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Honda Theory for Formal Groups of Abelian Varieties

over Q of GL2-Type

By Yuken Miyasaka and Hirokazu Shinjo

Abstract. Honda proved that two formal groups attached to an
elliptic curve E over Q are strongly isomorphic over Z, where one of
them is obtained from the formal completion along the zero section
of the Néron model over Z and another is obtained from the L-series
attached to the l-adic Galois representations on E. In this paper, we
generalize his theorem to abelian varieties over Q of GL2-type. As
an application, we give a method to calculate the coefficients of the
L-series attached to an algebraic curve over Q with a Jacobian variety
of GL2-type.

1. Introduction

1.1. Setting

Let A be an abelian variety defined over Q of dimension g, and End(A)

the ring of endomorphisms of A defined over Q. Suppose that A is an

abelian variety of GL2-type, that is, there is an isomorphism θ between a

number field F with [F : Q] = g and the endomorphism algebra End0(A) :=

End(A) ⊗Z Q of A over Q:

θ : F
∼→ End0(A).

Then F is either a totally real field or a totally imaginary quadratic exten-

sion of a totally real field, i.e., a CM-field. Let OF be the ring of integers of

F , and suppose that θ(OF ) ⊂ End(A). For a finite set S0 of prime numbers,

we denote by Z[S−1
0 ] the ring obtained from Z by inverting all primes in S0.

Let Sb be the set of primes of bad reduction for A. Choose a finite set of

primes Sp such that OF ⊗ZZ[S−1
p ] is a principal ideal ring. Set S := Sb∪Sp.
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1.2. Main theorem

We construct two formal groups attached to A by a different manner:

one is Â, which is obtained from the formal completion along the zero sec-

tion of the Néron model � over Z for A and a basis of the space of invari-

ant differential forms of �0 (which is constructed in §2.1). Another is L̂,

which is obtained from the L-series attached to the λ-adic representations

of Gal(Q̄/Q) on A (which is constructed in §2.2). We prove that formal

groups Â and L̂ are strongly isomorphic over Z[S−1] (§3, Theorem 2.2).

If dimA = 1, this theorem is Honda’s original result ([6]). In papers of

Hill [5] and Honda [7], Â and L̂ are shown to be isomorphic over Z in this

case. For any g > 1, Theorem 2.2 was proved by Deninger and Nart [4]

when F is a totally real field. Our proof of Theorem 2.2 works in the case

where F is not only a totally real field, but also a CM-field. Sairaiji has

given a generalization of the result of Honda [6] to Q-curves with complex

multiplication ([11, 13]) and to building blocks defined over finite abelian

extensions of Q ([12]).

Theorem 2.2 has an application to a problem to compute the coefficients

of L-series attached to an algebraic curve over Q. We give a method to

calculate them by the “Hasse-Witt matrix” of the reduced curves when its

Jacobian variety is of GL2-type. (§3, Corollary 3.2. It gives a generalization

of Honda [6, Corollary3].)

This paper is organized as follows: in section 2 we construct two formal

groups Â and L̂ mentioned above, and prove that they are strongly isomor-

phic over Z[S−1]. In section 3, we give a method to calculate the coefficients

of L-series attached to an algebraic curve over Q with a Jacobian variety of

GL2-type, by using our main theorem and applying a result of S.Kobayashi

and T.Yamazaki. We also give numerical examples for certain hyperelliptic

curves of genus two defined over Q. Section 4 is devoted to a review of the

Honda theory for formal groups.

Acknowledgment . The authors would like to thank Professor Takao

Yamazaki for his continuous support and invaluable suggestions.

