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On Quadratic Differential Metrics

on a Closed Riemann Surface

By Zongliang Sun

Abstract. We study properties of the space of quadratic differ-
ential metrics on a closed Riemann surface of genus g ≥ 2. First, we
introduce a natural metric on this space defined via length distortions
which is proper and compact. Second, we study topological properties
of this space and show equivalence of various convergences. Besides,
we relate the preceding metric to another metric which is obtained via
global Lipschitz constants.

1. Introduction

In this paper, we study properties of the space of quadratic differential

metrics on a closed Riemann surface of genus g ≥ 2. Let X be a closed

Riemann surface of genus g ≥ 2. Let Q(X) be the Banach space of holo-

morphic quadratic differentials on X endowed with the L1-norm || · ||1, and

Q1(X) the unit sphere in Q(X). It is well-known that ([6, 8]) Q(X) can be

viewed as the cotangent space to the Teichmüller space T (X) at X. Each

non-zero q ∈ Q(X) induces ([19]) a metric |q| on X known as a quadratic

differential metric or q-metric. These metrics are complete geodesic metrics

and have been studied extensively. The importance of such metrics lies in

many aspects, e.g., they serve as ([7, 19]) extremal metrics in the defini-

tion of extremal lengths. Let |Q(X)| = {|q| : q ∈ Q(X)} be the space of

quadratic differential metrics on X. For a non-zero q, to each homotopy

class of a closed curve α one associates its q-length lq(α) (see Section 2 for

details). In this paper, we will study properties of |Q(X)| in terms of the

length functions lq(α).
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Throughout the paper, all closed curves are essential, and there is no

distinction between a closed curve and its homotopy class. Denote by S
(resp., C) the set of homotopy classes of simple closed curves (resp., closed

curves) on X. The following interesting result is shown by Marden and

Strebel in [14].

Theorem A ([14], Theorem 4.3). Let φ, ψ ∈ Q(X). If lφ(α) = lψ(α)

for every α ∈ S, then φ = eiθψ for some constant angle θ.

Remark 1. The original statement of this result in [14] is more gen-

eral, while for our purpose it is sufficient to restrict to the above case. Note

that Theorem A is actually a result on |Q(X)|. It implies that a q-metric is

uniquely determined by its q-lengths over S.

It is of interest to know further properties of the space |Q(X)| with

the aid of q-lengths. For this purpose, we consider the normalized space

|Q1(X)|. Define, for |q1| and |q2| in |Q1(X)|,

d(|q1|, |q2|) = logD(|q1|, |q2|),

where

D(|q1|, |q2|) = sup
α∈S

{ lq1(α)

lq2(α)
} sup
α∈S

{ lq2(α)

lq1(α)
}.

Then in Theorem 1 we will show

Theorem 1. d is a metric on |Q1(X)|. d(|q1|, |q2|) is finite for any |q1|
and |q2| in |Q1(X)|.

From its definition, the metric d is described by maximizing the length

distortions under quadratic differential metrics.

Remark 2. In the Teichmüller space T (X), we have the following in-

teresting metrics:

dP1(X1, X2) = log sup
α∈S

{ lX2(α)

lX1(α)
},

dP2(X1, X2) = log sup
α∈S

{ lX1(α)

lX2(α)
}
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and

dL(X1, X2) = log max{sup
α∈S

lX1(α)

lX2(α)
, sup
α∈S

lX2(α)

lX1(α)
},

where X1, X2 ∈ T (X), lXi(·) is the hyperbolic length with respect to Xi,

i = 1, 2. dP1 and dP2 are introduced by Thurston ([20]) and called Thurston’s

asymmetric metrics. They are real metrics except for symmetry. dL is

called the length spectrum metric, it is a real metric. Clearly, dPi ≤ dL,

i = 1, 2. These metrics and their relations to the Teichmüller metric have

been studied by many authors (see, e.g., [10, 11, 12, 13] [15, 16, 17, 18]).

It is also possible to define similar metrics dP1 , dP2 and dL on |Q1(X)|
as dP1 , dP2 and dL on the Teichmüller space, respectively. However, we

will not do this. Instead, we will be concerned with the above metric d. d

is analogous to dPi , i = 1, 2 and dL. It is symmetric. Moreover, d is the

biggest (see Lemma 3) one among dP1 , dP2 and dL, which is also complete

(see Corollary 3).

