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Zariski Density of Crystalline Representations for

Any p-Adic Field

By Kentaro Nakamura

Abstract. The aim of this article is to prove Zariski density of
crystalline representations in the rigid analytic space associated to the
universal deformation ring of a d-dimensional mod p representation of
Gal(K/K) for any d and any p-adic field K. This is a generalization of
the results of Colmez and Kisin for d = 2 and K = Qp, of the author
for d = 2 and any K, and of Chenevier for any d and K = Qp. A key
ingredient for the proof is to construct a p-adic family of trianguline
representations which can be seen as a local analogue of eigenvarieties.
In this article, we construct such a family by generalizing Kisin’s theory
of finite slope subspace Xfs for any d and any K, and using Belläiche-
Chenevier’s idea of using exterior products in the study of trianguline
deformations.
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1. Introduction

1.1. Background

Let K be a finite extension of Qp and d ∈ Z� 1. Let E be a sufficiently

large finite extension of Qp with the ring of integer O and the residue field

F. Let V be a F-representation of GK := Gal(K/K) of rank d, i.e. a

d-dimensional F-vector space with a continuous F-linear GK-action. Let

CO be the category of Artin local O-algebras with residue field F. We

consider the deformation functor DV : CO → (Sets) defined by DV (A) :=

{equivalent classes of deformations of V over A} for A ∈ CO. Assume that

EndF[GK ](V ) = F, then DV is representable by the universal deformation

ring RV . Let XV be the rigid analytic space associated to RV . The points

of XV correspond to p-adic representations of GK with mod p reduction

isomorphic to V . Define the subset XV ,reg−cris of XV by

XV ,reg−cris := {x = [Vx] ∈ XV |Vx is crystalline with Hodge-Tate weights

{ki,σ}1� i� d,σ:Qp↪→Qp
such that ki,σ 	= kj,σ for any i 	= j and σ : K ↪→ Qp}

We denote by X V ,reg−cris the Zariski closure of XV ,reg−cris in XV . The main

results of this article which will be proved in §4 concern with Zariski density

of XV ,reg−cris in XV . For example, one of the main results of this article is

following (see Corollary 4.5).

Theorem 1.1. If V is absolutely irreducible and satisfies (i) p 	 |d and

ζp ∈ K, or (ii) V 	 ∼→ V (ω), then we have an equality

X V ,reg−cris = XV ,

where ω : Gab
K → F× is the mod p cyclotomic character.

This theorem is a generalization of the results of Colmez, Kisin [Co08],

[Ki10] for d = 2 and K = Qp, of the author [Na13] for d = 2 and any K,

and of Chenevier [Ch13] for any d and K = Qp. When d = 2 and K = Qp,

the result of Colmez and Kisin plays some crucial roles in their studies of

p-adic Langlands correspondence for GL2(Qp).

The idea of the proof is essentially the same as those of [Co08], [Ki10],

[Na13], [Ch13], i.e. we re-interpret purely locally the argument of infinite
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fern of Gouvêa-Mazur by using the notion of trianguline representations.

Inspired by the work of Kisin [Ki03] on a p-adic Hodge theoretic study of

Coleman-Mazur eigencurve, where he essentially proved that the restrictions

to GQp of the two dimensional p-adic representations of GQ parametrized

by Coleman-Mazur eigencurve are trianguline, Colmez [Co08] defined and

studied trianguline representations for K = Qp by using the theory of (ϕ,Γ)-

modules over the Robba ring. In [Na09], the author of this article general-

ized Colmez’s results, i.e. studied trianguline representations for general K

by using the theory of B-pair defined by Berger [Be08].

There are two key ingredients for the proof of the main theorem. One is

the deformation theory of trianguline representations, and the other is the

construction of a “universal” p-adic family of trianguline representations in

which the set of the crystalline points is Zariski dense.

For the deformation theory of trianguline representations, we have al-

ready obtained satisfying results in [BeCh09], [Ch11] for K = Qp and in

[Na13] for general K.

The other one (i.e. the construction of a p-adic family of trianguline rep-

resentations) is more important, which can be seen as a construction of local

analogue of eigenvarieties. For K = Qp and d = 2, two different construc-

tions by Colmez and Kisin are known. Colmez [Co08] explicitly constructed

(more generally) a p-adic family of rank two trianguline (ϕ,Γ)-modules over

the Robba ring by explicitly calculating the cohomology of some rank one

(ϕ,Γ)-modules over the relative Robba ring of affinoid algebras. On the

other hands, Kisin [Ki03] constructed a Zariski closed subspace Xfs of

XV ×E Gan
m/E using his theory of the finite slope subspace, which is (roughly)

defined as the subspace consisting of the points ([V ], λ) ∈ XV ×E Gan
m/E such

that D+
crys(V )ϕ=λ 	= 0, and showed that the family of p-adic Galois repre-

sentation on this subspace is a universal (in some sense) p-adic family of

trianguline representations. For any d ∈ Z� 1 but for K = Qp, Chenevier

[Ch13] recently generalized Colmez’s construction and constructed a univer-

sal p-adic family of rank d trianguline (ϕ,Γ)-modules by further developing

the cohomology theory of (ϕ,Γ)-modules over the relative Robba ring of affi-

noid algebras. Because his calculation of cohomologies heavily depends on

the explicit structure of (ϕ,Γ)-modules which is available only for K = Qp,

we cannot directly generalize his results for general K. The main feature

of this article is to construct p-adic families of trianguline representations
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for any d and for any K by generalizing Kisin’s theory of finite slope sub-

space. For d = 2, we have already done this in [Na13]. To generalize

the construction of [Na13] for higher dimensional case, we use an idea of

Belläiche-Chenevier of using exterior products in the study of trianguline

deformations. We explain our results in detail below.

1.2. Overview

Here, we give an overview of the contents of this article.

In§ 2, we first recall the fundamentals of trianguline representations

using the notion of B-pairs. The notion of B-pairs was defined by Berger

[Be08]. The category of E-representation of GK can be naturally embedded

in the category of E-B-pairs of GK . For an E-representation V , we denote

by W (V ) the associated E-B-pair. We say that V is a split trianguline

E-representation if W (V ) can be written as a successive extension of rank

one E-B-pairs, i.e. there exists a filtration T : 0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆
Wd = W (V ) by E-B-pairs Wi such that Wi/Wi−1 are rank one E-B-pairs

for any i. We call T a triangulation of V . Rank one E-B-pairs can be

classified by the set of continuous homomorphisms δ : K× → E× ([Co08],

[Na09]). For a continuous homomorphism δ : K× → E×, we denote by

W (δ) the rank one E-B-pair associated to δ. By the definition of T , there

exists a set {δi}di=1 where δi : K× → E× such that Wi/Wi−1
∼→ W (δi) for

each i, which we call the parameter of T . Therefore, to construct a p-adic

family of trianguline representations, we first need to construct a universal

p-adic family of continuous homomorphisms δ : K× → E×. Let T and W
be the rigid analytic spaces over E which represent the functors defined by

T (A) := {δ : K× → A× continuous homomorphism } and W(A) := {δ :

O×
K → A×continuous homomorphism } for each E-affinoid A. If we fix a

uniformizer πK of K, we have an isomorphism T ∼→ W ×E Gan
m/E : δ �→

(δ|O×
K
, δ(πK)). For any δ ∈ W(A) (which is known to be automatically Qp-

analytic), we denote k(δ)σ := ∂δ(x)
∂σ(x) |x=1 ∈ A for any embedding σ : K ↪→ E,

which we call the σ-part of Hodge-Tate weight of δ. For δ ∈ W(A), define

δ̃ : Gab
K → A× the character such that δ̃◦recK |O×

K
= δ and δ̃(recK(πK)) = 1,

where recK : K× ↪→ Gab
K is the reciprocity map of local class field theory.

For δ ∈ T (A), we also define δ̃ := (̃δ|O×
K

).

In [Na13], we modified and generalized Kisin’s finite slope subspace
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Xfs ⊆ XV ×E Gan
m/E for any K, i.e. twisting by a universal character

on W, we constructed Xfs as a Zariski closed subspace of XV ×E T in-

stead of XV ×E Gan
m/E . In this article, we generalize the construction of

[Na13] for any d, we construct Xfs which we denote by EV , as a Zariski

closed subspace of Z := XV ×E T ×(d−1). Let V be a split trianguline E′-
representation with a triangulation T whose parameter is {δi}di=1 such that

[V ] ∈ XV (E′) for a finite extension E′ of E. From such a pair (V, T ), we

define an E′-rational point z(V,T ) := ([V ], δ1, δ2, · · · , δd−1) ∈ Z(E′). For the

point z(V,T ), we define δd := (det(V ) ◦ recK) ·
∏d−1

i=1 δ−1
i . For any n ∈ Z� 1,

set [n] := {1, 2, · · · , n}. For any subset I ⊆ [d], set δI :=
∏

i∈I δi.
The space EV should be a suitable approximation of the subset of Z con-

sisting of all the points of the form z(V,T ). Hence, the space EV should be con-

tained in the closed subspace Z0 of Z consisting of the points ([V ], δ1, · · · ,
δd−1) such that the Hodge-Tate weights of V are compatible with those of

{δi}di=1, more precisely, the σ-part of Hodge-Tate wights of V is equal to

{k(δ1)σ, · · · , k(δd−1)σ, k(δd)σ} for any σ : K ↪→ E. The basic idea of the

construction of EV as the closed subspace of Z0 is to generalize Kisin’s con-

struction of Xfs by using a technique of Belläiche-Chenevier using exterior

products in the study of trianguline deformations ([BeCh09], see proposition

3.11). If V is a split trianguline E representation as above. Then, we can

show that (*)“D+
cris((∧iV )(δ̃−1

[i] ))ϕ
f=δ[i](πK) is non-zero for any 1 � i � d−1”.

We construct EV as a subspace of Z0 roughly parametrizing the points

z = (V, δ1, · · · , δd−1) with this property (*).

The key main theorem of this article is the following. For the precise

statements and definitions, see Corollary 3.5, Proposition 3.7 and Theorem

3.10.

Theorem 1.2. There exists a Zariski closed subspace EV of Z satisfy-

ing the following properties (0), (1), (2).

(0) For any point z = ([V ], δ1, · · · , δd−1) ∈ EV (E′), the σ-part of Sen’s

polynomial of V is equal to

d∏
i=1

(
T − k(δi)σ

)
∈ E′[T ]

for each embedding σ : K ↪→ E.
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(1) If a pair (V, T ) as above satisfies the following conditions (i), (ii), (iii),

(i) EndE′[GK ](V ) = E′,

(ii) δj/δi 	=
∏

σ∈P σkσ for any i < j and {kσ}σ∈P ∈
∏

σ∈P Z� 0,

(iii) δi/δj 	= |NK/Qp
|p
∏

σ∈P σkσ for i < j and {kσ}σ∈P ∈
∏

σ∈P Z� 1,

then the point z(V,T ) ∈ Z defined above is contained in EV .