2. Construction of Formal Groups and Main Theorem

We keep the same notation as in §1.1. All results and terminology on

formal groups we use in this section are summarized in Section 4.
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2.1. Construction of Â

Let � be the Néron model over Z for A and �0 the connected component

of �. Since �0 is smooth of finite type over Z, the space of invariant

differentials ω�0/Z is a free Z-module of rank g. We fix a basis {ωi}gi=1 of

ω�0/Z ⊗Z Z[S−1] as OF ⊗Z Z[S−1]-module. This basis {ωi}gi=1 induces an

isomorphism of formal group schemes:

�̂ ⊗ Z[S−1]
∼=→ Spf Z[S−1][[x]], x = (x1, x2, . . . , xg),(2.1)

where �̂ is the formal completion along the zero section of the Néron model

� over Z for A. Let Â(x,y) be the g-dimensional formal group over Z[S−1]

for �̂ ⊗ Z[S−1] obtained from the isomorphism (2.1), and let f(x) be its

logarithmic function, that is, Â(x,y) = f−1(f(x) + f(y)). Let R be the

faithful representation of OF into the ring of g × g matrices Mg(Z):

R : OF ↪→ Mg(Z)(2.2)

such that for any c ∈ OF

θ(c)∗




ω1
...

ωg


 = R(c)




ω1
...

ωg




,

where θ(c)∗ is the endomorphism of ω�0/Z⊗ZZ[S−1] induced by θ(c). Then

the endomorphism [c]Â(x) of the formal group Â induced by c ∈ OF is

written by [c]Â(x) = f−1(R(c)f(x)).

2.2. Construction of L̂

Let l be a prime number and put Fl := F ⊗Q Ql. Using the isomor-

phism θ, the Tate module Vl(A) is free of rank 2 as Fl-module with Fl-

linear Gal(Q̄/Q)-action, since the actions of F and Gal(Q̄/Q) on Vl(A)

commute. Let Fλ be the completion of F at a prime λ dividing l, then

Vλ(A) := Vl(A) ⊗Fl
Fλ is a two-dimensional vector space over Fλ with Fλ-

linear Gal(Q̄/Q)-action. This Gal(Q̄/Q)-action gives a λ-adic representation

ρλ of A

ρλ : Gal(Q̄/Q) → AutFλ
(Vλ(A)) ∼= GL2(Fλ).
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It is shown in [14, (11.10.1)] that the characteristic polynomial of the Frobe-

nius of p �∈ Sb (p �= l) associated with ρλ have coefficients in OF . The

coefficients are independent of the choice of λ and l. The following is given

by Ribet [10]:

Lemma 2.1 ([10, Lemma 3.1]). There exists a finite order character

ε : Gal(Q̄/Q) → F ∗ such that detFλ
ρλ = εχl for each λ, where χl is the

l-adic cyclotomic character. If F is a totally real field, the character ε is

trivial.

For a prime p �∈ Sb (p �= l) and a Frobenius σp ∈ Gal(Q̄/Q), it follows

from Lemma 2.1

Lp(A,F,X) := detFλ
(1 − σpX | Vλ(A))

= 1 − apX + εppX
2.

with ap ∈ OF and εp := ε(σp) ∈ O∗
F . For the faithful representation R :

OF ↪→ Mg(Z) chosen in (2.2), we define the formal Dirichlet series

∑
n≥1

An

ns
:=

∏
p�∈Sb

(Ig −R(āp)p
−s +R(ε̄p)p

1−2s)−1, An ∈ Mg(Z).

Here − is the complex conjugation (resp. the identity) on F if F is a CM-

field (resp. a totally real field). Let �(x) be the formal power series

�(x) :=
∑
n≥1

An

n
xn ∈ Q[[x]]g0,

and L̂(x,y) the g-dimensional formal group over Q whose logarithmic func-

tion is given by �(x), namely

L̂(x,y) := �−1(�(x) + �(y)).

The formal group L̂ is actually defined over Z and for each prime p �∈ Sb it

is of type pIg −R(āp)T +R(ε̄p)T
2. (See Theorem 4.3 in Section 4.)
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2.3. Main theorem and Proof

Theorem 2.2. The formal groups Â and L̂ are strongly isomorphic

over Z[S−1].

Before beginning the proof of Theorem 2.2, we give a key lemma about

the ring of endomorphisms of a special fiber of �. Fix a prime p �∈ Sb.

Let �p be the special fiber � ⊗Z Fp of �, and End(�p) be the ring of

endomorphisms of �p defined over Fp. Put End0(�p) := End(�p) ⊗Z Q.

