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Transparent Boundary Conditions for a Diffusion

Problem Modified by Hilfer Derivative

By Ryad A. Ghanam, Nadeem A. Malik and Nasser-eddine Tatar

Abstract. We consider a homogeneous fractional diffusion prob-
lem in an infinite reservoir sometimes called a “modified” diffusion
equation. The equation involves a (nonlocal in time) memory term in
the form of a time fractional derivative (of the Laplacian). For the sake
of reducing the computational domain to a bounded one we establish
appropriate “artificial” boundary conditions. This is to avoid the effect
of reflected waves in case of a “solid” standard boundary. Then, an
equivalent problem is studied in this bounded domain. To this end we
use the Laplace-Fourier transform, the two-parameter Mittag-Leffler
function and some properties of fractional derivatives.

1. Introduction

Of concern is a problem which arises in petroleum engineering. Namely,

it consists of a diffusion equation with a fractional time derivative together

with an initial data and boundary condition. In fact, as the domain is

the whole real axis we assume that the solution vanishes at infinity. More

precisely, we consider the problem
∂p
∂t −KDα,β ∂2p

∂x2 = f (x, t) , −∞ < x < ∞, t > 0,

p (x, 0) = g (x) , −∞ < x < ∞,

p (x, t) → 0, |x| → ∞.

(1)

The function p = p(x, t) is the pressure of the fluid. The forcing function

f may be due to wells in the reservoir (or some additional flow) and g

is the initial pressure. These functions f and g are assumed to be com-

pactly supported say in (−L,L) , L > 0. The coefficient K is the diffusion
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coefficient and involves several constants determined by the nature of the

problem. The equation in this problem is the standard heat (or diffusion)

equation modified by a fractional derivative introduced by Hilfer [16]. It

has been derived by Caputo in [4,30] by modifying Darcy’s law [5] for a

problem which arises in porous media in case of a fractional derivative in

the sense of Caputo which corresponds here to β = 1. In the present work

our fractional derivative is more general and covers as special cases the

Caputo fractional derivative (used in [4,30]) and the well-known Riemann-

Liouville fractional derivative (see definitions in the next section). For more

on fractional derivatives we refer the reader to [20,33,35,37,39].

Fractional differential equations are nowadays extensively investigated

by many engineers and scientists because of their ability to model complex

phenomena with a certain high accuracy. In fact, fractional calculus has

proved to be an excellent tool in the study of many processes. It is widely

used in physics, chemistry, control theory, electromagnetic, electrodynamic,

aerodynamic, porous media, viscoelasticity, optics, biomedicine, signal pro-

cessing, heat conduction, neuroscience, economy, ... (see [6,10,12,19,20,26-

28,30,33,36,38,40,42-44]).

It has been observed and proved that the use of fractional calculus leads

to a good fit of the experimental data and therefore describes better the

behavior of many materials (see [3,9,16-18,21,29,34]). Hilfer [16-18] showed

that time fractional derivatives are equivalent to infinitesimal generators of

generalized time fractional evolutions arising in the transition from micro-

scopic to macroscopic time scales. In [16] Hilfer showed that this transition

from ordinary time derivative to fractional time derivative indeed arises in

physical problems. The Hilfer’s idea on time fractional evolution is presented

in detail in Chapter 9 of the book [21], and in [reference 25 there]. Bagley

and Torvik [3] used the fractional calculus to generalize the Kelvin-Voigt

theory and showed that it has several attractive features.

It is worth noting that, for instance, the connection of the results ob-

tained by solving fractional diffusion and fractional Fokker-Planck equations

with those obtained from the continuous time random walk theory, see for

example [21]. Other closely related works on the (fractional) wave equa-

tion and the (fractional) Langevin equation may be found, for instance, in

[2,7,8,12,21,22,29,41].

Unlike the usual integer order derivatives (which are local in time), the
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fractional derivatives are non-local and this presents an advantage. A frac-

tional derivative is defined as a convolution which involves all the prehistory

of the solution. This feature facilitates the description of many hereditary

and retarded phenomena and processes. However, its mathematical analysis

is often challenging as, in addition to the fact that the memory term is non-

local, the kernel in this convolution is neither “regular” nor “integrable”.

