras, L∞-algebras, Maurer-Cartan equation and gauge ac-

tion. Later in this paper we also need to work with L∞[1]-algebras, i.e.,

desuspension of L∞-algebras: we refer to [11] for a nice and clear introduc-

tion to these structures.

The Deligne groupoid of a differential graded Lie algebra L over a field

K of characteristic 0 is the formal pointed groupoid

DelL : ArtK → Grpd

defined in the following way [7, 13]: given A ∈ ArtK the objects of DelL(A)

are the solutions to the Maurer-Cartan equation in L⊗ mA:

Objects(DelL(A)) =

{
x ∈ L1 ⊗ mA

∣∣∣∣ dx+
1

2
[x, x] = 0

}
.

Given two objects x, y of DelL(A), the morphisms between them are

MorDelL(A)(x, y) = {ea ∈ exp(L0 ⊗ mA) | ea ∗ x = y},

where ∗ is the gauge action.
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The deformation functor associated to a differential graded Lie algebra

L is the π0 of the Deligne groupoid:

DefL : ArtK → Set, DefL(A) = π0(DelL(A)).

The tangent space T 1 DefL of the functor DefL is isomorphic to the cohomol-

ogy group H1(L). The homotopy invariance of Del and Def is summarized

by the following result.

Theorem 2.1. Let L → M be a quasi-isomorphism of differential

graded Lie algebras. Then:

(1) the induced natural transformation DefL → DefM is an isomorphism;

(2) if L and M are positively graded, i.e., Li = M i = 0 for every i < 0,

then the induced natural transformation DelL → DelM is an equiva-

lence.

Proof. The second item is one of the main results of [13]. The first

item is proved in [25] via homotopy classification of L∞-algebras, in [24, 29]

via reduced Deligne groupoid and in [30] via extended deformation func-

tors. �

As usual, we consider on the category of differential graded Lie algebras

the homotopy theory induced by the standard model structure, where weak

equivalences are the quasi-isomorphisms and fibrations are the surjective

maps. In particular a differential graded Lie algebra is homotopy abelian if

it is quasi-isomorphic to an abelian DGLA.

The Theorem 2.1 immediately implies that the functor DefL is unob-

structed whenever L is homotopy abelian. It is plain that if L is homotopy

abelian, then its cohomology H∗(L) is an abelian graded Lie algebra, while

the converse is generally false. It is not difficult to give examples where

H∗(L) is abelian and the functor DefL is obstructed, for instance by taking

the Kodaira-Spencer DGLA of a surface of general type whose Kuranishi

space is not defined by quadratic equations.

Every morphism f : L → M of differential graded Lie algebras has a

canonical representative for its homotopy fiber: is defined as the DGLA

K(f) = {(l,m(t)) ∈ L×M [t, dt] | e0(m(t)) = 0, e1(m(t)) = f(l)}.
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Notice that the projection K(f) → L is a morphism of DGLA. Notice that

K(f) is also a homotopy fiber in the category of differential graded vector

spaces and then it is quasi-isomorphic, as a complex, to the mapping cocone

of f .

Let ∆mon be the category of finite ordinal, with strictly increasing maps.

Following the terminology of [43], a semicosimplicial object in a category

C is a covariant functor A• : ∆mon → C. Equivalently, a semicosimplicial

object is a diagram in C:

A• : A0
���� A1

������ A2

�������� · · · ,

where each Ai is in C, and, for each i > 0, there are i+ 1 morphisms

∂k : Ai−1 → Ai, k = 0, . . . , i,

such that ∂l∂k = ∂k+1∂l, for any l ≤ k.

In this paper we need to consider semicosimplicial groupoids and semi-

cosimplicial differential graded Lie algebras. In both cases we can perform

the totalization construction; let’s first consider the case of groupoids.

Given a semicosimplicial groupoid

G• : G0
���� G1

������ G2

�������� · · ·

the groupoid Tot(G•), also called groupoid of descent data, is defined in the

following way [14, 19]:

(1) The objects of Tot(G•) are the pairs (l,m) with l an object in G0 and

m a morphism in G1 between ∂0l and ∂1l; we require that the three

images of m via the maps ∂i are the edges of a 2-simplex in the nerve

of G2, i.e.,

(∂0m)(∂1m)−1(∂2m) = 1 in MorG2(∂2∂0l, ∂2∂0l).

(2) The morphisms between (l0,m0) and (l1,m1) are the morphisms a ∈
MorG0(l0, l1) making the diagram

∂0l0
m0 ��

∂0a
��

∂1l0

∂1a
��

∂0l1
m1 �� ∂1l1

commutative in G1.
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The totalization of semicosimplicial groupoids is functorial and com-

mutes with equivalences: more precisely, if γ : F• → G• is a morphism of

semicosimplicial groupoids, then Tot(γ) : Tot(F•) → Tot(G•) is a morphism

of groupoids and, if every γn : Fn → Gn is an equivalence of groupoids, then

also Tot(γ) is an equivalence of groupoids.

Let

V• : V0
���� V1

������ V2

�������� · · · ,

be a semicosimplicial DG-vector space, with face operators ∂i : Vn → Vn+1.

Then the graded vector space C(V•) =
∏

n≥0 Vn[−n] carries the two differ-

entials

d =
∏
n

dVn[−n] =
∏
n

(−1)ndVn and ∂ =
∑
i

(−1)i∂i .

More explicitly, if v ∈ V i
n, then d(v) = (−1)ndVn(v) ∈ V i+1

n and ∂(v) =

∂0(v) − ∂1(v) + · · · + (−1)n+1∂n+1(v) ∈ V i
n+1. Since d2 = ∂2 = d∂ + ∂d = 0

we may define the cochain complex of V• as the differential graded vector

space C(V•) equipped with the differential d+ ∂.

Let Ωn be the polynomial de Rham algebra of the standard n-dimen-

sional simplex. In other words, Ωn is the polynomial DG-algebra generated

by t0, . . . , tn of degree zero and dt0, . . . , dtn of degree one subject to the

relations t0 + · · · + tn = 1 and dt0 + · · · + dtn = 0. The entire collection

{Ωn}, n ≥ 0, has a natural structure of simplicial DG-algebras, where the

face map ∂i : [n− 1] → [n] induces the morphism of DG-algebras

∂∗i : Ωn → Ωn−1, ∂∗i tk =



tk for k < i

0 for k = i

tk−1 for k > i ,

∂∗i (dtk) = d(∂∗i tk) .

Definition 2.2. The (Thom-Whitney-Sullivan) totalization of a semi-

cosimplicial DG-vector space

V• : V0
���� V1

������ V2

�������� · · · ,
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is defined as

Tot(V•)

=


(xn) ∈

∏
n≥0

Ωn ⊗ Vn

∣∣∣∣∣ (∂∗k ⊗ Id)xn = (Id⊗ ∂k)xn−1 , ∀ 0 ≤ k ≤ n


 .

The functor Tot is exact: given a sequence 0 → V• → W• → U• → 0

of semicosimplicial DG-vector spaces such that 0 → Vn → Wn → Un → 0

is exact for every n, then also 0 → Tot(V•) → Tot(W•) → Tot(U•) → 0

is exact. This follows immediately from the definition and the simplicial

contractibility of the simplicial DG-algebra Ω• [2, Prop. 1.1].

By Stokes formula, the Whitney integration map

I : Tot(V•) → C(V•) ,

defined componentwise as

Tot(V•)
p inclusion−−−−−→

∏
n≥0

(
⊕

i
Ωn−i

n ⊗ V p−n+i
n )

∏
n

∫
∆n ⊗IdVn−−−−−−−−−→

∏
n

V p−n
n

= C(V•)
p ,

is a surjective morphism of DG-vector spaces and, by a theorem of Whitney,

Thom, Sullivan and Dupont (see e.g. [12, 36] for a proof), it is also a quasi-

isomorphism.