Let π be the p-th power Frobenius endomorphism of �p. By Tate [16,

Theorem 1], Q(π) is the center of End0(�p). By the composed map

F
θ→ End0(A) ↪→ End0(�p),(2.3)

we regard F as a subfield of End0(�p). Since π commutes with all elements,

F (π) is a commutative subfield of End0(�p).

Lemma 2.3. The following holds in End �p:

p− āpπ + ε̄pπ
2 = 0.(2.4)

Proof. For the proof, we slightly modify the argument of Deninger-

Nart [4, Proposition 2.3].

Using the composed map (2.3), one can also define the Fλ-vector space

Vλ(�p) in the same manner as §2.2 for a prime l �= p and λ | l. Since p is

a prime number of good reduction for A, the Fλ-vector space Vλ(�p) is of

dimension 2, and we have

Vλ(A) ∼= Vλ(�p).

We denote by Vλ(π) the endomorphism of Vλ(�p) induced by σp : Vλ(A) →
Vλ(A). We denote by P (X) the monic polynomial X2Lp(A,F,X

−1) in

OF [X]. Then we have

P (X) = det Fλ
(X − Vλ(π) | Vλ(�p))

= X2 − apX + εpp

We consider two cases.
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Case π �∈ F . It is shown in [15, Proposition 2] that d = [E : Q] divides

2 dim �p where E is a number field in End0 �p. Thus [F (π) : F ] = 2, since

we have [F : Q] = dim �p = g. Take the minimal polynomial Q(X) of π

over F :

Q(X) = X2 − a′pX − c′p ∈ F [X].

Let C(F ) be the centralizer of F in End0(�p). Then the natural Q-algebra

map

C(F ) → EndFλ
(Vλ(�p))

sends π to Vλ(π). Since Q(π) = 0, we have Q(Vλ(π)) = 0. On the other

hand, P (Vλ(π)) = 0 in EndFλ
(Vλ(�p)). Hence monic polynomials Q and P

share a root. Since Q is irreducible over F , we have

Q(X) = P (X).

Therefore we have a′p = ap, c
′
p = εpp, and

Q(π) = π2 − apπ + εpp = 0.(2.5)

Case π ∈ F . Put Q(X) := (X − π)2. Since π ∈ F ↪→ Fλ, the action of

Vλ(π) is a scalar multiple on Vλ(�p). Hence

P (X) = (X − Vλ(π))2.

Since Q and P share the same root, we have Q(X) = P (X). Therefore we

have 2π = ap, π
2 = εpp, and

Q(π) = π2 − apπ + εpp = 0.(2.6)

In either case, by multiplication of ε̄p on equations (2.5) and (2.6), we

obtain

ε̄pεpp− ε̄papπ + ε̄pπ
2 = 0.

Using Lemma 2.4 bellow and the fact that ε̄pεp = 1, we obtain the equation

(2.4) in End0(�p). Since θ(OF ) ⊂ End(A) ↪→ End(�p), the equation (2.4)

also holds in End(�p). �
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Lemma 2.4 (Ribet, [10, Proposition 3.4]). For a prime number p of

good reduction for A, the following holds:

ap = εpāp.

Proof of Theorem 2.2. By §2.1 the formal group Â is defined over

Z[S−1], and by §2.2 the formal group L̂ is defined over Z. In order to

prove that they are strongly isomorphic over Z[S−1], it suffices to show

that they are strongly isomorphic over Zp for every p �∈ S (since a strongly

isomorphism between Â and L̂ is unique if it exists. See also Theorem 4.1

in Section 4). Fix a prime p �∈ S. It follows from §2.1 and Lemma 2.3 that

f−1(pf(x) −R(āp)f(xp) +R(ε̄p)f(xp2
)) ≡ 0 mod p.

Since Â(x,y) is defined over Z[S−1], it follows from [7, Lemma 4.2] that

pf(x) −R(āp)f(xp) +R(ε̄p)f(xp2
) ≡ 0 mod p.