Moreover, the existence of a semi-group is not clear. Even in numerical

treatments, small steps and large integration domains lead to huge compu-

tations.

When Darcy derived his equation, he assumed that the fluid mass flow

rate (velocity) is proportional to the pore pressure (gradient). However, in

anomalous media (and non-Newtonian fluids) this diffusion equation is not

appropriate [7,9,28,31,34]. The reaction of the system is not instantaneous

because of a delay between the flux and the gradient. Anomalous diffusion

is characterized by the second moment (mean square displacement) <x2> ∝
tσ (0 < σ < 1, σ = 1, 1 < σ < 2, σ = 2 correspond to sub-diffusion, normal

diffusion, super-diffusion and ballistic diffusion, respectively). One is lead

then to consider pseudo-differential operators, namely fractional derivatives.

In our case, Caputo [4] noticed that in many situations the diffusivity

“constant” varies with time. The permeability of the medium changes with

time as a consequence of the diminishing of the size of the pores due to

the minerals precipitation in some geothermal areas (as opposed to enlarge-

ment of the pore size in case of chemical reactions). Under this observation

of delay of the effect of fluid pressure, the permeability may depend on the

previous pressure gradients. This is modelled by the insertion of a fractional

derivative (there are also other approaches). As a consequence, the diffusiv-

ity constant is modified to a “pseudo-diffusivity” constant with dimension

L2/T 1−α. It depends, in general, on the permeability, viscosity, porosity

and compressibility of the fluid. Caputo introduced a fractional derivative

(of order between 0 and 1) he introduced earlier and which nowadays bears

his name (the Caputo fractional derivative, see definition below). The lim-

iting case when the order of this derivative is equal to zero then we recover

the conventional diffusion equation (Darcy’s law).

Fractional diffusion equations (when the first time derivative is replaced

by a fractional one) and modified fractional diffusion models appear nat-

urally in many applications (see for instance [4,20,32,37,40] and references
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therein).

We want to reduce the computational domain from R to (−L, L) by

considering an “equivalent” problem whose solution is exactly equal to the

restriction of the solution of the original problem on (−L,L). It has been ob-

served that in case of the usual Dirichlet or Neumann boundary conditions

waves are reflected inside the domain and affect greatly the computations

there. To overcome this problem an appropriate ”artificial” boundary condi-

tion is suggested here. This boundary condition is often called ”transparent

boundary condition”. It is, in general, nonlocal in time (fractional deriva-

tive of order half) and space even when the equation does not contain a

nonlocal term (fractional derivative in the present case). Nowadays there

are numerical methods which deal with such memory terms. Transparent

boundary conditions have been first devised for elliptic systems and then

for the heat and the Schrödinger equation. One can find many papers in

the literature in this regard. Our objective here is to implement transparent

boundary conditions for the case of the modified fractional diffusion prob-

lem (1) with a generalized fractional derivative, namely the Hilfer fractional

derivative introduced in [16,17] (see also [10]). This will extend the works

in [13-15]. It is then in line with the work in [11].

Finally we mention that the fractional differential equation

CDαp−K
∂2p

∂x2
= f (x, t)

where CDα denotes the Caputo fractional derivative, has been investigated

in [8,11,19,28,40] to cite but a few. For works closely related to ours we

refer the reader to [38,23-26].

The plan of the paper is as follows: in the next section we present some

definitions and results which will be useful in our proofs in the subsequent

sections. In Section 3 we determine the reduced problem in a bounded

domain. Section 4 contains the proof of the uniqueness of solutions and

finally in the last section we find the explicit solution of our reduced problem.

2. Preliminaries

We gather here some material needed later to prove our results. They

can be found in [20,33,35,37,39].
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Definition 1. The Riemann-Liouville fractional integral of order α of

f is defined by

(Iα0+f ) (t) =
1

Γ (α)

∫ t

0
(t− s)α−1f (s) ds, t > 0, α > 0

when the right-hand side exists.

