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The Grothendieck Conjecture for Hyperbolic

Polycurves of Lower Dimension

By Yuichiro Hoshi

Abstract. In the present paper, we discuss Grothendieck’s an-
abelian conjecture for hyperbolic polycurves, i.e., successive extensions
of families of hyperbolic curves. One of the consequences obtained in
the present paper is that the isomorphism class of a hyperbolic poly-
curve of dimension less than or equal to four over a sub-p-adic field is
completely determined by its étale fundamental group (i.e., which we
regard as being equipped with the natural outer surjection of the étale
fundamental group onto a fixed copy of the absolute Galois group of the
base field). We also verify the finiteness of certain sets of outer isomor-
phisms between the étale fundamental groups of hyperbolic polycurves
of arbitrary dimension.
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Introduction

Let k be a field of characteristic zero, k an algebraic closure of k, and

Gk
def
= Gal(k/k) the absolute Galois group of k determined by the given

algebraic closure k of k. Let X be a variety over k (i.e., a scheme that is of

finite type, separated, and geometrically connected over k — cf. Definition

1.4). Then let us write ΠX for the étale fundamental group of X (for some
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choice of basepoint). The group ΠX is a profinite group which is uniquely

determined (up to inner automorphisms) by the property that the category

of discrete finite sets equipped with a continuous ΠX -action is equivalent to

the category of finite étale coverings of X. Now since X is a variety over k,

the structure morphism X → Spec k induces a surjection

ΠX −−−→ Gk .

In particular, the assignment

Π: (X → Spec k) �→ (ΠX � Gk)

defines a functor from the category Vk of varieties over k (whose mor-

phisms are morphisms of schemes over k) to the category Gk of profinite

groups equipped with a surjection onto Gk (whose morphisms are outer

homomorphisms of topological groups over Gk). The following philoso-

phy, i.e., Grothendieck’s anabelian conjecture (or, simply, the “Grothendieck

conjecture”), was proposed by Grothendieck (cf., e.g., [7], [8]).

For certain types of k, if one replaces Vk by “the” subcategory

Ak of Vk of “anabelian varieties” over k, then the restriction of

the above functor Π to Ak should be fully faithful.

Although we do not have any general definition of the notion of an “an-

abelian variety”, the following varieties have been regarded as typical ex-

amples of anabelian varieties:

• A hyperbolic curve (cf. Definition 2.1, (i)).

• A successive extension of families of anabelian varieties.

In particular, a successive extension of families of hyperbolic curves, i.e.,

a hyperbolic polycurve (cf. Definition 2.1, (ii)), is one typical example of

an anabelian variety. In the present paper, we discuss the Grothendieck

conjecture for hyperbolic polycurves.

The following is one of the main results of the present paper (cf. Theo-

rems 3.3, 3.14; Corollaries 3.15, 3.16).

Theorem A. Let p be a prime number, k a sub-p-adic field (cf. Defi-

nition 3.1), k an algebraic closure of k, n a positive integer, X a hyperbolic
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polycurve (cf. Definition 2.1, (ii)) of dimension n over k, and Y a normal

variety (cf. Definition 1.4) over k. Write Gk
def
= Gal(k/k); ΠX , ΠY for the

étale fundamental groups of X, Y , respectively. Let φ : ΠY → ΠX be an

open homomorphism over Gk. Suppose that one of the following conditions

(1), (2), (3), (4) is satisfied:

(1) n = 1.

(2) The following conditions are satisfied:

(2-i) n = 2.

(2-ii) The kernel of φ is topologically finitely generated.

(3) The following conditions are satisfied:

(3-i) n = 3.

(3-ii) The kernel of φ is finite.

(3-iii) Y is of LFG-type (cf. Definition 2.5).

(3-iv) 3 ≤ dim(Y ).

(4) The following conditions are satisfied:

(4-i) n = 4.

(4-ii) φ is injective.

(4-iii) Y is a hyperbolic polycurve over k.

(4-iv) 4 ≤ dim(Y ).

Then φ arises from a uniquely determined dominant morphism Y → X

over k.

Remark A.1.

(i) Theorem A in the case where condition (1) is satisfied, k is finitely

generated over the field of rational numbers, both X and Y are affine

hyperbolic curves over k, and φ is an isomorphism was proved in [23]

(cf. [23], Theorem (0.3)).

(ii) Theorem A in the case where condition (1) is satisfied was essentially

proved in [14] (cf. [14], Theorem A).
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(iii) Theorem A in the case where condition (2) is satisfied, Y is a hyperbolic

polycurve of dimension 2 over k, and φ is an isomorphism was proved

in [14] (cf. [14], Theorem D).

One of the main ingredients of the proof of Theorem A is Theorem A

in the case where condition (1) is satisfied (which was essentially proved by

Mochizuki — cf. Remark A.1, (ii)). Another important ingredient in the

proof of Theorem A is the elasticity (cf. [18], Definition 1.1, (ii)) of the

étale fundamental group of a hyperbolic curve over an algebraically closed

field of characteristic zero. That is to say, if C is a hyperbolic curve over an

algebraically closed field F of characteristic zero, then, for a closed subgroup

H ⊆ ΠC of the étale fundamental group ΠC of C, it holds that H is open in

ΠC if and only if H is topologically finitely generated, nontrivial, and normal

in an open subgroup of ΠC . An immediate consequence of this elasticity is

as follows:

Let V be a variety over F and φ : ΠV → ΠC a homomorphism.

Suppose that the image of φ is normal in an open subgroup of

ΠC . Then φ is nontrivial if and only if φ is open.

Let us observe that this equivalence may be regarded as a group-theoretic

analogue of the following easily verified scheme-theoretic fact:

Let V be a variety over F and f : V → C a morphism over F .

Then the image of f is not a point if and only if f is dominant.

The following result follows immediately from Theorem A (cf. Corollary

3.18 in the case where both X and Y are hyperbolic polycurves). That is

to say, roughly speaking, the isomorphism class of a hyperbolic polycurve

of dimension less than or equal to four over a sub-p-adic field is completely

determined by its étale fundamental group (i.e., which we regard as being

equipped with the natural outer surjection of the étale fundamental group

onto a fixed copy of the absolute Galois group of the base field).

Theorem B. Let p be a prime number; k a sub-p-adic field (cf. Def-

inition 3.1); k an algebraic closure of k; X, Y hyperbolic polycurves (cf.

Definition 2.1, (ii)) over k. Write Gk
def
= Gal(k/k); ΠX , ΠY for the étale

fundamental groups of X, Y , respectively;

Isomk(X,Y )
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for the set of isomorphisms of X with Y over k;

IsomGk
(ΠX ,ΠY )

for the set of isomorphisms of ΠX with ΠY over Gk; ∆Y/k for the kernel of

the natural surjection ΠY � Gk. Suppose that either X or Y is of dimension

≤ 4. Then the natural map

Isomk(X,Y ) −−−→ IsomGk
(ΠX ,ΠY )/Inn(∆Y/k)

is bijective.

Next, let us observe that if X and Y are hyperbolic polycurves over a

sub-p-adic field k, then the finiteness of the set of isomorphisms over k

Isomk(X,Y )

may be easily verified (cf., e.g., Proposition 4.5). Thus, if the natural map

discussed in Theorem B is bijective for arbitrary hyperbolic polycurves over

sub-p-adic fields (i.e., Theorem B without the assumption that “either X or

Y is of dimension ≤ 4” holds), then it follows that the set

IsomGk
(ΠX ,ΠY )/Inn(∆Y/k)

is finite. Unfortunately, it is not clear to the author at the time of writing

whether or not such a generalization of Theorem B holds. Nevertheless, the

following result asserts that the above set is, in fact, finite (cf. Theorem

4.4).

Theorem C. Let p be a prime number; k a sub-p-adic field (cf. Def-

inition 3.1); k an algebraic closure of k; X, Y hyperbolic polycurves (cf.

Definition 2.1, (ii)) over k. Write Gk
def
= Gal(k/k); ΠX , ΠY for the étale

fundamental groups of X, Y , respectively; IsomGk
(ΠX ,ΠY ) for the set of

isomorphisms of ΠX with ΠY over Gk; ∆Y/k for the kernel of the natural

surjection ΠY � Gk. Then the quotient set

IsomGk
(ΠX ,ΠY )/Inn(∆Y/k)

is finite.
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In the notation of Theorem C, if k is finite over the field of rational

numbers, then we also prove the finiteness of the set of outer isomorphisms

of ΠX with ΠY (cf. Corollary 4.6).

Acknowledgments. The author would like to thank Shinichi Mochizuki

for helpful comments concerning Corollaries 3.20, (iii); 3.21. The author

also would like to thank Ryo Kinoshita and Chikara Nakayama for pointing

out some minor errors in an earlier version of this manuscript. The author

would especially like to express his gratitude to the referee for numerous

fruitful comments. This research was supported by Grant-in-Aid for Sci-

entific Research (C), No. 24540016, Japan Society for the Promotion of

Science.

1. Exactness of Certain Homotopy Sequences

In the present §1, we consider the exactness of certain homotopy se-

quences (cf. Proposition 1.10, (i)) and prove that the kernel of the outer

homomorphism between étale fundamental groups induced by a morphism

of schemes that satisfies certain conditions is topologically finitely generated

(cf. Corollary 1.11). In the present §1, let k be a field of characteristic zero,

k an algebraic closure of k, and Gk
def
= Gal(k/k).

Definition 1.1. Let X be a connected noetherian scheme.

(i) We shall write

ΠX

for the étale fundamental group of X (for some choice of basepoint).

(ii) Let Y be a connected noetherian scheme and f : X → Y a morphism.

Then we shall write

∆f = ∆X/Y ⊆ ΠX

for the kernel of the outer homomorphism ΠX → ΠY induced by f .

Lemma 1.2. Let X be a connected noetherian normal scheme. Write

η → X for the generic point of X. Then the outer homomorphism Πη → ΠX
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induced by the morphism η → X is surjective. In particular, if U ⊆ X is

a nonempty open subscheme, then the outer homomorphism ΠU → ΠX

induced by the open immersion U ↪→ X is surjective.

Proof. This follows from [24], Exposé V, Proposition 8.2. �

Lemma 1.3. Let X, Y be connected noetherian schemes and f : X → Y

a morphism. Suppose that Y is normal, and that f is dominant and of finite

type. Then the outer homomorphism ΠX → ΠY induced by f is open.

Proof. Since f is dominant and of finite type, it follows that there

exists a finite extension K of the function field of Y such that the natural

morphism SpecK → Y factors through f . Thus, it follows immediately

from Lemma 1.2 that ΠX → ΠY is open. This completes the proof of

Lemma 1.3. �

Definition 1.4. Let X be a scheme over k. Then we shall say that

X is a variety over k if X is of finite type, separated, and geometrically

connected over k.

Lemma 1.5. Let X be a variety over k. Then the sequence of schemes

X ×k k
pr1→ X → Spec k determines an exact sequence of profinite groups

1 −−−→ ΠX×kk
−−−→ ΠX −−−→ Gk −−−→ 1 .

In particular, we obtain an isomorphism ΠX×kk
∼→ ∆X/k (which is well-

defined up to ΠX-conjugation).

Proof. This follows from [24], Exposé IX, Théorème 6.1. �

Lemma 1.6. Let X, Y be connected noetherian schemes and f : X → Y

a morphism. Suppose that f is of finite type, separated, dominant and

generically geometrically connected. Suppose, moreover, that Y is normal.

Then the outer homomorphism ΠX � ΠY induced by f is surjective.

Proof. Write η → Y for the generic point of Y . Then since X → Y is

dominant and generically geometrically connected, we obtain a commutative
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diagram of connected schemes

X ×Y η −−−→ X� �f

η −−−→ Y .

Now since Y is normal, and (one verifies easily that) X×Y η is a variety over

η (i.e., over the function field of Y ), it follows immediately from Lemmas 1.2;

1.5 that the outer homomorphism ΠX → ΠY is surjective. This completes

the proof of Lemma 1.6. �

Lemma 1.7. Let X be a variety over k. Suppose that Gk is topolog-

ically finitely generated (e.g., the case where k = k). Then the profinite

group ΠX is topologically finitely generated.

Proof. Since (we have assumed that) k is of characteristic zero, this

follows from [25], Exposé II, Théorème 2.3.1, together with Lemma 1.5. �

Definition 1.8. LetX, Y be integral noetherian schemes and f : X →
Y a dominant morphism of finite type. Then we shall write

Nor(f) = Nor(X/Y ) −−−→ Y

for the normalization of Y in (the necessarily finite extension of the function

field of Y obtained by forming the algebraic closure of the function field of Y

in the function field of)X. Note that it follows immediately from the various

definitions involved that Nor(f) = Nor(X/Y ) is irreducible and normal, and

that the morphism Nor(f) = Nor(X/Y )→ Y is dominant and affine.

Lemma 1.9. Let X, Y be integral noetherian schemes and f : X → Y

a dominant morphism of finite type. Suppose that X is normal. Then f

factors through the natural morphism Nor(f) → Y , and the resulting mor-

phism X → Nor(f) is dominant and generically geometrically irreducible

(i.e., there exists a dense open subscheme U ⊆ Nor(f) of Nor(f) such that

the geometric fiber of X ×Nor(f) U
pr2→ U at any geometric point of U is irre-

ducible — cf. [5], Proposition (9.7.8)). If, moreover, X and Y are varieties

over k, then the natural morphism Nor(f)→ Y is finite and surjective, and

Nor(f) is a normal variety over k.
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Proof. The assertion that f factors through the natural morphism

Nor(f) → Y and the assertion that the resulting morphism X → Nor(f)

is dominant follow immediately from the various definitions involved. The

assertion that the resulting morphism X → Nor(f) is generically geometri-

cally irreducible follows immediately from [4], Proposition (4.5.9). Finally,

we verify that if, moreover, X and Y are varieties over k, then the natu-

ral morphism Nor(f) → Y is finite and surjective, and Nor(f) is a normal

variety over k. Now since Y is a variety over k, it follows immediately

from the discussion following [12], §33, Lemma 2, that Nor(f) → Y is fi-

nite. Thus, since Nor(f)→ Y is dominant (cf. Definition 1.8), we conclude

that Nor(f) → Y is surjective. On the other hand, since Nor(f) → Y is

separated and of finite type (cf. the finiteness of Nor(f) → Y ), to verify

that Nor(f) is a normal variety over k, it suffices to verify that Nor(f) is

geometrically irreducible over k. On the other hand, since Nor(f) → Y is

dominant, this follows immediately from [4], Proposition (4.5.9), together

with our assumption that X is geometrically irreducible over k (cf. the fact

that X is a normal variety over k). This completes the proof of Lemma

1.9. �

Proposition 1.10. Let S, X, and Y be connected noetherian normal

schemes and Y → X → S morphisms of schemes. Suppose that the follow-

ing conditions are satisfied:

(1) Y → X is dominant and induces an outer surjection ΠY � ΠX .

(2) X → S is surjective, of finite type, separated, and generically geo-

metrically integral.

(3) Y → S is of finite type, separated, faithfully flat, geometrically nor-

mal, and generically geometrically connected.

Then the following hold:

(i) Let s→ S be a geometric point of S that satisfies the following condi-

tion

(4) For any connected finite étale covering X ′ → X and any ge-

ometric point s′ → Nor(X ′/S) of Nor(X ′/S) that lifts the ge-

ometric point s of S, the geometric fiber X ′ ×Nor(X′/S) s
′ of
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X ′ → Nor(X ′/S) (cf. Lemma 1.9) at s′ → Nor(X ′/S) is con-

nected. (Note that it follows from Lemma 1.9 that a geometric

point of S whose image is the generic point of S satisfies condi-

tion (4).)

Then the sequence of connected schemes X ×S s
pr1→ X → S (note that

X ×S s is connected by conditions (2), (4) — cf. also [4], Corollaire

(4.6.3)) determines an exact sequence of profinite groups

ΠX×Ss −−−→ ΠX −−−→ ΠS −−−→ 1 .

(ii) If, moreover, the function field of S is of characteristic zero, then

∆X/S is topologically finitely generated.

Proof. Let us first observe that it follows from Lemma 1.7, together

with the fact that a geometric point of S whose image is the generic point of

S satisfies condition (4) (cf. condition (4)), that assertion (ii) follows from

assertion (i). Thus, to verify Proposition 1.10, it suffices to verify assertion

(i). Next, let us observe that since the composite X ×S s→ X → S factors

through s→ S, it follows that the composite ΠX×Ss → ΠX → ΠS is trivial.

On the other hand, it follows immediately from Lemma 1.6 that the outer

homomorphism ΠX → ΠS is surjective. Thus, it follows immediately from

the various definitions involved that, to verify Proposition 1.10, it suffices

to verify that the following assertion holds:

Claim 1.10.A: Let X ′ → X be a connected finite étale covering

of X such that the natural morphism X ′ ×S s → X ×S s has

a section. Then there exists a finite étale covering of S whose

pull-back by X → S is isomorphic to X ′ over X.

To verify Claim 1.10.A, write T
def
= Nor(X ′/S) → S. Now let us observe

that since X is connected, and X ′ → X is finite and étale (hence closed and

open), it follows that X ′ → X, hence also Y ′ def
= Y ×XX

′ pr1→ Y , is surjective.

Next, to verify Claim 1.10.A, I claim that the following assertion holds:

Claim 1.10.A.1: Y , YT
def
= Y ×S T , and Y ′ are irreducible and

normal.
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Indeed, we have assumed that Y is normal. Thus, since X ′ → X, hence

also Y ′ → Y , is étale, it follows that Y ′ is normal. On the other hand, since

T is normal, and Y → S, hence also YT → T , is geometrically normal, it

follows from [5], Proposition (11.3.13), (ii), that YT is normal.

Since YT and Y ′ are normal, to verify Claim 1.10.A.1, it suffices to

verify that YT and Y ′ are connected. Now let us observe that the assertion

that Y ′ is connected follows from our assumption that the natural outer

homomorphism ΠY → ΠX is surjective. Next, to verify that YT is connected,

let U ⊆ YT be a nonempty connected component of YT . Then since Y → S,

hence also YT → T , is flat and of finite presentation, hence open (cf. [5],

Théorème (11.3.1)), the images of U and YT \ U in T are open in T . Thus,

since Y → S, hence also YT → T , is generically geometrically connected, it

follows that the image of YT \ U in T , hence also YT \ U , is empty. This

completes the proof of the assertion that YT is connected, hence also of

Claim 1.10.A.1.