Natural topologies can be put on |Q1(X)|, e.g., the S-topology and the C-

topology (see Section 2 for details). In Theorem 2, we will study topological

properties of |Q1(X)|. We will show the equivalence of various convergences,

including convergences in the metric topology induced by d, the S-topology

and the C-topology, etc.

Theorem 2. Let {|qn|}∞n=1 be a sequence in |Q1(X)|. Then the follow-

ing are equivalent:

(i) |qn| → |q| in the S-topology in |Q1(X)|, n→ ∞,

(ii) |qn| → |q| in the C-topology in |Q1(X)|, n→ ∞,

(iii) for any convergent subsequence qnk
of qn, there exists a constant

angle θ such that qnk
→ eiθq in the L1-norm topology in Q1(X), k → ∞,

(iv) d(|qn|, |q|) → 0, n→ ∞.

As direct consequences of Theorem 2, we have the following corollaries

which also indicate the naturality of the metric d.

Corollary 1. The metric topology induced by d is compatible with

the S-topology and also the C-topology on |Q1(X)|.

Corollary 2. The metric space (|Q1(X)|, d) is compact and proper.
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Corollary 3. The metric space (|Q1(X)|, d) is complete and totally

bounded.

Finally, we will relate d to another natural metric τ on |Q1(X)| which

is defined by minimizing the global Lipschitz constants. More precisely, for

|q1|, |q2| ∈ |Q1(X)| we define

τ(|q1|, |q2|) = inf
f∼id

{log(L(f)L(f−1))},

where the infimum is taken over all the Lipschitz homeomorphisms f ho-

motopic to id : X → X, and L(f) is the Lipschitz constant of f given

by

L(f) = sup
x,y∈X, x �=y

δ2(f(x), f(y))

δ1(x, y)

in which δi is the distance function induced by |qi|, i = 1, 2, respectively. In

Proposition 1, we note the following relation between the metrics d and τ.

Proposition 1. For any |q1|, |q2| ∈ |Q1(X)|,

d(|q1|, |q2|) ≤ τ(|q1|, |q2|).

2. Preliminaries

In this section, we briefly recall some necessary backgrounds. For refer-

ences, see [5, 6, 8, 9, 19].

2.1. Quadratic differential

Let X = H/Γ be the Fuchsian uniformization of X, where H is the upper

half plane. A holomorphic quadratic differential q on X is a holomorphic

function on H such that

q(g(z))(g′(z))2 = q(z), z ∈ H, g ∈ Γ.

LetQ(X) be the space of holomorphic quadratic differentials onX. Endowed

with the L1-norm || · ||1, Q(X) is a Banach space ([19]). The theory of

quadratic differentials and their connections with Teichmüller theory have

been studied extensively (see, e.g., [6, 19]). The following result describes

the equivalence of various convergences in Q(X). In view of this, we may

switch freely in these convergences.
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Lemma 1 ([14], P. 181). As n→ ∞, the following conditions are equiv-

alent in Q(X) :

(a) qn converges locally uniformly to q,

(b) qn converges uniformly to q,

(c) qn converges to q in the L1-norm topology.

2.2. Quadratic differential metric

A non-zero q ∈ Q(X) induces a metric |q| on X which is locally given

by |q(z)|
1
2 |dz|. Such a metric is called a quadratic differential metric or a

q-metric. For a closed curve α ⊂ X, denote ([19])

lq(α) = inf
γ∼α

{∫
γ
|q(z)|

1
2 |dz|

}
,

where the infimum is taken over all curves γ in the homotopy class of α.

lq(α) is called the q-length or quadratic differential length of α.

Let |Q(X)| = {|q| : q ∈ Q(X)} be the space of quadratic differential

metrics on X. Given a closed curve α ∈ C, the quadratic differential lengths

lq(α) define a length function on |Q(X)|. We endow |Q(X)| with the follow-

ing two topologies: the S-topology (resp., C-topology) which is the weakest

topology that makes all the length functions corresponding to simple closed

curves (resp., closed curves) continuous. Note that these two topologies are

actually equivalent (see “(i) ⇔ (ii)” in Theorem 2).