This implies that the formal group Â(x,y) is of type pIg−R(āp)T+R(ε̄p)T
2.

Together with §2.2, we see that both the formal groups Â and L̂ have the

same type. Therefore they are strongly isomorphic over Zp. This completes

the proof of Theorem 2.2. �

3. Application to L-Series of Algebraic Curves

3.1. Coefficients of L-series of curves

Let C be a smooth projective, geometrically connected curve over Q

of genus g > 1 with a rational point ∞ ∈ C(Q). Let J be its Jacobian

variety and � the Néron model over Z of J . Suppose that J is of GL2-

type, that is, there exists a number field F with [F : Q] = g such that F

is isomorphic to the endomorphism algebra End0(J) of J over Q. Suppose

that θ(OF ) ⊂ End(J), where OF is the ring of integer of F . For a prime

number p of good reduction for J , define the local L-series attached to the

λ-adic representation of J by

Lp(C,F,X) := det Fλ
(1 − σpX | Vλ(J)) = 1 − apX + pεpX

2,
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where ap, εp ∈ OF (see §2.2). The ordinary local L-series Lp(C,X) attached

to the curve C is a finite product of the above local L-series:

Lp(C,X) =
∏

ι:F ↪→C

ι(Lp(C,F,X)),

where ι runs on all embeddings from F into C. It is well-known that one

obtain the coefficients of Lp(C,X) by counting up rational points of the re-

duction of C at p. In this subsection, we introduce another method to obtain

the coefficients of Lp(C,X) for large prime numbers p. More precisely, by

using Theorem 2.2 and applying a result of S.Kobayashi and T.Yamazaki,

we show that ap is computable for large primes p by calculating the Hasse-

Witt matrix of the reduction of C at p.

Let W∞(C) be the Weierstrass gap sequence of C at ∞:

W∞(C) : = {n ∈ Z>0 | H0(C,OC((n− 1)∞)) = H0(C,OC(n∞))}
= {µ1, µ2, . . . , µg}, where µi ∈ Z and µ1 = 1 < µ2 < · · · < µg.

By definition of the Weierstrass gap sequence and the Serre duality, for a

local parameter t at ∞ there exists a basis ω1, ω2, . . . , ωg of H0(C,Ω1
C/Q)

such that

ωi(t) =


 ∞∑

j=µi

ci,jt
j


 dt

t
(3.1)

with ci,j ∈ Q satisfying ci,µj = δi,j(Kronecker’s delta). Such a basis is called

the Hermite basis with respect to the local parameter t. Take the Q-linear

map Ψ : End(H0(C,Ω1
C/Q)) → Mg(Q) by such the Hermite basis. Now we

assume the following:

(A1) The composition of following maps lies inside the matrices with inte-

gral coefficients:

OF
θ−−−→ End(J)

pull-back−−−−−→ End(H0(J,Ω1
J/Q))

Λ∗
−−−→ End(H0(C,Ω1

C/Q))
Ψ−−−→ Mg(Q),

(3.2)

where Λ∗ is obtained from the Abel-Jacobi map Λ : C → J with

respect to the base point ∞. Let us denote by R the composed map

from OF to Mg(Z) in (3.2)
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The assumption (A1) means that a basis {ηi} of H0(J,Ω1
J/Q) such that

Λ∗(ηi) = ωi is regarded as a Z-basis of H0(�,Ω1
�/Z) and it gives a basis

of the space of invariant differentials ω�̂/Z by the formal completion. Thus

from the argument in §2.1, the Hermite basis ω1, ω2, . . . , ωg determines a

g-dimensional formal group Ĵ for J , and from the proof of Theorem 2.2

(§2.3) it is of type p − R(āp)T + R(ε̄p)T
2 for each prime number of good

reduction.

From now on, we fix a good prime p ≥ 2g. We consider the smooth

projective curve X := C⊗Qp over the p-adic number field Qp. Let X be the

smooth projective model over Zp of X and Y := X⊗ Fp the special fiber of

X. We write ∞̃ ∈ Y (Fp) for the reduction of ∞ ∈ X(Qp). We assume the

following:

(A2) W∞(X) = W∞̃(Y ).