Next, to verify Claim 1.10.A, I claim that the following assertion holds:

Claim 1.10.A.2: The natural morphism T → S, hence also

YT → Y , is finite.

Indeed, since Y → S is geometrically normal, one verifies easily that Y ′ → S

is geometrically reduced. Thus, it follows from [4], Corollaire (4.6.3), that the

(necessarily finite) extension of the function field of S obtained by forming

the algebraic closure of the function field of S in the function field of Y ′

(cf. Claim 1.10.A.1), hence also in the function field of X ′, is separable. In

particular, since S is normal and noetherian, the natural morphism T → S

is finite (cf., e.g., [12], §33, Lemma 1). This completes the proof of Claim

1.10.A.2.

Next, to verify Claim 1.10.A, I claim that the following assertion holds:

Claim 1.10.A.3: The natural morphism Y ′ → YT is finite and

étale (hence closed and open; thus, Y ′ → YT is surjective — cf.

Claim 1.10.A.1).

Indeed, since Y ′ and YT are finite over Y (cf. Claim 1.10.A.2), and Y ′ →
YT is a morphism over Y , one verifies easily that Y ′ → YT is finite. In

particular, in light of the surjectivity of Y ′ → Y (cf. the discussion preceding

Claim 1.10.A.1), hence also of YT → Y , by considering the fibers of Y ′ →



164 Yuichiro Hoshi

YT → Y at the generic point of Y , together with Claim 1.10.A.1, we conclude

that Y ′ → YT is dominant, hence surjective. On the other hand, since

Y ′ → Y is unramified, it follows from [6], Proposition (17.3.3), (v), that

Y ′ → YT is unramified. Thus, since YT is normal (cf. Claim 1.10.A.1), it

follows from [24], Exposé I, Corollaire 9.11, that Y ′ → YT is étale. This

completes the proof of Claim 1.10.A.3.

Next, to verify Claim 1.10.A, I claim that the following assertion holds:

Claim 1.10.A.4: The morphism YT → Y is finite and étale.

Indeed, the finiteness of YT → Y was already verified in Claim 1.10.A.2.

Thus, since Y and YT are irreducible and normal (cf. Claim 1.10.A.1), and

YT → Y is surjective (cf. the proof of Claim 1.10.A.3), it follows from [24],

Exposé I, Corollaire 9.11, that, to verify Claim 1.10.A.4, it suffices to verify

that YT → Y is unramified. To this end, let Ω be a separably closed field

and y
def
= Spec Ω → Y a morphism of schemes. Then since Y ′ → Y is

unramified, Y ′×Y y is isomorphic to a disjoint union of finitely many copies

of Spec Ω. Thus, since Y ′ → YT is surjective and étale (cf. Claim 1.10.A.3),

we conclude that YT ×Y y is isomorphic to a disjoint union of finitely many

copies of Spec Ω, i.e., that YT → Y is unramified. This completes the proof

of Claim 1.10.A.4.

Next, to verify Claim 1.10.A, I claim that the following assertion holds:

Claim 1.10.A.5: The morphism T → S, hence also XT
def
= X×S

T
pr1→ X, is finite and étale. Moreover, XT is connected, and the

natural morphism X ′ → XT is finite and étale (hence closed and

open; thus, X ′ → XT is surjective).

Indeed, since (we have assumed that) the composite Y → X → S is faithfully

flat and quasi-compact, it follows from Claims 1.10.A.2; 1.10.A.4, together

with [6], Corollaire (17.7.3), (ii), that T → S, hence also XT → X, is

finite and étale. Thus, the connectedness of XT follows immediately from

the surjectivity of the natural outer homomorphism ΠX → ΠS (cf. the

discussion preceding Claim 1.10.A). Finally, we verify that X ′ → XT is

finite and étale. The finiteness and unramifiedness of X ′ → XT follow

immediately from a similar argument to the argument used in the proof

of the assertion that Y ′ → YT is finite and unramified (cf. the proof of

1.10.A.3). On the other hand, since X ′ and XT are flat over X, the flatness
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ofX ′ → XT follows immediately from [24], Exposé I, Corollaire 5.9, together

with the unramifiedness ofXT → X, which implies that the fiber ofXT → X

at any point of X is isomorphic to a disjoint union of finitely many spectra

of fields. This completes the proof of Claim 1.10.A.5.

Since T → S is a finite étale covering (cf. Claim 1.10.A.5), it is imme-

diate that, to verify Proposition 1.10, i.e., to verify Claim 1.10.A, it suffices

to verify that the finite étale covering X ′ → XT (cf. Claim 1.10.A.5) is an

isomorphism. On the other hand, let us observe that, since X ′ and XT are

connected (cf. Claim 1.10.A.5), to verify Claim 1.10.A, it suffices to verify

that the finite étale covering X ′ → XT is of degree one. Write d for the

degree of the finite étale covering T → S. Then since (we have assumed

that) X ×S s is connected, it follows immediately that the number of the

connected components of XT ×S s is d. Moreover, it follows immediately

from our choice of s → S (cf. condition (4)) that the number of the con-

nected components of X ′ ×S s is d. Thus, since X ′ → XT is surjective (cf.

Claims 1.10.A.5), the morphism X ′ → XT determines a bijection between

the set of the connected components of X ′×S s and the set of the connected

components of XT ×S s. On the other hand, let us recall that we have

assumed that the natural morphism X ′×S s→ X×S s has a section. Thus,

by considering the connected component of X ′×S s obtained by forming the

image of a section of X ′ ×S s → X ×S s, one verifies easily that the finite

étale covering X ′ → XT is of degree one. This completes the proof of Claim

1.10.A, hence also of Proposition 1.10. �

Corollary 1.11. Let S, X be connected noetherian normal schemes

and X → S a morphism of schemes that is surjective, of finite type, sepa-

rated, and generically geometrically irreducible. Suppose that the function

field of S is of characteristic zero. Suppose, moreover, that one of the fol-

lowing conditions is satisfied:

(1) There exists an open subscheme U ⊆ X of X such that the composite

U ↪→ X → S is surjective and smooth.

(2) There exist a connected normal scheme Y and a modification Y →
X (i.e., Y → X is proper, surjective, and induces an isomorphism

between the respective function fields) such that the composite Y →
X → S is smooth.
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Then ∆X/S is topologically finitely generated.

Proof. Suppose that condition (1) (respectively, (2)) is satisfied.

Then, to verify Corollary 1.11, it follows from Proposition 1.10, (ii), that it

suffices to verify that the scheme U (respectively, Y ) over X in condition

(1) (respectively, (2)) satisfies the conditions imposed on “Y ” in the state-

ment of Proposition 1.10. On the other hand, this follows immediately from

Lemma 1.2. This completes the proof of Corollary 1.11. �

2. Étale Fundamental Groups of Hyperbolic Polycurves

In the present §2, we discuss generalities on the étale fundamental groups

of hyperbolic polycurves. In the present §2, let k be a field of characteristic

zero, k an algebraic closure of k, and Gk
def
= Gal(k/k).

Definition 2.1. Let S be a scheme and X a scheme over S.

(i) We shall say that X is a hyperbolic curve (of type (g, r)) over S if there

exist

• a pair of nonnegative integers (g, r);

• a scheme Xcpt which is smooth, proper, geometrically connected,

and of relative dimension one over S;

• a (possibly empty) closed subscheme D ⊆ Xcpt of Xcpt which is

finite and étale over S

such that

• 2g − 2 + r > 0;

• any geometric fiber of Xcpt → S is (a necessarily smooth proper

curve) of genus g;

• the finite étale covering D ↪→ Xcpt → S is of degree r;

• X is isomorphic to Xcpt \D over S.

(ii) We shall say that X is a hyperbolic polycurve (of relative dimension n)

over S if there exist a positive integer n and a (not necessarily unique)

factorization of the structure morphism X → S
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X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X2 −−−→ X1 −−−→ S = X0

such that, for each i ∈ {1, · · · , n}, Xi → Xi−1 is a hyperbolic curve

(cf. (i)). We shall refer to the above morphism X → Xn−1 as a

parametrizing morphism for X and refer to the above factorization of

X → S as a sequence of parametrizing morphisms.

Remark 2.1.1. In the notation of Definition 2.1, (ii), suppose that S

is a normal (respectively, smooth) variety of dimension m over k. Then one

verifies easily that any hyperbolic polycurve of relative dimension n over S

is a normal (respectively, smooth) variety of dimension n+m over k.

Definition 2.2. In the notation of Definition 2.1, (i), suppose that

S is normal. Then it follows from the argument given in the discussion

entitled “Curves” in [15], §0, that the pair “(Xcpt, D)” of Definition 2.1, (i),

is uniquely determined up to canonical isomorphism over S. We shall refer

to Xcpt as the smooth compactification of X over S and refer to D as the

divisor of cusps of X over S.

Proposition 2.3. Let n be a positive integer, S a connected noethe-

rian separated normal scheme over k, X a hyperbolic polycurve of relative

dimension n over S,

X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X2 −−−→ X1 −−−→ S = X0

a sequence of parametrizing morphisms, and Y → X a connected finite étale

covering of X. For each i ∈ {0, · · · , n}, write Yi
def
= Nor(Y/Xi). Then the

following hold:

(i) For each i ∈ {1, · · · , n}, Yi is a hyperbolic curve over Yi−1. Moreover,

if we write Y cpt
i for the smooth compactification of the hyperbolic curve

Yi over Yi−1 (cf. Definition 2.2), then the composite Y cpt
i → Yi−1 →

Xi−1 is proper and smooth. Furthermore, if we write Y cpt
i → Zi−1 →

Xi−1 for the Stein factorization of the proper morphism Y cpt
i → Xi−1,

then Zi−1 is isomorphic to Yi−1 over Xi−1.

(ii) For each i ∈ {0, · · · , n}, the natural morphism Yi → Xi is a connected

finite étale covering.



168 Yuichiro Hoshi

In particular, Y is a hyperbolic polycurve of relative dimension n over

Nor(Y/S), and the factorization

Y = Yn −−−→ Yn−1 −−−→ · · · −−−→ Y1 −−−→ Nor(Y/S) = Y0

is a sequence of parametrizing morphisms.

Proof. First, I claim that the following assertion holds:

Claim 2.3.A: If n = 1, then Proposition 2.3 holds.

Indeed, write Xcpt for the smooth compactification of X over S (cf. Defini-

tion 2.2); D ⊆ Xcpt for the divisor of cusps of X over S (cf. Definition 2.2);

Y cpt def
= Nor(Y/Xcpt); E for the reduced closed subscheme of Y cpt whose sup-

port is the complement Y cpt \Y (cf. [3], Corollaire (4.4.9)); T
def
= Nor(Y/S).

Let us observe that since S and Xcpt are normal schemes over k, and k is

of characteristic zero, the natural morphisms T → S and Y cpt → Xcpt are

finite (cf., e.g., [12], §33, Lemma 1), and, moreover, the base-change by a ge-

ometric generic point of S of the natural morphism Y cpt → Xcpt is a tamely

ramified covering along (the base-change by the geometric generic point of

S of) D ⊆ Xcpt. (Note that it follows immediately from the definition of

the term “hyperbolic curve” that D is a divisor with normal crossings of

Xcpt relative to S — cf. [24], Exposé XIII, §2.1.) In particular, it follows

immediately from Abhyankar’s lemma (cf. [24], Exposé XIII, Proposition

5.5) that Y cpt is smooth over S, and, moreover, that E is étale over S.

Write Y cpt → Z → S for the Stein factorization of Y cpt → S. (Note that

since Y cpt is finite over Xcpt, and Xcpt is proper over S, Y cpt is proper

over S.) Then since (one verifies easily that) Z and T are irreducible and

normal, and the resulting morphism Z → T is finite and induces an isomor-

phism between the respective function fields, it follows from [3], Corollaire

(4.4.9), that Z is isomorphic to T over S. On the other hand, since Y cpt

is proper and smooth over S, it follows from [24], Exposé X, Proposition

1.2, that Z, hence also T , is a finite étale covering of S. In particular, it

follows from [6], Proposition (17.3.4), together with the fact that Y cpt (re-

spectively, E) is smooth (respectively, étale) over S, that Y cpt (respectively,

E) is smooth (respectively, étale) over T . Now one verifies easily that the

pair (Y cpt, E ⊆ Y cpt) satisfies the conditions listed in Definition 2.1, (i), for

“(Xcpt, D ⊆ Xcpt)”. This completes the proof of Claim 2.3.A.

Next, I claim that the following assertion holds:
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Claim 2.3.B: For a fixed i0 ∈ {1, · · · , n}, if assertion (i) holds

in the case where we take “i” to be i0, then assertion (ii) holds

in the case where we take “i” to be i0 − 1.

Indeed, it follows from assertion (i) in the case where we take “i” to be i0
that, to verify assertion (ii) in the case where we take “i” to be i0 − 1, it

suffices to verify that Zi0−1 → Xi0−1 is a finite étale covering. On the other

hand, since the composite Y cpt
i0
→ Yi0−1 → Xi0−1 is proper and smooth (cf.

assertion (i) in the case where we take “i” to be i0), this follows from [24],

Exposé X, Proposition 1.2. This completes the proof of Claim 2.3.B.

Next, I claim that the following assertion holds:

Claim 2.3.C: For a fixed i0 ∈ {1, · · · , n}, if assertion (ii) holds

in the case where we take “i” to be i0, then assertion (i) holds

in the case where we take “i” to be i0.

Indeed, by applying Claim 2.3.A to the connected finite étale covering Yi0 →
Xi0 (cf. assertion (ii) in the case where we take “i” to be i0) of the hyperbolic

curve Xi0 over Xi0−1, we conclude that assertion (i) in the case where we

take “i” to be i0 holds. This completes the proof of Claim 2.3.C.

Now let us observe that assertion (ii) in the case where we take “i” to

be n is immediate. Thus, Proposition 2.3 follows immediately from Claims

2.3.B and 2.3.C. This completes the proof of Proposition 2.3. �

Proposition 2.4. Let 0 ≤ m < n be integers, S a connected noethe-

rian separated normal scheme over k, X a hyperbolic polycurve of relative

dimension n over S, and

X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X2 −−−→ X1 −−−→ S = X0

a sequence of parametrizing morphisms. Then the following hold:

(i) For any geometric point xm → Xm of Xm, the sequence of connected

schemes X ×Xm xm
pr1→ X → Xm determines an exact sequence of

profinite groups

1 −−−→ ΠX×Xmxm −−−→ ΠX −−−→ ΠXm −−−→ 1 .

In particular, we obtain an isomorphism ΠX×Xmxm

∼→ ∆X/Xm
(which

is well-defined up to ΠX-conjugation).
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(ii) Let T be a connected noetherian separated normal scheme over S and

T → Xm a morphism over S. Then the natural morphisms X ×Xm

T
pr1→ X and X ×Xm T

pr2→ T determine an outer isomorphism

ΠX×XmT
∼−−−→ ΠX ×ΠXm

ΠT

and an isomorphism

∆X×XmT/T
∼−−−→ ∆X/Xm

(which is well-defined up to ΠX-conjugation).

(iii) ∆X/Xm
is nontrivial, topologically finitely generated, slim (i.e., every

open subgroup of ∆X/Xm
is center-free), and torsion-free. In particu-

lar, ∆X/Xm
is infinite.

(iv) ∆Xm+1/Xm
is elastic (cf. [18], Definition 1.1, (ii)), i.e., the follow-

ing holds: Let N ⊆ ∆Xm+1/Xm
be a topologically finitely generated

closed subgroup of ∆Xm+1/Xm
that is normal in an open subgroup

of ∆Xm+1/Xm
. Then N is nontrivial if and only if N is open in

∆Xm+1/Xm
.

(v) Suppose that the hyperbolic curve Xm+1 over Xm is of type (g, r) (cf.

Definition 2.1, (i)). Then the abelianization of ∆Xm+1/Xm
is a free

Ẑ-module of rank 2g + max{r − 1, 0}; ∆Xm+1/Xm
is a free profinite

group if and only if r �= 0.

(vi) For any positive integer N , there exists an open subgroup H ⊆
∆Xm+1/Xm

of ∆Xm+1/Xm
such that the abelianization of H is (a free

Ẑ-module) of rank ≥ N .

Proof. First, we verify assertion (i). Let us observe that it follows

immediately from Lemma 1.6; Proposition 2.3, (i), together with the various

definitions involved, that (Xm, X,X, xm → Xm) satisfies the four conditions

(1), (2), (3), and (4) (for “(S,X, Y, s→ S)”) in the statement of Proposition

1.10. Thus, It follows immediately from Proposition 1.10, (i), that the

sequence of profinite groups

ΠX×Xmxm −−−→ ΠX −−−→ ΠXm −−−→ 1

is exact. Thus, to verify assertion (i), it suffices to verify that ΠX×Xmxm →
ΠX is injective. Now I claim that the following assertion holds:
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Claim 2.4.A: If n = 1 (so m = 0), i.e., X is a hyperbolic curve

over S, and the finite étale covering of S determined by the

divisor of cusps of the hyperbolic curve X over S (cf. Definition

2.2) is trivial, then ΠX×Xmxm → ΠX is injective.

Indeed, write (g, r) for the type of the hyperbolic curve X over S; Mg,r,

Mg,r+1 for the moduli stacks over k of ordered r-, (r + 1)-pointed smooth

proper curves of genus g, respectively; ΠMg,r , ΠMg,r+1 for the étale fun-

damental groups of Mg,r, Mg,r+1, respectively. Then since (we have as-

sumed that) the finite étale covering of S determined by the divisor of

cusps of the hyperbolic curve X over S is trivial, it follows immediately

from the various definitions involved that there exists a morphism of stacks

sX : S →Mg,r over k such that the fiber product of sX and the morphism

of stacks Mg,r+1 → Mg,r over k obtained by forgetting the last marked

point is isomorphic to X over S. Thus, we have a commutative diagram of

profinite groups

ΠX×Sx0 −−−→ ΠX −−−→ ΠS −−−→ 1

�
� � �

1 −−−→ ΠMg,r+1×Mg,rx0 −−−→ ΠMg,r+1 −−−→ ΠMg,r −−−→ 1

— where the right-hand vertical arrow is the outer homomorphism induced

by sX , the left-hand vertical arrow is an isomorphism, and the horizontal

sequences are exact (cf., e.g., [11], Lemma 2.1; the discussion preceding

Claim 2.4.A). In particular, it follows that ΠX ×S x0 → ΠX is injective.