Example 2.3. Let F∗ be a bounded below complex of coherent sheaves

on a complex manifold X. Given a open Stein covering U = {Ui} of X we

can consider the semicosimplicial DG-vector space

F∗(U)• :
∏
i

F∗(Ui)
��
��
∏
i,j

F∗(Uij)
������
∏
i,j,k

F∗(Uijk) · · ·

and then for every integer p we have an isomorphism

Hp(Tot(F∗(U)•)) � Hp(C(F∗(U)•)) = H
p(X,F∗),

where H
∗ denotes the hypercohomology groups.
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When A• is a semicosimplicial algebra (either associative or Lie), then

Tot(A•) inherits a natural structure of algebra and, via the quasi-isomor-

phism I, this structure induces in the cohomology of C(A•) not only the cup

products, but also the higher Massey products. Morally, the totalization is

the smallest natural differential graded multiplicative structure giving the

correct cohomology of a semicosimplicial algebra [38, pag. 300].

We are now ready to recall Hinich’s theorem on descent of Deligne

groupoids.

Theorem 2.4 (Descent of Deligne groupoids, [14]). Let

L• : L0
���� L1

������ L2

�������� · · · ,

be a semicosimplicial differential graded Lie algebra concentrated in positive

degrees, i.e., Lj
i = 0 for every i and every j < 0. Then there exists a natural

equivalence of formal pointed groupoids

DelTot(L•) → Tot(DelL•) ,

where DelL• is the semicosimplicial formal groupoid

DelL• : DelL0
���� DelL1

������ DelL2

�������� · · · .

Example 2.5. The simplest non trivial application of Theorem 2.4 de-

scribes a “small” model for the Deligne groupoid of the homotopy fiber of a

morphism χ : L → M of positively graded differential graded Lie algebras.

In fact, the morphism χ gives the semicosimplicial DGLA

χ• : L
∂0=χ ��
∂1=0

�� M
������ 0

�������� · · · ,

and, since Ω1 � K [t, dt] we have K(χ) � Tot(χ•); therefore there exists a

natural equivalence of formal groupoids

DelK(χ) → Tot

(
DelL

χ ��
0

�� DelM

)
.

Here, for every A ∈ ArtK , the objects of Tot

(
DelL

χ ��
0

�� DelM

)
(A) are

the pairs (x, ea), where x is a solution to Maurer-Cartan equation in L⊗mA

and ea ∈ exp(M0 ⊗ mA) satisfies the equation ea ∗ χ(x) = 0.
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A morphism between two objects (x, ea) and (y, eb) is an element eα ∈
exp(L0 ⊗ mA) such that eα ∗ x = y and eb = eae−χ(α).

If L is a differential graded Lie subalgebra of M and χ is the inclusion

map, then the objects of the total groupoid are in bijection with the elements

ea ∈ exp(M0 ⊗mA) such that e−a ∗0 ∈ L⊗mA; moreover, in this particular

case the natural transformation

Tot

(
DelL

χ ��
0

�� DelM

)
→ π0

(
Tot

(
DelL

χ ��
0

�� DelM

))

is an equivalence of formal groupoids.

We conclude this section with some remarks that will be useful in this

paper.

Remark 2.6. Let f : L• →M• be a morphism of semicosimplicial dif-

ferential graded Lie algebras: this is given by a sequence of morphisms of

DGLA fn : Ln → Mn commuting with face operators. Taking homotopy

fibers we get a semicosimplicial DGLA K(f)•, where K(f)n = K(fn) is the

homotopy fiber of fn.

It is easy to see that the homotopy fiber of the morphism f : Tot(L•) →
Tot(M•) is naturally isomorphic to Tot(K(f)•); we refer to [18] for a detailed

proof.

Remark 2.7. Let L• be a semicosimplicial differential graded Lie alge-

bra and denote by H = {x ∈ L0 | ∂0x = ∂1x} the equalizer of ∂0, ∂1 : L0 →
L1. Then the map

e : H → Tot(L•), e(x) = (1 ⊗ x, 1 ⊗ ∂0x, 1 ⊗ ∂2
0x, 1 ⊗ ∂3

0x, . . . ),

is a well defined morphism of differential graded Lie algebras. Moreover,

the composition of e with the quasi-isomorphism I : Tot(L•) → C(L•) is

the natural inclusion i : H ↪→ C(L•), cf. [3, 19]. In particular e is a quasi-

isomorphism if and only if i is a quasi-isomorphism.

3. Poisson Manifolds and Anchor Maps

LetX be a complex manifold and denote by OX the sheaf of holomorphic

functions on X and by ΘX the holomorphic tangent sheaf; also denote by
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∧∗ ΘX =
⊕

i≥0

∧i
OX

ΘX [−i] the sheaf of holomorphic polyvector fields and

by (Ω∗
X , d) the sheaf of holomorphic differential forms on X, the last one

with the usual structure of sheaf of differential graded algebras (DGAs for

short). Following the notation of [10], given a polyvector field η ∈
∧i ΘX(U)

we denote by

iη : Ω∗
X(U) → Ω∗−i

X (U), iη(α) = η�α,

the corresponding interior product operator; here we adopt the convention

that iα∧β = iα ◦ iβ. Moreover we shall denote by lη = [iη, d] : Ω∗
X(U) →

Ω∗−i+1
X (U) the holomorphic Lie derivative on differential forms.

The sheaf of graded algebras
∧∗ ΘX carries also a structure of sheaf of

Gerstenhaber algebras [31], equipped with the Schouten-Nijenhuis bracket

[·, ·]SN , see e.g. [39]. Recall that

[·, ·]SN :
∧i

ΘX ⊗
∧j

ΘX →
∧i+j−1

ΘX

is uniquely defined so that [η, ξ]SN is the usual bracket for η, ξ ∈ ΘX , while

for η ∈ ΘX and f ∈
∧0 ΘX = OX we have [η, f ]SN = η(f) = η�df . Notice

that for η ∈ ΘX the operator [η, ·]SN is the Lie derivative with respect to η.

A holomorphic Poisson bivector on X is a section π ∈ H0(X,
∧2 ΘX)

satisfying the integrability condition:

[π, π]SN = 0 .(3.1)

A holomorphic Poisson manifold is a pair (X,π) consisting of a complex

manifold X and a holomorphic Poisson bivector π on X.

For instance, if A ⊆ H0(X,ΘX) is an abelian Lie subalgebra, then every

element in the image of
∧2A → H0(X,

∧2 ΘX) is a Poisson bivector; in

particular every toric manifold of dimension n ≥ 2 admits non trivial Poisson

bivectors.

Every holomorphic symplectic manifold (X,ω) is a holomorphic Pois-

son manifold, where the Poisson bivector π is uniquely determined by the

condition

iπ(iη(ω) ∧ α) = iη(α), η ∈ ΘX , α ∈ Ω1
X .

The datum of a holomorphic Poisson bivector π on X induces several

additional structures, cf. [27, 39]:
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1) the Lichnerowicz-Poisson differential dπ = [π, ·]SN :
∧∗ ΘX →∧∗+1 ΘX inducing on

∧∗ ΘX the structure of sheaf of differential Gersten-

haber algebras.

2) the Poisson bracket {·, ·}π : OX ×OX → OX given by

{f, g}π = [[π, f ]SN , g]SN = [dπf, g]SN = iπ(df ∧ dg) .

It is well known that the integrability condition (3.1) is equivalent to the

Jacobi identity for {·, ·}π.

3) the Koszul bracket [·, ·]π : Ωi
X⊗Ωj

X → Ωi+j−1
X , defined by the formula:

[α, β]π := (−1)i(lπ(α ∧ β) − lπ(α) ∧ β) − α ∧ lπ(β), α ∈ Ωi
X ,(3.2)

inducing on (Ω∗
X , d) the structure of a sheaf of differential Gerstenhaber

algebras (this is shown for instance in [10, 28]).