Definition 2. The Riemann-Liouville fractional derivative of order α

of f is defined by

(RLDα
0+f)(t) =

1

Γ (1 − α)

d

dt

∫ t

0
(t− s)−α f (s) ds, t > 0, 0 < α < 1

when the right-hand side exists. Note that

(RLDα
0+f)(t) =

d

dt

(
I1−αf

)
(t) .

Definition 3. The Caputo fractional derivative of order α of f is

defined by

(CDα
0+f) (t) =

1

Γ (1 − α)

∫ t

0
(t− s)−αf ′(s)ds, t > 0, 0 < α < 1

(the prime here is for the derivative) when the right-hand side exists. Note

that

(CDα
0+f)(t) =

(
I1−α d

dt
f

)
(t) .

The relationship between these two types of derivatives is given by the

following theorem.

Theorem 1. We have

(RLDα
0+f) (t) = (CDα

0+f)(t) +
t−α

Γ (1 − α)
f
(
0+
)
, t > 0, 0 < α < 1.
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Definition 4. The Hilfer fractional derivative of f of order α and type

β is defined by

(Dα,β
0+ f)(t) = (Iβ(1−α) d

dt
I(1−α)(1−β)f)(t), 0 < α < 1, 0 ≤ β ≤ 1

whenever the right hand side exists.

Note that when β = 0

(Dα,0
0+ f) (t) =

d

dt

(
I1−α f

)
(t)

which is the Riemann-Liouville fractional derivative (see Definition 2) and

when β = 1

(Dα,1
0+ f) (t) =

(
I1−α d

dt
f

)
(t)

which is the Caputo fractional derivative (see Definition 3).

For 0 < α < 1, the Laplace transforms of these derivatives are given by

L
[
(RLDα

0+f)(t)
]
(s) = sαL [f(t)] (s) −

(
I1−α
0+ f

) (
0+
)
,(2)

L
[
(CDα

0+f) (t)
]
(s) = sαL [f(t)] (s) − sα−1f

(
0+
)
,(3)

L
[
(Dα,β

0+ f)(t)
]
(s) = sαL [f(t)] (s)(4)

−sβ(α−1)
(
I

(1−α)(1−β)
0+ f

) (
0+
)
, 0 ≤ β ≤ 1,

respectively. It is clear that the difference in these Laplace transforms is in

the “initial” data f (0+),
(
I1−α
0+ f

)
(0+) and

(
I

(1−α)(1−β)
0+ f

)
(0+) (this last

one is a natural initial data for the Hilfer derivative).

We refer the readers to Hilfer’s papers for many applications of this

(Hilfer) derivative (like [16-18] and others).

Lemma 2. Assume that f(t) is continuous on [0, A] for some A > 0,

then

lim t→0+ Iα0+f (t) = 0, α > 0.
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Proof. Let 0 ≤ t ≤ A, then∣∣∣∣∫ t

0
(t− s)α−1f (s) ds

∣∣∣∣ ≤ ∫ t

0
(t− s)α−1 |f (s)| ds

≤ M

∫ t

0
(t− s)α−1 ds ≤ M

−(t− s)

α

α∣∣∣∣t
0

=
M

α
tα

where M is a bound for f(t) on [0, A]. �

Lemma 3. For f ∈ Lp(0, b), 1 ≤ p ≤ ∞, α > 0 and β > 0 we have the

following power rule

(Iα0+ Iβ
0+f) (t) = (Iα+β

0+ f) (t)

for a.e. t ∈ (0, b). This relation holds at any point of (0, b) if α+ β > 1.

Definition 5. A function k ∈ L1
loc[0,+∞) is called positive definite if

t∫
0

w(s)

s∫
0

k(s− z)w(z)dzds ≥ 0, t ≥ 0

for every w ∈ C[0,+∞).

Definition 6. The function k(t) is said to be strongly positive definite

if there exists a positive constant γ such that the mapping t → k(t) − γe−t

is positive definite.

The function k(t) = t−α, 0 < α < 1 is an example of a strongly positive

definite function.