This completes the proof of Claim 2.4.A.

Next, I claim that the following assertion holds:

Claim 2.4.B: If n = 1 (so m = 0), then ΠX×Xmxm → ΠX is

injective.

Indeed, since the divisor of cusps of X over S is a finite étale covering of

S, there exists a connected finite étale covering S′ → S of S such that

the finite étale covering of S′ determined by the divisor of cusps of the

hyperbolic curve X ×S S
′ over S′ is trivial. Thus, we have a commutative
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diagram of profinite groups

1 −−−→ ΠX×Sx0 −−−→ ΠX×SS′ −−−→ ΠS′ −−−→ 1∥∥∥ � �
ΠX×Sx0 −−−→ ΠX −−−→ ΠS −−−→ 1

— where the vertical arrows are outer open injections, and the horizontal

sequences are exact (cf. Claim 2.4.A; the discussion preceding Claim 2.4.A).

In particular, it follows that ΠX×Sx0 → ΠX is injective. This completes the

proof of Claim 2.4.B.

Now, we verify the injectivity of ΠX×Xmxm → ΠX by induction on n−m.

If n −m = 1, then the injectivity of ΠX×Xmxm → ΠX follows immediately

from Claim 2.4.B. Suppose that n−m ≥ 2, and that the induction hypothesis

is in force. Let xn−1 → Xn−1 be a geometric point of Xn−1 that lifts

the geometric point xm → Xm. Then it follows immediately from various

definitions involved that we have a commutative diagram of profinite groups

1�
1 −−−→ ΠX×Xn−1

xn−1 −−−→ ΠX×Xmxm −−−→ ΠXn−1×Xmxm∥∥∥ � �
1 −−−→ ΠX×Xn−1

xn−1 −−−→ ΠX −−−→ ΠXn−1 ;

moreover, since X, X ×Xm xm, Xn−1 are hyperbolic polycurves over Xn−1,

Xn−1 ×Xm xm, Xm of relative dimension 1, 1, n −m − 1, respectively, it

follows immediately from the induction hypothesis that the two horizontal

sequences and the right-hand vertical sequence of the above diagram are

exact. Thus, one verifies easily that the homomorphism ΠX×Xmxm → ΠX

is injective. This completes the proof of assertion (i). Assertion (ii) follows

immediately from assertion (i), together with the “Five lemma”. Next,

we verify assertion (iii). Let us observe that it follows from assertion (i)

that, to verify assertion (iii), we may assume without loss of generality that

m = n − 1. On the other hand, if m = n − 1, i.e., X is a hyperbolic curve

overXm, assertion (iii) is well-known (cf., e.g., [23], Proposition 1.1, (i); [23],

Proposition 1.6; [19], Proposition 1.4). This completes the proof of assertion
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(iii). Assertion (iv) follows from [19], Theorem 1.5. Assertion (v) is well-

known (cf., e.g., the statement of, as well as the discussion immediately

preceding, [23], Corollary 1.2). Assertion (vi) follows immediately from

Hurwitz’s formula (cf., e.g., [9], Chapter IV, Corollary 2.4), together with

assertions (iii), (v). This completes the proof of Proposition 2.4. �

Definition 2.5 (cf. [10], §4.5). Let X be a variety over k. Then we

shall say that X is of LFG-type (where the “LFG” stands for “large fun-

damental group”) if, for any normal variety Y over k and any morphism

Y → X ×k k over k that is not constant, the image of the outer homomor-

phism ΠY → ΠX×kk
is infinite. Note that one verifies easily that the issue

of whether or not X satisfies this condition does not depend on the choice

of “k” (cf. also Lemma 1.5).

Remark 2.5.1. In the situation of Definition 2.5, suppose further that

k′ is a field extension of k, and that k
′
is an algebraic closure of k′. Then it

follows immediately, by considering hyperplane sections (cf., e.g., the proof

of [18], Proposition 2.2), that Y may, in fact, be taken to be a hyperbolic

curve, in which case it is well-known (cf., e.g., [16], Proposition 2.3, (ii)),

that ΠY is naturally isomorphic to Π
Y×kk

′ . In particular, one verifies easily,

by considering models of the various objects involved over finitely generated

k-subalgebras of k′, that X is of LFG-type if and only if X×k k
′ is of LFG-

type.

Lemma 2.6. Let X, Y be varieties over k. Suppose that X is of LFG-

type. Then the following hold:

(i) Suppose that there exists a quasi-finite morphism Y → X. Then Y is

of LFG-type.

(ii) Let f : X → Y be a morphism over k. Suppose that the kernel ∆f is

finite. Then f is quasi-finite. If, moreover, f is surjective, then Y is

of LFG-type.

Proof. First, let us observe that, it follows from Lemma 1.5, together

with the various definitions involved, that, by replacing k by k, to verify

Lemma 2.6, we may assume without loss of generality that k = k. Now

we verify assertion (i). Let Z be a normal variety over k and Z → Y
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a nonconstant morphism over k. Then since Y is quasi-finite over X, it

follows that the composite Z → Y → X is nonconstant. In particular, since

X is of LFG-type, the image of the composite ΠZ → ΠY → ΠX , hence also

ΠZ → ΠY , is infinite. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let y → Y be a k-valued geometric point

of Y and F a connected component (which is necessarily a normal variety

over k) of the normalization of the geometric fiber of X → Y at y. Then

one verifies easily that the outer homomorphism ΠF → ΠX induced by the

natural morphism F → X over k factors through ∆f ⊆ ΠX ; in particular,

since ∆f is finite, the image of ΠF → ΠX is finite. Thus, since X is of

LFG-type, one verifies easily that F is finite over k. This completes the

proof of the fact that f is quasi-finite.

Finally, to verify that if, moreover, f is surjective, then Y is of LFG-

type, let Z be a normal variety over k and Z → Y a nonconstant morphism

over k. Then since f is a quasi-finite surjection, and Z → Y is nonconstant,

one verifies easily that there exists a connected component C (which is

necessarily a normal variety over k) of the normalization of Z ×Y X such

that the natural morphism C → X over k is nonconstant. Thus, since X is

of LFG-type, the image of ΠC → ΠX , hence also ΠC → ΠX → ΠY (cf. the

finiteness of ∆f ), is infinite. In particular, since the composite C → X → Y

factors through Z → Y , we conclude that the image of ΠZ → ΠY is infinite.

This completes the proof of assertion (ii). �

Proposition 2.7. Let S be a normal variety over k which is either

equal to Spec k or of LFG-type. Then every hyperbolic polycurve over S is

of LFG-type.

Proof. First, let us observe that it follows from Lemma 1.5, together

with the various definitions involved, that, by replacing k by k, to verify

Proposition 2.7, we may assume without loss of generality that k = k. Let

X be a hyperbolic polycurve of relative dimension n over S. Then it follows

immediately from induction on n that, to verify Proposition 2.7, we may

assume without loss of generality that n = 1. Let Y be a normal variety

over k and Y → X a nonconstant morphism over k.

Now suppose that the composite Y → X → S is nonconstant, which

thus implies that S �= Spec k. Then it follows from our assumption that S

is of LFG-type that the image of the composite ΠY → ΠX � ΠS , hence
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also ΠY → ΠX , is infinite. This completes the proof of the infiniteness of

the image of ΠY → ΠX in the case where the composite Y → X → S is

nonconstant.

Next, suppose that the composite Y → X → S is constant. Write s→ S

for the k-valued geometric point of S through which the constant morphism

Y → X → S factors (cf. the fact that Y is a normal variety over k). Then

it is immediate that the composite Y → X → S determines a nonconstant,

hence dominant, morphism Y → X×S s over k. Thus, since ΠX×Ss
∼→ ∆X/S

(cf. Proposition 2.4, (i)) is infinite (cf. Proposition 2.4, (iii)), it follows

immediately from Lemma 1.3 that the image of ΠY → ΠX×Ss
∼→ ∆X/S ↪→

ΠX is infinite. This completes the proof of the infiniteness of the image of

ΠY → ΠX in the case where the composite Y → X → S is constant, hence

also of Proposition 2.7. �

Lemma 2.8. Let S be a connected noetherian separated normal scheme

over k, X a hyperbolic curve over S, R a strictly henselian discrete valua-

tion ring over S, K the field of fractions of R, and SpecK → X a morphism

over S. Then it holds that the morphism SpecK → X factors through the

open immersion SpecK ↪→ SpecR if and only if the image of the outer

homomorphism ΠSpecK → ΠX induced by the morphism SpecK → X is

trivial.

Proof. First, let us recall (cf., e.g., [6], Théorème (18.5.11)) that

ΠSpecR = {1}. Thus, necessity is immediate; moreover, it follows imme-

diately from Proposition 2.4, (ii), that, by replacing S by SpecR, to verify

sufficiency, we may assume without loss of generality that S = SpecR.

Moreover, one verifies immediately that we may assume without loss of

generality that R is complete, and that the given morphism SpecK → X

does not factor through S = SpecR. Next, let us observe that, by consid-

ering the exact sequence (1-5) of [23] with respect to a suitable connected

finite étale covering of X and applying Abhyankar’s Lemma (cf. [24], Ex-

posé XIII, Proposition 5.5), one verifies easily that, for each cusp c of the

hyperbolic curve X over R, if we write Xcpt for the smooth compactification

of X over S (cf. Definition 2.2) and Xc for the fiber product of X over Xcpt

with the spectrum of the ring obtained by completing Xcpt along c, then

the natural outer homomorphism ΠXc → ΠX = ∆X/S is injective. On the

other hand, since R is complete, and the given morphism SpecK → X does
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not factor through S = SpecR, it follows immediately from the valuative

criterion of properness applied to the morphism Xcpt → S that the given

morphism SpecK → X factors through the natural morphism Xc → X

associated to a suitable cusp c of X. Thus, if the image of the natural outer

homomorphism ΠSpecK → ΠX is trivial, then it follows that the image of

the natural outer homomorphism ΠSpecK → ΠXc is trivial; but this contra-

dicts the easily verified fact that no nonzero element of the maximal ideal

of R is divisible in K×. This completes the proof of Lemma 2.8. �

Lemma 2.9. Let S, Y , Z be normal varieties over k; Z → Y → S

morphisms over k; X a hyperbolic polycurve over S; f : Z → X a morphism

over S. Thus, we have a commutative diagram as follows:

Z
f−−−→ X� �

Y −−−→ S .

Suppose that the following conditions are satisfied:

(1) Z → Y is dominant and generically geometrically irreducible. (Thus,

it follows from Lemma 1.6 that the natural outer homomorphism

ΠZ → ΠY is surjective.)

(2) ∆Z/Y ⊆ ∆Z/X . (Thus, it follows from the surjectivity of ΠZ → ΠY

— cf. (1) — that the natural outer homomorphism ΠZ → ΠX induced

by f determines an outer homomorphism ΠY → ΠX .)

Then the morphism f : Z → X admits a unique factorization Z → Y → X.

Proof. First, let us observe that, by induction on the relative dimen-

sion of X over S, to verify Lemma 2.9, we may assume without loss of

generality that X is a hyperbolic curve over S. Also, we observe that the

asserted uniqueness of the factorization under consideration follows imme-

diately from the fact that the morphism Z → Y is dominant (cf. condition

(1)). Write Γ0 ⊆ X ×S Y for the scheme-theoretic image of the natural

morphism Z → X×S Y over S and Γ
def
= Nor(Z/Γ0). (Note that one verifies

easily that Γ0 is an integral variety over k, and that the natural morphism

Z → Γ0 is dominant.) Now let us observe that it follows from Lemma 1.9
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that Γ is a normal variety over k, the resulting morphism Z → Γ is dom-

inant and generically geometrically irreducible, and the natural morphism

Γ→ Γ0 is finite and surjective.

Next, I claim that the following assertion holds:

Claim 2.9.A: Let y → Y be a geometric point of Y . Then

the image of the morphism Z ×Y y → X ×k y determined by f

consists of finitely many closed points of X ×k y.

Indeed, let F → Z ×Y y be a connected component (which is necessarily

a normal variety over y) of the normalization of Z ×Y y. Then it follows

immediately from condition (2) that the image of the outer homomorphism

ΠF → ΠX induced by the composite of natural morphisms F → Z ×Y y
pr1→

Z → X is trivial. On the other hand, it is immediate that the composite of

natural morphisms F → Z ×Y y
pr1→ Z → X factors through the projection

X ×S y
pr1→ X. Thus, since the outer homomorphism ΠX×Sy → ΠX induced

by the projection X ×S y
pr1→ X is injective (cf. Proposition 2.4, (i)), it

follows that the image of the outer homomorphism ΠF → ΠX×Sy induced

by the morphism F → X ×S y is trivial. In particular, since X ×S y is a

hyperbolic curve over y, hence of LFG-type (cf. Proposition 2.7), and the

morphism F → X ×S y is a morphism between varieties over y, one verifies

easily that the image of the morphism F → X ×S y consists of a closed

point of X ×S y. Thus, since the morphism Z ×Y y → X ×k y in question

factors through Z ×S y → X ×S y, we conclude that Claim 2.9.A holds.

This completes the proof of Claim 2.9.A.

Next, I claim that the following assertion holds:

Claim 2.9.B: The composite Γ → Γ0 ↪→ X ×S Y
pr2→ Y , hence

also the composite Γ0 ↪→ X×S Y
pr2→ Y , is dominant and induces

an isomorphism between the respective function fields.

Indeed, since Z → Y is dominant and generically geometrically irreducible

(cf. condition (1)) and factors through the composite in question Γ →
Y , one verifies easily from [4], Proposition (4.5.9), that the composite in

question Γ→ Y is dominant and generically geometrically irreducible. Thus,

one verifies easily that, to verify Claim 2.9.B, it suffices to verify that Γ→ Y

is generically quasi-finite. To verify that Γ → Y is generically quasi-finite,

let ηY → Y be a geometric point of Y whose image is the generic point of Y .
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Then since (one verifies easily that) the operation of forming the scheme-

theoretic image commutes with base-change by a flat morphism, Γ0×Y ηY is

naturally isomorphic to the scheme-theoretic image of the natural morphism

Z ×Y ηY → X ×S ηY . On the other hand, since the natural morphism

X×SηY → X×kηY is a closed immersion, it follows immediately from Claim

2.9.A that the image of the natural morphism Z×Y ηY → X×SηY consists of

finitely many closed points ofX×SηY . Thus, we conclude that the composite

Γ0 ↪→ X×S Y
pr2→ Y , hence (by the finiteness of Γ→ Γ0 — cf. the discussion

preceding Claim 2.9.A) also the composite Γ → Γ0 ↪→ X ×S Y
pr2→ Y , is

generically quasi-finite. This completes the proof of Claim 2.9.B.

Next, I claim that the following assertion holds:

Claim 2.9.C: ∆Γ/Y ⊆ ∆Γ/X .

Indeed, let us observe that since the morphism Z → Γ is dominant and

generically geometrically irreducible with normal codomain (cf. the discus-

sion preceding Claim 2.9.A), it follows immediately from Lemma 1.6 that

the natural outer homomorphism ΠZ → ΠΓ is surjective. Thus, one verify

easily from condition (2) that Claim 2.9.C holds. This completes the proof

of Claim 2.9.C.

Next, I claim that the following assertion holds:

Claim 2.9.D: Let y → Y be a geometric point of Y . Then the

image of the morphism Γ ×Y y → X ×k y determined by the

composite Γ → Γ0 ↪→ X ×S Y
pr1→ X consists of finitely many

closed points of X ×k y.

Indeed, this follows immediately from Claim 2.9.C, together with a similar

argument to the argument used in the proof of Claim 2.9.A. This completes

the proof of Claim 2.9.D.

Next, I claim that the following assertion holds:

Claim 2.9.E: The composite Γ0 ↪→ X ×S Y
pr2→ Y is an open

immersion.

Indeed, let y → Y be a geometric point of Y . Then let us first observe that

it follows immediately from Claim 2.9.D that the image of the composite

Γ×Y y → Γ0×Y y ↪→ X×S y consists of finitely many closed points of X×S y.

Thus, since Γ→ Γ0 is surjective (cf. the discussion preceding Claim 2.9.A),
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and the morphism Γ0×Y y ↪→ X×Sy is a closed immersion, we conclude that

Γ0×Y y is quasi-finite over y. In particular, the composite Γ0 ↪→ X×S Y
pr2→

Y is quasi-finite. Thus, it follows immediately from Claim 2.9.B, together

with [3], Corollaire (4.4.9), that the composite Γ0 ↪→ X ×S Y
pr2→ Y is an

open immersion. This completes the proof of Claim 2.9.E.

Next, I claim that the following assertion holds:

Claim 2.9.F: If X is proper over S, then f : Z → X factors

through Z → Y .

Indeed, if X is proper over S, then one verifies easily that the composite

Γ0 ↪→ X ×S Y
pr2→ Y is proper. Thus, it follows immediately from Claim

2.9.E that Γ0 ↪→ X×SY
pr2→ Y is an isomorphism. In particular, we conclude

that f : Z → X factors through Z → Y . This completes the proof of Claim

2.9.F.

Next, I claim that the following assertion holds:

Claim 2.9.G: If the genus (i.e., the integer “g” in Definition

2.1, (i)) of the hyperbolic curve X over S is ≥ 2, then f factors

through Z → Y .