4) the anchor map π# : Ω∗
X →

∧∗ ΘX : this is defined for α ∈ Ω1
X by the

formula

π#(α)(f) = π#(α)�df = iπ(α ∧ df), f ∈ OX ,(3.3)

and then uniquely extended to an OX -linear morphism of sheaves of graded

algebras. It is well known [39], and in any case easy to prove, that

π# : (Ω∗
X ,∧, [·, ·]π, ∂) → (

∧∗
ΘX ,∧, [·, ·]SN , dπ)

is a morphism of sheaves of differential Gerstenhaber algebras.

4. Deformations of Holomorphic Poisson Manifolds

Let X be a complex manifold, a deformation of X over A ∈ ArtC is a

pull-back diagram of complex spaces:

X

��

i �� X
p

��
Spec C �� Spec A

(4.1)

with p a smooth morphism; equivalently, it is the data of a sheaf OX of

flat unitary A-algebras on X together with a morphism of sheaves of A-

algebras OX → OX which is locally isomorphic to the natural projection
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OX ⊗ A → OX . Equivalences between deformations X0 and X1 of X over

A are isomorphisms of sheaves of A-algebras OX0 → OX1 over OX ; the

self equivalences of the trivial deformation OX ⊗ A form a group canoni-

cally isomorphic to exp(H0(X,ΘX)⊗mA), being the isomorphism the usual

exponential of derivations.

Given {Ui} an open covering of X by Stein open sets, every deformation

X trivializes globally over each Ui, so that it can be reconstructed up to

isomorphism by gluing the trivial deformations OUi⊗A→ OUi along double

intersections via a family of transition automorphisms eηij ∈ exp(ΘX(Uij)⊗
mA) satisfying the cocycle condition eηijeηjk = eηik ∈ exp(ΘX(Uijk) ⊗ mA)

on triple intersections (equivalently ηij • ηjk = ηik, where • is the Baker-

Campbell-Hausdorff product in the nilpotent Lie algebra ΘX(Uijk) ⊗ mA).

Consider the sheaf of OX -modules ΘX/A of A-linear derivations of OX ;

as in the previous section the natural structure of sheaf of Lie algebras on

ΘX/A extends to a sheaf of Gerstenhaber algebras structure on
∧∗ ΘX/A =⊕

i≥0

∧i
OX

ΘX/A[−i] via the Schouten-Nijenhuis bracket; notice that if U ⊂
X is a Stein open subset, then

∧∗ ΘX/A(U) ∼=
∧∗ ΘX(U) ⊗ A with the

Gersthenaber algebra structure given by scalar extension with A. Let as

before {Ui} be a covering of X by Stein open sets and let {eηij} be the set

of transition automorphisms, where ηij ∈ ΘX(Uij)⊗mA ⊂ ΘX/A(Uij). The

adjoint operators

ad ηij = [ηij , ·]SN :
∧∗

ΘX/A(Uij) →
∧∗

ΘX/A(Uij)

are degree zero nilpotent Gerstenhaber derivations and their exponentials

ead ηij are the transition automorphisms for the sheaf
∧∗ ΘX/A: in fact it

suffices to check this for f ∈ OX (Uij) =
∧0 ΘX/A(Uij) where ead ηij (f) =

eηij (f) and for ξ ∈ ΘX/A(Uij) where ead ηij (ξ) = eηij ◦ ξ ◦ e−ηij . In the same

way an equivalence between deformations X0 and X1 of X over A induces

an isomorphism
∧∗ ΘX0/A →

∧∗ ΘX1/A; if the equivalence is locally given

by the isomorphisms

OX0(Ui) ∼= OX(Ui) ⊗A eηi �� OX(Ui) ⊗A ∼= OX1(Ui) ,

then the induced isomorphism is locally described by the maps

∧∗ ΘX0/A(Ui) ∼=
∧∗ ΘX(Ui) ⊗A ead ηi ��

∧∗ ΘX(Ui) ⊗A ∼=
∧∗ ΘX1/A(Ui) .
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Definition 4.1. A deformation of a holomorphic Poisson manifold

(X,π) over A ∈ ArtC is the data of a deformation of X as in (4.1) X
i−→

X p−→ Spec A and of a section π̃ ∈ H0(X,
∧2 ΘX/A) such that [π̃, π̃]SN = 0

and such that π̃ restricts to π under the natural projection
∧∗ ΘX/A →∧∗ ΘX .

Given two deformations (X0, π̃0), (X1, π̃1) an isomorphism between

them is an isomorphism between X0 and X1 such that the induced map∧∗ ΘX0/A →
∧∗ ΘX1/A sends π̃0 to π̃1. Thus, every holomorphic Poisson

manifold (X,π) defines a formal pointed groupoid

Del(X,π) : ArtC → Grpd,

sending A to the groupoid whose objects are deformations of (X,π) over

A and whose arrows are isomorphisms between them; at the same time it

defines a formal set Def(X,π) : ArtC → Set, A �→ π0(Del(X,π)(A)), sending

A to the set of isomorphism classes of deformations of (X,π) over A.

Remark 4.2. Equivalently a deformation of (X,π) over A could be

defined as a sheaf OX of flat Poisson A-algebras on X (by that we mean flat

A-algebras equipped with an A-bilinear Poisson bracket) and a sheaves of

Poisson A-algebras morphism OX → OX locally isomorphic to the projec-

tion OX ⊗A→ OX (with the Poisson structure on OX ⊗A given by scalar

extension).

In order to exhibit a differential graded Lie algebra governing the above

deformation problem we are going to apply descent of Deligne groupoids

(Theorem 2.4); to this end we consider the sheaf
∧≥1 ΘX [1] of sub DGLAs

of
∧∗ ΘX [1]. Fixing an open Stein covering U = {Ui}, consider the non-

negatively graded semicosimplicial differential graded Lie algebra

∧≥1
ΘX [1](U)• :

∏
i

∧≥1
ΘX [1](Ui)

��
��
∏
i,j

∧≥1
ΘX [1](Uij)

������
∏
i,j,k

∧≥1
ΘX [1](Uijk) · · ·

with the usual Čech face operators given by restriction.
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Theorem 4.3. The totalization Tot(
∧≥1 ΘX [1](U)•) governs the de-

formations of (X,π); more precisely there exists an equivalence of formal

pointed groupoids:

DelTot(
∧ ≥1 ΘX [1](U)•) � Del(X,π) .

Proof. Given A ∈ ArtC and a deformation (X , π̃) of (X,π) over A,

since X trivializes over each Ui we have
∧2 ΘX/A(Ui) ∼=

∧2 ΘX(Ui) ⊗ A

and then we can write π̃|Ui
= π|Ui

+ σi with σi ∈
∧2 ΘX(Ui) ⊗ mA. Then

[π̃|Ui
, π̃|Ui

]SN = 0 is equivalent to [π|Ui
, σi]SN + 1

2 [σi, σi]SN = 0, i.e., σi is a

solution to Maurer-Cartan equation in the differential graded Lie algebra∧≥1 ΘX [1](Ui) ⊗ mA. If the eηij ’s are the transition automorphisms for X
on double intersections we have the equality

ead ηij (π|Uij
+ σj|Uij

) = π|Uij
+ σi|Uij

,

which in terms of gauge action reads as eηij ∗σj|Uij
= σi|Uij

in the differential

graded Lie algebra
∧≥1 ΘX [1](Uij) ⊗ mA.

On the other hand, by Theorem 2.4 the groupoid DelTot(
∧ ≥1 ΘX [1](U)•)(A)

is naturally equivalent to the totalization of the semicosimplicial groupoid:

∏
i

Del∧ ≥1 ΘX [1](Ui)
(A)

��
��
∏
i,j

Del∧ ≥1 ΘX [1](Uij)
(A)

������ · · ·

Objects of this groupoid are precisely the collections

σi ∈
∧2

ΘX(Ui) ⊗ mA, eηij ∈ exp(ΘX(Uij) ⊗ mA),

such that for every i, j, k:

(1) every σi is a solution to the Maurer-Cartan equation in∧≥1 ΘX [1](Ui) ⊗ mA;

(2) eηij ∗ σj|Uij
= σi|Uij

in
∧≥1 ΘX [1](Uij) ⊗ mA;

(3) eηijeηjk = eηik in exp(ΘX(Uijk) ⊗ mA).
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The last condition ensures that we can glue via the eηij the trivial defor-

mations over each Ui to a global deformation X of X over A, the second

ensures that the local sections π̃i = π|Ui
+ σi paste to a global section π̃

of
∧2 ΘX/A, restricting to π, and the first one ensures that [π̃, π̃]SN = 0,

i.e., (X , π̃) is a deformation of (X,π) over A, canonically associated to the

descent data. Conversely, by the previous discussion, every deformation of

(X,π) over A determines descent data from which it can be reconstructed

up to isomorphism.