2.3. Measured foliation

A measured foliation F on a topological surface S of genus g ≥ 2 is a

singular foliation on S, where the singularities are isolated and k-pronged

(k ≥ 3), equipped with a measure µ on transverse arcs which is invariant

under translation along leaves (see [5] for more details). The space MF
of equivalence classes of measured foliations is defined where two measured

foliations F1 and F2 are equivalent if i(α,F1) = i(α,F2) for every α ∈ S,
where i : C × C → R is the classical intersection number. Two classes [F1]

and [F2] are projectively equivalent if there is a constant r > 0 so that

i(α,F1) = ri(α,F2) for every α ∈ S. The space of projective equivalence

classes of measured foliations is denoted by PMF .
We have the following (cf. [9]) descriptions of MF and PMF . In par-

ticular, PMF is compact.
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Theorem B (Thurston). MF is homeomorphic to a 6g − 6 dimen-

sional ball. PMF is homeomorphic to a 6g − 7 dimensional sphere.

The space MF may be viewed as a certain completion of positive real

multiples of simple closed curves.

Theorem C (Thurston). There is an embedding of S×R+ into MF .
The image of this embedding is dense in MF . The image of S in PMF is

also dense.

2.4. Continuity of the length function

The length function lq(α) : |Q(X)|×S → R extends to a length function

l : |Q(X)| ×MF → R. In this subsection, we state the continuity of l. For

this purpose, we recall the following general results.

Let C(X) be the space of geodesic currents onX endowed with the weak∗

topology, where a geodesic current is a π1(X)-invariant Randon measure on

the space of un-oriented geodesics on the universal covering of X ([3]).

Theorem D ([3]). There is an embedding of C into C(X).

([2], §4.2)([3], Proposition 3). There is a continuous, symmetric, bilin-

ear extension i : C(X) × C(X) → R of i : C × C → R.

There is ([3]) an embedding MF → C(X) which is the unique continu-

ous linear extension of the inclusion of S into C. We will insist on the same

symbol α for a closed curve (or, F for a measured foliation) and its image

under the above embedding.

There is ([4]) also an embedding of the flat space of all quadratic dif-

ferential metrics modeled on a closed surface into C(X). In particular, in

the special case for |Q1(X)|, we have an embedding L : |Q1(X)| → C(X)

sending |q| to the geodesic current Lq. The topology on |Q1(X)| involved in

this embedding is the one such that |qn| → |q| if lqn(α) → lq(α) for every

α ∈ C. The naturality of this embedding lies in the following

Theorem E ([4], Theorem 4). In the embedding L : |Q1(X)| → C(X),

lq(α) = i(Lq, α)

holds for every α ∈ C.
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From Theorems D and E, we conclude a particular consequence that

Lemma 2. The length function lq(α) : |Q(X)| × S → R extends to a

continuous function from |Q(X)| ×MF to R, which we also denote by l.

3. Main Results

3.1. The metric d

In this subsection, we introduce a natural metric on |Q1(X)| as follows.

For |q1| and |q2| in |Q1(X)|, define

d(|q1|, |q2|) = logD(|q1|, |q2|),

where

D(|q1|, |q2|) = sup
α∈S

{ lq1(α)

lq2(α)
} sup
α∈S

{ lq2(α)

lq1(α)
}.

Remark 3. From the density of weighted simple closed curves in

PMF as in Theorem C, one observes that the quantity D(|q1|, |q2|) can

also be expressed as

D(|q1|, |q2|) = sup
F∈PMF

{ lq1(F)

lq2(F)
} sup
F∈PMF

{ lq2(F)

lq1(F)
}.

Since PMF is compact, the two suprema in the above expression can be

attained.

Here, we present a natural question as follows.

Question 1. Give descriptions of these measured foliations that real-

ize the suprema in D(|q1|, |q2|).

To show that the quantity d gives a real metric, we need the following

Lemma 3. Let |q1|, |q2| ∈ |Q1(X)|. Then

sup
α∈S

{ lq1(α)

lq2(α)
} ≥ 1.
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sup
α∈S

{ lq2(α)

lq1(α)
} ≥ 1.

D(|q1|, |q2|) ≥ 1.

Proof. Recall that ([7]) (see also [9]) there is a homeomorphism

which maps a measured foliation F and a Riemann surface X to a holomor-

phic quadratic differential (F , X) ∈ Q(X) whose horizontal foliation is F .
The metric induced by such a quadratic differential is extremal (see, e.g.,

p. 270 in [4]) in the extremal length extX(F) of F . Normalize (F , X) to

have unit L1-norm and denote the resulting quadratic differential by q for

short. Then from the extremality,

lq(F) =
√
extX(F) ≥ lq′(F)

for any |q′| ∈ |Q1(X)|. Therefore, for any |q1| and |q2| in |Q1(X)|,

sup
F∈PMF

{ lq1(F)

lq2(F)
} ≥ lq1(F1)

lq2(F1)
≥ 1,

where F1 is the horizontal foliation of q1. Similarly, we get

sup
F∈PMF

{ lq2(F)

lq1(F)
} ≥ 1.