3. The Unbounded Domain Problem

For simplicity we shall consider a semi-infinite axis [−L,+∞) as the

original domain. We divide

Ω = {(x, t) , −L ≤ x < +∞, 0 < t ≤ T}(5)

into a bounded domain

Ωb = {(x, t) , −L ≤ x < 0, 0 < t ≤ T}(6)
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and an unbounded one

Ωu = {(x, t) , 0 ≤ x < +∞, 0 < t ≤ T} .(7)

In between we have the artificial boundary

Γ0 = {(x, t) , x = 0, 0 < t ≤ T}(8)

on which we need to find an appropriate condition ensuring the continuity

of the flux.

Theorem 4. The natural boundary condition on the artificial bound-

ary Γ0 is

∂

∂x
Dα,βp (0, t) =

2K

π

∫ ∞

0
w2 coswxDα,β

×
∫ t

0
h(t− τ)τ−αE1−α,1−α(−Kw2τ1−α)dτdw, 0 < t ≤ T.

Proof. We start by the unbounded domain and solve the problem
∂p
∂t −KDα,β ∂2p

∂x2 = 0, in Ωu

p (x, 0) = 0, 0 ≤ x < +∞
p (0, t) = h(t), 0 < t ≤ T

p (x, t) → 0, x → ∞, 0 < t ≤ T.

(9)

It will be solved by the Laplace-Fourier transform method. Applying the

Laplace transform first to both sides of the equation in (9), we find (see (4)

and Lemma 2)

sp̄(x, s) = Ksα
∂2p̄

∂x2
, 0 ≤ x < +∞(10)

where p̄(x, s) = L[p (x, t)](s). Then, we apply the Fourier sine transform to

both sides of the equation (10) to get

s1−αp̂ (w, s) = −Kw2p̂ (w, s) +

√
2

π
wKp(0, s)
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or

(
s1−α +Kw2

)
p̂ (w, s) =

√
2

π
Kwp (0, s) =

√
2

π
Kwh(s).

Therefore,

p̂ (w, s) =

√
2

π
Kw

h(s)

s1−α +Kw2
.(11)

We recall here the definitions

Fs{f(x)} = Fs(w) =

√
2

π

∫ ∞

0
f(x) sinwxdx,

F−1
s {Fs(w)} = f(x) =

√
2

π

∫ ∞

0
Fs(w) sinwxdw.

Now taking the inverse Fourier sine transform of (11) we obtain

p (x, s) =

√
2

π

∫ ∞

0
sinwx

√
2

π
Kw

h(s)

s1−α +Kw2
dw

=
2

π
h (s)K

∫ ∞

0

w sinwx

s1−α +Kw2
dw.(12)

Next, we take the inverse Laplace transform of (12) to find our solution

p(x, t). To this end notice that the right hand side of (12) is the product of

two functions and

1

s1−α +Kw2
= L

[
t−αE1−α,1−α(−Kw2t1−α)

]
.(13)

This follows immediately from the formula (see [37])

L
[
tβ−1Eα,β(±atα)

]
=

sα−β

sα ∓ a
(14)

where

Eα,β(z) :=
∑∞

n=0

zn

Γ(αn+ β)
, α, β ∈ C; Re(α) > 0, Re(β) > 0
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and Γ stands for the Gamma function. Therefore, from (12) and (13) we

infer that

p (x, t) =
2K

π

∫ ∞

0
w sinwx(15)

×
∫ t

0
h(t− τ)τ−αE1−α,1−α(−Kw2τ1−α)dτdw.

The natural boundary-condition on Γ0 would be

∂

∂x
Dα,βp (x, t) =

2K

π

∫ ∞

0
w2 coswxDα,β

×
∫ t

0
h(t− τ)τ−αE1−α,1−α(−Kw2τ1−α)dτdw(16)

taken at x = 0. The proof is complete. �

Note that the inner integral in (16) is a convolution. To compute its

fractional derivative we need the following lemma.