Then from [8, §4] one can choose a local parameter t at ∞ such that all

coefficients ci,j of the expansion (3.1) of the Hermite basis with respect to

the local parameter t belong to Zp. We write Hp for the (g × g)-matrix

(ci,pµj )1≤i,j≤g ∈ Mg(Zp). (Here Hp mod p ∈ Mg(Fp) is called Hasse-Witt

matrix of Y .) Then the following is proved by Kobayashi-Yamazaki:

Theorem 3.1 ([8, Theorem 4.5]). Let us assume (A2). There exist

(g×g)-matrices e(k) ∈ Mg(Zp) (k ∈ Z≥0) with e(0) = Ig and e(1) = Hp such

that the formal power series

l(x) =
∞∑
k=0

e(k)

pk
xpk ∈ Qp[[x]]g0, x = t(x1, x2, . . . , xg)

gives a logarithmic function of a formal group over Zp which is strongly

isomorphic to Ĵ/Zp.

Corollary 3.2. Let us assume (A1) and (A2). Then we have

R(āp) ≡ Hp mod p.(3.3)

Proof. From Theorem 3.1, it follows that the logarithmic function

l(x) is of type v for some special element v. Equivalently, there exists a
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special element v ∈ Mg(Zp)[[T ]] such that v ∗ l(x) ≡ 0 mod p. Thus if we

write v = pIg +B1T +B2T
2 + · · · , we have

Hp ≡ −B1 mod p.

Since Ĵ is of type p−R(āp)T +R(ε̄p)T
2 by the assumption (A1), it follows

that B1 ≡ −R(āp) mod p. Therefore we get (3.3). �

From the congruence (3.3), one can find some possible values for ap
by calculating the Hasse-Witt matrix Hp. In addition, we know that for

any embedding ι : F ↪→ C, the absolute value of ι(ap) is bounded by 2
√
p

(so-called, the Weil bound):

|ι(ap)| ≤ 2
√
p.

Thus we can uniquely determine ap for large prime numbers p from Hp. We

give some numerical examples below.

3.2. Example 1

For a hyperelliptic curve C over Q̄ given by an equation of the form

y2 = f(x) ∈ Q̄[x] such that f(x) is a separable polynomial of degree 5 or 6,

every automorphism of C is given by the coordinate transformation MU :

MU : (x, y) �→
(
ax+ b

cx+ d
,
(ad− bc)y

(cx+ d)3

)

for a suitable matrix U =

(
a b

c d

)
∈ GL2(Q̄). Note that MU ◦MV = MV U

for U, V ∈ GL2(Q̄). We write M∗
U for the induced endomorphism by MU of

the Jacobian variety of C.

We consider the hyperelliptic curve Ca over Q given by

y2 = x(x− 1)(x3 − (3 + a)x2 + ax+ 1), a ∈ Z,

which is defined by Cardona, González, Lario and Rio [2]. Set V =(
−1 1

−1 0

)
. Then MV defines an automorphism of Ca. It satisfies that

(2M∗
V + 1)2 = −3 in End(J).
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Theorem 3.3 ([2, Proposition 3.2]). The Q-algebra map

θ : Q(ζ) → End0(J), ζ �→ M∗
V

is an isomorphism, where ζ is a primitive 3-rd root of unity.

Let ∞ denote the point at infinity of Ca. Then we see that W∞(Ca) =

{1, 3} and that the (A2) is satisfied for each prime of good reduction. We

take the local parameter t at ∞ as x2/y. Then the Hermite basis ω1, ω2

with respect to t is presented by

ω1 = −1

2

(
x+ a+ 4

y

)
dx = (t+ c1,5t

5 + c1,7t
7 + · · · )dt

t

ω2 = −dx

2y
= (t3 + c2,5t

5 + c2,7t
7 + · · · )dt

t

where ci,j ∈ Z[a]. By computing the composition of the maps (3.2), we

obtain a faithful map R : Z [ζ] → M2(Z) as

ζ �→
(
−a− 5 a2 + 9a+ 21

−1 a+ 4

)
,

then the assumption (A1) is satisfied when a is integer. Therefore Corollary

3.2 can be applied to this case.