Indeed, write Xcpt for the smooth compactification of the hyperbolic curve

X over S (cf. Definition 2.2). Then since (one verifies easily that) Xcpt is a

proper hyperbolic curve over S, by applying Claim 2.9.F (where we take the

data “(S, Y, Z,X)” to be (S, Y, Z,Xcpt)), we conclude that the morphism

Z → Xcpt over S factors as a composite Z → Y → Xcpt. Thus, to verify

Claim 2.9.G, it suffices to verify that this morphism Y → Xcpt factors

through X ⊆ Xcpt. Note that since Z → Y is dominant by condition (1), it

follows immediately that the morphism Y → Xcpt maps some dense open

subscheme of Y into X; thus, by considering a suitable discrete valuation

of the function field of Y (cf. [2], Proposition (7.1.7)), one verifies easily

that, to verify that the morphism Y → Xcpt maps Y into X ⊆ Xcpt, it

suffices to verify that, for any strictly henselian discrete valuation ring R

and any dominant morphism SpecR → Y , it holds that the composite

SpecR → Y → Xcpt factors through X ⊆ Xcpt. On the other hand, since

the composite ηR → SpecR → Y , where we write ηR for the spectrum of

the quotient field of R, factors as a composite ηR → Γ → Y (cf. Claim

2.9.B), this follows immediately from Claim 2.9.C, together with Lemma

2.8. This completes the proof of Claim 2.9.G.
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Finally, I claim that the following assertion holds:

Claim 2.9.H: f factors through Z → Y .

Indeed, one verifies easily that there exists a connected finite étale Galois

covering X ′ → X of X such that the genus (i.e., the integer “g” in Definition

2.1, (i)) of the hyperbolic curve X ′ over S′ def
= Nor(X ′/S) (cf. Proposition

2.3) is ≥ 2. Write Y ′ → Y for the connected finite étale Galois cover-

ing of Y corresponding to X ′ → X (relative to the outer homomorphism

ΠY → ΠX — cf. condition (2)); Z ′ def
= Z ×Y Y

′ → Z for the connected (cf.

condition (1)) finite étale Galois covering of Z corresponding to Y ′ → Y .

Then, by applying Claim 2.9.G (where we take the data “(S, Y, Z,X)” to be

(S′, Y ′, Z ′, X ′)), we conclude that the natural morphism Z ′ → X ′ over S′

factors as a composite Z ′ → Y ′ → X ′; in particular, the natural morphism

Z ′ → X over S factors uniquely as a composite Z ′ → Y ′ → X, which, more-

over, is, in light of this uniqueness, compatible with the natural actions of

Gal(Z ′/Z) � Gal(Y ′/Y ). This compatibility with Galois actions thus im-

plies that we obtain a factorization Z → Y → X as desired. This completes

the proof of Claim 2.9.H, hence also of Lemma 2.9. �

Lemma 2.10. Let S, Y be normal varieties over k; Y → S a mor-

phism; X a hyperbolic polycurve over S; φ : ΠY → ΠX a homomorphism.

Write η → Y for the generic point of Y . Then the following conditions are

equivalent:

(1) The homomorphism φ arises from a morphism Y → X over S.

(2) There exists a morphism η → X over S such that the outer homomor-

phism Πη → ΠX induced by this morphism η → X coincides with the

composite of the outer surjection (cf. Lemma 1.2) Πη � ΠY induced

by η → Y and the outer homomorphism determined by φ.

Proof. The implication (1) ⇒ (2) is immediate; thus, it remains to

verify the implication (2) ⇒ (1). Suppose that condition (2) is satisfied.

Then it follows immediately that there exists a nonempty open subscheme

U ⊆ Y of Y such that the morphism η → X in condition (2) extends to a

morphism U → X over S. Moreover, it follows immediately from Lemma

1.2 that the outer homomorphism ΠU → ΠX induced by this morphism
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U → X coincides with the composite of the outer surjection (cf. Lemma 1.2)

ΠU � ΠY induced by the natural open immersion U ↪→ Y and the outer

homomorphism determined by φ. Thus, in light of Lemma 1.2, we may

apply Lemma 2.9 (where we take the data “(S, Y, Z,X)” in the statement

of Lemma 2.9 to be (S, Y, U,X)) to conclude that condition (1) is satisfied.

This completes the proof of Lemma 2.10. �

Lemma 2.11. Let X be a hyperbolic curve over k, Y a normal variety

over k, and f : Y → X a morphism over k. Write φf : ΠY → ΠX for the

outer homomorphism induced by f . Consider the following conditions:

(1) f is surjective, smooth, and generically geometrically connected.

(2) φf is surjective, and the kernel ∆f of φf is topologically finitely gen-

erated.

(3) f is surjective and generically geometrically connected.

(4) Let C be a hyperbolic curve over k and C → X a morphism over k.

Then if f factors through C → X, then C → X is an isomorphism.

Then we have implications and an equivalence:

(1) =⇒ (2) =⇒ (3)⇐⇒ (4) .

Proof. The implication (1) ⇒ (2) follows immediately from Lemma

1.6 and Corollary 1.11. Next, we verify the implication (2) ⇒ (4). Suppose

that condition (2) is satisfied. First, let us observe that it follows immedi-

ately from Lemma 1.5 that, by replacing k by k, to verify that condition (4)

is satisfied, we may assume without loss of generality that k = k. Let C be

a hyperbolic curve over k and C → X a morphism over k. Suppose that f

admits a factorization Y → C → X. Note that since X and C are hyperbolic

curves, the surjectivity of φf implies, in light of Proposition 2.4, (iii), that

f , hence also the morphism Y → C, are dominant. In particular, we con-

clude from Lemma 1.3 that the induced outer homomorphism ΠY → ΠC

is open. Now since φf is surjective, it follows formally that the induced

outer homomorphism ΠC → ΠX is surjective. On the other hand, since the

kernel of φf is topologically finitely generated, it follows from the openness
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of ΠY → ΠC that the kernel of ΠC → ΠX (admits an open subgroup which

is topologically finitely generated, hence) is topologically finitely generated.

Thus, it follows immediately from Proposition 2.4, (iii), (iv), that ΠC → ΠX

is an outer isomorphism. In particular, it follows immediately from Propo-

sition 2.4, (v), together with Hurwitz’s formula (cf., e.g., [9], Chapter IV,

Corollary 2.4), that C → X is an isomorphism. This completes the proof

of the implication (2) ⇒ (4).

Next, we verify the implication (3) ⇒ (4). Suppose that condition (3)

is satisfied. Let C be a hyperbolic curve over k and C → X a morphism

over k. Suppose that f factors through C → X. Then since f is surjec-

tive, C → X is surjective, hence quasi-finite. On the other hand, since f

is generically geometrically connected, and k is of characteristic zero, one

verifies easily that C → X induces an isomorphism between the respective

function fields. Thus, since X and C are irreducible and normal, it follows

from [3], Corollaire (4.4.9), that C → X is an isomorphism. This completes

the proof of the implication (3) ⇒ (4).

Finally, we verify the implication (4) ⇒ (3). Suppose that condition

(3) is not satisfied. If f is not surjective, then one verifies easily that f

factors through the natural open immersion from a suitable nonempty open

subscheme of X which is �= X. (Note that one verifies easily that every

nonempty open subscheme of a hyperbolic curve over k is a hyperbolic curve

over k.) Thus, condition (4) is not satisfied. On the other hand, if f is

surjective but not generically geometrically connected, then the morphism

C
def
= Nor(Y/X) → X over k is not an isomorphism; moreover, f factors

through this morphism C → X (cf. Lemma 1.9). Since (one verifies easily

that) C is a hyperbolic curve over k, we conclude that condition (4) is not

satisfied. This completes the proof of the implication (4) ⇒ (3), hence also

of Lemma 2.11. �

Lemma 2.12. In the notation of Lemma 2.11, suppose, moreover, that

Y is of LFG-type. Then the following hold:

(i) The following conditions are equivalent:

(i-1) f is a finite étale covering.

(i-2) φf is an outer open injection.

(i-3) φf is open, and, moreover, the kernel ∆f of φf is finite.
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(ii) The following conditions are equivalent:

(ii-1) f is an isomorphism

(ii-2) φf is an outer isomorphism.

(ii-3) φf is surjective, and, moreover, the kernel ∆f of φf is finite.

Proof. First, we verify assertion (ii). The implications (ii-1) ⇒ (ii-2)

⇒ (ii-3) are immediate; thus, it remains to verify the implication (ii-3) ⇒
(ii-1). To verify this implication, suppose that condition (ii-3) is satisfied.

Then it follows from the implication (2) ⇒ (3) of Lemma 2.11 that f is

surjective and generically geometrically connected. On the other hand, it

follows from Lemma 2.6, (ii), that f is quasi-finite. Thus, it follows from

[3], Corollaire (4.4.9), that f is an isomorphism. This completes the proof

of the implication (ii-3) ⇒ (ii-1), hence also of assertion (ii).

Finally, we verify assertion (i). The implications (i-1) ⇒ (i-2) ⇒ (i-3)

are immediate; thus, it remains to verify the implication (i-3) ⇒ (i-1). To

verify this implication, suppose that condition (i-3) is satisfied. Then, by

replacing X by a connected finite étale covering of X corresponding to the

image of (an open homomorphism that lifts) φf , we may assume without

loss of generality that φf is surjective. Thus, the implication (i-3) ⇒ (i-1)

follows from the implication (ii-3) ⇒ (ii-1) of assertion (ii). This completes

the proof of assertion (i). �

Lemma 2.13. In the notation of Lemma 2.11, suppose, moreover, that

Y is a hyperbolic curve over k. Then the following hold:

(i) The following conditions are equivalent:

(i-1) f is a finite étale covering.

(i-2) φf is an outer open injection.

(i-3) φf is open, and, moreover, the kernel ∆f of φf is topologically

finitely generated.

(ii) The following conditions are equivalent:

(ii-1) f is an isomorphism

(ii-2) φf is an outer isomorphism.
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(ii-3) φf is surjective, and, moreover, the kernel ∆f of φf is topologi-

cally finitely generated.

Proof. First, we verify assertion (ii). The implications (ii-1) ⇒ (ii-2)

⇒ (ii-3) are immediate; thus, it remains to verify the implication (ii-3) ⇒
(ii-1). To verify this implication, suppose that condition (ii-3) is satisfied.

Now let us observe that it follows immediately from Lemma 1.5 that, by

replacing k by k, to verify that condition (ii-1) is satisfied, we may assume

without loss of generality that k = k. Then it follows from Proposition 2.4,

(iii), together with the surjectivity of φf , that the image of φf is infinite, i.e.,

∆f is not open in ΠY . Thus, since Y is a hyperbolic curve over k, and ∆f

is topologically finitely generated, it follows from Proposition 2.4, (iv), that

φf is injective. In particular, it follows from the implication (ii-2) ⇒ (ii-1)

of Lemma 2.12, together with Proposition 2.7, that f is an isomorphism.

(Alternatively, one may reason as in the final portion of the proof of the

implication (2) ⇒ (4) of Lemma 2.11, i.e., by applying Proposition 2.4, (v),

and Hurwitz’s formula.) This completes the proof of the implication (ii-3)

⇒ (ii-1), hence also of assertion (ii).

Finally, we verify assertion (i). The implications (i-1) ⇒ (i-2) ⇒ (i-3)

are immediate; thus, it remains to verify the implication (i-3) ⇒ (i-1). To

verify this implication, suppose that condition (i-3) is satisfied. Then, by

replacing X by a connected finite étale covering of X corresponding to the

image of (an open homomorphism that lifts) φf , we may assume without

loss of generality that φf is surjective. Thus, the implication (i-3) ⇒ (i-1)

follows from the implication (ii-3) ⇒ (ii-1) of assertion (ii). This completes

the proof of the implication (i-3) ⇒ (i-1), hence also of assertion (i). �

Lemma 2.14. Suppose that k = k. Let n be a positive integer, X

a hyperbolic polycurve over k, F a normal variety over k of dimension

≥ n, and F → X a quasi-finite morphism over k. (Thus, it holds that

n ≤ dim(F ) ≤ dim(X).) Write ΠF→X
def
= ΠF /∆F/X . Then there exists a

sequence of normal closed subgroups of ΠF→X

{1} = H0 ⊆ H1 ⊆ · · · ⊆ Hn−1 ⊆ Hn = ΠF→X

such that, for each i ∈ {1, · · · , n}, the closed subgroup Hi is topologically

finitely generated, and, moreover, the quotient Hi/Hi−1 is infinite.
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Proof. Write d
def
= dim(X). Let

X = Xd −−−→ Xd−1 −−−→ · · · −−−→ X1 −−−→ Spec k = X0

be a sequence of parametrizing morphisms. For each j ∈ {0, · · · , d}, write

F [j]→ Xj for the normalization in F of the scheme-theoretic image of the

composite F → X → Xj . Then it follows immediately from the various def-

initions involved, together with Lemma 1.9, that we obtain a commutative

diagram of normal varieties over k

F −−−→ F [d] −−−→ · · · −−−→ F [1] −−−→ Spec k = F [0]� � � ∥∥∥
X

=−−−→ Xd −−−→ · · · −−−→ X1 −−−→ Spec k = X0

— where the horizontal arrows are dominant and generically geometrically

connected, and the vertical arrows are finite, which implies that F [i] is of di-

mension ≤ i, and that 0 ≤ dim(F [i+1])−dim(F [i]) ≤ 1 (cf. also [4], Propo-

sition (5.5.2)). Now since F is of dimension ≥ n, one verifies easily that

there exists a uniquely determined subset {D0, · · · , Dn−1} ⊆ {0, · · · , d− 1}
of cardinality n such that, for each i ∈ {0, · · · , n − 1}, the normal vari-

ety F [Di + 1] is of dimension i + 1, but the normal variety F [Di] is of

dimension i. Write F [Dn]
def
= F . Next, let us observe that since k is of

characteristic zero, and the horizontal arrows in the above commutative

diagram of normal varieties over k are dominant and generically geomet-

rically connected, one verifies easily that, for each i ∈ {0, · · · , n}, there

exists a nonempty open subscheme U [Di] ⊆ F [Di] of F [Di] such that, for

each i ∈ {1, · · · , n}, the image of U [Di] ⊆ F [Di] by F [Di] → F [Di−1] is

contained in U [Di−1] ⊆ F [Di−1], and, moreover, the resulting morphism

U [Di]→ U [Di−1] is surjective, smooth, and geometrically connected. Thus,

we obtain a commutative diagram of normal varieties over k

U [Dn] −−−→ U [Dn−1] −−−→ · · · −−−→ U [D1] −−−→ Spec k = U [D0]� � � ∥∥∥
F [Dn] −−−→ F [Dn−1] −−−→ · · · −−−→ F [D1] −−−→ Spec k = F [D0]

— where the vertical arrows are open immersions, and the upper horizontal

arrows are surjective, smooth, and geometrically connected.
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Now, for each i ∈ {0, · · · , n}, let us write Ni ⊆ ΠF for the normal closed

subgroup obtained by forming the image of the normal closed subgroup

∆U [Dn]/U [Dn−i] ⊆ ΠU [Dn] via the outer surjection ΠU [Dn] � ΠF (cf. Lemma

1.2); Hi
def
= Ni/(Ni ∩ ∆F/X) ⊆ ΠF→X . (Thus, one verifies easily that

N0 = {1}; H0 = {1}; Nn = ΠF ; Hn = ΠF→X .) The rest of the proof

of Lemma 2.14 is devoted to verifying that this sequence of normal closed

subgroups of ΠF→X

H0 = {1} ⊆ H1 ⊆ · · · ⊆ Hn−1 ⊆ Hn = ΠF→X

satisfies the condition in the statement of Lemma 2.14.

First, let us observe that it follows from Corollary 1.11 that

∆U [Dn]/U [Dn−i], hence also Hi, is topologically finitely generated. Thus, it

remains to verify that, for each i ∈ {0, · · · , n − 1}, the quotient Hi+1/Hi

is infinite. To verify this, let a → U [Dn−i−1] be a k-valued geometric

point of U [Dn−i−1]. Write UDn−i/Dn−i−1

def
= U [Dn−i] ×U [Dn−i−1] a (which

is a smooth variety over k of dimension 1 (respectively, dim(F ) − n + 1)

if i �= 0 (respectively, i = 0) by our choices of U [Dn−i] and U [Dn−i−1]).

Then one verifies easily from Proposition 1.10, (i), applied to the morphism

U [Dn−i] → U [Dn−i−1], that the natural morphism UDn−i/Dn−i−1
→ XDn−i

(where we write XDn

def
= X) determines a sequence of profinite groups

ΠUDn−i/Dn−i−1
−−−→ Hi+1/Hi −−−→ ΠXDn−i

.

On the other hand, since (one verifies easily that) the natural morphism

UDn−i/Dn−i−1
→ XDn−i is quasi-finite, hence nonconstant, and XDn−i is

of LFG-type (cf. Proposition 2.7), the image of the outer homomorphism

ΠUDn−i/Dn−i−1
→ ΠXDn−i

, hence also the image of Hi+1/Hi → ΠXDn−i
, is

infinite. Thus, we conclude that Hi+1/Hi is infinite. This completes the

proof of Lemma 2.14. �

3. Results on the Grothendieck Conjecture for Hyperbolic Poly-

curves

In the present §3, we prove some results on the Grothendieck conjecture

for hyperbolic polycurves (cf. Theorems 3.3, 3.7, 3.8, 3.11, 3.14; Corollaries

3.12, 3.15, 3.16, 3.18, 3.20, 3.21). In the present §3, let k be a field of

characteristic zero, k an algebraic closure of k, and Gk
def
= Gal(k/k).
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Definition 3.1 (cf. [14], Definition 15.4, (i)). Let p be a prime num-

ber. Then we shall say that k is sub-p-adic if k is isomorphic to a subfield of

a finitely generated extension of the p-adic completion of the field of rational

numbers.

Proposition 3.2. Let X be a hyperbolic polycurve over k and Y an

integral variety over k. Then the following hold:

(i) Write Homdom
k (Y,X) ⊆ Homk(Y,X) for the subset of dominant mor-

phisms from Y to X over k and Homopen
Gk

(ΠY ,ΠX) ⊆ HomGk
(ΠY ,ΠX)

for the subset of open homomorphisms from ΠY to ΠX over Gk. Then

the natural map

Homdom
k (Y,X) −−−→ Homopen

Gk
(ΠY ,ΠX)/Inn(∆X/k)

(cf. Lemma 1.3) is injective.