A similar argument shows that equivalences of descent data correspond

to equivalences of the associated deformations, and the other way around,

so that it is defined this way a fully faithful, essentially surjective, functor

DelTot(
∧ ≥1 ΘX [1](U)•)(A) → Del(X,π)(A) .

Naturality of this construction in A is clear. �

Some of the results of this section are also obtained recently and inde-

pendently by C. Kim in his thesis [21].

5. Coisotropic Deformations

Definition 5.1. Let (X,π) be a holomorphic Poisson manifold. A

holomorphic closed submanifold Z ⊂ X is called coisotropic if its ideal

sheaf IZ is closed under the Poisson bracket {·, ·}π.

For a closed submanifold Z of a complex manifold X we denote by

NZ|X the normal sheaf of Z in X and by
∧∗NZ|X :=

⊕
i≥0

∧i
OZ

NZ|X [−i]
its graded exterior algebra. By a little abuse of notation we also denote by∧∗NZ|X its direct image under the inclusion Z ⊂ X.

Proposition 5.2. The kernel L∗
Z of the natural epimorphism∧∗ ΘX →

∧∗NZ|X is a sheaf of Gerstenhaber subalgebras of
∧∗ ΘX . More-

over the following conditions are equivalent:

(1) Z is coisotropic;

(2) π ∈ H0(X;L2
Z);

(3) dπ(L∗
Z) ⊆ L∗

Z .
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Proof. This is a straightforward computations in local holomorphic

coordinates. For later use we point out that L0
Z = IZ and L1

Z =

ΘX(− logZ). �

We shall first study coisotropic deformations of (X,Z, π); recall that for

A ∈ ArtC a deformation of the pair (X,Z) over A can be described as a

deformation X of X together with a sheaf IZ ⊂ OX of A-flat ideals and a

commutative diagram

IZ � � ��

��

OX

��
IZ � � �� OX

of sheaves of A-algebras locally isomorphic to

IZ ⊗A � � ��

��

OX ⊗A

��
IZ � � �� OX .

Equivalences are isomorphisms of pairs over IZ ↪→ OX , the group of self-

equivalences of the trivial deformation is naturally isomorphic to

exp(H0(X,ΘX(− logZ)) ⊗ mA), where

ΘX(− logZ) = {η ∈ ΘX | η(IZ) ⊂ IZ}

is the sheaf of vector fields tangent everywhere to Z. Again given an open

Stein covering {Ui} of X, every deformation of (X,Z) trivializes over each

Ui, so that it can be reconstructed up to isomorphism by the family of

transition automorphisms eηij ∈ exp(ΘX(− logZ)(Uij)⊗mA) satisfying the

cocycle condition on triple intersections.

Definition 5.3. Given a holomorphic Poisson manifold (X,π) and a

coisotropic submanifold Z ⊂ X, a coisotropic deformation of the triple

(X,Z, π) is a deformation (X , π̃) of (X,π) equipped with a sheaf of

coisotropic ideals IZ ⊂ OX such that IZ ↪→ OX is a deformation of the

pair (X,Z). Together with the obvious notion of isomorphism, the defor-

mations over a fixed basis have a natural groupoid structure. We denote by

Delco(X,Z,π) : ArtC → Grpd, Defco(X,Z,π) : ArtC → Set ,
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the associated formal pointed groupoid and functor of Artin rings.

Fixing an open Stein covering U = {Ui} we can proceed as in the proof of

Theorem 4.3, considering the non negatively graded semicosimplicial DGLA

L≥1
Z [1](U)• of Čech cochains of the graded sheaf L≥1

Z [1].

Theorem 5.4. There is an equivalence of formal groupoids:

Del
Tot(L≥1

Z [1](U)•)
� Delco(X,Z,π) .

Proof. This is proved in the same way as in Theorem 4.3: the descent

data for the semicosimplicial groupoid

∏
i

DelL≥1
Z [1](Ui)

(A)
��
��
∏
i,j

DelL≥1
Z [1](Uij)

(A)

������
∏
i,j.k

DelL≥1
Z [1](Uijk)

(A) · · ·

can be glued to a deformation IZ ↪→ OX of (X,Z) and a deformation π̃ of π;

conversely every deformation determines descent data from which it can be

reconstructed up to isomorphism. The only non trivial fact to point out is

that, according to Proposition 5.2, for a given solution σi to Maurer-Cartan

equation in
∧≥1 ΘX(Ui)⊗mA, the condition that IZ(Ui)⊗A ⊂ OX(Ui)⊗A

is a coisotropic ideal with respect to the bracket induced by π̃i = π|Ui
+ σi,

is equivalent to σi ∈ L2
Z(Ui) ⊗ mA. �

As an application of the above result we are able to give the analog of

Kodaira’s stability theorem for coisotropic submanifolds.

Corollary 5.5 (Stability of coisotropic submanifolds). Let (X,π) be

a compact holomorphic Poisson manifold and let Z be a coisotropic sub-

manifold. Consider the complex of sheaves

∧≥1
NZ|X [1] : NZ|X

dπ−→
∧2

NZ|X
dπ−→ · · ·
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where
∧iNZ|X is considered in degree i − 1. Let X → (B, 0) be a Poisson

deformation of (X,π) over a germ of complex space (B, 0). If

H
1(Z,

∧≥1NZ|X [1]) = 0 then, after a possible shrinking of B, there exists a

family of coisotropic submanifolds Z ⊂ X which is smooth over B and such

that Z0 = Z.

Proof. Following the same standard argument used in the proof of

[17, Thm. 8.1], involving relative Douady space and Artin’s theorem on the

solution of analytic equations, it is not restrictive to assume B a fat point,

i.e., B = Spec(A) for some A ∈ ArtC. Thus the stability theorem is proved

whenever we show that the natural transformation of functors of Artin rings

Defco(X,Z,π)

η−→ Def(X,π)

is smooth; fixing an open Stein covering U = {Ui} of X, the above natural

transformation is induced by the inclusion of differential graded Lie algebras

Tot(L≥1
Z [1](U)•)

i−→ Tot(
∧≥1

ΘX [1](U)•) .

According to standard smoothness criterion, see e.g. [31], the morphism η is

smooth whenever i is surjective onH1 and injective onH2. By the definition

of L≥1
Z we have an exact sequence of complexes of coherent sheaves

0 → L≥1
Z [1] →

∧≥1
ΘX [1] →

∧≥1
NZ|X [1] → 0,

and the conclusion follows from Example 2.3 and hypercohomology long

exact sequence. �

Finally recall that for a complex manifold X and a complex submanifold

Z ⊂ X the local Hilbert functor HilbZ|X : ArtC → Set sends A to the set of

sheaves of A-flat ideals IZ ⊂ OX⊗A such that IZ⊗AC = IZ ; in other terms,

HilbZ|X is the functor of formal embedded deformations of Z in X. If X is

Stein then every IZ ↪→ OX⊗A is isomorphic as a pair to IZ⊗A ↪→ OX⊗A,

i.e., there exists η ∈ H0(X; ΘX) ⊗ mA for which IZ = eη(IZ ⊗ A). It has

been already proved in [32] that the homotopy fiber of the morphisms of

sheaves of differential graded Lie algebras L1
Z ↪→ ΘX controls the functor

HilbZ|X ; here we consider the case of embedded coisotropic deformations.
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Definition 5.6. Given a holomorphic Poisson manifold (X,π) and a

coisotropic submanifold Z ⊂ X, the local coisotropic Hilbert functor of X

in Z is the functor of Artin rings Hilbco
Z|X : ArtC → Set sending A to the

set of sheaves of A-flat coisotropic ideals IZ ⊂ OX ⊗A such that IZ ⊗AC =

IZ .