(2) If the point z(V,T ) ∈ EV defined in (1) satisfies one of the following

additional conditions (iv), (v),

(iv) V is potentially crystalline and, for any 1 � i � d− 1,

{a ∈ Dcris((∧iV )(δ̃−1
[i] ))|∃n � 1 such that (ϕf − δ[i](πK))na = 0}

is a rank one free K0 ⊗Qp E-module,

(v) for any 1 � i � d − 1 and for any subset I(	= [i]) ⊆ [d] with its

cardinality equal to i, we have

k(δI)σ − k(δ[i])σ 	∈ Z� 0

for any σ ∈ P,

then EV is smooth at z(V,T ) of its dimension [K : Qp]
d(d+1)

2 + 1.

For eigenvarieties, the classicality theorem concerning the conditions for

overconvergent modular forms to be classical is very important, in partic-

ular, which enables us to show that the set of classical points is Zariski

dense in eigenvarieties. As a local analogue of this property, we prove the

following theorem (Theorem 3.16).

Theorem 1.3. Let (V, T ) be a pair satisfying all the conditions in (1)

and the condition (iv) or (v) in (2) of Theorem 1.2, and let U be an admissi-

ble open neighborhood of z := z(V,T ) in EV . Then there exists an admissible

open neighborhood U ′ of z in U in which the subset consisting of the points

z′ = ([V ′], δ′1, · · · , δ′d−1) ∈ U ′ such that V ′ is crystalline with distinct Hodge-

Tate weights are Zariski dense in U ′.

For the proof of Theorem 1.3, we need to prove that, oppositely, if a point

z = ([V ], δ1, · · · , δd−1) ∈ EV satisfying the condition (*) above and some
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conditions on {δi}di=1, then V is split trianguline and crystalline. Concerning

this problem, we prove some propositions (see Proposition 3.14, Proposition

3.15) using the slope filtration theorem of Kedlaya.

The main theorem Theorem 1.1 follows from these two theorems The-

orem 1.2, Theorem 1.3, and from the deformation theory of trianguline

representations, in particular, the deformation theory of generic or benign

crystalline representations developed in [Ch11] and [Na13].
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Notation. Let p be a prime number. Let K be a finite extension of

Qp, K the algebraic closure of K, K0 the maximal unramified extension

of Qp in K. Let GK := Gal(K/K) be the absolute Galois group of K

equipped with pro-finite topology. Let OK be the ring of integers of K,

πK ∈ OK a fixed uniformizer of K, k := OK/πKOK the residue field of

K with cardinality q = pf . Let χp : GK → Z×
p be the p-adic cyclotomic

character (i.e. g(ζpn) = ζ
χ(g)
pn for any pn-th roots of unity and for any g ∈

GK). Let E be a finite extension of Qp such that P := HomQp−alg(K,E) =

HomQp−alg(K,E). In this paper, we use the notation E for the coefficient

field of representations. Let | − |p : E → Q� 0 be the norm such that

|p|p := 1
p . Let NK/Qp

: K× → Q×
p be the norm. Let denote the composition

by |NK/Qp
|p : K× NK/Qp−−−−→ Q×

p

|−|p−−→ Q× ↪→ E×, where the last inclusion

is the canonical one. Let χLT : GK → O×
K be the Lubin-Tate character

associated to the fixed uniformizer πK . Let recK : K× → Gab
K be the

reciprocity map of local class field theory such that recK(πK) is a lifting of

the inverse of q-th power Frobenius on k, then we have χLT(recK(πK)) = 1
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and χLT ◦ recK |O×
K

= idO×
K

. For any topological ring A, we say that VA is

an A-representation of GK if VA is a finite free A-module with a continuous

A-linear GK-action.

2. Review of B-Pairs and Trianguline Representations

In this section, we recall the definition of B-pairs and trianguline rep-

resentations and some of their fundamental properties which we will use in

later sections, see [Be08] or [Na09], [Na13] for more details.

2.1. Review of trianguline A-B-pairs

Let Bcris, B
+
dR and BdR be the Fontaine’s rings of p-adic periods ([Fo94]).

Let Be := Bϕ=1
cris the ϕ-fixed part of Bcris. These rings are naturally equipped

with continuous GK-actions. Let t = log[ε] ∈ Bϕ=p
cris ∩ Fil1B+

dR be a period

of the inverse of the p-adic cyclotomic character χp.

Let CE be the category of Artin local E-algebras A such that E
∼→ A/mA

where mA is the maximal ideal of A. For A ∈ CE , we recall the definition

of A-B-pair which is the A-coefficient version of B-pair (see Definition 2.10

and Lemma 2.11 of [Na13]).

Definition 2.1. We say that a pair W := (We,W
+
dR) is an A-B-pair

(of GK) if

(1) We is a finite free Be ⊗Qp A-module with a continuous semi-linear

GK-action, where “semi-linear” means that we have g((a ⊗ b)x) =

(g(a)⊗ b)g(x) for any g ∈ GK , a ∈ Be, b ∈ A, x ∈We.

(2) W+
dR is a GK-stable finite free sub B+

dR ⊗Qp A-module of WdR :=

BdR ⊗Be We which generates WdR as a BdR-module.

We define the rank of W as the rank of We over Be ⊗Qp A. We just call an

A-B-pair if there is no risk of confusing about K.

Remark 2.2. The functor VA �→W (VA) := (Be ⊗Qp VA,B
+
dR ⊗Qp VA)

from the category of A-representations of GK to the category of A-B-pairs

is exact and fully faithful.

Proposition 2.3. There exists a canonical bijection δ �→ W (δ) be-

tween the set of continuous homomorphisms δ : K× → A× and the set of

isomorphism classes of rank one A-B-pairs.
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Proof. See Proposition 2.16 of [Na13]. �

By the definition of W (δ) in the previous paragraph of Proposition 2.16

of [Na13], it is easy to show that W (δ) satisfies the following two properties.

Remark 2.4. The bijection in Proposition 2.3 is compatible with local

class field theory, i.e. we have an isomorphism W (δ̃ ◦ recK)
∼→W (A(δ̃)) for

any character δ̃ : Gab
K → A×.

Remark 2.5. For λ ∈ A×, we define a continuous homomorphism

δλ : K× → A× such that δλ|O×
K

= 1 and δλ(πK) = λ. Then, W (δλ)

is a crystalline A-B-pair corresponding to an A-filtered ϕ-module Dλ :=

K0 ⊗Qp Aeλ such that ϕf (eλ) = λeλ and Fil0(K ⊗K0 Dλ) = K ⊗K0 Dλ and

Fil1(K ⊗K0 Dλ) = 0.

Definition 2.6. Let W be an A-B-pair of rank d. We say that W is

a split trianguline A-B-pair if there exists a filtration T : 0 ⊆ W1 ⊆ W2 ⊆
· · · ⊆ Wd−1 ⊆ Wd = W by A-B-pairs such that Wi/Wi−1 is rank one A-B-

pair for any i. We call T an A-triangulation of W . Define the set {δi}di=1

of continuous homomorphisms δi : K× → A× such that Wi/Wi−1
∼→ W (δi)

for any i, which we call the parameter of T .

Let V be an A-representation. We say that V is a split trianguline

A-representation if W (V ) is a split trianguline A-B-pair.

2.2. Review of deformation theory of trianguline representations

In [BeCh09], [Ch11] (for K = Qp) and [Na13] (for general K), we study

deformation theory of trianguline B-pairs or trianguline (ϕ,Γ)-modules over

the Robba ring, which we now briefly recall (see §2 of [Na13] for more

details).

Let V be an E-representation of rank d and A ∈ CE . We say that the

pair (VA, ψA) is a deformation of V over A if VA is an A-representation and

ψA : VA ⊗A E
∼→ V is an isomorphism of E-representations. Let (VA, ψA)

and (V ′
A, ψ

′
A) be two deformations of V over A, we say that (VA, ψA) and

(V ′
A, ψ

′
A) are equivalent if there exists an isomorphism f : VA

∼→ V ′
A of

A-representations such that ψA = ψ′
A ◦ (f ⊗A idE). We define a functor

DV : CE → (Sets) by

DV (A) := { equivalent classes of deformations of V over A}
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for A ∈ CE .

Next, we consider the pair (V, T ) where V is a split trianguline E-

representation with a triangulation T : 0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Wd = W (V ).

For A ∈ CE , we say that the triple (VA, ψA, TA) is a trianguline deformation

of (V, T ) over A if (VA, ψA) is a deformation of V over A and

TA : 0 ⊆W1,A ⊆W2,A ⊆ · · · ⊆Wd,A = W (VA)

is an A-triangulation of VA such that

W (ψA)(Wi,A ⊗A E) = Wi

for any 1 � i � d, where W (ψA) : W (VA) ⊗A E
∼→ W (V ) is the iso-

morphism induced from ψA. We say that two trianguline deformations

(VA, ψA, TA) and (V ′
A, ψ

′
A, T

′
A) over A are equivalent if there exists an isomor-

phism f : VA
∼→ V ′

A of A-representations such that ψA = ψ′
A◦(f⊗A idE) and

W (f)(Wi,A) = W ′
i,A for any 1 � i � d. We define a functor DV,T → (Sets)

by

DV,T (A) := { equivalent classes of trianguline deformations

of (V, T ) over A}

for A ∈ CE . Later, we simply write [VA] ∈ DV (A) or [(VA, TA)] ∈ DV,T (A)

instead of [(VA, ψA)] or [(VA, ψA, TA)] if there is no risk of confusing about

ψA.

We have a morphism of functors DV,T → DV defined by [(VA, TA)] �→
[VA]. If DV and DV,T are represented by RV and RV,T , then this morphism

is given by a map RV → RV,T , which is a surjection in many cases. For

the representability and other properties of DV,T , we have the following

proposition.

Proposition 2.7. Let V be a split trianguline E-representation with a

triangulation T whose parameter is {δi}di=1. We assume that (V, T ) satisfies

the following conditions,

(i) EndE[GK ](V ) = E (then DV is representable),

(ii) δj/δi 	=
∏

σ∈P σkσ for any i < j and {kσ}σ∈P ∈
∏

σ∈P Z� 0,
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then the functor DV,T is representable by a quotient RV,T of RV . Moreover,

if (V, T ) satisfies the following additional condition,

(iii) δi/δj 	= |NK/Qp
|p
∏

σ∈P σkσ for any i < j and {kσ}σ∈P ∈
∏

σ∈P Z� 1,

then RV,T is formally smooth over E of its dimension [K : Qp]
d(d+1)

2 + 1.

Proof. See [BeCh09] and Corollary 2.30, Lemma 2.48 and Proposition

2.39 of [Na13]. �

Next, we recall some relations between crystalline representations and

trianguline representations. Let V be a crystalline E-representation of rank

d. We define the crystalline deformation functor Dcris
V which is a subfunctor

of DV defined by

Dcris
V (A) := {[VA] ∈ DV (A)|VA is crystalline }

for A ∈ CE . The natural inclusion Dcris
V ↪→ DV is relatively representable,

and Dcris
V is formally smooth ([Ki08]).