(ii) Suppose that k is sub-p-adic for some prime number p. Then the

natural map

Homk(Y,X) −−−→ HomGk
(ΠY ,ΠX)/Inn(∆X/k)

is injective.

Proof. Write n
def
= dim(X). First, we verify assertion (i). Now I claim

that the following assertion holds:

Claim 3.2.A: If n = 1, then assertion (i) holds.

Indeed, since k is of characteristic zero, it follows that Y contains a schemat-

ically dense open subscheme which is smooth over k. Thus, by replacing Y

by such an open subscheme, we may assume without loss of generality that

Y is smooth over k. Now if k is sub-p-adic for some prime number p, then

Claim 3.2.A, follows from [14], Theorem A. Since ∆X/k is slim (cf. Proposi-

tion 2.4, (iii)), Claim 3.2.A for arbitrary k then follows by thinking of such

an arbitrary k as a direct limit of subfields that are finitely generated over

Q (hence sub-p-adic for any prime number p). This completes the proof of

Claim 3.2.A.

Next, we verify assertion (i) by induction on n. If n = 1, then asser-

tion (i) follows from Claim 3.2.A. Now suppose that n ≥ 2, and that the
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induction hypothesis is in force. Let X → Xn−1 be a parametrizing mor-

phism for X; f , g : Y → X dominant morphisms over k that induce the

same ∆X/k-conjugacy class of homomorphisms ΠY → ΠX . Then since the

composites fn−1 : Y
f→ X → Xn−1, gn−1 : Y

g→ X → Xn−1 induce the same

∆Xn−1/k-conjugacy class of homomorphisms ΠY → ΠXn−1 , it follows from

the induction hypothesis that fn−1 = gn−1. Let η → Xn−1 be a geometric

point of Xn−1 whose image is the generic point of Xn−1 and C ⊆ Y ×Xn−1 η

(where we take the implicit morphism Y → Xn−1 to be fn−1 = gn−1) an

irreducible component of Y ×Xn−1 η. Write Cred ⊆ Y ×Xn−1 η for the re-

duced closed subscheme of Y ×Xn−1 η whose support is C ⊆ Y ×Xn−1 η.

(Thus, Cred is an integral variety over η.) Then, in light of the easily ver-

ified fact that the natural morphism Cred → Y is schematically dense, by

replacing (Spec k,X, Y ) by (η,X ×Xn−1 η, Cred) and applying Proposition

2.4, (ii), (iii), we conclude that, to verify assertion (i), it suffices to apply

assertion (i) in the case where n = 1, which has already been verified. (Here,

we note that it is necessary to apply the fact that ∆Xn−1/k is center-free

(cf. Proposition 2.4, (iii)) in order to pass from ∆X/k-conjugacy classes to

∆X/Xn−1
-conjugacy classes.) This completes the proof of assertion (i).

Next, we verify assertion (ii). Write η → Y for the generic point of Y .

Fix a homomorphism Πη → ΠY arising from the natural morphism η → Y .

Then we have a natural ΠX -conjugacy class of isomorphisms ∆X×kη/η
∼→

∆X/k, (cf. Proposition 2.4, (ii)), a natural outer isomorphism ΠX×kη
∼→

ΠX ×Gk
Πη (cf. Proposition 2.4, (ii)), and a commutative diagram

Homk(Y,X) −−−→ HomGk
(ΠY ,ΠX)/Inn(∆X/k)� �

Homη(η,X ×k η) −−−→ HomΠη(Πη,ΠX×kη)/Inn(∆X×kη/η)

— where the left-hand vertical arrow is injective (cf. the fact that the

natural morphism η → Y is schematically dense). Thus, by replacing k

by the function field of Y (i.e., of η) and Y by Spec k, to verify assertion

(ii), we may assume without loss of generality that Y = Spec k. Then —

in light of Proposition 2.4, (ii) — assertion (ii) follows immediately from

[14], Theorem C, together with induction on n. This completes the proof

of assertion (ii). �
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Theorem 3.3. Let p be a prime number, k a sub-p-adic field (cf. Defi-

nition 3.1), k an algebraic closure of k, X a hyperbolic curve (cf. Definition

2.1, (i)) over k, and Y a normal variety (cf. Definition 1.4) over k. Write

Gk
def
= Gal(k/k); ΠX , ΠY for the étale fundamental groups of X, Y , re-

spectively. Let φ : ΠY → ΠX be an open homomorphism over Gk. Then φ

arises from a uniquely determined dominant morphism Y → X over k.

Proof. Since there exists a dense open subscheme of Y which is

smooth over k, this follows immediately from [14], Theorem A, together

with Lemma 2.10; Proposition 3.2, (i). �

Lemma 3.4. Let n be a positive integer; S, Y normal varieties over k;

X a hyperbolic polycurve over S of relative dimension n; φ : ΠY → ΠX an

open homomorphism over Gk. Suppose that the composite ΠY
φ→ ΠX � ΠS

arises from a morphism Y → S over k. Write S′ ⊆ S for the scheme-

theoretic image of the morphism Y → S, Z
def
= Nor(Y/S′), and η → Z for

the generic point of Z. Then the following hold:

(i) The morphism Y → Z (cf. Lemma 1.9) over k is dominant and

generically geometrically connected. In particular, Yη
def
= Y ×Z η is a

(nonempty) normal variety over η.

(ii) There exist nonempty open subschemes UY ⊆ Y , UZ ⊆ Z of Y , Z,

respectively, such that the image of UY ⊆ Y by the natural morphism

Y → Z is contained in UZ ⊆ Z, and, moreover, the resulting mor-

phism UY → UZ is surjective, smooth, and geometrically connected.

(iii) The image of the composite ∆Yη/η ↪→ ΠYη � ΠY
φ→ ΠX � ΠS (cf.

(i)) is trivial. In particular, we obtain a natural ΠX-conjugacy class

of homomorphisms ∆Yη/η → ∆X/S.

(iv) If, moreover, n = 1, k is sub-p-adic, and the image of some homo-

morphism that belongs to the ΠX-conjugacy class of homomorphisms

∆Yη/η → ∆X/S of (iii) is nontrivial, then φ arises from a morphism

Y → X over k.

Proof. Assertion (i) follows from Lemma 1.9. Assertion (ii) follows

immediately from the fact that k is of characteristic zero, together with as-

sertion (i). Assertion (iii) follows immediately from the definition of ∆Yη/η,
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together with the fact that the composite Yη ↪→ Y → S factors through

the natural morphism η → S. Finally, we verify assertion (iv). Let us

observe that since φ is open, ΠYη � ΠY is surjective (cf. Lemma 1.2),

and the subgroup ∆Yη/η ⊆ ΠYη is normal, it follows that the image of

the arrow ∆Yη/η → ∆X/S of assertion (iii) is nontrivial (by assumption!)

and normal in an open subgroup of ∆X/S ; in particular, it follows from

Proposition 2.4, (iv), together with Lemmas 1.5; 1.7, that the image of the

arrow ∆Yη/η → ∆X/S of assertion (iii) is open. Write Xη
def
= X ×S η. Let

us fix an isomorphism ΠXη

∼→ ΠX ×ΠS
Πη (cf. Proposition 2.4, (ii)) over

Πη arising from morphisms Xη → X, Xη → η over S; a homomorphism

ΠYη → ΠY ×ΠZ
Πη over Πη arising from morphisms Yη → Y , Yη → η over Z.

Then the open homomorphism φ : ΠY → ΠX determines a homomorphism

φη : ΠYη → ΠY ×ΠZ
Πη → ΠX ×ΠS

Πη
∼← ΠXη over Πη. On the other hand,

since (we have already verified that) the image of the arrow ∆Yη/η → ∆X/S

of assertion (iii) is open, it follows immediately from Proposition 2.4, (ii),

together with the various definitions involved, that the homomorphism φη
over Πη is open. Thus, since Xη is a hyperbolic curve over η, it follows from

Theorem 3.3 that φη arises from a morphism Yη → Xη over η. In particu-

lar, it follows immediately from Lemma 2.10 that φ arises from a morphism

Y → X over k. This completes the proof of assertion (iv). �

Lemma 3.5. In the notation of Lemma 3.4, suppose, moreover, that

dim(X) (= dim(S) + n) ≤ dim(Y ). Write N ⊆ ΠY for the normal closed

subgroup of ΠY obtained by forming the image of the normal closed subgroup

∆UY /UZ
⊆ ΠUY

(cf. Lemma 3.4, (ii)) of ΠUY
by the outer surjection (cf.

Lemma 1.2) ΠUY
� ΠY induced by the natural open immersion UY ↪→ Y .

Then the following hold:

(i) The image of the composite ∆Yη/η ↪→ ΠYη � ΠY , hence also the com-

posite ΠYη → ΠYη � ΠY (cf. Lemma 1.5; Lemma 3.4, (i)), coincides

with N ⊆ ΠY .

(ii) If, moreover, Y is of LFG-type, then N is infinite.

(iii) If, moreover, Y is a hyperbolic polycurve over k, then there exists a

sequence of normal closed subgroups of N

{1} = H0 ⊆ H1 ⊆ · · · ⊆ Hdim(Y )−dim(S)−1 ⊆ Hdim(Y )−dim(S) = N
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such that, for each i ∈ {1, · · · ,dim(Y ) − dim(S)}, the closed sub-

group Hi is topologically finitely generated, and, moreover, the quo-

tient Hi/Hi−1 is infinite.

Proof. Let η → UZ be a geometric point of UZ whose image is the

generic point η of UZ . Write Yη
def
= Y ×Z η and (UY )η

def
= UY ×UZ

η. (Note

that Yη (respectively, (UY )η) is a normal (respectively, smooth) variety over η

of dimension ≥ dim(Y )−dim(S) by Lemma 3.4, (i) (respectively, our choice

of (UY , UZ)) — cf. also [4], Théorème (5.5.8).) First, we verify assertion (i).

It follows from Lemma 1.5 that we have a natural ΠYη -conjugacy class of

isomorphisms ΠYη

∼→ ∆Yη/η; moreover, it follows from Proposition 1.10,

(i), together with our choice of (UY , UZ), that there exists a natural ΠUY
-

conjugacy class of surjections Π(UY )η � ∆UY /UZ
. Thus, one verifies easily

from the surjectivity of Π(UY )η � ΠYη (cf. Lemma 1.2) that the image of the

composite ∆Yη/η ↪→ ΠYη � ΠY coincides with N ⊆ ΠY . This completes the

proof of assertion (i). Next, we verify assertion (ii). It follows immediately

from our choice of (UY , UZ) that the geometric fiber F of UY → UZ at

a k-valued geometric point of UZ is a smooth variety over k of dimension

≥ dim(Y ) − dim(S) > 0. In particular, one verifies easily that the natural

morphism F → Y ×k k over k is nonconstant. Thus, since (we have assumed

that) Y is of LFG-type, it follows immediately from Lemma 1.5 that the

image of ΠF → ΠY induced by the natural morphism F → Y is infinite.

On the other hand, one verifies easily that ΠF → ΠY factors through the

composite ∆UY /UZ
↪→ ΠUY

� ΠY . Thus, it follows immediately from the

definition of N that N is infinite. This completes the proof of assertion

(ii). Finally, we verify assertion (iii). Observe that the natural morphism

Yη → Y factors through a natural closed immersion Yη ↪→ Y ×k η. Thus,

since Y ×k η is a hyperbolic polycurve over η, it follows from Lemma 2.14

that the image of ΠYη → ΠY×kη admits a sequence of closed subgroups as

in the statement of assertion (iii). On the other hand, any homomorphism

ΠY×kη → ΠY that arises from the morphism Y ×k η
pr1→ Y determines an

isomorphism ΠY×kη
∼→ ∆Y/k (cf. Lemma 1.5; Proposition 2.4, (ii)). Thus,

it follows immediately from assertion (i) that assertion (iii) holds. This

completes the proof of assertion (iii). �

Definition 3.6. Let X, Y be normal varieties over k and φ : ΠY →
ΠX a homomorphism over Gk.



192 Yuichiro Hoshi

(i) We shall say that φ is nondegenerate if φ is open, and, moreover,

for any open subscheme U ⊆ Y , any normal variety Z over k such

that dim(Z) < dim(X), and any smooth, geometrically connected,

surjective morphism U → Z over k, the composite ΠU � ΠY → ΠX of

the outer homomorphism ΠU � ΠY induced by the open immersion

U ↪→ Y and the outer homomorphism ΠY → ΠX determined by φ

does not factor through the outer homomorphism ΠU → ΠZ induced

by the morphism U → Z.

(ii) Suppose that X is a hyperbolic polycurve of relative dimension n over

k. Then we shall say that the homomorphism φ is poly-nondegenerate

if there exists a sequence of parametrizing morphisms

X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X1 −−−→ Spec k = X0

such that, for each i ∈ {0, · · · , n}, the composite ΠY → ΠX � ΠXi of

the outer homomorphism ΠY → ΠX determined by φ and the natural

outer homomorphism ΠX � ΠXi is nondegenerate (cf. (i)).

Theorem 3.7. Let p be a prime number, k a sub-p-adic field (cf. Def-

inition 3.1), k an algebraic closure of k, X a hyperbolic polycurve (cf.

Definition 2.1, (ii)) over k, and Y a normal variety (cf. Definition 1.4)

over k. Write Gk
def
= Gal(k/k); ΠX , ΠY for the étale fundamental groups

of X, Y , respectively; ∆X/k ⊆ ΠX for the kernel of the natural surjection

ΠX � Gk; Homdom
k (Y,X) for the set of dominant morphisms from X to

Y over k; HomPND
k (ΠY ,ΠX) for the set of poly-nondegenerate homomor-

phisms (cf. Definition 3.6, (ii)) from ΠY to ΠX over Gk. Then the natural

map

Homdom
k (Y,X) −−−→ HomGk

(ΠY ,ΠX)/Inn(∆X/k)

determines a bijection

Homdom
k (Y,X)

∼−−−→ HomPND
Gk

(ΠY ,ΠX)/Inn(∆X/k) .

Proof. First, I claim that the following assertion holds:
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Claim 3.7.A: Any (necessarily open — cf. Lemma 1.3) homo-

morphism φf : ΠY → ΠX over Gk that arises from a dominant

morphism f : Y → X over k is poly-nondegenerate.

Indeed, suppose that there exist a sequence of parametrizing morphisms

X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X1 −−−→ Spec k = X0 ,

an integer i ∈ {0, · · · , n}, an open subscheme U ⊆ Y of Y , a normal vari-

ety Z over k, and a smooth, geometrically connected, surjective morphism

U → Z over k such that the composite ΠU � ΠY
φf→ ΠX � ΠXi factors

through ΠU → ΠZ . Then, by applying Lemma 2.9 (where we take the data

“(S, Y, Z,X, f)” in the statement of Lemma 2.9 to be (Spec k, Z, U,Xi, U ↪→
Y

f→ X → Xi)), we conclude that the composite U ↪→ Y
f→ X → Xi fac-

tors through U → Z. In particular, since f is dominant, it holds that

dim(Z) ≥ i. This completes the proof of Claim 3.7.A.

It follows from Claim 3.7.A, together with Proposition 3.2, (ii), that, to

verify Theorem 3.7, it suffices to verify the surjectivity of the natural map

Homdom
k (Y,X) −−−→ HomPND

Gk
(ΠY ,ΠX)/Inn(∆X/k) .

Let φ : ΠY → ΠX be a poly-nondegenerate homomorphism over Gk and

X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X1 −−−→ Spec k = X0

a sequence of parametrizing morphisms as in Definition 3.6, (ii). Now I

claim that the following assertion holds:

Claim 3.7.B: Suppose that there exists a morphism f : Y → X

over k from which φ arises. Then f is dominant.

Indeed, assume that f is not dominant. Write X ′ ⊆ X for the scheme-

theoretic image of f and S
def
= Nor(Y/X ′). Then since the natural morphism

Y → S over k is dominant and generically geometrically irreducible (cf.

Lemma 1.9), and k is of characteristic zero, one verifies easily that there

exist open subschemes UY ⊆ Y , US ⊆ S of Y , S, respectively, such that

the image of UY ⊆ Y by Y → S is contained in US ⊆ S, and, moreover,

the resulting morphism UY → US is surjective, smooth, and geometrically

connected. On the other hand, since f is not dominant, one verifies easily
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that X ′, hence also US , is of dimension < dim(X). Thus, since φ is poly-

nondegenerate, we obtain a contradiction. This completes the proof of Claim

3.7.B.

Next, let us observe that, to verify that φ arises from a dominant mor-

phism Y → X over k, it suffices to verify that the following assertion holds:

Claim 3.7.C: For each i ∈ {0, · · · , n−1}, if the composite ΠY
φ→

ΠX � ΠXi arises from a dominant morphism Y → Xi over k,

then the composite ΠY
φ→ ΠX � ΠXi+1 arises from a dominant

morphism Y → Xi+1 over k.

The rest of the proof of Theorem 3.7 is devoted to verifying Claim 3.7.C.

Write Z
def
= Nor(Y/Xi); η → Z for the generic point of Z, Yη

def
= Y ×Z η.

Now I claim that the following assertion holds:

Claim 3.7.C.1: The image of any homomorphism that belongs

to the ΠXi+1-conjugacy class of homomorphisms ∆Yη/η →
∆Xi+1/Xi

of Lemma 3.4, (iii) (where we take the data “(S, Y,X)”

in the statement of Lemma 3.4 to be (Xi, Y,Xi+1)), is nontrivial.

Indeed, assume that the arrow ∆Yη/η → ∆Xi+1/Xi
of Lemma 3.4, (iii), is

trivial. Then it follows immediately from Lemma 3.4, (ii); Lemma 3.5, (i),

that there exists a nonempty open subschemes UY ⊆ Y , UZ ⊆ Z such

that the natural morphism Y → Z induces a morphism UY → UZ which is

surjective, smooth, and geometrically connected, and, moreover, the image of

the composite ∆UY /UZ
↪→ ΠUY

� ΠY
φ→ ΠX � ΠXi+1 is trivial. (Here, we

note that it follows immediately from the existence of the poly-nondegenerate

homomorphism φ, together with the definition of poly-nondegeneracy, that

dim(X) ≤ dim(Y ).) Thus, it follows immediately that the composite ΠUY
�

ΠY
φ→ ΠX � ΠXi+1 factors through ΠUY

� ΠUZ
. On the other hand, since

dim(Z) = i < i+ 1 = dim(Xi+1), and φ is poly-nondegenerate, we obtain a

contradiction. This completes the proof of Claim 3.7.C.1.