Let K≥1
Z be the homotopy fiber of the inclusion of sheaves of (non neg-

atively graded) differential graded Lie algebras L≥1
Z [1] ↪→

∧≥1 ΘX [1] (the

notation is a little ambiguous, this is not the non negatively graded part of

the homotopy fiber K∗
Z of the inclusion L∗

Z [1] ↪→
∧∗ ΘX [1]); for an open cov-

ering U let K≥1
Z (U)• be the associated semicosimplicial differential graded

Lie algebra.

Theorem 5.7. For every open Stein covering U of X there exists an

equivalence of formal pointed groupoids:

Del
Tot(K≥1

Z (U)•)
� Hilbco

Z|X ,

where Hilbco
Z|X is regarded via the natural inclusion Set → Grpd.

Proof. We shall first show that DelK≥1
Z (U)

� Hilbco
U

⋂
Z|U for a Stein

open subset U ⊂ X, then the theorem will follow from descent of Deligne

groupoids as in the previous cases. We saw in Example 2.5 that the

groupoid DelK≥1
Z (U)

(A) admits the following description: objects are eη ∈
exp(ΘX(U)⊗mA) such that e−η ∗0 ∈ L2

Z(U)⊗mA, morphisms between ob-

jects eη, eξ are eα ∈ exp(ΘX(− logZ)(U)⊗mA) such that eη = eξeα; more-

over, the natural transformation Del
Tot(K≥1

Z (U)•)
(A) → Def

Tot(K≥1
Z (U)•)

(A) is

an equivalence of groupoids.

The equivalence DelK≥1
Z (U)

(A) � Hilbco
U

⋂
Z|U (A) is given on the set of

objects sending eη to the ideal eη(IZ∩U ⊗ A) ⊂ OU ⊗ A. This takes values

in Hilbco
U

⋂
Z|U (A), in fact applying the Gerstenhaber automorphism e− ad η

we see that eη(IZ∩U ⊗A) is coisotropic if and only if IZ∩U ⊗A is coisotropic

with respect to the bracket induced by e− ad η(π|U ) = π|U +e−η ∗0 and, as in

Proposition 5.2, this is equivalent to e−η ∗ 0 ∈ L2
Z∩U ⊗mA; it is a morphism

of groupoids as it factors through Del
Tot(K≥1

Z (U)•)
(A) → Def

Tot(K≥1
Z (U)•)

(A),

since this is an equivalence it remains to show bijectivity of the induced
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DefK≥1
Z (U)

(A) → Hilbco
U

⋂
Z|U (A): injectivity is plain, surjectivity follows

from U being Stein.

It follows from the definitions that U → Hilbco
U

⋂
Z|U (A) is a sheaf of

(pointed) sets on X, in particular this means that Hilbco
Z|X(A) is in canonical

bijective correspondence with the totalization of the semicosimplicial set:

∏
iHilbco

Ui
⋂

Z|Ui
(A) ��

��
∏

i,jHilbco
Uij

⋂
Z|Uij

(A)

������
∏

i,j,kHilbco
Uijk

⋂
Z|Uijk

(A) · · ·

and the first part of the proof gives a natural equivalence between this and

the semicosimplicial groupoid:

∏
i DelK≥1

Z (Ui)
(A) ��

��
∏

i,j DelK≥1
Z (Uij)

(A) ������
∏

i,j,k DelK≥1
Z (Uijk)

(A) · · ·

thus a natural equivalence of the corresponding totalizations. Now

Theorem 2.4 gives the desired natural equivalence Del
Tot(K≥1

Z (U)•)
(A) �

Hilbco
Z|X(A). �

6. Coisotropic Deformations Induced by the Anchor Map

In order to show that the coisotropic deformations induced by the an-

chor map are unobstructed, both in classical and derived sense, we need an

algebraic criterion for the homotopy abelianity of certain homotopy fibers,

which we think of independent interest.

According to (generalized) Quillen’s construction [15, Prop. 3.3.2], two

DGLAs are quasi-isomorphic if and only if they are weak equivalent as L∞-

algebras; in particular a differential graded Lie algebra is homotopy abelian

if and only if every bracket on its L∞ minimal model [25] vanishes.

Let (L, d, [·, ·]) be a differential graded Lie algebra and assume that there

exists an L∞-morphism

f∞ : (L, d, [·, ·]) ��� (L, d, 0), f∞ = {fn}, fn : L∧n → L,

with linear part f1 equal to the identity, then (L, d, [·, ·]) is homotopy

abelian. Notice that, according to homotopy classification of L∞-algebras

[25], the converse is also true.
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Theorem 6.1. Let L = (L, d, [·, ·]) be a differential graded Lie algebra

over a field of characteristic 0. If there exists a bilinear map h : L×L→ L

of degree −1 such that

(1) h(a, b) = −(−1)a bh(b, a),

(2) [a, b] = dh(a, b) + h(da, b) + (−1)ah(a, db),

(3)

∮
[h(a, b), c] +

∮
h([a, b], c) = 0, where

∮
denotes the sum over the

cyclic permutations, taking care of Koszul signs.

Then L is homotopy abelian. IfM ⊂ L is a differential graded Lie subalgebra

such that h(M × M) ⊂ M , then both M and the homotopy fiber of the

inclusion M ⊂ L are homotopy abelian.

Proof. The proof given here is a slight generalization of [10, Theo-

rem 3.2]; as pointed out above, the triviality of the bracket up to homotopy,

described by conditions (1) and (2), is not sufficient to ensure homotopic

abelianity.

It is convenient to consider the L∞[1]-algebra (V, q1, q2, 0, . . . ) corre-

sponding to L via standard décalage isomorphism:

V = L[1], q1 = −d, q2(a, b) = (−1)a[a, b],

where a denotes the degree of a in L. The homotopy h corresponds to a

map

r ∈ Hom0
K(V �2, V ), r(a, b) = (−1)ah(a, b),

and it is straightforward to check that the above conditions (2) and (3)

become

[r, q1]NR = q2, [r, q2]NR = 0,

where [·, ·]NR is the Nijenhuis-Richardson bracket on Hom∗
K(Sc(V ), V ), i.e.,

the transfer of the graded commutator bracket on the Lie algebra of

coderivations of the reduced symmetric coalgebra Sc(V ) via the corestric-

tion isomorphism

Hom∗
K(Sc(V ), V ) � Coder∗K(Sc(V ), Sc(V )) .
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Let’s denote by R,Q1, Q2 ∈ Coder∗K(Sc(V ), Sc(V )) the coderivations

with corestrictions r, q1, q2 respectively; we have that R(V �n) ⊂ V �n−1 and

then it is well defined an isomorphism of graded coalgebras eR : Sc(V ) →
Sc(V ). To conclude the proof it is sufficient to prove that

Q1 +Q2 = eR ◦Q1 ◦ e−R = e[R,·](Q1).

Taking corestrictions the above equality becomes

q1 + q2 = e[r,·]NR(q1) = q1 + [r, q1]NR +
1

2
[r, [r, q1]]NR + · · ·

which is clearly equivalent to [r, q1]NR = q2 and [r, q2]NR = 0. If P is a

differential graded commutative algebra we can extend the operator h to

P ⊗ L in the obvious way:

h(u⊗ a, v ⊗ b) = (−1)u+v+v a uv ⊗ h(a, b) .

The validity of the properties (2) and (3) for the operator h in P ⊗ L is

clear.