We consider the case that a = 0. Then the representation R is given by

R : ζ �→
(
−5 21

−1 4

)
,

and each prime p �= 2, 3 is a good reduction prime. We apply our method

to the case that p = 59, for example. Then we compute

R(ā59) ≡ H59 ≡
(

44 4

56 12

)
≡ R(3ζ) mod 59,

where the first congruence follows from Corollary 3.2. Thus ā59 ≡ 3ζ

mod 59. The Weil bound says that

|a59| ≤ 2
√

59 = 15.3 . . . .
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Hence ā59 should be 3ζ. (In particular, we have a59 = 3ζ2.) Moreover, from

Lemma 2.4, we also get ε59 = a59/ā59 = ζ. Hence we have

L59(C0,Q(ζ), X) = 1 − 3ζ2X + 59ζX2

and

L59(C0, X) = (1 − 3ζ2X + 59ζX2)(1 − 3ζ2X + 59ζX2)

= 1 + 3X − 50X2 + 177X3 + 4489X4.

The local L-series Lp(C0, X) for other primes are presented in Table 1.

The first and second columns in this table are lists of primes p such that

17 ≤ p ≤ 71 and the Hasse-Witt matrix for each prime p. The corresponding

value of ap for each p is given in the third column.

3.3. Example 2

We next consider the hyperelliptic curve C1 defined by the equation

C1 : y2 = (x2 + 1)(x4 − 8x3 + 2x2 + 8x+ 1).

It is the curve in the family of dihedral curves defined by Cardona-Quer

[3] (we get it by taking (1, 1, 0) for the parameter (u, v, z) in their nota-

tion). The curve C1 has good reduction at p �= 2, 3. Cardona-Quer proved

that automorphisms MU ,MV generate Aut(C1) where MU ,MV are given

by matrices

U :=
1√
2

(
1 1

1 −1

)
, V :=

(
0 1

−1 0

)
.

Since U2 = V 4 = 1 and UV 3 = V U , Aut(C1) is isomorphic to the dihedral

group D8.

Lemma 3.4. We have

Q(
√
−1) ∼= End0(J)

Proof. It follows from the same procedure as in [2]. We denote

by D := EndQ̄(J) ⊗ Q the algebra of all endomorphisms of J . Since
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Table 1.

p Hp (mod p) ap Lp(C0,Q(ζ), X) Lp(C0, X)