It follows from Claim 3.7.C.1, together with Lemma 3.4, (iv), that the

composite ΠY
φ→ ΠX � ΠXi+1 arises from a (necessarily dominant — cf.

Claim 3.7.B) morphism Y → Xi+1 over k. This completes the proof of

Claim 3.7.C, hence also of Theorem 3.7. �
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Theorem 3.8. Let p be a prime number; k a sub-p-adic field (cf. Defi-

nition 3.1); k an algebraic closure of k; Y , S normal varieties (cf. Definition

1.4) over k; X a hyperbolic curve (cf. Definition 2.1, (i)) over S. Write

Gk
def
= Gal(k/k); ΠX , ΠY , ΠS for the étale fundamental groups of X, Y , S,

respectively. Let φ : ΠY → ΠX be a homomorphism over Gk. Suppose that

the following conditions are satisfied:

(1) The composite ΠY
φ→ ΠX � ΠS arises from a morphism Y → S over

k.

(2) φ is open, and its kernel is finite.

(3) Y is of LFG-type (cf. Definition 2.5).

(4) dim(X) (= dim(S) + 1) ≤ dim(Y ).

Then φ arises from a quasi-finite dominant morphism Y → X over k. In

particular, dim(X) = dim(Y ).

Proof. Let us observe that, in light of Lemma 2.6, (ii), by applying

Lemmas 3.4, (iv); 3.5, (i) (where we take the data “(S, Y,X, φ)” in the

statement of Lemma 3.4 to be (S, Y,X, φ)), to verify that φ arises from

a quasi-finite morphism Y → X over k (which is necessarily dominant by

condition (4)), it suffices to verify that the image of the closed subgroupN ⊆
ΠY defined in the statement of Lemma 3.5 by φ : ΠY → ΠX is nontrivial.

On the other hand, since Y is of LFG-type, it follows from Lemma 3.5,

(ii), that N is infinite. Thus, it follows from condition (2) that the image

of N ⊆ ΠY by φ : ΠY → ΠX is nontrivial. This completes the proof of

Theorem 3.8. �

Definition 3.9. Let n be a positive integer. Then we shall say that

the assertion (†n) holds if, for any hyperbolic polycurve X of dimension n

over k, ΠX does not admit a sequence of closed subgroups of ΠX

{1} = H0 ⊆ H1 ⊆ · · · ⊆ Hn ⊆ Hn+1 = ΠX

such that, for each i ∈ {0, · · · , n}, the closed subgroup Hi is topologically

finitely generated and normal in Hi+1, and, moreover, the quotient Hi+1/Hi

is infinite.
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Lemma 3.10. The assertion (†1) (cf. Definition 3.9) holds.

Proof. This follows immediately from Proposition 2.4, (iv). �

Theorem 3.11. Let n be a positive integer, p a prime number, k a

sub-p-adic field (cf. Definition 3.1), k an algebraic closure of k, S a normal

variety (cf. Definition 1.4) over k, X a hyperbolic polycurve (cf. Definition

2.1, (ii)) of relative dimension n over S, and Y a hyperbolic polycurve over

k. Write Gk
def
= Gal(k/k); ΠX , ΠY , ΠS for the étale fundamental groups

of X, Y , S, respectively. Let φ : ΠY → ΠX be a homomorphism over Gk.

Suppose that the following conditions are satisfied:

(1) The composite ΠY
φ→ ΠX � ΠS arises from a morphism Y → S over

k.

(2) φ is an open injection.

(3) dim(X) (= dim(S) + n) ≤ dim(Y ).

(4) For each i ∈ {1, · · · , n − 1}, the assertion (†i) (cf. Definition 3.9)

holds.

Then φ arises from a quasi-finite dominant morphism Y → X over k. In

particular, dim(X) = dim(Y ).

Proof. Let

X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X2 −−−→ X1 −−−→ S = X0

be a sequence of parametrizing morphisms. Fix a surjection (cf. Proposition

2.4, (i)) ΠX � ΠX1 over Gk that arises from the morphism X → X1 over

k. First, I claim that the following assertion holds:

Claim 3.11.A: If n ≥ 2, then the composite ΠY → ΠX1 of

φ : ΠY → ΠX and the fixed surjection ΠX � ΠX1 arises from a

morphism Y → X1 over k.

Indeed, write S′ ⊆ S for the scheme-theoretic image of the morphism Y → S

(cf. condition (1)), Z
def
= Nor(Y/S′); η → Z for the generic point of Z;

Yη
def
= Y ×Z η. Then, to verify Claim 3.11.A, by applying Lemmas 3.4, (iv);



Grothendieck Conjecture for Hyperbolic Polycurves 197

3.5, (i) (where we take the data “(S, Y,X, φ)” in the statement of Lemma

3.4 to be “(S, Y,X1,ΠY
φ→ ΠX � ΠX1)”), it suffices to verify that the image

of N ⊆ ΠY defined in the statement of Lemma 3.5 in ΠX1 is nontrivial. To

verify this, assume that the image of N ⊆ ΠY in ΠX1 is trivial, i.e., that the

image of N ⊆ ΠY in ΠX is contained in ∆X/X1
⊆ ΠX . On the other hand,

since N ⊆ ΠY is normal in ΠY , and φ is an open injection, it follows that the

image of N in ΠX is normal in an open subgroup of ΠX . In particular, again

since φ is an open injection, we conclude that there exists an open subgroup

U ⊆ ∆X/X1
of ∆X/X1

such that if, for each i ∈ {0, · · · ,dim(Y )− dim(S)},
we write HU

i ⊆ ∆X/X1
for the image, via φ, in ∆X/X1

of the subgroup “Hi”

in the statement of Lemma 3.5, (iii), for our “N”, then

• HU
dim(Y )−dim(S) ⊆ U (so we obtain a sequence of closed subgroups of

U

{1} = HU
0 ⊆ HU

1 ⊆ · · · ⊆ HU
dim(Y )−dim(S)−1

⊆ HU
dim(Y )−dim(S) ⊆ HU

dim(Y )−dim(S)+1
def
= U),

• for each i ∈ {1, · · · ,dim(Y ) − dim(S) + 1}, the closed subgroup HU
i

is topologically finitely generated,

• for each i ∈ {1, · · · ,dim(Y ) − dim(S)}, the closed subgroup HU
i is

normal in HU
dim(Y )−dim(S),

• the closed subgroup HU
dim(Y )−dim(S) ⊆ HU

dim(Y )−dim(S)+1 is normal in

HU
dim(Y )−dim(S)+1, and,

• for each i ∈ {1, · · · ,dim(Y )− dim(S)}, the quotient HU
i /H

U
i−1 is infi-

nite.

Now let us recall that we have assumed that n ≤ dim(Y )−dim(S), and that

the assertion (†n−1) holds. Moreover, it follows immediately from Propo-

sitions 2.3; 2.4, (ii), that U may be regarded as the “ΠX” associated to a

hyperbolic polycurve over k of dimension n− 1. Thus,

• if HU
dim(Y )−dim(S)+1/H

U
dim(Y )−dim(S) is finite, then by replacing U (=

HU
dim(Y )−dim(S)+1) by HU

dim(Y )−dim(S) and, for each i ∈ {1, · · · , n},
taking the “Hi” in Definition 3.9 (in the case where we take the
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“ΠX” in Definition 3.9 to be U — cf. the above discussion) to be

HU
dim(Y )−dim(S)−n+i, and

• if HU
dim(Y )−dim(S)+1/H

U
dim(Y )−dim(S) is infinite, then, for each i ∈

{1, · · · , n}, by taking the “Hi” in Definition 3.9 (in the case where we

take the “ΠX” in Definition 3.9 to be U — cf. the above discussion)

to be HU
dim(Y )−dim(S)−n+1+i,

we obtain a contradiction. This completes the proof of Claim 3.11.A.

By applying Claim 3.11.A inductively and replacing S byXn−1, to verify

Theorem 3.11, we may assume without loss of generality that X is a hyper-

bolic curve over S. Then it follows from Theorem 3.8, together with Propo-

sition 2.7, that φ arises from a quasi-finite dominant morphism Y → X over

k. This completes the proof of Theorem 3.11. �

Corollary 3.12. Let p be a prime number, k a sub-p-adic field (cf.

Definition 3.1), k an algebraic closure of k, S a normal variety (cf. Def-

inition 1.4) over k, X a hyperbolic polycurve (cf. Definition 2.1, (ii)) of

dimension 2 over S, and Y a hyperbolic polycurve over k. Write Gk
def
=

Gal(k/k); ΠX , ΠY , ΠS for the étale fundamental groups of X, Y , S, re-

spectively. Let φ : ΠY → ΠX be a homomorphism over Gk. Suppose that

the following conditions are satisfied:

(1) The composite ΠY
φ→ ΠX � ΠS arises from a morphism Y → S over

k.

(2) φ is an open injection.

(3) dim(X) (= dim(S) + 2) ≤ dim(Y ).

Then φ arises from a quasi-finite dominant morphism Y → X over k. In

particular, dim(X) = dim(Y ).

Proof. This follows from Theorem 3.11, together with Lemma 3.10. �

Lemma 3.13. Let G1, G2 be profinite groups; H1 ⊆ G1, H2 ⊆ G2

closed subgroups; φ : G1 → G2 a homomorphism. Suppose that φ(H1) ⊆ H2.

Then the homomorphism H1 → H2 induced by φ is surjective if and only if

the following condition is satisfied: For any open subgroup U ⊆ G2 of G2
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and any normal open subgroup N ⊆ U of U , if the composite H2∩U ↪→ U �
U/N is surjective, then the composite H1∩φ−1(U) ↪→ φ−1(U)

φ→ U � U/N

is surjective.

Proof. This follows immediately from the various definitions in-

volved. �

Theorem 3.14. Let p be a prime number, k a sub-p-adic field (cf.

Definition 3.1), k an algebraic closure of k, X a hyperbolic polycurve (cf.

Definition 2.1, (ii)) of dimension 2 over k, and Y a normal variety (cf.

Definition 1.4) over k. Write Gk
def
= Gal(k/k); ΠX , ΠY for the étale fun-

damental groups of X, Y , respectively. Let φ : ΠY → ΠX be an open ho-

momorphism over Gk. Suppose that the kernel of φ is topologically finitely

generated. Then φ arises from a uniquely determined dominant morphism

Y → X over k. In particular, Y is of dimension ≥ 2.

Proof. First, let us observe that it follows from Proposition 2.3 that,

by replacing X by the connected finite étale covering of X corresponding

to the image of φ, to verify Theorem 3.14, we may assume without loss of

generality that φ is surjective. Let X → X1 be a parametrizing morphism

for X. Then since both the kernel of φ (by assumption) and the kernel

∆X/X1
of the outer surjection (cf. Proposition 2.4, (i)) ΠX � ΠX1 (by

Proposition 2.4, (iii)) are topologically finitely generated, it follows from

Theorem 3.3, together with the implication (2) ⇒ (3) of Lemma 2.11, that

the composite ΠY
φ→ ΠX � ΠX1 arises from a morphism Y → X1 over k

which is surjective and generically geometrically connected. Write η → X1

for the generic point of X1; Yη
def
= Y ×X1 η; Xη

def
= X ×X1 η. (Thus, Yη is a

normal variety over η.)

Now I claim that the following assertion holds:

Claim 3.14.A: Any homomorphism that belongs to the ΠX -

conjugacy class of homomorphisms ∆Yη/η → ∆X/X1
of Lemma

3.4, (iii) (where we take the data “(S, Y,X)” in the statement

of Lemma 3.4 to be “(X1, Y,X)”), is surjective.

Indeed, it follows immediately from Lemma 3.13 that, to verify Claim

3.14.A, it suffices to verify that the following assertion holds:
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Claim 3.14.A.1: Let X ′ → X be a connected finite étale cover-

ing of X and X ′′ → X ′ a connected finite étale Galois covering

of X ′. Write Y ′ → Y for the connected finite étale covering of Y

corresponding to X ′ → X via φ; Y ′′ → Y ′ for the connected fi-

nite étale Galois covering of Y ′ corresponding to X ′′ → X ′ via φ.

Write, moreover, Y ′
η

def
= Y ′ ×X1 η (= Y ′ ×Y Yη); Y

′′
η

def
= Y ′′ ×X1 η

(= Y ′′×Y Yη). (Here, let us observe that since the natural mor-

phism Yη → Y induces an outer surjection ΠYη � ΠY — cf.

Lemma 1.2 — it holds that Y ′
η and Y ′′

η are connected.) Suppose

that the composite ∆X/X1
∩ΠX′ ↪→ ΠX′ � ΠX′/ΠX′′ is surjec-

tive. Then the composite ∆Yη/η ∩ ΠY ′
η
↪→ ΠY ′

η
� ΠY ′

η
/ΠY ′′

η
is

surjective.

Now, to verify Claim 3.14.A.1, let us observe that, in the notation of Claim

3.14.A.1, it follows immediately from Proposition 2.3 that the sequence of

schemes X ′ → X ′
1

def
= Nor(X ′/X1) → X ′

0
def
= Nor(X ′/Spec k) determines a

structure of hyperbolic polycurve of dimension 2 on X ′, and, moreover, the

natural morphisms X ′
1 → X1, η

′ → η — where we write η′ → X ′
1 for the

generic point ofX ′
1 — are connected finite étale coverings. In particular, one

verifies easily that the natural inclusions ΠX′ ↪→ ΠX , ΠY ′
η
↪→ ΠYη determine

equalities

∆X/X1
∩ΠX′ = ∆X′/X′

1
, ∆Yη/η ∩ΠY ′

η
= ∆Y ′

η/η
′ .

Thus, to verify Claim 3.14.A, i.e., Claim 3.14.A.1, by replacing X by X ′,
it suffices to verify that the following assertion holds (cf. also Lemma 1.5;

Proposition 2.4, (ii)):

Claim 3.14.A.2: In the notation of Claim 3.14.A.1, let η → X1

be a geometric point of X1 whose image is the generic point η.

Suppose that X ′′ → X is Galois, and that X ′′×X1 η is connected.

Then Y ′′
η ×η η (= Y ′′ ×X1 η) is connected.

Now, to verify Claim 3.14.A.2, let us observe that since X ′′ ×X1 η is con-

nected, i.e., X ′′ → X1 is generically geometrically connected, and (one ver-

ifies easily that) the composite X ′′ → X → X1 is smooth and surjective,

it follows from the implication (1) ⇒ (2) of Lemma 2.11 that the com-

posite ΠX′′ ↪→ ΠX � ΠX1 is surjective, and its kernel is topologically
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finitely generated. Thus, since (we have assumed that) the kernel of φ is

topologically finitely generated, it follows immediately that the composite

ΠY ′′ � ΠX′′ ↪→ ΠX � ΠX1 (where the first arrow is the surjection in-

duced by φ) is surjective, and its kernel is topologically finitely generated.

Therefore, by the implication (2) ⇒ (3) of Lemma 2.11, we conclude that

the natural morphism Y ′′ → X1 is surjective and generically geometrically

connected; in particular, Y ′′×X1 η is connected. This completes the proof of

Claim 3.14.A.2, hence also of Claim 3.14.A.

It follows from Claim 3.14.A, together with Lemma 3.4, (iv), that φ arises

from a uniquely determined (cf. Proposition 3.2, (ii)) morphism Y → X over

k. On the other hand, since the composite Y → X → X1 is dominant, one

verifies easily from Claim 3.14.A, together with Proposition 2.4, (iii), that

this morphism Y → X is dominant. This completes the proof of Theorem

3.14. �

Remark 3.14.1. The argument given in the proof of Theorem 3.14 is

essentially the same as the argument applied in [14] to prove [14], Theorem

D.

Corollary 3.15. Let p be a prime number, k a sub-p-adic field (cf.

Definition 3.1), k an algebraic closure of k, Y a normal variety (cf. Defi-

nition 1.4) over k, and X a hyperbolic polycurve (cf. Definition 2.1, (ii))

of dimension 3 over k. Write Gk
def
= Gal(k/k); ΠX , ΠY for the étale funda-

mental groups of X, Y , respectively. Let φ : ΠY → ΠX be a homomorphism

over Gk. Suppose that the following conditions are satisfied:

(1) φ is open, and its kernel is finite.

(2) Y is of LFG-type (cf. Definition 2.5).

(3) 3 ≤ dim(Y ).

Then φ arises from a uniquely determined quasi-finite dominant morphism

Y → X over k. In particular, Y is of dimension 3.

Proof. Let X → X2 be a parametrizing morphism for X. Then

it follows immediately from condition (1), together with Proposition 2.4,

(iii), that the kernel of the composite ΠY
φ→ ΠX � ΠX2 is topologically
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finitely generated. Thus, it follows from Theorem 3.14 that the composite

ΠY
φ→ ΠX � ΠX2 arises from a uniquely determined dominant morphism

Y → X2 over k. In particular, it follows from Proposition 3.2, (ii); Theorem

3.8, together with Lemma 2.6, (ii), that φ arises from a uniquely determined

quasi-finite dominant morphism Y → X over k. This completes the proof

of Corollary 3.15. �

Corollary 3.16. Let p be a prime number, k a sub-p-adic field (cf.

Definition 3.1), k an algebraic closure of k, X a hyperbolic polycurve (cf.

Definition 2.1, (ii)) of dimension 4 over k, and Y a hyperbolic polycurve

over k. Write Gk
def
= Gal(k/k); ΠX , ΠY for the étale fundamental groups of

X, Y , respectively. Let φ : ΠY → ΠX be a homomorphism over Gk. Suppose

that the following conditions are satisfied:

(1) φ is an open injection (respectively, isomorphism).

(2) 4 ≤ dim(Y ).

Then φ arises from a uniquely determined finite étale covering (respectively,

uniquely determined isomorphism) Y → X over k. In particular, dim(Y ) =

4.