Let Dcris(V ) := (Bcris ⊗Qp V )GK be the filtered ϕ-module associated to

V , which is a finite free K0⊗Qp E-module of rank d. Let {α1, α2, · · · , αd} ⊆
E be the set (possibly with multiplicity) of eigenvalues of ϕf (f := [K0 : Qp])

on Dcris(V ) ⊗K0⊗QpE,σ⊗idE
E for one σ : K0 ↪→ E, which does not depend

on the choice of σ. We assume that αi 	= αj for any i 	= j. Extending

scalars, we assume that {α1, · · · , αd} ⊆ E and Dcris(V ) can be written as

Dcris(V ) = K0 ⊗Qp Ee1 ⊕K0 ⊗Qp Ee2 ⊕ · · · ⊕K0 ⊗Qp Eed

such that K0 ⊗Qp Eei is ϕ-stable and ϕf (ei) = αiei for any 1 � i � d. Let

Sd be the d-th permutation group. Under these assumptions, we define a

filtration as filtered ϕ-modules

Fτ : 0 ⊆ Dτ,1 ⊆ Dτ,2 ⊆ · · · ⊆ Dτ,d = Dcris(V )

for each τ ∈ Sd by

Dτ,i :=
i⊕

j=1

K0 ⊗Qp Eeτ(j)

for 1 � i � d, whose Hodge filtrations are induced from that on Dcris(V ), i.e.

we define Filk(K⊗K0 Dτ,i) := (K⊗K0 Dτ,i)∩Filk(K⊗K0 Dcris(V )) for each
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k ∈ Z. By the equivalence between the category of E-filtered ϕ-modules

and the category of crystalline E-B-pairs (see [Be08] or [Na09], [Na13]), for

each τ ∈ Sd, we obtain a triangulation

Tτ : 0 ⊆Wτ,1 ⊆Wτ,2 ⊆ · · · ⊆Wτ,d = W (V )

by crystalline E-B-pairs {Wτ,i}1� i� d such that Dcris(Wτ,i)
∼→ Dτ,i for any

1 � i � d. We recall the definition of benign representation in [Na13] which

is also called generic crystalline representation in [Ch11], whose deformation

theoretic property plays a crucial role in the proof of the main theorem of

this article. Let {k1,σ, k2,σ, · · · , kd,σ}σ∈P be the set of Hodge-Tate weights

of V (possibly with multiplicity) such that k1,σ � k2,σ � · · · � kd,σ for

any σ ∈ P. In this article, we define the Hodge-Tate weight of the p-adic

cyclotomic character χp : GK → E× to be {1}σ∈P .

Definition 2.8. Let V be a crystalline representation satisfying all

the assumptions in the previous paragraph. We say that V is benign if V

satisfies the following conditions,

(1) αi 	= αj , p
±fαj for any i 	= j,

(2) k1,σ > k2,σ > · · · > kd,σ for any σ ∈ P,

(3) the Hodge-Tate weights of Wτ,i is {k1,σ, k2,σ, · · · , ki,σ}σ∈P for each

τ ∈ Sd and 1 � i � d.

If V is benign, then the pair (V, Tτ ) satisfies all the conditions in Propo-

sition 2.7 for any τ ∈ Sd, hence the functors DV and DV,Tτ for all τ ∈ Sd

are representable by RV and RV,Tτ which are quotients of RV . For R∗ =

RV , RV,Tτ , we define the tangent space of R∗ by

tR∗ := HomE(mR∗/m
2
R∗ , E),

where mR∗ is the maximal ideal of R∗. Hence, we obtain a natural inclusion

tRV,Tτ
↪→ tRV

for each τ ∈ Sd.

The following theorem is a crucial for the proof of the main theorem of

this article, which was discovered by Chenevier (Theorem 3.19 of [Ch11]).
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Theorem 2.9. Let V be a benign representation of rank d, then we

have an equality ∑
τ∈Sd

tRV,Tτ
= tRV

.

Proof. See Theorem 3.19 of [Ch11] (for K = Qp) and Theorem 2.61

of [Na13] (for general K). �

3. Construction of the Local Eigenvarieties

This section is the technical heart of this article. We construct some

(approximation of) p-adic families of trianguline representations. In §10 of

[Ki03] (for K = Qp) and §3 of [Na13] (for general K), they constructed such

families for two dimensional case using the theory of finite slope subspace. In

this section, we generalize their constructions for higher dimensional case by

using the (slightly generalized version of) finite slope subspace and a tech-

nique of [BeCh09] for the study of trianguline deformations using exterior

products.

3.1. Finite slope subspace

We first generalize Proposition 5.4 of [Ki03] and Theorem 3.9 of [Na13]

as follows. We first recall some terminologies which are used in [Ki03],[Na13]

(see §2 and §3 of [Na13] for more details).

Let Cp be the p-adic completion of an algebraic closure Qp of Qp. De-

note by vp : C×
p → Q the valuation such that vp(p) = 1. Denote by

Ẽ+ := lim←− n� 0OCp/p the projective limit by the p-th power map. Define

the valuation v on Ẽ+ by v((xn)n� 0) := limn→∞ vp(xn) where xn ∈ OCp

is a lift of x̄n. Take a set {pn}n� 0 ⊆ Qp such that p0 = p, ppn+1 = pn

for any n � 0. Set p̃ := (p̄n)n� 0 ∈ Ẽ+. Denote by W (Ẽ+) the ring of

Witt vectors of Ẽ+, and by [−] : Ẽ+ → W (Ẽ+) the Teichmüler lift. Set

Amax := W (Ẽ+)[ [p̃]p ]∧, where (−)∧ is the p-adic completion of (−). The

actions of GK and Frobenius ϕ on W (Ẽ+) naturally extend to Amax and

B+
max := Amax[1/p]. Define a K-Banach algebra B+

max,K := K ⊗K0 B+
max,

and define ϕK := idK ⊗ ϕf : B+
max,K → B+

max,K .

Let X be a separated rigid analytic space over E in the sense of Tate.

For x ∈ X, we denote by E(x) the residue field of X at x, which is a



92 Kentaro Nakamura

finite extension of E. We say that an admissible open set U ⊆ X is scheme

theoretically dense in X if there exists an admissible affinoid covering {Xi :=

Spm(Ri)}i∈I of X such that U ∩ Xi is associated to a dense Zariski open

Ui ⊆ Spec(Ri) for any i ∈ I. For an invertible function Y ∈ Γ(X,OX)×

and an E-affinoid algebra R, we say that an E-morphism f : Spm(R)→ X

is Y -small if there exist a finite extension E′ of E and an element λ ∈
(R ⊗E E′)× such that E′[λ] ⊆ R ⊗E E′ is a finite étale E′-algebra and Y

λ

is topologically nilpotent in R⊗E E′. For any f ∈ Γ(X,OX), we denote by

Xf := {x ∈ X|f(x) 	= 0} the Zariski open of X on which f is not zero.

For a finite free OX -module M with a continuous OX -linear GK-action,

we denote by M(x) the fiber of M at x, which is an E(x)-representation of

GK . We denote by M∨ the OX -dual of M . For such M of rank n, we can

define Sen’s polynomial

PM (T ) ∈ K ⊗Qp Γ(X,OX)[T ],

which is a monic polynomial of degree n, such that the fiber PM (T )(x) at

x is equal to Sen’s polynomial PM(x)(T ) ∈ K ⊗Qp E(x)[T ] of M(x) for any

x ∈ X(see for example [Ki03] (2.2)). Using the canonical decomposition

K ⊗Qp Γ(X,OX)[T ]
∼→

∏
σ∈P

Γ(X,OX)[T ] : a⊗ f(T ) �→ (σ(a)f(T ))σ∈P ,

we decompose PM (T ) into

PM (T ) = (PM,σ(T ))σ∈P ∈
∏
σ∈P

Γ(X,OX)[T ].

Let d ∈ Z� 1 be a positive integer. Assume that we are given d-pairs

{(Mi, Yi)}1� i� d, where Mi are finite free OX -modules with continuous OX -

linear GK-actions and Yi ∈ Γ(X,OX)×. We assume that the σ-part of Sen’s

polynomial PMi,σ(T ) of Mi can be written as

PMi,σ(T ) = TQi,σ(T )

for a monic polynomial Qi,σ(T ) ∈ Γ(X,OX)[T ] for any 1 � i � d and σ ∈ P.

Under this situation, we prove the following theorem, which is a slightly

generalized version of Proposition 5.4 of [Ki03] and Theorem 3.9 of [Na13].

Theorem 3.1. Under the above situation, there exists a unique Zariski

closed subspace Xfs ⊆ X satisfying the following conditions (1) and (2).
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(1) For any 1 � i � d, σ ∈ P and j ∈ Z� 0, the subset Xfs,Qi,σ(j) is

scheme theoretically dense in Xfs.

(2) For any E-morphism f : Spm(R) → X which is Yi-small for any

1 � i � d and factors through XQi,σ(j) for any 1 � i � d, σ ∈ P and

j ∈ Z� 0, the following conditions (i) and (ii) are equivalent.

(i) f factors through f : Spm(R)→ Xfs ↪→ X.

(ii) For any 1 � i � d, any R-linear GK-equivariant map

h : f∗(M∨
i )→ B+

dR⊗̂QpR

factors through

h : f∗(M∨
i )→ K ⊗K0 (B+

max⊗̂QpR)ϕ
f=Yi ↪→ B+

dR⊗̂QpR.

Proof. The proof of the uniqueness is the same as that of Proposition

5.4 of [Ki03] or Theorem 3.9 of [Na13].

By the same argument as in [Ki03] or [Na13], it suffices to construct Xfs

when X = Spm(R) is an affinoid E-algebra which satisfies |Yi||Y −1
i | < 1

|πK |p
for any 1 � i � d, where |− | : R→ Q� 0 is an E-Banach norm on R. Then,

we construct Xfs as follows.

Take a sufficiently large k ∈ Z� 1 such that, for any 1 � i � d and λi ∈ E

such that |Y −1
i |−1 � |λi|p � |Yi|, the natural map

(B+
max,K ⊗K,σ E′)ϕK=σ(πK)λi ↪→ B+

dR/t
kB+

dR ⊗K,σ E′

is injective with a closed image for any σ ∈ P, which is possible by Corollary

3.5 of [Na13]. Let Ui,σ be the cokernel of this map, then Ui,σ is also an E′-
Banach space and we fix an orthonormalizable basis {ei,σ,j}j∈Ji,σ of Ui,σ.