17

(
6 0
0 6

)
6 1 − 6X + 17X2 1 − 12X + 70X2 − 204X3 + 289X4

19

(
4 0
0 4

)
4 1 − 4X + 19X2 1 − 8X + 54X2 − 152X3 + 361X4

23

(
8 17
20 12

)
3ζ2 1 − 3ζ2X + 23ζX2 1 + 3X − 14X2 + 69X3 + 529X4

29

(
12 24
3 14

)
3ζ 1 − 3ζX + 29ζ2X2 1 + 3X − 20X2 + 87X3 + 841X4

31

(
25 19
5 11

)
−5ζ2 1 + 5ζ2X + 31ζX2 1 − 5X − 6X2 − 155X3 + 961X4

37

(
2 0
0 2

)
2 1 − 2X + 37X2 1 − 4X + 78X2 − 148X3 + 1369X4

41

(
26 22
38 12

)
3ζ2 1 − 3ζ2X + 41ζX2 1 + 3X − 32X2 + 123X3 + 1681X4

43

(
4 22
1 38

)
ζ 1 − ζX + 43ζ2X2 1 + X − 42X2 + 43X3 + 1849X4

47

(
36 46
9 2

)
9ζ 1 − 9ζX + 47ζ2X2 1 + 9X + 34X2 + 423X3 + 2209X4

53

(
47 0
0 47

)
−6 1 + 6X + 53X2 1 + 12X + 142X2 + 636X3 + 2809X4

59

(
44 4
56 12

)
3ζ2 1 − 3ζ2X + 59ζX2 1 + 3X − 50X2 + 177X3 + 3841X4

61

(
9 29
48 4

)
−13ζ 1 + 13ζX + 61ζ2X2 1 − 13X + 108X2 − 793X3 + 3721X4

67

(
32 13
60 28

)
7ζ2 1 − 7ζ2X + 67ζX2 1 + 7X − 18X2 + 496X3 + 4489X4

71

(
12 0
0 12

)
12 1 − 12X + 71X2 1 − 24X + 286X2 − 1704X3 + 5041X4

Aut(C1) is non-abelian, it follows from [2, Lemma 2.4] that J is isoge-

nous over Q̄ to the square of an elliptic quotient E of C1. One can check

that C1 has two non-isomorphic elliptic quotients with no complex mul-

tiplication. (Indeed, according to [1, §2], we see that j-invariants of the

elliptic quotients are 26133/3 and 2673/32, respectively. Hence they are

non-isomorphic and no-CM.) Therefore, from [9, Chap.5 §1.9], D is isomor-

phic to M2(End0
Q̄(E)) ∼= M2(Q). Now D coincides with the Q-vector space

generated by the image of Aut(C1) ↪→ D ∼= M2(Q). Since MV (resp. MU )

is defined (resp. not defined) over Q and since End(J) is the ring of endo-
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morphisms of J defined over Q, End0(J) = End(J) ⊗Z Q is the Q-vector

subspace of D generated by the cyclic subgroup 〈M∗
V 〉. Since (M∗

V )2 = −1,

the Q-algebra map Q(
√
−1) → End0(J) by associating

√
−1 with M∗

V is an

isomorphism. �

Let ∞ denote a point at infinity of C1. Then we see that W∞(Ca) =

{1, 2} and that the assumption (A2) is satisfied for good reduction primes.

We take the local parameter t at ∞ as 1/x. Then the Hermite basis ω1, ω2

with respect to t is presented by

ω1 =
4 − x

y
dx = (t+ c1,3t

3 + c1,4t
4 + · · · )dt

t
,

ω2 = −1

y
dx = (t2 + c2,3t

3 + c2,4t
4 + · · · )dt

t
,

where ci,j ∈ Z[2−1]. By computing the composition of maps (3.2), we obtain

a faithful map R : Z[
√
−1] → M2(Z) as

√
−1 �→

(
−4 −17

1 4

)
,

Table 2.

p Hp (mod p) ap Lp(C1,Q(
√
−1), X) Lp(C1, X)

17

(
11 0
0 11

)
−6 1 + 6X + 17X2 1 + 12X + 70X2 + 204X3 + 289X4

19

(
16 11
15 3

)
−4

√
−1 1 + 4

√
−1X − 19X2 1 − 22X2 + 361X4

23

(
0 0
0 0

)
0 1 + 23X2 1 + 46X2 + 529X4

29

(
8 5
27 21

)
−2

√
−1 1 + 2

√
−1X − 29X2 1 − 54X2 + 841X4

31

(
27 0
0 27

)
−4 1 + 4X + 31X2 1 + 8X + 78X2 + 248X3 + 961X4

37

(
8 34
35 29

)
−2

√
−1 1 + 2

√
−1X − 37X2 1 − 70X2 + 1369X4
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then the assumption (A1) is satisfied. Therefore Corollary 3.2 is applied

for the basis ω1, ω2. For each prime p such that 17 ≤ p ≤ 37, Hp mod p,

ap and Lp(C1, X) are given in Table 2.

4. Appendix: Formal Groups over Zp

In this section, we explain the Honda theory for formal groups over the

p-adic integer ring.