Lemma 5. Assume that
(
I(1−α)(1−β)f

)
(t) ∈ C1 ([0, T ]) and g (t) ∈

C(0, T ] ∩ L1(0, T ), 0 < α < 1, 0 ≤ β ≤ 1. Then

Dα,β

(∫ t

0
f(t− s)g(s)ds

)
=

∫ t

0

(
Dα,βf

)
(t− s)g(s)ds

+ lim
t→0+

(
I(1−α)(1−β)f

)
(t)
(
Iβ(1−α)g

)
(t), t > 0.

That is,

Dα,β (f ∗ g) (t) =
(
Dα,βf ∗ g

)
(t) + lim

t→0+

(
I(1−α)(1−β)f

)
(t)
(
Iβ(1−α)g

)
(t).

Proof. By Definition 4 of the Hilfer fractional derivative

Dα,β (f ∗ g) (t) =
(
Iβ(1−α)DI(1−α)(1−β)

)
(f ∗ g) (t) , t > 0.

Then, in view of the definition of the fractional integral (Definition 1) we

may write

Dα,β (f ∗ g) (t) =
1

Γ [(1 − α)(1 − β)]
Iβ(1−α)D

×
∫ t

0
h(t− τ)−β−α(1−β)

(∫ τ

0
f(t− s)g(s)ds

)
dτ.
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By our hypotheses we can apply Fubini’s theorem (see [1]) to derive

Dα,β (f ∗ g) (t)

=
1

Γ [(1 − α)(1 − β)]
Iβ(1−α)D

∫ t

0

(∫ t

s

f(τ − s)g(s)

(t− τ)β+α(1−β)
dτ

)
ds.

Now Leibniz formula for the differentiation gives

Γ [(1 − α) (1 − β)]Dα,β (f ∗ g) (t)

= Iβ(1−α)

{∫ t

0

∂

∂t

(∫ t

s

f (τ − s) g (s) dτ

(t− τ)β+α(1−β)

)
ds

+ lim
s→t−

∫ t

s

f (τ − s) g (s) dτ

(t− τ)β+α(1−β)

}

= Iβ(1−α)

{∫ t

0

∂

∂t

(∫ t−s

0

f (σ) dσ

(t− s− σ)β+α(1−β)

)
g (s) ds

+ lim
s→t−

∫ t

s

f (τ − s) g (s) dτ

(t− τ)β+α(1−β)

}
.

Clearly (see Lemma 3)

Dα,β (f ∗ g) (t) =
1

Γ [(1 − α) (1 − β)]

×
{∫ t

0
Iβ(1−α) ∂

∂t

(∫ t−s

0

f (σ) dσ

(t− s− σ)β+α(1−β)

)
g (s) ds

+Iβ(1−α)

(
lim
s→t−

∫ t

s

f (τ − s) g (s) dτ

(t− τ)β+α(1−β)

)}
.(17)

The last term in (17) is equal to

Iβ(1−α)

(
lim s→t−

∫ t

s

f (τ − s) dτ

(t− τ)β+α(1−β)
g(s)

)

=

(
lim σ→0

∫ σ

0

f (u) du

(σ − u)β+α(1−β)

)
Iβ(1−α)g(t).
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In case f is continuous at zero, it is bounded nearby zero and the limit is

equal to zero (see Lemma 2). Hence,

Dα,β (f ∗ g) (t)

=
1

Γ [(1 − α) (1 − β)]

∫ t

0
Iβ(1−α) ∂

∂t

(∫ t−s

0

f (σ) dσ

(t− s− σ)β+α(1−β)

)
g (s) ds

+ lim t→0+

(
I(1−α)(1−β)f

)
(t) .

(
Iβ(1−α)g

)
(t) , t > 0.

The proof of the lemma is complete. �

Our artificial boundary condition is therefore

∂

∂x
Dα,βp (0, t) =

2K

π

∫ ∞

0
w2

×
{∫ t

0
Dα,βh (t− τ) τ−αE1−α,1−α

(
−Kw2τ1−α

)
dτ

+ lim
t→0+

(
I(1−α)(1−β)h

)
(t)

· Iβ(1−α)
(
t−αE1−α,1−α(−Kw2t1−α)

)}
dw.(18)

We are now in position to set the equivalent reduced problem on Ωb
∂p
∂t −KDα,β ∂2p

∂x2 = f (x, t) in Ωb

p (x, 0) = g (x) , −L ≤ x ≤ 0

p (−L, t) = ϕ (t) , 0 < t ≤ T
∂
∂xD

α,β p (0, t) = ψ(t), 0 < t ≤ T

(19)

where ψ(t) is equal to the right hand side of (18). It is important to keep

in mind that ψ(t) depends on p.