Then, for any R-linear GK-morphism

h : M∨
i → B+

dR/t
kB+

dR⊗̂K,σR

and x ∈ Ẽ+ such that v(x) > 0, we denote by

hx : M∨
i → Ui,σ⊗̂E′(R⊗E E′)



94 Kentaro Nakamura

the composition of h with the map

B+
dR/t

kB+
dR⊗̂K,σR→ B+

dR/t
kB+

dR⊗̂K,σ(R⊗E E′) : y �→ P
(
x,

Yi

σ(πK)λi

)
y

and the natural quotient map

B+
dR/t

kB+
dR⊗̂K,σ(R⊗E E′) � Ui,σ⊗̂E′(R⊗E E′),

where P
(
x, Yi

σ(πK)λi

)
is defined by

P
(
x,

Yi

σ(πK)λi

)
:=

∑
n∈Z

ϕK([x])n ⊗
( Yi

σ(πK)λi

)n

∈ (B+
max,K⊗̂K,σ(R⊗E E′))

ϕK=
σ(πK )λi

Yi

whose convergence is proved in the proof of Theorem 3.9 of [Na13]. Then,

for any m ∈M∨
i , we can write uniquely

hx(m) =
∑

j∈Ji,σ
a(h, x, λi,m)jei,σ,j

for some {a(h, x, λi,m)j}j∈Ji,σ ⊆ R⊗E E′. We define an ideal

I(h, x, λi)
′ ⊆ R⊗E E′

which is generated by a(h, x, λi,m)j for all m ∈ M∨
i and j ∈ Jσ. Because

we have an equality I(h, x, τ(λi))
′ = τ(I(h, x, λi)

′) for any τ ∈ Gal(E′/E),

the ideal
∑

τ∈Gal(E′/E) I(h, x, τ(λi))
′ descends to an ideal

I(h, x, λi) ⊆ R.

We define an ideal by

I :=
∑

i,h,x,λi

I(h, x, λi) ⊆ R.

Finally, we define the smallest ideal I ′ so that I ′ contains I and the natural

map R/I ′ → R/I ′[ 1
Qi,σ(j) ] is an injection for any 1 � i � d, σ ∈ P and

j ∈ Z� 0. Then, the closed subspace Spm(R/I ′) satisfies the conditions (1)
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and (2), which we can prove in the same way as in the proof of Proposition

5.4 of [Ki03] or Theorem 3.9 of [Na13]. �

Remark 3.2. After submitting this article to arXiv, there appeared

some important progresses in the theory of finite slope subspace or the the-

ory of families of trianguline representations ([He12], [Li12], [KPX13]). In

particular, Liu [Li12] showed (when K = Qp) that the finite slope subspace

satisfies the condition (2) in the above theorem for any f : Spm(R)→ X, i.e.

without Y -small conditions, which enables us to show stronger properties

(for example, the existence of global triangulations) than those which we

prove in this article for the local eigenvarieties defined in the next section.

However, for the application to Zariski density of crystalline representations,

our results in this article are enough.

Next, we prove a proposition concerning some important properties of

Xfs, which is a generalization of Proposition 5.14 of [Ki03] and Proposition

3.14 of [Na13]. Let U = Spm(R) be an affinoid open of Xfs which is Yi-small

for any 1 � i � d. By Proposition 3.7 of [Na13], for any sufficiently large

k ∈ Z� 1, there exists a short exact sequence,

0→ (B+
max,K⊗̂K,σR)ϕK=Yi → B+

dR/t
kB+

dR⊗̂K,σR→ Ui,σ → 0

for each σ ∈ P and 1 � i � d, where Ui,σ is a Banach R-module which is a

direct summand of an orthonormalizable Banach R-module.

Proposition 3.3. In the above situation, the following hold.

(1) For any 1 � i � d and σ ∈ P, the natural injection

(B+
max,K⊗̂K,σ(Mi ⊗OX

R))GK ,ϕK=Yi

↪→ (B+
dR/t

kB+
dR⊗̂K,σ(Mi ⊗OX

R))GK

is an isomorphism.

(2) For 1 � i � d and σ ∈ P, let Hi,σ ⊆ R be the smallest ideal such that

any GK-equivariant R-linear map

h : M∨
i → B+

dR/t
kB+

dR⊗̂K,σR
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factors through

B+
dR/t

kB+
dR⊗̂K,σHi,σ ↪→ B+

dR/t
kB+

dR⊗̂K,σR.

Set H :=
∏

1� d,σ∈P Hi,σ ⊆ R. Then Spm(R) \ V (H) and Spm(R) \
V (Hi,σ) are scheme theoretically dense in Spm(R).

(3) For any x ∈ Spm(R), (B+
max,K ⊗K,σ Mi(x))GK ,ϕK=Yi is non zero for

any 1 � i � d and σ ∈ P.

Proof. The proof is essentially the same as that of Proposition 3.14

of [Na13]. First, we prove (1). By the definition of Xfs, we have an equality

(B+
max,K ⊗K,σ (Mi ⊗OX

Rx/m
n
x))GK ,ϕK=Yi

= (B+
dR/t

kB+
dR ⊗K,σ (Mi ⊗OX

Rx/m
n
x))GK

for any x ∈ Spm(R) and n � 1 such that Qi,σ(j)(x) 	= 0 for any σ ∈ P,

1 � i � d and j ∈ Z� 0, where Rx is the local ring at x. Hence, it suffices

to show that the natural map R→
∏

x∈V,n� 1 Rx/m
n
x is an injection, where

we define

V := {x ∈ Spm(R)|Qi,σ(j)(x) 	= 0 for any σ ∈ P, 1 � i � d, j ∈ Z� 0}.

Let f ∈ R be an element in the kernel of this map. For Q ∈ R, we denote

by V (Q) the reduced closed subspace of Spm(R) such that V (Q) = {x ∈
Spm(R)|Q(x) = 0}. If we denote by W the support of f in Spm(R), then

we have an inclusion W ⊆ ∪σ∈P,1� i� d,j∈Z� 0
V (Qi,σ(j)). By Lemma 5.7 of

[Ki03], there exists Q which is a finite product of Qi,σ(j) such that W ⊆
V (Q), hence we obtain an inclusion Spm(R)Q ⊆ X \W , in particular f is

zero in R[ 1
Q ]. Because Spm(R)Q is scheme theoretically dense in Spm(R),

we have f = 0, which proves (1).

Next, we prove (2). We first show that if x ∈ V then x ∈ Spm(R) \
V (Hi,σ) for any 1 � i � d and σ ∈ P and x ∈ Spm(R) \ V (H). If x ∈
V ∩ V (Hi,σ) for some 1 � i � d and σ ∈ P, then we have an equality

(B+
dR/t

kB+
dR ⊗K,σ (Mi ⊗OX

R))GK ⊗R Rx/mx

= (B+
dR/t

kB+
dR ⊗K,σ (Mi ⊗OX

Rx/mx))
GK
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which is a one dimensional E(x)-vector space by Corollary 2.6 of [Ki03].

However, the left hand side is zero because we have Hi,σ ⊆ mx, and this

is a contradiction. Hence, by the same argument as in the proof of (1),

there exists Q which is a finite product of Qi,σ(j) such that Spm(R)Q ⊆
Spm(R)\V (H). Because Spm(R)Q is scheme theoretically dense in Spm(R)

by the definition of Xfs, this inclusion implies that Spm(R) \ V (H) is also

scheme theoretically dense in Spm(R), and then Spm(R) \ V (Hi,σ) are also

scheme theoretically dense for all i, σ.

Using (2), we can prove (3) in the same way as that of Proposition 3.14

of [Na13]. �

3.2. Construction of the local eigenvariety

As a generalization of §10 of [Ki03] and §3 of [Na13] to the higher di-

mensional case, we apply Theorem 3.1 to the following situation. Let V be

an F-representation of GK of dimension d. Let CO be the category of Artin

local O-algebra A with residue field F. For A ∈ CO, we say that a couple

(VA, ψA) is a deformation of V over A if VA is an A-representation of GK

and ψA : VA ⊗A F
∼→ V is an isomorphism of F-representations. We say

that two deformations (VA, ψA) and (V ′
A, ψ

′
A) of V over A are equivalent if

there exists an isomorphism f : VA
∼→ V ′

A of A-representations such that

ψA = ψ′
A ◦ (f ⊗ idF). We consider a functor

DV : CO → (Sets)

defined by

DV (A) := { equivalent classes of deformations of V over A}

for A ∈ CO. We simply write [VA] ∈ DV (A) instead of [(VA, ψA)] if there is

no risk of confusing about ψA. In this paper, for simplicity, we assume that

V satisfies

EndF[GK ](V ) = F.

Under this assumption, the functor DV is pro-representable by the universal

deformation ring RV . Let V univ be the universal deformation of V over RV .

Let XV be the rigid analytic space over E associated to the formal O-scheme

Spf(RV ). Then, V univ naturally defines a finite free OXV
-module M of rank

d with a continuous OXV
-linear GK-action. Let

PM (T ) := (PM,σ(T ))σ∈P ∈ K ⊗Qp OXV
[T ]

∼→ ⊕σ∈POXV
[T ]
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be Sen’s polynomial of M .

Let det(M) : Gab
K → O×

XV
be the determinant character of M . We also

write by the same letter det(M) : K× → O×
XV

the continuous homomor-

phism defined as det(M) ◦ recK .

We next recall the definitions of the weight spaces for O×
K and K×. Let

W and T be the functors from the category of rigid analytic spaces over E

to the category of abelian groups defined by

W(X ′) := {δ : O×
K → Γ(X ′,OX′)×|δ is a continuous homomorphism}

and

T (X ′) := {δ : K× → Γ(X ′,OX′)×|δ is a continuous homomorphism}

for each rigid analytic space X ′ over E. It is known that W and T are

representable and W is representable by the rigid analytic group variety

associated to the Iwasawa algebra O[[O×
K ]]. As a rigid space over E, W is

non-canonically isomorphic to <(O×
K,tor)-union of d-dimensional open unit

discs. If we fix a uniformizer πK ∈ OK , we have an isomorphism

T ∼→W ×E Gan
m/E : δ �→ (δ|O×

K
, δ(πK)).

We denote the projections by

p1 : T → W : δ �→ δ|O×
K
, p2,πK : T → Gan

m/E : δ �→ δ(πK).

Let Y ∈ Γ(Gan
m/E ,OGan

m/E
)× be the canonical coordinate. Let

δuniv
W : O×

K → Γ(W,OW)×

be the universal homomorphism of the functorW, which is equal to the com-

posite of the canonical map O×
K → O[[O×

K ]]× : a �→ [a] with the canonical

map O[[O×
K ]]× → Γ(W,OW)×. Let

δ̃univ
W : Gab

K → Γ(W,OW)×

be the continuous character defined by

δ̃univ
W ◦ recK |O×

K
= δuniv

W and δ̃univ
W (recK(πK)) = 1.
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Then the universal homomorphism

δuniv
T : K× → Γ(T ,OT )×

of the functor T satisfies

δuniv
T |O×

K
= p∗1 ◦ δuniv

W and δuniv
T (πK) = p∗2,πK

(Y ).