4.1. Notation

Let R be a commutative ring. Let R[[x]] = R[[x1, x2, . . . , xg]] be the ring

of formal power series on g-variables x1, x2, . . . , xg. We denote by R[[x]]g

the set of column vectors t(ϕ1(x), ϕ2(x), . . . , ϕg(x)) with ϕi ∈ R[[x]]. If

ϕ(x), ψ(x) in R[[x]]g coincide in terms of degree strictly less than r, we write

ϕ(x) ≡ ψ(x) mod deg r. Let us denote by R[[x]]0 the set {ϕ(x) ∈ R[[x]] |
ϕ(x) ≡ 0 mod deg 1}. We regard x as the column vector t(x1, x2, . . . , xg)

in R[[x]]g0 and xn as the column vector t(xn1 , x
n
2 , . . . , x

n
g ). Let Mg(R)[[T ]] be

the ring of one-variable formal power series with coefficients in the ring of

g × g matrices with elements in R.

4.2. Types of formal groups

We recall the theory “of types” for formal groups, which is due to Honda

([6, 7]). Let p be a prime number. For v =
∑

n≥0 BnT
n ∈ Mg(Zp)[[T ]] and

f ∈ Qp[[x]]g0, we define an element v ∗ f ∈ Qp[[x]]g0 by

v ∗ f(x) :=
∑
n≥0

Bnf(xpn).

An element v =
∑

n≥0 BnT
n ∈ Mg(Zp)[[T ]] is called special if B0 = pIg.

For a special element v, an element f ∈ Qp[[x]]g0 is said to be of type v if all

coefficients of v ∗ f belong to pZp, that is

v ∗ f(x) ≡ 0 mod p.

Let F̂ (x,y) be a g-dimensional formal group defined over Qp, namely,

F̂ (x,y) is a formal power series in Qp[[x,y]]g0 satisfying the following con-
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dition:

(1) F̂ (x,y) ≡ x + y mod deg 2,

(2) F̂ (F̂ (x,y), z) = F̂ (x, F̂ (y, z)),

(3) F̂ (x,y) = F̂ (y,x).

Then there exists a unique element f ∈ Qp[[x]]g0 such that f(x) ≡ x

mod deg 2 and F̂ (x,y) = f−1(f(x) + f(y)) ([7, Theorem 1]). Such an

element f is called the logarithmic function of the formal group F̂ . For a

special element v, a formal group F̂ over Qp is said to be of type v if its

logarithmic function is of type v.

Theorem 4.1 ([7, Theorem 2-4]). Let F̂ (x,y) be a g-dimensional for-

mal group over Qp whose logarithmic function is given by f ∈ Qp[[x]]g0.

1. The formal group F̂ is defined over Zp if and only if F̂ is of type v for

some special element v.

2. Let v1 and v2 be special elements. Assume that F̂ is of type v1, and

let Ĝ be another formal group over Zp of type v2. Then there exists

an element u in Ig + TMg(Zp)[[T ]] satisfying v1 = uv2 if and only if

there exists a power series ϕ(x) in Zp[[x]]g0 satisfying the following

(i) ϕ(F̂ (x,y)) = Ĝ(ϕ(x), ϕ(y)),

(ii) ϕ(x) ≡ x mod deg 2.

We say that F̂ is strongly isomorphic over Zp to Ĝ if there exists ϕ(x)

in Zp[[x]]g0 satisfying the above (i) and (ii). Note that such a formal power

series ϕ(x) is unique if it exists.

Corollary 4.2. Let v1 and v2 be special elements of the form v1 =

pIg +B1T + · · · and v2 = pIg +B′
1T + · · · . Let F̂ and Ĝ be g-dimensional

formal groups over Zp of type v1 and v2, respectively. If they are strongly

isomorphic over Zp, then we have B1 ≡ B′
1 mod p.
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4.3. Formal groups for L-series

Let {Ap, Cp}p be a set of commuting matrices in Mg(Z) for all prime

numbers p. Consider the formal Dirichlet series

∑
n≥1

An

ns
:=

∏
p

(Ig −App
−s + Cpp

1−2s)−1,

where An ∈ Mg(Z). Put

f(x) :=
∑
n≥1

An

n
xn ∈ Q[[x]]g0.

Theorem 4.3 ([7, Theorem 8]). The formal power series

F̂ (x,y) := f−1(f(x) + f(y))

is a g-dimensional formal group over Z. For each prime number p, it is of

type pIg −ApT + CpT
2.
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