4. The Equivalent Reduced Problem

In this section we prove uniqueness of solutions to Problem (19).

Theorem 6. The solution of problem (19) is unique.
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Proof. Assume that there exist two solutions p1 and p2 to the problem

(19). If p∗ = p1 − p2, it follows that p∗ is solution of the problem
∂p∗

∂t = KDα,β ∂2p∗

∂x2 , −L ≤ x ≤ 0, 0 < t ≤ T

p∗ (x, 0) = 0, −L ≤ x ≤ 0

p∗ (−L, t) = 0, 0 < t ≤ T
∂
∂xD

α,βp∗ (0, t) = ψ∗(t), 0 < t ≤ T

(20)

where

ψ∗(t) =
2K

π

∫ ∞

0
w2

×
(∫ t

0
Dα,βp∗ (0, t− τ) τ−αE1−α,1−α

(
−Kw2τ1−α

)
dτ

)
dw.

Multiplying the equation in (20) by ∂p∗

∂t and integrating over (0, T )×(−L, 0)

we obtain∫ T

0

∫ 0

−L

(
∂p∗

∂t

)2

dxdt−K

∫ T

0

∫ 0

−L

∂p∗

∂t
Dα,β ∂

2p∗

∂x2
dxdt = 0

or ∫ T

0

∫ 0

−L

(
∂p∗

∂t

)2

dxdt−K

∫ T

0

∂p∗

∂t
Dα,β ∂p

∗

∂x

∣∣∣∣0
−L

dt

+K

∫ T

0

∫ 0

−L

∂2p∗

∂x∂t
Dα,β ∂p

∗

∂x
dxdt = 0.(21)

From the relationship between the Riemann-Liouville derivative and the

Caputo derivative (see Theorem 1)

Dγf (t) =
f(0)t−γ

Γ(1 − γ)
+

1

Γ (1 − γ)

∫ t

0
(t− s)−γf

′
(s) ds

we deduce that

Dα,β ∂p
∗

∂x
= Iβ(1−α)

{
t−β−α(1−β)

Γ [(1 − α) (1 − β)]

∂p∗

∂x
(x, 0) + I(1−α)(1−β)D

∂p∗

∂x

}
.

As p∗ (x, 0) = 0 we have ∂p∗

∂x (x, 0) = 0. Hence,

Dα,β ∂p
∗

∂x
= I1−αD

∂p∗

∂x
= I1−α ∂

2p∗

∂x∂t

(
= CDα∂p

∗

∂x

)
,(22)
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by Definition 3.

In view of (21) an (22) we may write∫ T

0

∫ 0

−L

(
∂p∗

∂t

)2

dxdt−K

∫ T

0

∂p∗

∂t
(0, t)Dα,β ∂p

∗

∂x
(0, t) dt

+K

∫ T

0

∫ 0

−L

∂2p∗

∂x∂t
I1−α ∂

2p
∗

∂x∂t
dxdt = 0.(23)

As the kernel t−α, 0 < α < 1 is a positive definite function (in fact a

strongly positive definite function) the last term in the left hand side of

(23) is nonnegative. We infer that the second term must by nonpositive i.e.

K

∫ T

0

∂p∗

∂t
(0, t)Dα,β ∂p

∗

∂x
(0, t) dt ≥

∫ T

0

∫ 0

−L

(
∂p∗

∂t

)2

dxdt ≥ 0.

Next, we consider the problem in the unbounded part of the domain
∂q
∂t −KDα,β ∂2q

∂x2 = 0 in Ωu

q (x, 0) = 0, 0 < x < +∞
q (0, t) = p∗ (0, t) , 0 ≤ t ≤ T

q (x, t) → 0, when x → +∞.