We define the notion of the generalized Hodge-Tate weights for any

δ ∈ W(X ′). For any rigid space X ′ over E, any continuous homomorphism

δ : O×
K → Γ(X ′,OX′)× is locally Qp-analytic by Proposition 8.3 of [Bu07],

i.e. locally around 1 ∈ O×
K , δ can be written by

δ(x) =
∑

n={nσ}σ∈P ,nσ � 0

an

∏
σ∈P

σ(x− 1)nσ

for a unique {an}n ⊆ Γ(X ′,OX′). Then, for any σ ∈ P, we define the σ-

part of the generalized Hodge-Tate wight k(δ)σ of δ as the partial differential
∂δ(x)
∂σ(x) |x=1 of δ by σ(x) at 1, more precisely, we define

k(δ)σ := an for n = {nσ′}σ′∈P such that nσ = 1 and nσ′ = 0 (σ′ 	= σ).

Here, we prove a proposition concerning the generalized Hodge-Tate

weights of rank one representations of GK , which justifies the above defini-

tion. We recall that χLT : Gab
K → O×

K is the Lubin-Tate character associated

to a fixed uniformizer πK ∈ OK .

Proposition 3.4. Let X ′ be a rigid space over E, and let δ̃ : Gab
K →

Γ(X ′,OX′)× be a continuous character. Set δ := δ̃ ◦ recK |O×
K
∈ W(X ′).

Then, the σ-part of the generalized Hodge-Tate weight of OX′(δ̃) is equal to

k(δ)σ.

Proof. Let δ̃ : Gab
K → Γ(X ′,OX′)× be a continuous character. Be-

cause twisting by a unramified character does not change the Hodge-Tate

weights, we may assume that δ̃(recK(πK)) = 1. By the universality of W,

there exists a morphism f : Spm(A) → W such that δ = f∗ ◦ δuniv
W , which

also implies the equality δ̃ = f∗ ◦ δ̃univ
W . Because both k(δ)σ and the Hodge-

Tate weights of δ̃ are compatible with base changes, it suffices to show that
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the σ-part of the generalized Hodge-Tate weight of δ̃univ
W is equal to k(δuniv

W )σ
for each σ ∈ P. We denote by aσ ∈ Γ(W,OW) the σ-part of the generalized

Hodge-Tate weight of δ̃univ
W . Define a subset

W0 := {
∏
σ∈P

σkσ : O×
K → E×|kσ ∈ Z for any σ ∈ P} ⊆ W.

Then aσ is equal to k(δuniv
W )σ at any points of W0 because the character

˜(
∏

σ∈P σkσ) : Gab
K → E× which is equal to

∏
σ∈P σ(χLT)kσ is a crystalline

character with the generalized Hodge-Tate weights {kσ}σ∈P by the result

of Fontaine. Since the subset W0 is Zariski dense in W by Lemma 2.7 of

[Ch09], aσ is equal to k(δuniv
W )σ on W, which proves the proposition. �

Set Z := XV ×E T ×(d−1). Any point z ∈ Z can be written as z =

(x, δ1, · · · , δd−1) for x ∈ XV and δi : K× → E(z)×. Let

p : Z → XV : (x, δ1, · · · , δd−1) �→ x,

and, for 1 � i � d− 1,

qi : Z → T : (x, δ1, · · · , δd−1) �→ δi

be the projections. We set N := p∗(M), PN,σ(T ) := p∗(PM,σ(T )) ∈
Γ(Z,OZ)[T ] and

δuniv
i : K× δuniv

T−−−→ Γ(T ,OT )×
q∗i−→ Γ(Z,OZ)×

and

Yi := q∗i (δ
univ
T (πK)) ∈ Γ(Z,OZ)×.

For i = d, we define

δuniv
d := (det(N) ◦ recK)/δuniv

[d−1] : K× → Γ(Z,OZ)×,

where we set δuniv
[d−1] :=

∏d−1
i=1 δuniv

i . For any 1 � i � d − 1, we define a

continuous character

δ̃univ
i : Gab

K → Γ(Z,OZ)×
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such that

δ̃univ
i ◦ recK |O×

K
= δuniv

i |O×
K

and δ̃univ
i (recK(πK)) = 1,

and define a unramified homomorphism

δYi : K× → Γ(Z,OZ)×

such that δYi |O×
K

= 1 and δYi(πK) = Yi.

Under these notations, we define a Zariski closed subspace

Z0 ⊆ Z

the largest Zariski closed subspace such that the equality

PN,σ(T ) =
d∏

i=1

(T − k(δuniv
i )σ)

holds on Z0 for any σ ∈ P, i.e. if we denote

PN,σ(T )−
d∏

i=1

(T − k(δuniv
i )σ) := ad−1,σT

d−1 + · · ·+ a0,σ ∈ Γ(Z,OZ)[T ],

then Z0 is defined by the ideal generated by {ai,σ}0� i� d−1,σ∈P . For any

1 � i � d− 1, let ∧iN be the i-th exterior product of N over OZ . For each

1 � i � d − 1, set δuniv
[i] :=

∏i
j=1 δ

univ
j , then the σ-part of Sen’s polynomial

of

Ni := (∧iN ⊗OZ OZ(δ̃univ
[i]

−1
))|Z0

is written by TQi,σ(T ) for a monic polynomial Qi,σ(T ) ∈ OZ0 [T ] because

the σ-part of the Hodge-Tate weight of δ̃univ
i is k(δuniv

i )σ by Proposition

3.4. Hence, we can apply Theorem 3.1 to this situation, more precisely, we

obtain the following corollary. Set Y[i] :=
∏i

j=1 Yj for 1 � i � d− 1.

Corollary 3.5. Under the above situation, there exists a unique

Zariski closed subspace

EV := Z0,fs ⊆ Z0

satisfying the following conditions (1) and (2).
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(1) For any 1 � i � d − 1, σ ∈ P and j ∈ Z� 0, EV ,Qi,σ(j) is scheme

theoretically dense in EV .

(2) For any E-morphism f : Spm(R) → Z0 which is Yi-small for all

1 � i � d−1 and factors through Z0,Qi,σ(j) for any 1 � i � d−1, σ ∈ P
and j ∈ Z� 0, the following conditions (i) and (ii) are equivalent.

(i) f factors through f : Spm(R)→ EV ↪→ Z0.

(ii) For any 1 � i � d− 1, any R-linear GK-equivariant map

h : f∗(N∨
i )→ B+

dR⊗̂QpR

factors through the natural inclusion

h : f∗(N∨
i )→ K ⊗K0 (B+

max⊗̂QpR)ϕ
f=Y[i] ↪→ B+

dR⊗̂QpR.

Remark 3.6. By the definition, we can easily check that f :

Spm(R) → Z0 is Yi-small for any 1 � i � d − 1 if and only if f is Y[i]-

small for any 1 � i � d− 1.

Each point x ∈ XV corresponds to an E(x)-representation Vx of GK

such that there exists a GK-stable OE(x)-lattice Tx ⊆ Vx which satisfies

Tx/πE(x)Tx
∼→ V ⊗F (OE(x)/πE(x)OE(x)). We assume that, for a finite ex-

tension E′ of E(x), Vx⊗E(x) E
′ is a split trianguline E′-representation with

a triangulation

Tx : 0 ⊆W1 ⊆W2 ⊆ · · · ⊆Wd := W (Vx ⊗E(x) E
′).

We denote by {δi}di=1 the parameter of Tx, i.e. δi : K× → E
′× satisfies

Wi/Wi−1
∼→W (δi) for any i. By Proposition 3.4, the couple (Vx, Tx) defines

an E′-rational point

z := z(Vx,Tx) := (x, δ1, δ2, · · · , δd−1) ∈ Z0(E
′).

By Galois descent, all these are defined over E(z)(⊆ E′), i.e. the E′-
triangulation Tx descends to an E(z)(⊆ E′)-triangulation Tx of Vx⊗E(x)E(z)

with the same parameter. Hence, if we write z := z(Vx,Tx) ∈ Z0, then we

always assume that Vx is a split trianguline E(z)-representation with an

E(z)-triangulation Tx.

Proposition 3.7. Let (Vx, Tx) be a couple as above which satisfies the

following conditions (put z := z(Vx,Tx)),
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(0) EndE(z)[GK ](Vx) = E(z),

(1) δj/δi 	=
∏

σ∈P σkσ for any 1 � i < j � d and {kσ}σ∈P ∈
∏

σ∈P Z� 0,

(2) δi/δj 	= |NK/Qp
|p
∏

σ∈P σkσ for any 1 � i < j � d and {kσ}σ∈P ∈∏
σ∈P Z� 1,

then the point z ∈ Z0 is contained in EV .

Proof. First, because the construction of Xfs commutes with base

changes E �→ E′ by Lemma 3.10 of [Na13] (more precisely, we can prove this

lemma for our modified Xfs in the same way), we may assume that E(z) =

E. We prove the proposition under this assumption. By the conditions (0),

(1) and Proposition 2.34 of [Na13], DVx and DVx,Tx are representable by

RVx and RVx,Tx respectively. We denote by V univ
x the universal deformation

of Vx over RVx , and denote by

T univ
x : 0 ⊆W univ

1 ⊆W univ
2 ⊆ · · · ⊆W univ

d = W (V univ
x )⊗RVx

RVx,Tx

the universal triangulation, and denote by {δi,x}di=1 the parameter of T univ
x .

Because we have canonical isomorphisms

ÔXV ,x
∼→ RVx and M ⊗OX

V
ÔXV ,x

∼→ V univ
x

by Proposition 9.5 of [Ki03], we can define a morphism of E-algebras

g : ÔZ,z
∼→ ÔXV ,x⊗̂E(⊗̂d−1

i=1 ÔT ,δi)

∼→ RVx⊗̂E(⊗̂d−1
i=1 ÔT ,δi) � RVx,Tx⊗̂E(⊗̂d−1

i=1 ÔT ,δi),

where the first isomorphism is the natural one and the second isomorphism

is induced by the above isomorphism ÔXV ,x
∼→ RVx and the third surjection

is induced by the natural quotient map RVx → RVx,Tx .

We define an ideal I of RVx,Tx⊗̂E(⊗̂d−1
i=1 ÔT ,δi) which is generated by

{δi,x(a)⊗ 1− g(δuniv
i (a))|1 � i � d− 1, a ∈ K×}.

We set

Rz := (RVx,Tx⊗̂E(⊗̂d−1
i=1 ÔT ,δi))/I.
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Then, the natural map

RVx,Tx → RVx,Tx⊗̂E(⊗̂d
i=1ÔT ,δi) � Rz : y �→ y ⊗ 1

is an isomorphism, and the universal parameter {δi,x}di=1 is equal to

{δuniv
i }di=1 on Rz. We define a morphism

h : ÔZ,z
g−→RVx,Tx⊗̂E(⊗̂d−1

i=1 ÔT ,δi) � Rz.

Because we have an isomorphism M ⊗OX
V
ÔXV ,x

∼→ V univ
x , N ⊗OZ Rz is

isomorphic to the universal trianguline deformation of Vx over RVx,Tx

∼→ Rz.