In particular h extends to L[t, dt] and commutes with the evaluation

maps L[t, dt]
t�→0−−→ L and L[t, dt]

t�→1−−→ L. Therefore h extends to the homo-

topy fiber of the inclusion. It is worth to notice here that, in general, the

homotopy fiber of a morphism of homotopy abelian differential graded Lie

algebras is not homotopy abelian. �

Corollary 6.2. Let

L• : L0
���� L1

������ L2

�������� · · ·

be a semicosimplicial differential graded Lie algebra. Assume it is given a

sequence of bilinear maps hn : Ln × Ln → Ln of degree −1 such that:

(1) for every n the map hn satisfies the conditions of Theorem 6.1;

(2) the sequence {hn} gives a semicosimplicial map, i.e., for every n

and every face operator ∂k : Ln → Ln+1 we have hn+1(∂ka, ∂kb) =

∂khn(a, b).
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Then the totalization Tot(L•) is a homotopy abelian differential graded Lie

algebra.

Proof. By scalar extension, every map hn extends to a bilinear map

on Ωn ⊗ Ln and then we have a bilinear map

h : (
∏
n

Ωn ⊗ Ln) × (
∏
n

Ωn ⊗ Ln) →
∏
n

Ωn ⊗ Ln ,

h((a1, a2, . . . ), (b1, b2, . . . )) = (h1(a1, b1), h2(a2, b2), . . . ),

which satisfies the conditions of Theorem 6.1. Since the morphisms hn
commute with face operators, the totalization Tot(L•) ⊂

∏
n Ωn ⊗ Ln is

stable under h. �

Lemma 6.3. Let (X,π) be a holomorphic Poisson manifold. Then the

bilinear morphism

h : Ωi
X ⊗ Ωj

X → Ωi+j−2
X ,

h(α, β) = (−1)i(iπ(α ∧ β) − iπ(α) ∧ β − α ∧ iπ(β)),

defined on the sheaf of DGLAs (Ω∗
X [1], [·, ·]π, ∂) verify the assumptions of

Theorem 6.1. Given an open covering U of X, there is induced a se-

quence of linear maps on the semicosimplicial differential graded Lie algebra

Ω∗
X [1](U)• as in the hypotheses of Corollary 6.2.

Proof. The first part is a direct straightforward verification, substan-

tially made in [10]; the last part is clear. �

For any integer k ≥ 0, let Ω≥k
X denote the truncation in degree ≥ k

of Ω∗
X , in particular Ω≥k

X = Ω∗
X for k = 0. For every k  = 1 the sheaf

of DGLAs Ω≥k
X [1] is stable with respect to the operator h defined in the

previous Lemma 6.3; this and Theorem 6.1 immediately imply the following

proposition.

Proposition 6.4. Let (X,π) be a holomorphic Poisson manifold.

Then, for every nonnegative integer k  = 1, (Ω≥k
X [1], [·, ·]π, ∂) is a sheaf of

homotopy abelian DGLAs on X. Moreover, for every open covering U of X

the totalization Tot(Ω≥k
X [1](U)•) is homotopy abelian.
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Next, for a closed submanifold Z ⊂ X, let I∗
Z ⊂ Ω∗

X denote the ideal of

forms vanishing along Z, i.e., the kernel of the natural restriction morphism

Ω∗
X → Ω∗

Z , also recall the sheaf L∗
Z ⊂

∧∗ ΘX defined in the previous section.

Proposition 6.5. Let (X,π) be a holomorphic Poisson manifold and

Z ⊂ X a coisotropic submanifold. Then I∗
Z ⊂ Ω∗

X is a sheaf of differential

graded Lie subalgebras, it is closed with respect to the operator h introduced

in Lemma 6.3 and π#(I∗
Z) ⊂ L∗

Z .

Proof. The question is purely local, we fix a system of local holomor-

phic coordinates z1, . . . , zn such that Z = {z1 = · · · = zp = 0} and the

coisotropy of Z means that {zi, zj}π ∈ IZ for 1 ≤ i, j ≤ p. Therefore for

1 ≤ i, j ≤ p we also have

{zi, zj}π = iπ(dzi ∧ dzj) = −h(dzi, dzj) = π#(dzi)(zj) = [dzi, zj ]π ∈ IZ
[dzi, dzj ]π = d[dzi, zj ]π ∈ I∗

Z .

Since I∗
Z ⊂ Ω∗

X is the multiplicative ideal generated locally by S =

{zj , dzi}1≤i,j≤p the above computation shows that I∗
Z ⊂ Ω∗

X is a sheaf of

differential graded Lie subalgebras and π#(I∗
Z) ⊂ L∗

Z .

Now the h-closedness of the ideal sheaf I∗
Z is equivalent to iπ(α∧β) ∈ I∗

Z

for α, β ∈ I∗
Z ; to this end it is not restrictive to assume α an element of S.

If α = zi with 1 ≤ j ≤ p the claim follows by OX -linearity of iπ, while for

α = dzi the statement is equivalent to the fact that I∗
Z is (iπ ◦dzj ∧·)-closed

for 1 ≤ j ≤ p: this is true if and only if the ideal is closed with respect to

the operator

[iπ, dzj ∧ ·] = [iπ, [d, zj ∧ ·]] = [lπ, zj ∧ ·] = [zj , ·]π ,

where the last equality follows from (3.2) and the conclusion follows from

the fact that I∗
Z is closed under the Koszul bracket.

Notice that for a coisotropic submanifold Z the ideal I∗
Z is not iπ-closed

in general. �

Denote by J ≥k
Z the homotopy fiber of the inclusion of sheaves of DGLAs

I≥k
Z [1] ↪→ Ω≥k

X [1].

Proposition 6.6. Let (X,π) be a holomorphic Poisson manifold, Z ⊂
X a coisotropic submanifold and k a nonnegative integer. If k  = 1, then
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I≥k
Z [1], J ≥k

Z are sheaves of homotopy abelian differential graded Lie alge-

bras on X. Moreover, for every open covering U of X the totalizations

Tot(I≥k
Z [1](U)•), Tot(J ≥k

Z (U)•) are homotopy abelian.

Proof. Immediate from Proposition 6.5 and Theorem 6.1. �

In the situation of Proposition 6.6 we have a commutative diagram of

DGLAs:

Tot(J ∗
Z(U)•) �� Tot(I∗

Z [1](U)•) �� Tot(Ω∗
X [1](U)•)

Tot(J ≥1
Z (U)•) ��

��

Tot(I≥1
Z [1](U)•) ��

��

Tot(Ω≥1
X [1](U)•)

��
(6.1)

with the DGLAs in the top row homotopy abelian and the inclusions as

vertical arrows.

Lemma 6.7. Let U be an open Stein covering of X.

(1) if the Hodge to de Rham spectral sequence of X degenerates at E1,

then the differential graded Lie algebra Tot(Ω≥1
X [1](U)•) is homotopy

abelian.

(2) if the Hodge to de Rham spectral sequence of Z degenerates at E1, then

the differential graded Lie algebra Tot(J ≥1
Z (U)•) is homotopy abelian.

Proof. Recall that the Hodge to de Rham spectral sequence of a

smooth complex manifold X may be defined as the spectral sequence as-

sociated to the filtration of Čech (double) complexes F k = C(U ,Ω≥k
X ) (see

e.g. [8]). Since the Whitney maps

I : Tot(Ω≥k
X (U)•) → C(U ,Ω≥k

X )

are quasi-isomorphisms of complexes, the first item is an immediate conse-

quence of the well known fact that if f : L→M is a morphism of differential

graded Lie algebras which is injective in cohomology and M is homotopy

abelian, then also L is homotopy abelian (for a proof see e.g. [20, Proposi-

tion 4.11] or [10, Lemma 6.1]).
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The second item is proved in the same way, pointing out that for every

Stein open subset U ⊂ X and every k ≥ 0 the complexes J ≥k
Z (U) and

Ω≥k
Z (U) are quasi-isomorphic. �

Next, fix an open Stein covering U and consider the following commu-

tative diagram of anchor maps

Tot(J ≥1
Z (U)•) ��

π#

��

Tot(I≥1
Z [1](U)•) ��

π#

��

Tot(Ω≥1
X [1](U)•)

π#

��
Tot(K≥1

Z (U)•) �� Tot(L≥1
Z [1](U)•) �� Tot(

∧≥1 ΘX [1](U)•) .