Proof. First, let us observe that, to verify Corollary 3.16, by replacing

ΠX by the image of φ (cf. condition (1); Proposition 2.3), we may assume

without loss of generality that φ is an isomorphism over Gk. Let X → X3 be

a parametrizing morphism for X and X3 → X2 a parametrizing morphism

for X3. Then it follows immediately from our assumption that φ is an

isomorphism, together with Proposition 2.4, (iii), that the kernel of the

composite ΠY
φ→ ΠX � ΠX2 is topologically finitely generated. Thus, it

follows from Theorem 3.14 that the composite ΠY
φ→ ΠX � ΠX2 arises

from a uniquely determined dominant morphism Y → X2 over k. Moreover,

it follows from Corollary 3.12 that φ arises from a quasi-finite dominant

morphism Y → X over k; thus, it holds that 4 = dim(X) = dim(Y ).

Therefore, in light of Proposition 3.2, (ii), by applying a similar argument

to the above argument to φ−1, we conclude that the morphism Y → X is

an isomorphism. This completes the proof of Corollary 3.16. �

Definition 3.17. Let n be a positive integer and X an algebraic stack

over k. Then we shall say that X is a hyperbolic orbi-polycurve of dimension
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n over k if X admits a dense open substack that is a scheme, is geometrically

connected over k, and, moreover, admits a finite étale Galois covering that

is a hyperbolic polycurve of dimension n over some finite extension of k.

Corollary 3.18. Let p be a prime number; nX , nY positive integers;

k a sub-p-adic field (cf. Definition 3.1); k an algebraic closure of k; X,

Y hyperbolic orbi-polycurves of dimension nX , nY over k, respectively (cf.

Definition 3.17). Write Gk
def
= Gal(k/k); ΠX , ΠY for the étale fundamental

groups of X, Y , respectively; Isomk(X,Y ) for the set of isomorphisms of X

with Y over k; IsomGk
(ΠX ,ΠY ) for the set of isomorphisms of ΠX with ΠY

over Gk; ∆Y/k for the kernel of the natural surjection ΠY � Gk. Suppose

that either nX ≤ 4 or nY ≤ 4. Then the natural map

Isomk(X,Y ) −−−→ IsomGk
(ΠX ,ΠY )/Inn(∆Y/k)

is bijective.

Proof. First, let us observe that the injectivity in question follows

immediately from Propositions 2.3; 3.2, (ii), together with the definition of

a hyperbolic orbi-polycurve. Thus, it remains to verify the surjectivity in

question. Let φ : ΠX
∼→ ΠY be an isomorphism over Gk. Now I claim that

the following assertion holds:

Claim 3.18.A: If X and Y are hyperbolic polycurves over k, then

φ arises from an isomorphism X
∼→ Y over k.

Indeed, let us first observe that, to verify that φ arises from an isomorphism

X
∼→ Y over k, by replacing (X,Y, φ) by (Y,X, φ−1) if necessary, we may

assume without loss of generality that nX ≥ nY ; in particular, since (we

have assumed that) either nX ≤ 4 or nY ≤ 4, it holds that nY ≤ 4. Thus, it

follows from Theorem 3.8; Corollaries 3.12, 3.15, 3.16, together with Propo-

sition 2.7, that φ arises from a uniquely determined quasi-finite dominant

morphism X → Y over k. In particular, we obtain that nX = nY ≤ 4.

Thus, again by applying Theorem 3.8; Corollaries 3.12, 3.15, 3.16, together

with Proposition 2.7, to φ−1, we conclude from Proposition 3.2, (ii), that

the morphismX → Y is an isomorphism. This completes the proof of Claim

3.18.A.

Next, I claim that the following assertion holds:
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Claim 3.18.B: φ arises from an isomorphism X
∼→ Y over k.

Indeed, it follows from the definition of a hyperbolic orbi-polycurve, to-

gether with Proposition 2.3, that there exist a finite extension kZ (⊆ k)

of k and an normal open subgroup HX ⊆ ΠX of ΠX such that the con-

nected finite étale Galois coverings ZX → X, ZY → Y corresponding to

HX ⊆ ΠX , HY
def
= φ(HX) ⊆ ΠY are hyperbolic polycurves over kZ . Then

it follows from Claim 3.18.A that the isomorphism HX
∼→ HY induced by

φ arises from an isomorphism ZX
∼→ ZY over kZ . On the other hand,

since (we already verified that) the natural map in question is injective,

and the isomorphism φ is compatible with the natural outer actions of

ΠX/HX = Gal(ZX/X), ΠY /HY = Gal(ZY /Y ) on HX , HY , respectively

— relative to the isomorphism ΠX/HX
∼→ ΠY /HY induced by φ — we con-

clude that the isomorphism ZX
∼→ ZY is compatible with the natural actions

of ΠX/HX = Gal(ZX/X), ΠY /HY = Gal(ZY /Y ) on ZX , ZY , respectively

— relative to the isomorphism ΠX/HX
∼→ ΠY /HY induced by φ. Thus, by

descending the isomorphism ZX
∼→ ZY , we obtain an isomorphism X

∼→ Y

over k, which, by the various definitions involved (cf. also the slimness

property discussed in Proposition 2.4, (iii)), belongs to the ∆Y/k-conjugacy

class of isomorphisms ΠX
∼→ ΠY determined by φ. This completes the proof

of Claim 3.18.B, hence also of Corollary 3.18. �

Remark 3.18.1. It seems most likely to the author that the assertion

(†n) (cf. Definition 3.9) holds for every positive integer n. However, it is

not clear to the author at the time of writing whether or not there exists an

integer n > 1 for which the assertion (†n) can be proven. Here, let us observe

that if one proves that the assertion (†n) holds for every positive integer

n, then it follows immediately from a similar argument to the argument

applied in the proof of Corollary 3.18 — except that instead of applying

Theorem 3.8; Corollaries 3.12, 3.15, 3.16, one applies Theorem 3.11 — that

the conclusion of Corollary 3.18 holds without the assumption made in the

statement of Corollary 3.18 that “either nX ≤ 4 or nY ≤ 4”.

Proposition 3.19. Let kX , kY be finitely generated extension fields

of the field of rational numbers; kX , kY algebraic closures of kX , kY , re-

spectively. Write GkX
def
= Gal(kX/kX) and GkY

def
= Gal(kY /kY ). Then the

following hold:
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(i) Let H ⊆ GkX be a closed subgroup of GkX . Suppose that H is topo-

logically finitely generated and normal in an open subgroup of GkX .

Then H is trivial.

(ii) Write Isom(kX/kX , kY /kY ) for the set of isomorphisms kX
∼→ kY that

determine isomorphisms kX
∼→ kY . Then the natural map

Isom(kX/kX , kY /kY ) −−−→ Isom(GkY , GkX )

is bijective.

Proof. Assertion (i) follows from [1], Theorem 13.4.2; [1], Proposition

16.11.6. Assertion (ii) follows from the main result of [20] (cf. also [22] for

a survey on [20]). �

Corollary 3.20. Let kX , kY fields of characteristic zero; kX , kY
algebraic closures of kX , kY , respectively; n a positive integer; X a hy-

perbolic polycurve (cf. Definition 2.1, (ii)) of dimension n over kX ; Y a

normal variety (cf. Definition 1.4) over kY . Write GkX
def
= Gal(kX/kX);

GkY
def
= Gal(kY /kY ); ΠX , ΠY for the étale fundamental groups of X, Y ,

respectively. Let φ : ΠY → ΠX be an open homomorphism. Suppose that

one of the following conditions (1), (2), (3), (4) is satisfied:

(1) n = 1.

(2) The following conditions are satisfied:

(2-i) n = 2.

(2-ii) The kernel of φ is topologically finitely generated.

(3) The following conditions are satisfied:

(3-i) n = 3.

(3-ii) The kernel of φ is finite.

(3-iii) Y is of LFG-type (cf. Definition 2.5).

(3-iv) 3 ≤ dim(Y ).

(4) The following conditions are satisfied:
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(4-i) n = 4.

(4-ii) φ is injective.

(4-iii) Y is a hyperbolic polycurve over kY .

(4-iv) 4 ≤ dim(Y ).

Then the following hold:

(i) Suppose that both kX , kY are finitely generated over the field of ra-

tional numbers. Then the open homomorphism φ lies over an open

homomorphism GkY → GkX .

(ii) In the situation of (i), suppose that the homomorphism GkY → GkX

obtained in (i) is injective. Then φ arises from a dominant morphism

Y → X.

(iii) Suppose that both kX , kY are finite extensions of the p-adic completion

of the field of rational numbers for some prime number p. Suppose,

moreover, that one of the following three conditions is satisfied:

(iii-a) The open homomorphism φ lies over an open homomorphism

GkY → GkX that arises from a homomorphism kX ↪→ kY of

fields.

(iii-b) There exist hyperbolic curves (cf. Definition 2.1, (i)) ZX →
Spec kX , ZY → Spec kY of quasi-Belyi type (cf. [17], Defini-

tion 2.3, (iii)) and morphisms X → ZX , Y → ZY over kX , kY ,

respectively, such that if we write ΠZX
, ΠZY

for the étale funda-

mental groups of ZX , ZY , respectively, then the homomorphism

φ lies over an isomorphism ΠZY

∼→ ΠZX
.

(iii-c) The open homomorphism φ lies over an open homomorphism

GkY → GkX , and, moreover, there exist a hyperbolic curve Z

over kX and a dominant morphism X → Z over kX such that

if we write ΠZ for the étale fundamental group of Z, then the

extension ΠZ of GkX is of A-qLT-type (cf. [18], Definition 3.1,

(v)).

Then φ arises from a dominant morphism Y → X.



Grothendieck Conjecture for Hyperbolic Polycurves 207

Proof. Assertion (i) follows immediately, by considering the compos-

ite ∆Y/kY ↪→ ΠY
φ→ ΠX � GkX , from Lemmas 1.5, 1.7; Proposition 3.19,

(i). Next, we verify assertion (ii). Let us first observe that, in light of

Proposition 2.3, by replacing ΠX by the image of φ, to verify assertion (ii),

we may assume without loss of generality that φ, hence also the injection

GkY ↪→ GkX obtained by assertion (i), is surjective. Then it follows from

Proposition 3.19, (ii), that the isomorphism GkY
∼→ GkX arises from an iso-

morphism kX
∼→ kY that determines an isomorphism kX

∼→ kY . In particu-

lar, to verify assertion (ii), by replacing (X, kX , kX) by (X ×kX kY , kY , kY )

and applying Proposition 2.4, (ii), we may assume without loss of generality

that (kX , kX) = (kY , kY ). On the other hand, since (kX , kX) = (kY , kY ),

assertion (ii) follows from Theorems 3.3, 3.14; Corollaries 3.15, 3.16. This

completes the proof of assertion (ii).

Finally, we verify assertion (iii). Now I claim that the following assertion

holds:

Claim 3.20.A: If either condition (iii-b) or condition (iii-c)

holds, then condition (iii-a) holds.

Indeed, suppose that condition (iii-b) is satisfied. Then let us observe that

it follows from [17], Corollary 2.3, that the isomorphism ΠZY

∼→ ΠZX
arises

from an isomorphism ZY
∼→ ZX of schemes, which thus implies (cf., e.g.,

the discussion concerning the term isogenous given in “Curves” of [17], §0)

that condition (iii-a) is satisfied.

Next, suppose that condition (iii-c) is satisfied. Let ψ : ΠX → ΠZ be a

homomorphism over GkX that arises from the dominant morphism X → Z

over kX . Then one verifies easily that the composite ψ ◦ φ : ΠY → ΠZ

is open (cf. Lemma 1.3) and, moreover, lies over an open homomorphism

GkY → GkX (cf. condition (iii-c)). Thus, it follows immediately from [18],

Theorem 3.5, (iii), that condition (iii-a) is satisfied. This completes the

proof of Claim 3.20.A. In particular, to verify assertion (iii), it suffices to

verify assertion (iii) in the case where condition (iii-a) is satisfied.

Suppose that condition (iii-a) is satisfied. Then, in light of Proposition

2.3, by replacing ΠX by the image of φ, to verify assertion (iii) in the case

where condition (iii-a) is satisfied, we may assume without loss of generality

that φ, hence also the homomorphism GkY → GkX of condition (iii-a), is

surjective. In particular, we conclude that the homomorphism GkY → GkX
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of condition (iii-a) arises from an isomorphism kX
∼→ kY . Thus, by replac-

ing (X, kX , kX) by (X ×kX kY , kY , kY ) and applying Proposition 2.4, (ii),

we may assume without loss of generality that (kX , kX) = (kY , kY ). On the

other hand, since (kX , kX) = (kY , kY ), assertion (iii) follows from Theorems

3.3, 3.14; Corollaries 3.15, 3.16. This completes the proof of assertion (iii). �

Corollary 3.21. Let p be a prime number and n a positive integer.

Write S for the set consisting of the set of all prime numbers, F for the

set of isomorphism classes of sub-p-adic fields (cf. Definition 3.1), V for

the set of isomorphism classes of hyperbolic orbi-polycurves of dimension

n over sub-p-adic fields (cf. Definition 3.17), and D
def
= S× F× S. Suppose

that n ≤ 4. Then the hypotheses of [18], Theorem 4.7, (i), (ii), are satisfied

relative to this D.

Proof. First, let us recall from [14], Lemma 15.8, that the absolute

Galois group of a sub-p-adic field is slim (i.e., every open subgroup of the

absolute Galois group of a sub-p-adic field is center-free). The fact that D is

chain-full (cf. [18], Definition 4.6, (i)) is immediate. The rel-isom DGC (cf.

[18], Definition 4.6, (ii)), as well as the slimness of the “∆i” in the statement

of [18], Theorem 4.7, follows immediately from Corollary 3.18 (cf. also the

proof of Corollary 3.20) and Proposition 2.4, (iii). �

4. Finiteness of the Set of Outer Isomorphisms between Étale

Fundamental Groups of Hyperbolic Polycurves

In the present §4, we discuss the finiteness of a certain set of outer iso-

morphisms between the étale fundamental groups of hyperbolic polycurves

of arbitrary dimension (cf. Theorem 4.4 below). In the case where the base

field is finite over the field of rational numbers, we also prove the finiteness

of the set of outer isomorphisms between the étale fundamental groups of

hyperbolic polycurves (cf. Corollary 4.6 below). In the present §4, let k

be a field of characteristic zero, k an algebraic closure of k, and Gk
def
=

Gal(k/k).

Lemma 4.1. Let G be a profinite group, H ⊆ G an open subgroup of

G, A a group, and A → Aut(G) a homomorphism to the group of auto-

morphisms Aut(G) of G. Write AH ⊆ A for the subgroup of A consisting
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of a ∈ A such that the automorphism of G obtained by forming the image

of a in Aut(G) preserves H ⊆ G. Suppose that G is topologically finitely

generated. Then AH is of finite index in A.

Proof. Write d
def
= [G : H]. Then since G is topologically finitely

generated, the set S of open subgroups of G of index d is finite. On the other

hand, the homomorphism A→ Aut(G) naturally determines an action of A

on S, and AH ⊆ A coincides with the stabilizer of H ∈ S. Thus, AH is of

finite index in A. This completes the proof of Lemma 4.1. �

Lemma 4.2. Let n be a positive integer, X a hyperbolic polycurve of

dimension n over k, and

X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X1 −−−→ Spec k = X0

a sequence of parametrizing morphisms. Then the following hold:

(i) There exists an open subgroup H ⊆ ∆X/k such that, for each i ∈
{0, · · · , n}, if we write Hi

def
= H ∩∆X/Xi

(thus, we have a sequence of

normal closed subgroups of H

Hn = {1} ⊆ Hn−1 ⊆ · · · ⊆ H2 ⊆ H1 ⊆ H0 = H

and a natural injection Hi/Hi+1 ↪→ ∆Xi+1/Xi
for each i ∈ {0, · · · , n−

1} — cf. Proposition 2.4, (i)), then, for each i ∈ {1, · · · , n − 1}, it

holds that

rank
Ẑ

(
(Hi/Hi+1)

ab
)
< rank

Ẑ

(
(Hi−1/Hi)

ab
)
.

(ii) Let φ be an automorphism of ∆X/k. Suppose that φ preserves an open

subgroup H ⊆ ∆X/k as in (i). Then, for each i ∈ {0, · · · , n}, it holds

that φ(∆X/Xi
) = ∆X/Xi

.

(iii) Let ψ be an automorphism of ΠX over Gk. Suppose that ψ preserves

an open subgroup H ⊆ ∆X/k as in (i), and that k is sub-p-adic (cf.

Definition 3.1) for some prime number p. Then ψ arises from an

automorphism of X over k.
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Proof. First, we verify assertion (i) by induction on n. If n = 1, then

assertion (i) is immediate. Now suppose that n ≥ 2, and that the induction

hypothesis is in force. Then since one may regard ∆X/X1
as the “∆X/k” of

a hyperbolic polycurve over k of dimension n− 1 (cf. Proposition 2.4, (ii)),

by the induction hypothesis, there exists an open subgroup H∗ ⊆ ∆X/X1
of

∆X/X1
such that, for each i ∈ {1, · · · , n}, if we write H∗

i
def
= H∗ ∩ ∆X/Xi

,

then, for each i ∈ {2, · · · , n− 1}, it holds that

rank
Ẑ

(
(H∗

i /H
∗
i+1)

ab
)
< rank

Ẑ

(
(H∗

i−1/H
∗
i )ab

)
.

Now since the profinite group ∆X/X1
is normal in ∆X/k and topologically

finitely generated (cf. Proposition 2.4, (iii)), it follows from Lemma 4.1

(where we take the data “(G,H,A)” in the statement of Lemma 4.1 to be

(∆X/X1
, H∗,∆X/k) and the action of “A” on “G” in the statement of Lemma

4.1 to be the action by conjugation) that N∆X/k
(H∗) is open in ∆X/k.