Consequently, the lemma follows from Remark 3. �

Theorem 1. d is a metric on |Q1(X)|. d(|q1|, |q2|) is finite for any |q1|
and |q2| in |Q1(X)|.

Proof. The finiteness of d(|q1|, |q2|) follows from Remark 3. It is obvi-

ous that d is symmetric, it satisfies the triangle inequality, and d(|q1|, |q2|) =

0 if |q1| = |q2|.
The non-negativity of d(|q1|, |q2|) is guaranteed by Lemma 3. We verify

that d(|q1|, |q2|) = 0 implies |q1| = |q2|. If d(|q1|, |q2|) = 0, then from Lemma

3 we have

sup
α∈S

{ lq1(α)

lq2(α)
} = sup

α∈S
{ lq2(α)

lq1(α)
} = 1.

Consequently lq1(α) = lq2(α) for every α ∈ S. Therefore we conclude from

Theorem A that |q1| = |q2|. �
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3.2. Convergences in |Q1(X)|
In this subsection, we compare various convergences in |Q1(X)|, includ-

ing the convergence in the metric topology induced by d. We show the

equivalence of these convergences.

Theorem 2. Let {|qn|}∞n=1 be a sequence in |Q1(X)|. Then the follow-

ing are equivalent:

(i) |qn| → |q| in the S-topology in |Q1(X)|, n→ ∞,

(ii) |qn| → |q| in the C-topology in |Q1(X)|, n→ ∞,

(iii) for any convergent subsequence qnk
of qn, there exists a constant

angle θ such that qnk
→ eiθq in the L1-norm topology in Q1(X), k → ∞,

(iv) d(|qn|, |q|) → 0, n→ ∞.

Proof. We will show the relations (i) =⇒ (iii) =⇒ (ii) =⇒ (i) and

(i) ⇐⇒ (iv).

(i) =⇒ (iii): Suppose lqn(α) → lq(α) for every α ∈ S, n→ ∞. Consider

any convergent subsequence qnk
of qn which tends to q′ in L1-norm as k →

∞, for some q′ ∈ Q1(X). By the continuity of lφ(α) : Q(X) → R for each

fixed α ∈ C (Lemma on page 78 in [7], or [14]), lqnk
(α) → lq′(α) for each

α ∈ S, k → ∞. Consequently lq(α) = lq′(α) for every α ∈ S. Therefore,

from Theorem A we conclude q′ = eiθq for some θ. Hence qnk
→ eiθq in

L1-norm as k → ∞.

(iii) =⇒ (ii) : Let qnk
be a convergent subsequence of qn such that

qnk
→ eiθq in L1-norm for some angle θ as k → ∞. Then it follows from

the continuity of lφ(α) : Q(X) → R that lqnk
(α) → lq(α) for every α ∈ C,

k → ∞. This implies that |qnk
| → |q| in the C-topology in |Q1(X)|, k →

∞. Applying the above reasoning to any convergent subsequence of qn, we

conclude that |qn| → |q| in the C-topology in |Q1(X)| as n→ ∞.

(ii) =⇒ (i) : This is clear.

(iv) =⇒ (i): If d(|qn|, |q|) → 0, then

sup
α∈S

{ lqn(α)

lq(α)
} sup
α∈S

{ lq(α)

lqn(α)
} =

sup
α∈S

{ lqn (α)
lq(α) }

inf
α∈S

{ lqn (α)
lq(α) }

→ 1, n→ ∞.(1)

To simplify the notations, we denote

sup
α∈S

{ lqn(α)

lq(α)
}
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and

sup
α∈S

{ lq(α)

lqn(α)
}

by an and bn respectively, n = 1, 2, · · · . We claim that

an → 1, bn → 1, n→ ∞.(2)

To see this, it is sufficient to show that each convergent subsequence of an
(resp., bn) must converge to 1. Let ank

be any convergent subsequence of

an with ank
→ a, k → ∞. From Lemma 3, a ≥ 1. Assume a > 1. Since

anbn → 1 (n→ ∞), the subsequence ank
bnk

also tends to 1 (k → ∞). Then

bnk
→ 1/a (k → ∞) with 1/a < 1. But by Lemma 3 the limit of bnk

should

be at least 1, a contradiction. This shows an → 1, n→ ∞. Similarly, bn → 1

as n→ ∞. Thus we have verified the claim in (2).