Hence, the σ-part of Sen’s polynomial of N ⊗OZ Rz is equal to
∏d

i=1(T −
k(δuniv

i )σ), so the natural morphism

Spm(Rz/m
n)→ Z

factors through

fn : Spm(Rz/m
n)→ Z0

for any n � 1, where m ⊆ Rz is the maximal ideal. We claim that fn also

factors thorough EV for any n, which proves the proposition because the

point of Z0 determined by f1 is equal to z.

To show this claim, we note that Rz is formally smooth over E by

the condition (2) and by Proposition 2.36 of [Na13]. In particular, Rz is a

domain. Then, by the proof of Theorem 3.1, it suffices to show the following

lemma. �

Lemma 3.8. The following hold.

(1) Qi,σ(j) is non-zero in Rz for any 1 � i � d− 1, σ ∈ P and j ∈ Z� 0,

(2) For any 1 � i � d− 1, σ ∈ P and k ∈ Z� 1, the natural map

lim←−
n� 1

(B+
max,K ⊗K,σ f∗

n(Ni))
GK ,ϕK=Y[i]

→ lim←−
n� 1

(B+
dR/t

kB+
dR ⊗K,σ f∗

n(Ni))
GK

is a surjection.
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Proof. If we can prove (i), then (ii) can be proved in the same way

as in the proof of Proposition 2.8 of [Ki03]. We prove (i). Because the

σ-part of the generalized Hodge-Tate weights of f∗
n(N) is (modulo mn of)

{k(δi,x)σ}di=1, the σ-part of the generalized Hodge-Tate weights of f∗
n(Ni) is

{k(δJ,x)σ − k(δ[i],x)σ|J ⊆ [d] such that <(J) = i},

for each 1 � i � d − 1, where we define δJ,x :=
∏i

l=1 δjl,x for each subset

J = {j1, j2, · · · , ji} of [d]. Therefore, the σ-part of Sen’s polynomial of

f∗
n(Ni) is equal to ∏

J⊆[d],+(J)=i

(T − k(δJ,x)σ + k(δ[i],x)σ),

so the polynomial Qi,σ(T ) for f∗
n(N) is equal to

∏
J �=[i]⊆[d],+(J)=i

(T − k(δJ,x)σ + k(δ[i],x)σ).

Hence, it suffices to show the following lemma. �

Lemma 3.9. For any 1 � i � d − 1 and for any subset J 	= [i] such

that <(J) = i, then k(δJ,x)σ−k(δ[i],x)σ is not constant, i.e. not contained in

E for any σ ∈ P.

Proof. For any continuous homomorphism δ : O×
K → E×, we define

a functor Dδ : CE → (Sets) by

Dδ(A) := {δA : O×
K → A×|continuous homomorphisms

such that δA( mod mA) ≡ δ},

for A ∈ CE . Then, Dδ is representable by a ring Rδ which is formally smooth

over E of its dimension equal to [K : Qp]. If we denote by δuniv : O×
K → R×

δ

the universal deformation of δ, then the σ-part of the generalized Hodge-

Tate weight k(δuniv)σ is not constant for any σ ∈ P by Lemma 3.19 of

[Na13].

For each subset J 	= [i] of [d] such that <(J) = i, we set δJ,0 := δJ ·δ−1
[i] |O×

K

and define a morphism of functors fJ : DVx,Tx → DδJ,0 by

fJ([(VA, TA)]) := (δJ,A · δ−1
[i],A)|O×

K
,
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where, for the parameter {δj,A}dj=1 of the A-triangulation TA, we set δJ,A :=∏i
l=1 δjl,A for each subset J = {j1, · · · , ji} of [d]. We claim that this mor-

phism is formally smooth, which proves the lemma because then k(δJ,x)σ −
k(δ[i],x)σ is equal to f∗

J (k(δuniv
J,0 )σ) where f∗

J : RδJ,0 ↪→ RVx,Tx is the map

induced by fJ which is an injection by the formally smoothness of fJ . We

prove the claim. Let A be an object of CE and I ⊆ A be an ideal of A

such that I2 = 0. For [(VA/I , TA/I)] ∈ DVx,Tx(A/I) and δA ∈ DδJ,0(A)

such that δJ,A/I · δ−1
[i],A/I |O×

K
≡ δA(mod I), where the parameter of the A/I-

triangulation TA/I is {δj,A/I}dj=1, then it suffices to show that there exists

[(VA, TA)] ∈ DVx,Tx(A) a lift of [(VA/I , TA/I)] such that δJ,A · δ−1
[i],A|O×

K
= δA.

Because Dδ is formally smooth for any δ, we can take a lift {δj,A : K× →
A×}dj=1 of {δj,A/I}dj=1 such that δJ,A · δ[i],A|O×

K
= δA. Because we have

H2(GK ,W (δi/δj)) = 0 for any i < j by the condition (ii) and Proposition

2.9 of [Na13], the natural map

H1(GK ,W (δ1,A/δ2,A))→ H1(GK ,W (δ1,A/I/δ2,A/I))

is a surjection. Hence the sub (A/I)-B-pair W2,A/I of W (VA/I) lifts to an

A-B-pair W2,A which is an extension of W (δ1,A) by W (δ2,A). Repeating this

procedure, we can take a trianguline A-B-pair (WA, TA) which is a lift of

(W (VA/I), TA/I) and whose parameter is {δi,A}di=1. Moreover, there exists

an A-representation VA such that WA
∼→ W (VA) by Proposition 1.5.6 of

[Ke08], which proves the formally smoothness of fJ . �

Next, we prove that the local structure of EV at z(Vx,Tx) can be described

in terms of the trianguline deformation DVx,Tx .

Theorem 3.10. Let z := z(Vx,Tx) be a point of EV satisfying all the

conditions in Proposition 3.7. Moreover, if (Vx, Tx) satisfies one of the

following additional conditions (1) or (2),

(1) Vx is potentially crystalline and

{a ∈ Dcris((∧iVx)(δ̃
−1
[i] ))|∃n � 1 such that (ϕf − δ[i](πK))na = 0}

is a free of rank one K0 ⊗Qp E-module for any 1 � i � d− 1,

(2) For any 1 � i � d − 1, and for any subset J 	= [i] of [d] such that

<(J) = i, we have k(δJ)σ − k(δ[i])σ 	∈ Z� 0 for any σ ∈ P,
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then there exists a canonical isomorphism ÔEV ,z
∼→ RVx,Tx. In particular,

EV is smooth of its dimension [K : Qp]
d(d+1)

2 + 1 at z.

Proof. First, we claim that D0 := D+
cris((∧iVx)(δ̃

−1
[i] ))ϕ

f=δ[i](πK)

is a sub E-filtered ϕ-module of Dcris((∧iVx)(δ̃
−1
[i] )) of rank one such

that Fil1K ⊗K0 D0 = 0. Because we have a natural inclusion

Dcris(W (δ(δ[i](πK)))) ⊆ D0 which is induced from ∧i(Tx) by Lemma 3.8 of

[Na13], it suffices to show that D0 is at most rank one. This is trivial for

the condition (1). For (2), we assume that D0 is not of rank one. Then,

if we denote by W ′ the cokernel of the natural injection W (δ(δ[i](πK))) ↪→
W ((∧iVx)(δ̃

−1
[i] )) which is induced from ∧i(Tx), the image of D0 in Dcris(W

′)
is non zero. In particular, there exists a rank one E-filtered ϕ-submodule D

of Dcris(W
′)ϕ

f=δ[i](πK) such that Fil0K⊗K0D = K⊗K0D. This implies that

W ′ has a Hodge-Tate weight {kσ}σ∈P (kσ � 0). However, for any σ, the

σ-part of the generalized Hodge-Tate weights of W ′ are {k(δJ)σ−k(δ[i])σ}J
where J runs through the subsets of [d] such that J 	= [i] and <(J) = i, any

of which is not negative integer by the assumption (2), which is a contra-

diction. We finish the proof of the claim.

We begin the proof of the theorem. As in the proof of Proposition 3.7,

we may assume that E(z) = E. By the proof of Proposition 3.7, we have

already showed that there exists a natural local morphism

ÔEV ,z → Rz
∼→ RVx,Tx .

We construct the inverse as follows. Let Spm(R) ⊆ EV be an affinoid neigh-

borhood of z which is Yi-small for any 1 � i � d − 1, which is possible

because z is an E-rational point so we have Yi(z) ∈ E and we can take

Spm(R) such that | Yi
Yi(z)

− 1| < 1 on Spm(R). We take a sufficiently large

k ∈ Z� 1 such that, for any σ ∈ P and 1 � i � d − 1, there exists a short

exact sequence of Banach R-modules with the property (Pr)

0→ (B+
max,K⊗̂K,σR)ϕK=Y[i] → B+

dR/t
kB+

dR⊗̂K,σR→ Ui,σ → 0

for a Banach R-module Ui,σ with the property (Pr) (see Proposition 3.7 of

[Na13]). By Proposition 3.3, we have an isomorphism

(B+
max,K⊗̂K,σ(Ni ⊗OZ0

R))GK ,ϕK=Y[i]
∼→ (B+

dR/t
kB+

dR⊗̂K,σ(Ni ⊗OZ0
R))GK
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of locally free R-modules of rank one for any σ ∈ P and 1 � i � d− 1, and

if we put Hi,σ (1 � i � d− 1, σ ∈ P) the smallest ideal of R such that any

GK-equivariant R-linear map h : N∨
i → B+

dR/t
kB+

dR⊗̂K,σR factors through

B+
dR/t

kB+
dR⊗̂K,σHi,σ and put H :=

∏
1� i� d−1,σ∈P Hi,σ, then Spm(R) \

V (H) and Spm(R) \ V (Hi,σ) are scheme theoretically dense in Spm(R).

Under this situation, we denote by T̃ the blow up of Spm(R) along the ideal

H, and denote by f : T̃ → Spm(R) the canonical projection. We claim

that, for any z̃ ∈ T̃ such that f(z̃) = z, N ⊗OZ OT̃ ,z̃
/mn

z̃ is a trianguline

deformation of (Vx ⊗E E(z̃), Tx ⊗E E(z̃)) over O
T̃ ,z̃

/mn
z̃ for any n ∈ Z� 1.

To prove this claim, by the previous claim, we first note that

D+
cris(Ni ⊗OZ0

E(z̃))ϕ
f=Y[i](z̃) = D+

cris((∧iVx)(δ̃
−1
[i] ))ϕ

f=δ[i](πK) ⊗E E(z̃)

is a free K0 ⊗Qp E(z̃)-module of rank one and

Fil1DdR(Ni ⊗OZ0
E(z̃)) ∩K ⊗K0 D+

cris(Ni ⊗OZ0
E(z̃))ϕ

f=Y[i](z̃) = 0.