Since H∗ ⊆ N∆X/X1
(H∗) (= N∆X/k

(H∗) ∩ ∆X/X1
), and H∗ is open in

∆X/X1
, we have a natural surjection

N∆X/k
(H∗)/H∗ −−−→ N∆X/k

(H∗)/N∆X/X1
(H∗)

whose kernel is finite. Thus, there exists an open subgroup Q ⊆
N∆X/k

(H∗)/H∗ of N∆X/k
(H∗)/H∗ such that the composite

Q
⊆−−−→ N∆X/k

(H∗)/H∗ −−−→ N∆X/k
(H∗)/N∆X/X1

(H∗)

is injective. In particular, Q may be regarded as an open subgroup of

N∆X/k
(H∗)/N∆X/X1

(H∗)
⊆−−−→ ∆X/k/∆X/X1

∼−−−→ ∆X1/k

(cf. Proposition 2.4, (i)). Thus, it follows immediately from Proposition

2.4, (vi), that there exists an open subgroup QH ⊆ Q such that

rank
Ẑ

(
(H∗

1/H
∗
2 )ab

)
< rank

Ẑ
(Qab

H ) .

Let us write H ⊆ ∆X/k for the open subgroup of ∆X/k obtained by form-

ing the inverse image of QH ⊆ N∆X/k
(H∗)/H∗ by the natural surjection

N∆X/k
(H∗) � N∆X/k

(H∗)/H∗; thus, H fits into an exact sequence of profi-

nite groups

1 −−−→ H∗ −−−→ H −−−→ QH −−−→ 1 .

Now I claim that the following assertion holds:
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Claim 4.2.A: This open subgroup H ⊆ ∆X/k satisfies the con-

dition appearing in the statement of assertion (i).

Indeed, let us first observe that, by our choice of (H∗, QH), one verifies easily

that, to verify Claim 4.2.A, it suffices to verify thatH∩∆X/X1
= H∗. To this

end, let us observe that since H∗ is open in ∆X/X1
, and H∗ ⊆ H ∩∆X/X1

,

we have a natural surjection H/H∗ � H/(H ∩ ∆X/X1
) whose kernel is

finite. On the other hand, since H/H∗ ∼→ QH may be regarded as an open

subgroup of ∆X1/k (cf. the discussion preceding Claim 4.2.A), it follows

from Proposition 2.4, (iii), that H/H∗ is torsion-free. Thus, we conclude

that H ∩∆X/X1
= H∗. This completes the proof of Claim 4.2.A, hence also

of assertion (i).

Next, we verify assertion (ii). Now since (one verifies easily that) the

image of the composite H ↪→ ∆X/k � ∆Xn−1/k satisfies the condition ap-

pearing in the statement of assertion (i) for “H”, by induction on n, to

verify assertion (ii), it suffices to verify that the following assertion holds:

Claim 4.2.B: φ(∆X/Xn−1
) = ∆X/Xn−1

.

Now I claim that the following assertion holds:

Claim 4.2.B.1: φ(Hn−1) = Hn−1.

Indeed, it is immediate that there exists a unique integer 0 ≤ m ≤ n − 1

such that the image of the composite Hn−1 ↪→ H
φ→ H � H/Hm+1 is

nontrivial, but the image of the composite Hn−1 ↪→ H
φ→ H � H/Hm

is trivial; thus, Hn−1 ↪→ H
φ→ H � H/Hm+1 determines a nontrivial

homomorphism Hn−1 → Hm/Hm+1. Now since the composite H
φ→ H �

H/Hm+1 is surjective, and Hn−1 ⊆ H is normal in H, one verifies easily that

the image of the nontrivial homomorphism Hn−1 → Hm/Hm+1 is normal;

thus, since Hn−1 is topologically finitely generated (cf. Propositions 2.3; 2.4,

(iii)), it follows from Proposition 2.4, (iv), that the image of the nontrivial

homomorphism Hn−1 → Hm/Hm+1 is open, which implies that

rank
Ẑ

(
(Hm/Hm+1)

ab
)
≤ rank

Ẑ
(Hab

n−1) .

Thus, it follows from the condition appearing in the statement of assertion

(i) that m = n− 1, i.e., φ(Hn−1) ⊆ Hn−1. Moreover, by applying a similar
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argument to the above argument to φ−1, we conclude that φ(Hn−1) = Hn−1.

This completes the proof of Claim 4.2.B.1.

Finally, we verify Claim 4.2.B. To verify Claim 4.2.B, write N for the

intersection of all ∆X/k-conjugates of Hn−1. Then it is immediate that N is

normal in ∆X/k. Moreover, since ∆X/Xn−1
is topologically finitely generated

(cf. Proposition 2.4, (iii)) and normal in ∆X/k, and Hn−1 ⊆ ∆X/Xn−1
is

open in ∆X/Xn−1
, one verifies easily that N is open in ∆X/Xn−1

. Thus,

∆X/Xn−1
/N ⊆ ∆X/k/N is a finite subgroup of ∆X/k/N ; in particular, since

∆Xn−1/k is torsion-free (cf. Proposition 2.4, (iii)), ∆X/Xn−1
/N ⊆ ∆X/k/N

is the unique maximal torsion subgroup of ∆X/k/N . On the other hand, it

follows from Claim 4.2.B.1 that φ determines an automorphism of ∆X/k/N .

Thus, we conclude that the automorphism of ∆X/k/N determined by φ

preserves ∆X/Xn−1
/N , hence that φ preserves ∆X/Xn−1

. This completes the

proof of Claim 4.2.B, hence also of assertion (ii).

Finally, we verify assertion (iii). It follows immediately from assertion

(ii), together with Proposition 2.4, (i), that, for each i ∈ {0, · · · , n}, ψ
induces an automorphism ψi of ΠXi over Gk. (Thus, ψ0 = idGk

, and ψn =

ψ.) Now it is immediate that, by induction on i, to verify assertion (iii), it

suffices to verify that the following assertion holds:

Claim 4.2.C: For each i ∈ {0, · · · , n− 1}, if the automorphism

ψi arises from an automorphism fi of Xi over k, then ψi+1 arises

from an automorphism of Xi+1 over k.

To verify Claim 4.2.C, write η → Xi for the generic point of Xi, (Xi+1)η
def
=

Xi+1 ×Xi η, and (Xi+1)
′
η for the base-change of the natural morphism

Xi+1 → Xi by the composite η → Xi
fi→ Xi. Then it follows imme-

diately from assertion (ii), together with Proposition 2.4, (ii), that ψi+1

induces an isomorphism Π(Xi+1)η
∼→ Π(Xi+1)′η over Πη. Thus, it follows

from Theorem 3.3, together with the equivalence (ii-1) ⇔ (ii-2) of Lemma

2.13, that the isomorphism Π(Xi+1)η
∼→ Π(Xi+1)′η arises from an isomorphism

(Xi+1)η
∼→ (Xi+1)

′
η over η. In particular, it follows from Lemma 2.10 that

ψi+1 arises from an endomorphism of Xi+1 over k. Therefore, by applying a

similar argument to the above argument to ψ−1
i+1, we conclude from Propo-

sition 3.2, (ii), that ψi+1 arises from an automorphism of Xi+1 over k. This

completes the proof of Claim 4.2.C, hence also of assertion (iii). �
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Theorem 4.3. Let n be a positive integer, p a prime number, k a sub-

p-adic field (cf. Definition 3.1), k an algebraic closure of k, X a hyperbolic

polycurve (cf. Definition 2.1, (ii)) of dimension n over k, and

X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X1 −−−→ Spec k = X0

a sequence of parametrizing morphisms. Write Gk
def
= Gal(k/k), ΠX for

the étale fundamental group of X, and ∆X/k for the kernel of the natural

surjection ΠX � Gk. For each i ∈ {1, · · · , n}, write, moreover, (gi, ri)

for the type of the hyperbolic curve Xi over Xi−1 (cf. Definition 2.1, (i)).

Suppose that, for each i ∈ {1, · · · , n− 1},

2gi+1 + max{ri+1 − 1, 0} < 2gi + max{ri − 1, 0} .

Then the natural map

Autk(X) −−−→ AutGk
(ΠX)/Inn(∆X/k)

is bijective, i.e., every automorphism of ΠX over Gk arises from a uniquely

determined automorphism of X over k.

Proof. The injectivity of the map in question follows from Proposi-

tion 3.2, (ii). The surjectivity of the map in question follows from Lemma

4.2, (iii), together with Proposition 2.4, (v). This completes the proof of

Theorem 4.3. �

Theorem 4.4. Let p be a prime number; k a sub-p-adic field (cf. Def-

inition 3.1); k an algebraic closure of k; X, Y hyperbolic polycurves (cf.

Definition 2.1, (ii)) over k. Write Gk
def
= Gal(k/k); ΠX , ΠY for the étale

fundamental groups of X, Y , respectively; IsomGk
(ΠX ,ΠY ) for the set of

isomorphisms of ΠX with ΠY over Gk; ∆Y/k for the kernel of the natural

surjection ΠY � Gk. Then the set

IsomGk
(ΠX ,ΠY )/Inn(∆Y/k)

is finite.

Proof. If IsomGk
(ΠX ,ΠY ) = ∅, then Theorem 4.4 is immediate.

Thus, to verify Theorem 4.4, we may assume without loss of generality
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that IsomGk
(ΠX ,ΠY ) is nonempty. Then let us observe that any ele-

ment of IsomGk
(ΠX ,ΠY ) determines a bijection between IsomGk

(ΠX ,ΠY )/

Inn(∆Y/k) and AutGk
(ΠX)/Inn(∆X/k). Thus, to verify Theorem 4.4, by

replacing Y by X, we may assume without loss of generality that X = Y .

Let H ⊆ ∆X/k be an open subgroup of ∆X/k which satisfies the condition

appearing in the statement of Lemma 4.2, (i), with respect to a sequence of

parametrizing morphisms

X = Xn −−−→ Xn−1 −−−→ · · · −−−→ X1 −−−→ Spec k = X0 .

Then, by applying Lemma 4.1 (where we take the data “(G,H,A)” in the

statement of Lemma 4.1 to be (∆X/k, H,Aut(∆X/k))), we conclude that

there exists a subgroup A ⊆ Aut(∆X/k) of Aut(∆X/k) of finite index such

that, for each φ ∈ A, it holds that φ(H) = H. Write B ⊆ AutGk
(ΠX)

for the inverse image of A ⊆ Aut(∆X/k) via the natural homomorphism

AutGk
(ΠX) → Aut(∆X/k). (Thus, B ⊆ AutGk

(ΠX) is of finite index in

AutGk
(ΠX).) Then it follows immediately from Lemma 4.2, (iii), that ev-

ery element of B arises from an automorphism of X over k, i.e., the image

of the composite B ↪→ AutGk
(ΠX) � AutGk

(ΠX)/Inn(∆X/k) is contained

in the image of the natural injection Autk(X) ↪→ AutGk
(ΠX)/Inn(∆X/k)

(cf. Proposition 3.2, (ii)). In particular, it follows from Proposition 4.5

below that the image of the composite B ↪→ AutGk
(ΠX) � AutGk

(ΠX)/

Inn(∆X/k) is finite. On the other hand, since B is of finite index in

AutGk
(ΠX), we thus conclude that AutGk

(ΠX)/Inn(∆X/k) is finite. This

completes the proof of Theorem 4.4. �

Proposition 4.5. Let S, Y be integral varieties over k; Y → S a

dominant morphism over k; X a hyperbolic polycurve over S. Then the set

Homdom
S (Y,X) of dominant morphisms from Y to X over S is finite.

Proof. Write n for the relative dimension of X over S. First, I claim

that the following assertion holds:

Claim 4.5.A: If n = 1, then Proposition 4.5 holds.

Indeed, let η → S be a geometric point of S whose image is the generic

point of S and F a connected component of the normalization of Y ×S η.

(Here, we note that since k is of characteristic zero, Y ×S η is necessarily
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reduced.) Thus, F is a normal variety over η. Then since Y is integral,

and Y → S is dominant, one verifies easily that the composite of natural

maps Homdom
S (Y,X) → Homη(Y ×S η,X ×S η) → Homη(F,X ×S η) is

injective (cf. the easily verified fact that the composite F → Y ×S η → Y

is schematically dense) and factors through the subset Homdom
η (F,X ×S η).

Thus, by replacing S, Y by η, F , respectively, to verify Claim 4.5.A, we

may assume without loss of generality that k = k and S = Spec k.

Next, to verify Claim 4.5.A, I claim that the following assertion holds:

Claim 4.5.A.1: If Y is of dimension one (and n = 1), then

Proposition 4.5 holds.

Indeed, let us first observe that one verifies easily that there exist a non-

negative integer N and a connected finite étale Galois covering X ′ → X of

X over k of degree N such that the genus (i.e., the integer “g” in Definition

2.1, (i)) of the hyperbolic curve X ′ over k is ≥ 2. Then it is immediate that,

for each dominant morphism Y → X over k, there exist a connected finite

étale Galois covering Y ′ → Y of Y over k of degree ≤ N and a dominant

morphism Y ′ → X ′ which lies over the given dominant morphism Y → X.

Thus, in light of the fact that Y ′ → Y is schematically dense, since the set

of isomorphism classes of connected finite étale Galois coverings of Y over

k of degree ≤ N is finite (cf. Lemma 1.7), by replacing (X,Y ) by (X ′, Y ′),
to verify Claim 4.5.A.1, we may assume without loss of generality that X

is of genus ≥ 2. Then Claim 4.5.A.1 follows immediately from de Franchis’

theorem (cf., e.g., [13], p. 227). This completes the proof of Claim 4.5.A.1.

It follows from Claim 4.5.A.1 that, to verify Claim 4.5.A, we may assume

without loss of generality that Y is of dimension ≥ 2. Next, let us observe

that, by replacing Y by a suitable affine open subscheme of Y , to verify

Claim 4.5.A, we may assume without loss of generality that Y is regular,

and that Y may be embedded into a projective space P over k (of suitable

dimension). Thus, by applying Bertini’s theorem (cf., e.g., the easily verified

quasi-projective version of [9], Theorem 8.18) and [21], §V, Corollaire 7.3,

inductively (i.e., by considering suitable hyperplane sections), we conclude

that there exist a smooth variety C of dimension one over k and a morphism

C → Y over k such that the induced outer homomorphism ΠC → ΠY is
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surjective. Now let us consider the natural commutative diagram

Homdom
k (Y,X) −−−→ Homopen(ΠY ,ΠX)/Inn(ΠX)� �

Homk(C,X) −−−→ Hom(ΠC ,ΠX)/Inn(ΠX)

(cf. Lemma 1.3). Since the upper horizontal arrow is injective (cf. Propo-

sition 3.2, (i)), and the right-hand vertical arrow is injective (cf. the sur-

jectivity of ΠC → ΠY ), it holds that the left-hand vertical arrow is injec-

tive. On the other hand, again by the surjectivity of ΠC → ΠY , it follows

immediately that the left-hand vertical arrow factors through the subset

Homdom
k (C,X) ⊆ Homk(C,X) (cf. also Proposition 2.4, (iii)). Thus, to ver-

ify Claim 4.5.A, it suffices to verify the finiteness of Homdom
k (C,X), which

follows from Claim 4.5.A.1. This completes the proof of Claim 4.5.A.

Finally, we verify Proposition 4.5 by induction on n. If n = 1, then

Proposition 4.5 follows from Claim 4.5.A. Now suppose that n ≥ 2, and

that the induction hypothesis is in force. Let X → Xn−1 be a parametriz-

ing morphism for X. Then since the finiteness of Homdom
S (Y,Xn−1) follows

from the induction hypothesis, to verify the finiteness of Homdom
S (Y,X), it

suffices to verify that, for any fn−1 ∈ Homdom
S (Y,Xn−1), the inverse im-

age of {fn−1} ⊆ Homdom
S (Y,Xn−1) by the natural map Homdom

S (Y,X) →
Homdom

S (Y,Xn−1) (induced by the morphism X → Xn−1) is finite. In other

words, to verify the finiteness of Homdom
S (Y,X), it suffices to verify that, for

any fn−1 ∈ Homdom
S (Y,Xn−1), the set Homdom

Xn−1
(Y,X) — where we take the

structure morphism Y → Xn−1 to be fn−1 — is finite. On the other hand,

since X → Xn−1 is a hyperbolic curve, this finiteness in question follows

from Claim 4.5.A. This completes the proof of Proposition 4.5. �

Corollary 4.6. Let kX , kY be finite extensions of the field of rational

numbers; X, Y hyperbolic polycurves (cf. Definition 2.1, (ii)) over kX ,

kY , respectively. Write ΠX , ΠY for the étale fundamental groups of X,

Y , respectively; Isom(ΠX ,ΠY ) for the set of isomorphisms of ΠX with ΠY .

Then the set

Isom(ΠX ,ΠY )/Inn(ΠY )

is finite.
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Proof. If Isom(ΠX ,ΠY ) = ∅, then Corollary 4.6 is immediate. Sup-

pose that Isom(ΠX ,ΠY ) �= ∅. Then since any element of Isom(ΠX ,ΠY )

determines a bijection between the set Isom(ΠX ,ΠY )/Inn(ΠY ) and the set

Out(ΠX)
def
= Aut(ΠX)/Inn(ΠX), to verify Corollary 4.6, by replacing Y by

X, we may assume without loss of generality that X = Y .

Now let us observe that, for each φ ∈ Aut(ΠX), by considering the

composites ∆X/kX ↪→ ΠX

φ
∼→ ΠX � GkX , ∆X/kX ↪→ ΠX

φ−1

∼→ ΠX � GkX

and applying Propositions 2.4, (iii); 3.19, (i), we conclude that φ lies over

a(n) (uniquely determined) automorphism of GkX . Thus, we have a natural

exact sequence

1 −−−→ AutGkX
(ΠX) −−−→ Aut(ΠX) −−−→ Aut(GkX ) .

Write N ⊆ Out(ΠX) for the (necessarily normal) subgroup of Out(ΠX)

obtained by forming the image of AutGkX
(ΠX) ⊆ Aut(ΠX) in Out(ΠX).

Then since ΠX → GkX is surjective, one verifies easily that the sequence

1 −−−→ N −−−→ Out(ΠX) −−−→ Out(GkX )
def
= Aut(GkX )/Inn(GkX )

induced by the above exact sequence is exact. Thus, since N is finite (cf.

Theorem 4.4), and Out(GkX ) is finite (cf. Proposition 3.19, (ii)), we con-

clude that Out(ΠX) is finite. This completes the proof of Corollary 4.6. �
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