(24)

Clearly, this problem has a unique solution. Moreover, multiplying the

equation in (24) by ∂q
∂t and integrating over Ωu we find∫ T

0

∫ ∞

0

(
∂q

∂t

)2

dxdt−K

∫ T

0

∫ ∞

0

∂q

∂t
Dα,β ∂

2q

∂x2
dxdt = 0

and as above we find∫ T

0

∫ ∞

0

(
∂q

∂t

)2

dxdt−K

∫ T

0

∂q

∂t
Dα,β ∂q

∂x

∣∣∣∣∞
0

dt

+K

∫ T

0

∫ ∞

0

∂2q

∂x∂t
I1−α ∂2q

∂x∂t
dxdt = 0.(25)

It is not difficult to see that∫ T

0

∂q

∂t
Dα,β ∂q

∂x

∣∣∣∣∞
0

dt = −
∫ T

0

∂q

∂t
(0, t)Dα,β ∂q

∂x
(0, t)dt

= −
∫ T

0

∂p∗

∂t
(0, t)Dα,β ∂p

∗

∂x
(0, t) dt(26)
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because ∂q
∂t (0, t) = ∂p∗

∂t (0, t) and ∂q
∂x

∣∣∣
x=0

= ∂p∗

∂x

∣∣∣
x=0

.

The relations (25) and (26) imply that∫ T

0

∫ ∞

0

(
∂q

∂t

)2

dxdt+K

∫ T

0

∂p∗

∂t
(0, t)Dα,β ∂p

∗

∂x
(0, t) dt

+K

∫ T

0

∫ ∞

0

∂2q

∂x∂t
I1−α ∂2q

∂x∂t
dxdt = 0(27)

which in turn implies that the second term in the left hand side of (24)

must be nonpositive. This observation, together with the previous one,

shows that this (second term) is identically equal to zero. It results (from

(23)) that ∂p∗

∂t is also identically equal to zero over Ωb. In view of the

condition p∗ (−L, t) = 0 we deduce that p∗ ≡ 0. Consequently, the solution

of problem (19) is unique. The proof is complete. �

The solution of (19) will be divided into

p (x, t) = U (x, t) + V (x)H(t)

where U (x, t) is solution of problem
∂U
∂t −KDα,β ∂2U

∂x2 = f (x, t) in Ωb

U (x, 0) = g(x), −L ≤ x ≤ 0

U (−L, t) = 0, 0 < t ≤ T
∂
∂xD

α,βU (0, t) = 0, 0 < t ≤ T

(28)

and V (x)H(t) is a function which must satisfy V (−L)H (t) = ϕ (t) and
∂V
∂x (0)Dα,βH (t) = ψ(t).

This requires the compatibility condition

∂V

∂x
(0)Dα,β ϕ (t)

V (−L)
= ψ(t) or Dα,βϕ(t) =

V (−L)

V ′(0)
ψ(t).(29)

5. Solution of Problem (28)

For simplicity, we shall assume that the source in (28) is of the form

f(t)l(x).
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Theorem 7. The solution of Problem (28) is given by

U (x, t) =
∑

n
cos

(2n+ 1)πx

2L

×
[
Tn (0)E1−α,1

(
−Kλ2

nt
1−α
)

+ Cn

∫ t

0
f (t− s)E1−α,1

(
−Kλ2

ns
1−α
)
ds

]
where

Tn (0) =

∫ 0
−L g(x)cos (2n+1)πx

2L dx∫ 0
−L cos2 (2n+1)πx

2L dx
.

Proof. Let us look to a solution for the homogeneous equation in (28)

in the form

U (x, t) = X (x)T (t).

We have

X (x)T ′(t) = KDα,β
(
X ′′ (x)T (t)

)
= KDα,βX ′′ (x)T (t),

−L ≤ x ≤ 0, 0 < t ≤ T.