By the definition of blow up, there exists a non zero divisor hi,σ ∈ ÔT̃ ,z̃
such

that Hi,σÔT̃ ,z̃
= hi,σÔT̃ ,z̃

for any 1 � i � d−1 and σ ∈ P. By the definition

of Hi,σ, for any 1 � i � d − 1 and σ ∈ P, there exists a GK-equivariant

R-linear map N∨
i → (B+

max,K⊗̂K,σHi,σ)ϕK=Y[i] such that the composite with

the map

(B+
max,K⊗̂K,σHi,σ)ϕK=Y[i] → (B+

max,K⊗̂K,σhi,σÔT̃ ,z̃
)ϕK=Y[i]

∼→ (B+
max,K⊗̂K,σÔT̃ ,z̃

)ϕK=Y[i] � (B+
max,K ⊗K,σ E(z̃))ϕK=δ[i](πK)

is non zero, where the isomorphism

(B+
max,K⊗̂K,σhi,σÔT̃ ,z̃

)ϕK=Y[i]
∼→ (B+

max,K⊗̂K,σÔT̃ ,z̃
)ϕK=Y[i]

is given by a �→ a
hi,σ

. From these facts, we can show by induction on n that

D+
cris(Ni⊗OZ0

Ô
T̃ ,z̃

/mn
z̃ )ϕK=Y[i] is a free K0⊗Qp ÔT̃ ,z̃

/mn
z̃ -module of rank one

for any 1 � i � d− 1 and

K ⊗K0 D+
cris(Ni ⊗OZ0

Ô
T̃ ,z̃

/mn
z̃ )ϕ

f=Y[i] ∩ Fil1DdR(Ni ⊗OZ0
Ô

T̃ ,z̃
/mn

z̃ ) = 0

for any n � 1.
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By Proposition 3.11 below, then N ⊗OZ
Ô

T̃ ,z̃
/mn

z̃ is a trianguline de-

formation of (Vx ⊗E E(z̃), Tx ⊗E E(z̃)) over Ô
T̃ ,z̃

/mn
z̃ whose parameter

is {δuniv
i (mod mn

z̃ )}di=1, so the natural map RVx → ÔT̃ ,z̃
factors through

RVx → RVx,Tx → ÔT̃ ,z̃
. This shows that the natural map RVx → ÔEV ,z

sends the kernel of the quotient map RVx → RVx,Tx to the kernel of the

natural map

g : ÔEV ,z →
∏

z̃∈T̃ ,f(z̃)=z

Ô
T̃ ,z̃

.

Because g is an injection by Lemma 10.7 of [Ki03] and by Proposition 3.3

(2), the natural map RVx → ÔEV ,z also factors thorough RVx → RVx,Tx →
ÔEV ,z. We can easily check that this gives the desired inverse map. The

last statement of the theorem follows from Proposition 2.39 of [Na13]. �

The following proposition which we used in the above proof is a gener-

alization of Theorem 2.5.6 of [BeCh09] for any K.

Proposition 3.11. Let V be a split trianguline E-representation of

rank d with a triangulation T : 0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Wd := W (V ) whose

parameter is {δi}di=1. We assume that (V, T ) satisfies one of conditions (1)

or (2) of Theorem 3.10. Let A ∈ CE, and let VA be a deformation of V

over A, and, for any 1 � i � d, let δi,A : K× → A× be a continuous

homomorphism which is a lift of δi satisfying the following conditions,

(1) for any 1 � i � d−1, D+
cris((∧iVA)(δ̃−1

[i],A))ϕ
f=δ[i],A(πK) is a free K0⊗Qp

A-module of rank one,

(2) for any 1 � i � d− 1, the natural base change map

D+
cris((∧iVA)(δ̃−1

[i],A))ϕ
f=δ[i],A(πK) ⊗A E → D+

cris((∧iV )(δ̃[i]))
ϕf=δ[i](πK)

is isomorphism.

Then, VA has an A-triangulation TA such that (VA, TA) is a deformation of

(V, T ) whose parameter is equal to {δi,A}di=1.

Proof. The proof is of course essentially the same as that of [BeCh09],

but we give the proof here for convenience of readers. By the claim in the
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proof of the above Theorem, for any 1 � i � d− 1, we have

K ⊗K0 D+
cris((∧iV )(δ̃−1

[i] ))ϕ
f=δ[i](πK) ∩ Fil1DdR((∧iV )(δ̃−1

[i] )) = 0.

By induction on the length of A, we can also show that

K ⊗K0 D+
cris((∧iVA)(δ̃−1

[i],A))ϕ
f=δ[i],A(πK) ∩ Fil1DdR((∧iVA)(δ̃−1

[i],A)) = 0.

From this and the condition (1), D+
cris((∧iVA)(δ̃−1

[i],A))ϕ
f=δ[i],A(πK) is an A-

filtered ϕ-module. Hence, by the condition (2) and Lemma 2.22 of [Na13],

there exists an A-saturated inclusion

hi : W (δ(δ[i],A(πK))) ↪→W ((∧iVA)(δ̃−1
[i],A))

such that Dcris(hi) corresponds to the canonical injection

D+
cris((∧iVA)(δ̃−1

[i],A))ϕ
f=δ[i],A ↪→ Dcris((∧iVA)(δ̃−1

[i],A)).

Twisting this injection hi by δ̃[i],A, we obtain an A-saturated injection

h′
i : W (δ[i],A) ↪→W (∧iVA)

such that h′
i(mod mA) is equal to the canonical injection

W (δ[i]) ↪→W (∧iV )

which is naturally induced by ∧iT . Using these facts, we show by induction

on i that there exists an A-saturated sub A-B-pair Wi,A of W (VA) such

that Wi−1,A is a sub A-saturated A-B-pair of Wi,A and Wi,A/Wi−1,A
∼→

W (δi,A) and the image of the inclusion Wi,A⊗AE ↪→W (VA)⊗AE = W (V )

is equal to Wi. For i = 1, we take W1,A as the image of the inclusion

h′
1 : W (δ1,A) ↪→ W (VA). We assume that we can take a filtration W1,A ⊆

W2,A ⊆ · · · ⊆ Wi−1,A ⊆ W (VA) satisfying the above conditions. Denote

by W ′
i,A(resp. W ′

i ) the cokernel of the inclusion Wi−1,A ↪→ W (VA) (resp.

Wi−1 ↪→W (V )). Taking the i-th exterior product of W (VA) (resp. W (V )),

we obtain a following short exact sequence of A-B-pairs

0→ (∧i−1Wi−1,A)⊗W ′
i,A →W (∧iVA)→W ′′

i,A → 0
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for an A-B-pair W ′′
i,A (similarly for W (∧iV ) for an E-B-pair W ′′

i ). Under

this situation, we claim that the map W (δ[i],A) → W ′′
i,A which is defined

as the composite of h′
i with the canonical projection W (∧iVA) → W ′′

i,A, is

zero. By dévissage, it suffices to show that the natural map W (δ[i]) →
W ′′

i is zero. We first prove this claim under the condition (1) of Theorem

3.10. Because we have Dcris(W (δ(δ[i](πK))))
ϕf=δ[i](πK) 	= 0, it suffices to

show that Dcris(W
′′
i (δ̃−1

[i] ))ϕ
f=δ[i](πK) = 0, which follows from the condition

(1) of Theorem 3.10. We next prove the claim under the condition (2)

of Theorem 3.10. If the map W (δ[i]) → W ′′
i is non zero, we also have an

injection W (δ(δ[i](πK))) ↪→W ′′
i (δ̃−1

[i] ), but this injection implies that W ′′
i (δ̃−1

[i] )

has Hodge-Tate weights {kσ}σ∈P for some kσ ∈ Z� 0, which contradicts the

condition (2) of Theorem 3.10.

By this claim, the map W (δ[i],A) ↪→ W (∧iVA) factors through an A-

saturated injection W (δ[i],A) ↪→ (∧i−1Wi−1,A) ⊗W ′
i,A. Because we have a

natural isomorphism ∧i−1Wi−1,A
∼→ W (δ[i−1],A), we obtain an A-saturated

injection W (δi,A) ↪→W ′
i,A. If we define an A-B-pair Wi,A(⊆W (VA)) as the

inverse image of W (δi,A)(⊆W ′
i,A) by the natural projection W (VA)→W ′

i,A,

Wi,A satisfies all the desired properties, which proves the proposition. �

3.3. Density of the crystalline points in the local eigenvariety

We next study the projection map EV → W×d which we define below.

In the case of eigenvarieties, the projection to the weight space is very

important for the application to the classicality theorem of overconvergent

modular forms, which says that any overconvergent modular forms with a

sufficiently large weight with respect to the slope of Up-eigenvalue is classical

modular form. This theorem ensures that the set of classical points is Zariski

dense in the corresponding eigenvariety. In this subsection, we prove the

local analogues of these properties for the local eigenvariety EV .

We first define a morphism f0 : Z → W×d by f(z) := (δ1|O×
K
, · · · ,

δd−1|O×
K
, δd|O×

K
) for z := (x, δ1, · · · , δd−1) ∈ Z, where, if x ∈ X corresponds

to an E(x)-representation Vx, we define δd := (det(Vx) ◦ recK) · δ−1
[d−1]. We

also denote by

f : EV →W×d

the composition of f0 with the canonical immersion EV ↪→ Z.
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Proposition 3.12. Let z := z(Vx,Tx) be a point of EV satisfying all the

conditions in Theorem 3.10. Then, f is smooth at z.

Proof. By Theorem 3.10, we have an isomorphism ÔEV ,z
∼→ RVx,Tx .

Moreover, we have the following natural isomorphism

ÔW×d,f(z)
∼→ ÔW,(δ1|O×

K
)⊗̂E(z) · · · ⊗̂E(z)ÔW,(δd|O×

K
)

∼→ R(δ1|O×
K

)⊗̂E(z) · · · ⊗̂E(z)R(δd|O×
K

)

where R(δi|O×
K

) is the universal deformation ring defined in the proof of

Lemma 3.9. If we identify

DVx,Tx(A) = Spf(RVx,Tx)(A)

and

D(δ1|O×
K

)(A)× · · · ×D(δd|O×
K

)(A) = Spf(R(δ1|O×
K

)⊗̂E(z) · · · ⊗̂E(z)R(δd|O×
K

))(A)

for A ∈ CE(z), the local morphism at z induced by f is equal to the morphism

fz : Spf(RVx,Tx)→ Spf(R(δ1|O×
K

)⊗̂E(z) · · · ⊗̂E(z)R(δd|O×
K

))

whose A-valued points are given by

DVx,Tx(A)→ D(δ1|O×
K

)(A)× · · · ×D(δd|O×
K

)(A) : [(VA, TA)]

�→ (δ1,A|O×
K
, · · · , δd,A|O×

K
),

where {δi,A}di=1 is the parameter of TA. We claim that this morphism is

formally smooth. Let A ∈ CE(z), and let I ⊆ A be an ideal such that

I ·mA = 0. For any [(VA/I , TA/I)] ∈ DVx,Tx(A/I) and (δ′1,A, δ
′
2,A, · · · , δ′d,A) ∈

D(δ1|O×
K

)(A) × · · · × D(δd|O×
K

)(A) such that fz([(VA/I , TA/I)]) ≡ (δ′1,A, · · · ,
δ′d,A)(mod I), it suffices to show that there exists a lift [(VA, TA)] ∈
DVx,Tx(A) of [(VA/I , TA/I)] such that fz([(VA, TA)]) = (δ′1,A, · · · , δ′d,A). Take

a lift {δi,A}di=1 (δi,A : K× → A×) of the parameter {δi,A/I}di=1 of (VA/I , TA/I)

such that δi,A|O×
K

= δ′i,A. Because we have H2(GK ,W (δi/δj)) = 0 for any i <
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j by Proposition 2.9 of [Na13], we obtain an equality H2(GK ,Wi(δ
−1
i+1)) = 0

for any 1 � i � d− 1. From this equality for i = 1, we obtain a surjection

H1(GK ,W (δ1,A/δ2,A))→ H1(GK ,W (δ1,A/I/δ2,A/I)).