(6.2)

In particular the anchor maps induce morphisms of deformation functors

π# : Def
Tot(J≥1

Z (U)•)
→ Hilbco

Z|X , π# : Def
Tot(Ω≥1

X [1](U)•)
→ Def(X,π) ,

which at first order reduce to the anchor maps in cohomology:

π# : H1(Tot(J ≥1
Z (U)•)) = H

1(Z,Ω≥1
Z ) → T 1 Hilbco

Z|X ,

π# : H1(Tot(Ω≥1
X [1](U)•)) = H

2(X,Ω≥1
X ) → T 1 Def(X,π) .

Whenever the Hodge to de Rham spectral sequence of Z (resp.: X)

degenerates at E1 we have an isomorphism H
1(Z,Ω≥1

Z ) � H0(Z,Ω1
Z) (resp.:

H
2(X,Ω≥1

X ) � H0(X,Ω2
X) ⊕H1(X,Ω1

X)).

Theorem 6.8. In the notation above, if the Hodge to de Rham spec-

tral sequence of Z degenerates at E1, then for every ω ∈ H0(Z,Ω1
Z) the

first order embedded coisotropic deformation π#(ω) extends to an embedded

coisotropic deformation of Z over Spec(C[[t]]).

Proof. Clear, since for every open Stein covering U the DGLA

Tot(J ≥1
Z (U)•) is homotopy abelian and then the functor Def

Tot(J≥1
Z (U)•)

is unobstructed. �

Theorem 6.9. In the notation above, if the Hodge to de Rham spectral

sequence of X degenerates at E1 then for every ω ∈ H0(X,Ω2
X)⊕H1(X,Ω1

X)

the first order deformation π#(ω) extends to a deformation of (X,π) over

Spec(C[[t]]).
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Proof. As above, for every open Stein covering U the differential

graded Lie algebra Tot(Ω≥1
X [1](U)•) is homotopy abelian. �

The above Theorem 6.9 has been proved is a different way by Hitchin [16]

under the additional assumption that X is compact Kähler. As a further

application we can generalize to coisotropic submanifolds part of classical

results by McLean and Voisin about deformations of Lagrangian submani-

folds [34, 40].

Corollary 6.10. Let Z be a compact coisotropic submanifold of a

holomorphic Poisson manifold (X,π). Assume that the Hodge to de Rham

spectral sequence of Z degenerates at E1 and the anchor map

π# : H0(Z,Ω1
Z) → ker(dπ : H0(Z,NZ|X) → H0(Z,

∧2
NZ|X))

is surjective; then the functor Hilbco
Z|X is unobstructed. If moreover

π# : H0(Z,Ω1
Z) → H0(Z,NZ|X)

is surjective, then every small embedded deformation of Z is coisotropic and

the Hilbert functor HilbZ|X = Hilbco
Z|X is unobstructed.

Proof. Since Z is compact, by the argument used in Corollary 5.5 it

is sufficient to consider infinitesimal deformations. It is now sufficient to

apply Theorem 6.8. �

Obviously the above corollary fails without the assumption about the

anchor map. For instance, if Z = p is a point, then Z is coisotropic if

and only π vanishes at p; this shows that in general Hilbco
Z|X is obstructed

and strictly contained in HilbZ|X . Corollary 6.10 holds in particular for

Lagrangian submanifolds of a holomorphic symplectic manifold; a different

proof of this case, based on Ran-Kawamata’s T 1-lifting theorem, is given in

[26]. As pointed out by the referee, the T 1-lifting argument can also be used

for a different proof of Theorem 6.8, where the smoothness of the functor

Def
Tot(J≥1

Z (U)•)
is replaced by the deformation invariance of Hodge numbers

of Z.
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7. Dolbeault Resolutions

In the previous sections we described the differential graded Lie algebras

controlling Poisson deformations and embedded coisotropic deformations

using a purely algebraic construction, namely the Thom-Whitney-Sullivan

totalization. Therefore all the above results can be easily extended to every

algebraic Poisson manifold defined over a field of characteristic 0: roughly

speaking, it is sufficient to replace holomorphic with algebraic and Stein

with affine and everything still works.

In this section we shall use Dolbeault’s resolutions in order to give an-

other description of the differential graded Lie algebra governing embedded

coisotropic deformations; clearly this new interpretation only works in the

complex analytic setting.

Given a locally free sheaf E on a complex manifold X we shall denote

by A0,j
X (E) the sheaf of differentiable forms of type (0, j) with values in E .

The Dolbeault resolution of a bounded below complex

(E∗, δ) : 0 → E i δ−→ E i+1 δ−→ · · ·

of locally free sheaves on a complex manifold is the sheaf of DG-vector

spaces A0,∗
X (E∗), where

A0,∗
X (E)i =

⊕
j+h=i

A0,j
X (Eh),

and the differential ∂E∗ is defined by the formula

∂E∗ : A0,j
X (Eh) → A0,j+1

X (Eh) ⊕A0,j
X (Eh+1),

∂E∗(φ⊗ e) = ∂φ⊗ e+ (−1)jφ⊗ δe .

According to Dolbeault’s lemma, the natural inclusion E∗ → A0,∗
X (E∗) is a

quasi-isomorphism.

Similarly we denote by A0,∗
X (E∗) the DG-vector space of global sections

of the Dolbeault resolution; more generally, for every open subset U ⊂ X we

shall denote by A0,∗
U (E∗) the DG-vector space of sections of A0,∗

X (E∗) over U .

Notice that, by Dolbeault theorem, the cohomology A0,∗
X (E∗) is isomorphic

to the hypercohomology of E∗.
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Let (E∗, δ) be a bounded below complex of locally free sheaves on a

complex manifold X and let U = {Ui} be an open Stein covering of X.

Thus we have a natural morphism of semicosimplicial DG-vector spaces:

E∗(U)• :

��

∏
i E∗(Ui)

��
��

��

∏
i,j E∗(Uij)

��

������
∏

i,j,k E∗(Uijk) · · ·

��

A0,∗
U (E∗)• :

∏
iA

0,∗
Ui

(E∗)
��
��
∏

i,j A
0,∗
Uij

(E∗)
������
∏

i,j,k A
0,∗
Uijk

(E∗) · · ·

Since A0,∗
X (E∗) is the equalizer of ∂0, ∂1 : A0,∗

U (E∗)0 → A0,∗
U (E∗)1 and every

map

E∗(Ui1···ik) → A0,∗
Ui1···ik

(E∗)

is a quasi-isomorphism, according to Remark 2.7 there exists a diagram of

quasi-isomorphisms

Tot(E∗(U)•)

��
A0,∗

X (E∗)
e �� Tot(A0,∗

U (E∗)•)

, e(x) = (1 ⊗ x, 1 ⊗ ∂0x, 1 ⊗ ∂2
0x, . . . ).

Here we apply the above general construction in two particular cases,

both of them related with a coisotropic submanifold Z of a holomorphic

Poisson manifold (X,π). In the first case we consider the complex of locally

free sheaves on X∧≥1
ΘX [1] : 0 → ΘX

dπ−→
∧2

ΘX
dπ−→

∧3
ΘX · · · ,

while in the second we consider the complex of locally free sheaves on Z∧≥1
NZ|X [1] : 0 → NZ|X

dπ−→
∧2

NZ|X
dπ−→

∧3
NZ|X · · · .

The complex A0,∗
X (

∧≥1ΘX [1]) admits a natural structure of differential

graded Lie algebra, where the bracket is the antiholomorphic extension of

the Schouten-Nijenhuis bracket on A0,0
X (

∧≥1ΘX [1]).