On the other hand, for every α ∈ S, we always have

1 ≤
lqn (α)
lq(α)

inf
α∈S

lqn (α)
lq(α)

≤
sup
α∈S

lqn (α)
lq(α)

inf
α∈S

lqn (α)
lq(α)

, n = 1, 2, · · · .(3)

By (1) and (3) we obtain

lknqn(α) → lq(α), n→ ∞,(4)

where

kn =
(

inf
α∈S

lqn(α)

lq(α)

)−2

= b2n.

From (2), kn → 1 as n → ∞. Thus it follows from (4) that for each α ∈ S,
lqn(α) is bounded. Consequently, for each α ∈ S,

lknqn(α) − lqn(α) → 0, n→ ∞.(5)

Therefore, (4) and (5) yield

lqn(α) → lq(α), n→ ∞.

(i) =⇒ (iv): It follows from Remark 3 that there exist two sequences µn
and νn in MF such that

D(|qn|, |q|) =
lqn(µn)

lq(µn)

lq(νn)

lqn(νn)
, n = 1, 2, · · · .
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From the compactness of PMF and the homogeneity of D(|qn|, |q|) with

respect to µn and νn, we may assume in the sequence D(|qn|, |q|) that µn →
µ and νn → ν in MF , n → ∞. By the hypothesis (i) and the implication

(i) =⇒ (ii), lqn(α) → lq(α) for every α ∈ C as n → ∞. Consequently from

the continuity of the length function l as in Lemma 2, we get D(|qn|, |q|) → 1

and d(|qn|, |q|) → 0, n→ ∞. �

In particular, Theorem 2 implies the following corollaries.

Corollary 1. The metric topology induced by d is compatible with

the S-topology and also the C-topology on |Q1(X)|.

Proof. “(i) ⇐⇒ (iv)” and “(ii) ⇐⇒ (iv)” in Theorem 2. �

Corollary 2. The metric space (|Q1(X)|, d) is compact and proper.

Proof. Let {|qn|}∞n=1 ⊂ |Q1(X)|. By the compactness of (Q1(X), || ·
||1), there exists a subsequence qnk

of qn such that qnk
→ q′ (k → ∞) in

L1-norm, for some q′ ∈ Q1(X). From the proof of the implication “(iii) =⇒
(ii)” in Theorem 2, we know |qnk

| → |q′| in the C-topology in |Q1(X)|.
Applying the implication “(ii) =⇒ (iv)” in Theorem 2 to the subsequence

qnk
, we conclude that d(|qnk

|, |q′|) → 0, k → ∞. �

By the Heine–Borel theorem, Corollary 2 implies the following

Corollary 3. The metric space (|Q1(X)|, d) is complete and totally

bounded.

3.3. The Lipschitz metric τ

We may also consider another natural metric on |Q1(X)| defined as

follows. Let |q1|, |q2| ∈ |Q1(X)|, and f : (X, |q1|) → (X, |q2|) be a Lipschitz

homeomorphism. Recall that the Lipschitz constant of f is defined as

L(f ; |q1|, |q2|) = sup
x,y∈X, x �=y

δ2(f(x), f(y))

δ1(x, y)
,

where δi is the distance function induced by |qi|, i = 1, 2, respectively.

For simplicity, denote L(f ; |q1|, |q2|) by L(f). Then the Lipschitz metric on

|Q1(X)| is defined as

τ(|q1|, |q2|) = inf
f∼id

{log(L(f)L(f−1))},
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where the infimum is taken over all the Lipschitz homeomorphisms f ho-

motopic to id : X → X. Similar definitions have been studied in [20] and

([1], Section 12.4.2.3.1) in different contexts.

It is easy to see that

lq2(f(α)) ≤ L(f)lq1(α)

and

lq1(f
−1(β)) ≤ L(f−1)lq2(β)

hold for any closed curves α and β. Thus by the definitions of d and τ, we

obtain

Proposition 1. For any |q1|, |q2| ∈ |Q1(X)|,

d(|q1|, |q2|) ≤ τ(|q1|, |q2|).

To end this paper, we raise the following question on the relation between

d and τ.

Question 2. Is it true that d = τ?

The metric d is defined by maximizing the length distortions of simple

closed curves, while the metric τ is defined by minimizing the global Lip-

schitz constants. Thus if the answer to this question is positive, then it

unifies these two viewpoints.

We will study the questions listed above and some further properties of

the metrics d and τ in the near future.
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