Therefore,

X ′′

X
=

T ′

KDα,βT
= −λ2, λ ∈ R

or {
X ′′ + λ2X = 0,

T ′ + λ2KDα,βT = 0.
(30)

The first equation in (30) has

X (x) = C1cosλx+ C2sinλx

with C1, C2 ∈ R as a general solution. Its derivative is

X ′ (x) = −λC1sinλx + λC2cosλx.
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The boundary condition

U (−L, t) = 0 = X (−L)T (t) , ∀t

implies that X (−L) = 0. The second boundary condition

Dα,β ∂U

∂x
(0, t) = Dα,β

(
X ′ (0)T (t)

)
= X ′ (0)Dα,βT (t) , ∀t

being equal to zero implies that X ′ (0) = 0. So we need to solve the system{
X ′′ + λ2X = 0

X (−L) = 0, X ′ (0) = 0
(31)

which has X(x) = C1cosλx as a solution and we find Xn (x) = cos (2n+1)πx
2L .

Back to the nonhomogeneous problem (28), we need

∂

∂t

(∑
n
Xn(x)Tn(t)

)
= KDα,β

(∑
n
X ′′

n(x)Tn(t)
)

+ f (t) l (x)

or ∑
n
Xn(x)T ′

n(t)= K
∑

n

(
−λ2

nXn(x)
)
Dα,βTn(t)

+f (t)
∑

n
CnXn(x).(32)

We infer that

T ′
n(t) +Kλ2

nD
α,βTn(t) = Cnf(t).(33)

Taking the Laplace transform of (33) we obtain

sTn(s) +Kλ2
n[sαTn(s) − sβ(α−1)

(
I(1−α)(1−β)Tn

)
(0)] = Cnf (s) + Tn (0) .

As Tn(t) are differentiable near zero, they are continuous at zero and there-

fore (see Lemma 2) (
I(1−α)(1−β)Tn

)
(0) = 0.

Thus, (
s+Kλ2

ns
α
)
Tn(s) = Tn (0) + Cnf (s)



146 Ryad A. Ghanam et al.

or

Tn(s) =
Tn (0) + Cnf (s)

s+Kλ2
ns

α
=

Tn (0) + Cnf (s)

s1−α +Kλ2
n

s−α.(34)

Applying the inverse Laplace transform to (34) we obtain

Tn(t) = Tn (0)L−1

[
s−α

s1−α +Kλ2
n

]
+ CnL−1

[
f (s) s−α

s1−α +Kλ2
n

]
= Tn (0)E1−α,1

(
−Kλ2

nt
1−α
)

+ Cn

∫ t

0
f (t− s)E1−α,1

(
−Kλ2

ns
1−α
)
ds.

Using the initial data

U (x, 0) =
∑

n
Xn(x)Tn(0) = g(x)

we find

Tn (0) =
2

L

∫ 0

−L
g(x)cos

(2n+ 1)πx

2L
dx

by using the formula

Tn (0) =

∫ 0
−L g(x)cos (2n+1)πx

2L dx∫ 0
−L cos2 (2n+1)πx

2L dx
.

The proof is complete. �

Example 1. Let l(x) = C where C is a constant. Then,

l(x) =
∑

n

2

L

2LC(−1)n

(2n+ 1)π
cos

(2n+ 1)πx

2L
=
∑

n

4C(−1)n

(2n+ 1)π
cos

(2n+ 1)πx

2L

and the solution is given by

U (x, t) =
∑

n

[
Tn (0)E1−α,1

(
−Kλ2

nt
1−α
)

+
4C(−1)n

(2n+ 1)π

∫ t

0
f (t− s)E1−α,1

(
−Kλ2

ns
1−α
)
ds

]
cos

(2n+ 1)πx

2L
.
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Example 2. Let l(x) = sinx, then

Cn =
4L

(2n+ 1)2π2 − 4L2

+2

cos
[

(2n+1)π
2 − L

]
2L− (2n+ 1)π

+
cos
[

(2n+1)π
2 + L

]
2L+ (2n+ 1)π

 .

Example 3. Let l(x) = x, then

Cn =
2

L

[
2L2(−1)n+1

(2n+ 1)π
+

4L2

(2n+ 1)2π2

]
.

The graphs below are for different values of the order α and correspond

to f(t) = 1, l(x) = x, g(x) = x+ L, L = 50 and k = 10.
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