It is straightforward to check that there exists a short exact sequence

0 → LZ|X
χ−→ A0,∗

X (
∧≥1

ΘX [1])
P−−→ A0,∗

Z (
∧≥1

NZ|X [1]) → 0,(7.1)
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where P is the natural projection map, LZ|X is a differential graded sub-

algebra of A0,∗
X (

∧≥1ΘX [1]) and χ is the inclusion. By Proposition 5.2

LZ|X ⊂ A0,∗
X (

∧≥1ΘX [1]) is a also a differential graded Lie subalgebra.

Theorem 7.1. In the notation of Section 5, for every open Stein cov-

ering U of X, the homotopy fiber of the inclusion LZ|X
χ−→ A0,∗

X (
∧≥1ΘX [1])

is quasi-isomorphic to Tot(K≥1
Z (U)•) and then governs the functor of in-

finitesimal embedded coisotropic deformations of Z in X.

Proof. Since Tot is an exact functor we have a short exact sequence

0 → Tot(L≥1
Z [1](U)•)

α−→ Tot(
∧≥1

ΘX [1](U)•)

→ Tot(
∧≥1

NZ|X [1](U)•) → 0

and Tot(K≥1
Z (U)•) is isomorphic to the homotopy fiber of α. The above

sequence is part of a 5 × 3 diagram with exact columns, with the first two
rows made by morphisms of differential graded Lie algebras and where every
horizontal map is a quasi-isomorphism:

0

��

0

��

0

��
Tot(L≥1

Z [1](U)•)

α

��

�� K

��

LZ|X

χ

��

��

Tot(
∧≥1

ΘX [1](U)•) ��

��

Tot(A0,∗
U (

∧≥1
ΘX [1])•)

��

A0,∗
X (

∧≥1
ΘX [1])

��

e��

Tot(
∧≥1NZ|X [1](U)•) ��

��

Tot(A0,∗
U (

∧≥1NZ|X [1])•)

��

A0,∗
Z (

∧≥1NZ|X [1])

��

e��

0 0 0

This diagram induces a quasi-isomorphism between the homotopy fibers of

α and χ. �

8. Relation with the Homotopy Lie Algebroid

Coisotropic deformations have been studied, in the differentiable setting,

by using L∞-algebras together with Voronov’s construction of higher derived



32 Ruggero Bandiera and Marco Manetti

brackets [5, 6, 11, 37, 41].

Theorem 8.1 (Th. Voronov [42]). Let (M, [·, ·]) be a graded Lie alge-

bra, splitting, as a graded vector space, in the direct sum M = L⊕A, where

L,A are graded Lie subalgebras of M and A is abelian; denote by P : M → A

the projection with kernel L. For every derivation D ∈ Der∗(M) such that

D(L) ⊂ L, its higher derived brackets {· · · }nD : A�n → A are defined as

{a1, . . . , an}nD = P [[· · · [[Da1, a2], a3], . . . ], an] , n ≥ 1 .(8.1)

Then, for every degree one derivation D ∈ Der1(M) such that D2 = 0

and D(L) ⊂ L, the higher derived brackets of D give a structure of L∞-

algebra on A[−1].

Notice that {a}1
D = PDa and the graded symmetry follows easily from

Leibniz rule and the abelianity of A: for instance

{a, b}2
D = P [Da, b] = P (D[a, b] − (−1)aD[a,Db])

= (−1)a(D+Db)P [Db, a] = (−1)a b{b, a}2
D .

If D(A) ⊂ A, then {a}1
D = Da and {· · · }nD = 0 for every n > 1.

The link between higher derived brackets and homotopy fibers is given

by the following result.

Theorem 8.2 (Th. Voronov). In the same setup of the above Theo-

rem 8.1, if D has degree 1 and D2 = 0, then the L∞-algebra (A[−1], {·}1
D,

{·, ·}2
D, . . . ) is weakly equivalent to the homotopy fiber of the inclusion of

DGLAs

(L,D, [·, ·]) ↪→ (M,D, [·, ·]) .

Proof. See either [42, Cor. 4.1] or [1, Thm. 1.1]. �

In order to apply the higher derived brackets construction to the study

of holomorphic coisotropic deformations, we look for a splitting

A0,∗
Z (

∧≥1 NZ|X [1]) → A0,∗
X (

∧≥1 ΘX [1]) of the exact sequence (7.1), such

that the image is an abelian graded Lie subalgebra of A0,∗
X (

∧≥1 ΘX [1]). In
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the differentiable setting something similar is accomplished after restricting

to a tubular neighborhood of Z in X; in the complex analytic setting, how-

ever, one has to work from the outset in the rather restrictive hypothesis

that X = E is the total space of a holomorphic vector bundle p : E → Z

over Z, which is embedded in E as the zero section.

Denoting by NZ|E the normal bundle, there is a canonical identification

NZ|E ∼= E, in this way the pull-back bundle p∗NZ|E → E is canonically

identified with the subbundle p∗E ⊂ TE of vertical tangent vectors. The

above induces a morphism NZ|E → p∗ΘE of sheaves on Z, sending a section

ξ of NZ|E to the vector field constantly ξp along the fiber Ep; by multiplica-

tive extension we also get
∧≥1 NZ|E → p∗

∧≥1 ΘE . Thus, for every open

subset U ⊂ Z we have a morphism∧≥1
NZ|E [1](U) →

∧≥1
ΘE [1](p−1(U))

whose image is an abelian graded Lie subalgebra. Acting via pull-back on

differential forms, we obtain a splitting:

σ : A0,∗
Z (

∧≥1
NZ|E [1]) −−−→ A0,∗

E (
∧≥1

ΘE [1])(8.2)

of the exact sequence (7.1) with the required properties.

Suppose given a Poisson bivector π on E such that Z ⊂ E is a

coisotropic submanifold: we look at π as a section of A0,0
E (

∧2 ΘE) ⊂(
A0,∗

E (
∧≥1 ΘE [1])

)1
, then it follows from Proposition 5.2 that π ∈ L1

Z|E .

Since π is holomorphic Poisson, putting D = ∂ + dπ we are in the algebraic

setup of Theorem 8.1.

Denote by P : A0,∗
E (

∧≥1 ΘE [1]) → A0,∗
Z (

∧≥1 NZ|E [1]) the projection as in

the exact sequence (7.1), and take σ : A0,∗
Z (

∧≥1 NZ|E [1]) → A0,∗
E (

∧≥1 ΘE [1])

as in (8.2). Since the image of σ is ∂-closed, the higher derived brackets

{· · · }nD : A0,∗
Z (

≥1∧
NZ|E [1])�n → A0,∗

Z (

≥1∧
NZ|E [1])

are equal to

{ξ}1
D = P (∂σ(ξ) + dπ(σ(ξ))) = (∂ + dπ)ξ,

{ξ1, . . . , ξn}nD = P ([[· · · [dπ(σ(ξ1)), σ(ξ2)]SN , · · · ], σ(ξn)]SN ), n ≥ 2,
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and define an L∞ structure on A0,∗
Z (

∧≥1 NZ|E).

Thus, according to Theorem 8.2, the corresponding L∞ structure on

A0,∗
Z (

∧≥1 NZ|E) is weakly equivalent to the homotopy fiber of χ : LZ|E →
A0,∗

E (
∧≥1ΘE [1]); therefore Theorems 7.1 and 5.7 immediately imply the

following:

Corollary 8.3. In the above hypotheses there is an isomorphism of

functors of Artin rings

Def
A0,∗

Z (
∧ ≥1 NZ|E)

∼= Hilbco
Z|E .

Remark 8.4. The L∞-algebra A0,∗
Z (

∧≥1 NZ|E) is concentrated in de-

grees ≥ 1; in particular the elements of Def
A0,∗

Z (
∧ ≥1 NZ|E)

(A) correspond in

a bijective way to solutions ξ ∈ A0,0
Z (NZ|E) ⊗ mA of the Maurer-Cartan

equation:

∑
n≥1

{ξ, . . . , ξ}nD
n!

= 0 .
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