Hence, if we denote TA/I : 0 ⊆ W1.A/I ⊆ W2,A/I ⊆ · · · ⊆ Wd,A/I =

W (VA/I), we can take a lift [W2.A] ∈ H1(GK ,W (δ1,A/δ2,A)) of [W2,A/I ] ∈
H1(GK ,W (δ1,A/δ2,A)). Then, the natural map H1(GK ,W2,A(δ−1

3,A)) →
H1(GK ,W2,A/I(δ

−1
3,A/I)) is also a surjection, hence we can take a lift [W3,A] ∈

H1(GK ,W2,A(δ−1
3,A)) of [W3,A/I ] ∈ H1(GK ,W2,A/I(δ

−1
3,A/I)). Repeating this

procedure inductively, we obtain a trianguline A-B-pair WA with a tri-

angulation TA : 0 ⊆ W1,A ⊆ W2,A ⊆ · · · ⊆ Wd,A = WA whose pa-

rameter is {δi,A}di=1 such that [Wi,A] ∈ H1(GK ,Wi−1,A(δ−1
i,A)) is a lift of

[Wi,A/I ] ∈ H1(GK ,Wi−1,A/I(δ
−1
i,A/I)) for any 1 � i � d. This shows that fz

is formally smooth. Because this property is preserved by any base change

of the base field E, f is smooth at z by Proposition 2.9 of [BLR95]. �

We next prove a proposition which can be seen as a local analogue

of the classicality theorem of overconvergent modular forms. Let (Vx, Tx)

be a pair as in the above proposition such that z(Vx,Tx) is an E-rational

point of EV . We take an affinoid open neighborhood U = Spm(R) ⊆ EV
of z(Vx,Tx) which is Yi-small for any 1 � i � d, where we define Yd :=

detR(N |U )(recK(πK)) · Y −1
[d−1]. Then, for any 1 � i � d, the valuation

vi := vp(δ
′
i(πK)) is independent of z′ = (V ′, δ′1, · · · , δ′d−1) ∈ U . Take a

sufficiently large k ∈ Z� 1 satisfying the conditions (1), (2),

(1) for any 1 � i � d− 1 and σ ∈ P, there exists a short exact sequence

0→ (B+
max,K⊗̂K,σR)ϕK=Y[i] → B+

dR/t
kB+

dR⊗̂K,σR→ Ui,σ → 0

of Banach R-modules with the property (Pr) for a Banach R-module

Ui,σ.

(2) k > max{2,(d−1)2}
f max1� i� d{|vi|}.

Fix k which satisfies the above conditions. We define a subset W×d
k of W×d
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by

W×d
k := {(

∏
σ∈P

σk′1,σ ,
∏
σ∈P

σk′2,σ , · · · ,
∏
σ∈P

σk′d,σ) ∈ W×d|k′i,σ ∈ Z,

k′i,σ − k′i+1,σ > k for any 1 � i � d− 1 and σ ∈ P}.

Under this definition, we prove the following proposition which can be

seen as a local analogue of the classicality theorem of overconvergent mod-

ular forms, which is crucial to prove the density of the crystalline points in

EV (see Theorem 3.16 below).

Proposition 3.13. Under the above situation, for any z′ := (V ′, δ′1,
· · · , δ′d−1) ∈ U ∩ f−1(W×d

k ), V ′ is a crystalline and split trianguline E(z′)-
representation with a triangulation T ′ whose parameter is {δ′i}di=1, i.e. z′ =

z(V ′,T ′).

Proof. First, by the definition of U and by Proposition 3.3, we have

an isomorphism

(B+
max,K⊗̂K,σ(Ni ⊗OZ0

R))GK ,ϕK=Y[i]
∼→ (B+

dR/t
kB+

dR⊗̂K,σ(Ni ⊗OZ0
R))GK

for any 1 � i � d − 1 and σ ∈ P. Because we have f(z′) ∈ W×d
k , we have

Qi,σ(j)(z) 	= 0 for any σ ∈ P, 1 � i � d − 1 and −k � j � 0. Hence, by

Corollary 2.6 of [Ki03], the natural base change map is an isomorphism

(B+
dR/t

kB+
dR⊗̂K,σ(Ni ⊗OZ0

R))GK ⊗R E(z′)
∼→ (B+

dR/t
kB+

dR ⊗K,σ (∧iV ′)(δ̃
′−1
[i] ))GK

between one-dimensional vector spaces over E(z′) for each σ and i. The

natural map

(B+
max,K ⊗K,σ E(z′))ϕK=δ

′
[i]

(πK)
↪→ B+

dR/t
kB+

dR ⊗K,σ E(z′)

is an injection by the definition of U . From these facts, the natural map

(B+
max,K⊗̂K,σ(∧iV ′)(δ̃

′−1
[i] ))

GK ,ϕK=δ′
[i]

(πK)

∼→ (B+
dR/t

kB+
dR ⊗K,σ (∧iV ′)(δ̃

′−1
[i] ))GK
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is an isomorphism for each σ ∈ P and 1 � i � d−1. From this isomorphism

and because we have f(z′) ∈ W×d
k , we can check that, for each 1 � i � d−1,

Di := D+
cris((∧iV ′)(δ̃

′−1
[i] ))

ϕf=δ′
[i]

(πK)

is a sub rank one E(z′)-filtered ϕ-module of Dcris((∧iV ′)(δ̃
′−1
[i] )) such that

Fil0(K ⊗K0 Di) = K ⊗K0 Di and Fil1(K ⊗K0 Di) = 0. Hence, by Lemma

2.21 of [Na13], we obtain a saturated injection

W (δ(δ′
[i]

(πK))) ↪→W ((∧iV ′)(δ̃
′−1
[i] ))

and, twisting by δ̃′[i], we also obtain a following saturated injection

W (δ′[i]) ↪→W (∧iV ′)

for each 1 � i � d − 1. By Proposition 3.14 below, then V ′ is a split

trianguline E(z′)-representation with a triangulation T ′ : 0 ⊆ W ′
1 ⊆ W ′

2 ⊆
· · · ⊆W ′

d = W (V ′) whose parameter is equal to {δ′i}di=1. To finish the proof,

it suffices to show that W ′
i is crystalline for any 1 � i � d by induction on

i. By Lemma 3.15 below, it suffices to check that the parameter {δ′i}di=1

satisfies the conditions (1) and (2) in this lemma. For (1), it is trivial by the

definition ofW×d
k . For (2), if δ′i/δ

′
j =

∏
σ∈P σkσ |NK/Qp

|p for some {kσ}σ∈P ∈∏
σ∈P Z� 1 and for some 1 � i < j � d, then kσ = ki,σ − kj,σ � k + 1 for

any σ ∈ P. Hence the slope of W (δ′i/δ
′
j) is 1

[K:Qp](
∑

σ∈P kσ) − 1 � k. On

the other hands, the slope of W (δ′i/δ
′
j) can be computed by 1

f (vp(δ
′
i(πK))−

vp(δ
′
j(πK))) < k, which is a contradiction. Hence {δ′i}di=1 satisfies (1), (2) of

Lemma 3.15, hence V ′ is crystalline. �

Proposition 3.14. Let z := (V, δ1, · · · , δd−1) ∈ Z0 be a point which

satisfies the following conditions (1) and (2).

(1) For each 1 � i � d− 1, there exists a saturated injection

W (δ[i]) ↪→W (∧iV ).

(2) One of the following conditions holds.

(i) For any 1 � i � d−1 and for any J 	= [i] ⊆ [d] such that <(J) = i,

k(δ[i])σ − k(δJ)σ 	∈ Z� 0 for any σ ∈ P.
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(ii) For any 1 � i � d and σ ∈ P, k(δi)σ is an integer, and , if we

put v0 := max1� i� d{|vp(δi(πK))|}, k(δi)σ − k(δi+1)σ > (d−1)2

f v0

for any 1 � i � d− 1 and σ ∈ P,

Then V is a split trianguline E(z)-representation with a triangulation T

whose parameter is {δi}di=1, i.e. z = z(V,T ).

Proof. First, by the condition (1) for i = 1, we have a saturated

injection W (δ1) ↪→ W (V ). We denote by W1 ⊆ W (V ) the image of this

injection. By induction on i, we show that we can take a filtration 0 ⊆W1 ⊆
W2 ⊆ · · ·Wi−1 ⊆Wi ⊆W (V ) such that Wi is a E(z)-B-pair of rank i which

is saturated in W (V ) and Wi/Wi−1
∼→W (δi) and ∧iWi ⊆W (∧iV ) is equal

to the image of the given injection W (δ[i]) ↪→ W (∧iV ) in (1). We assume

that we can take 0 ⊆ W1 ⊆ · · · ⊆ Wi−1 ⊆ W (V ) satisfying all the above

conditions. Denote by W ′ the cokernel of the injection Wi−1 ⊆W (V ). If we

take the i-th exterior product, we obtain a following short exact sequence

of E(z)-B-pairs

0→W (δ[i−1])⊗W ′ →W (∧iV )→W ′′ → 0

for a E(z)-B-pair W ′′ because we have a natural isomorphism ∧i−1Wi−1
∼→

W (δ[i−1]). Then, W ′′ is a successive extension of ∧jWi−1 ⊗ ∧i−jW ′ for

0 � j � i− 2. We define a map ι : W (δ[i])→W ′′ as the composition of the

injection W (δ[i]) ↪→W (∧iV ) in (1) with the canonical surjection W (∧iV ) �
W ′′. Under this situation, we claim that the map ι : W (δ[i]) → W ′′ is zero

under the condition (2).

We first prove this claim under the condition (i) of (2). In this case, if

ι is not zero, then this is an injection because W (δ[i]) is of rank one. By

Proposition 2.14 of [Na09], the saturation of the image of ι is isomorphic to

W (δ[i]

∏
σ∈P σ−kσ) for some {kσ}σ∈P ∈

∏
σ∈P Z� 0. This implies that W ′′

has Hodge-Tate weights {k(δ[i])σ − kσ}σ∈P . However, because we have z ∈
Z0 and the set of Hodge-Tate weights of Wi−1 is {k(δ1)σ, · · · , k(δi−1)σ}σ∈P ,

each σ-part of the Hodge-Tate weights of W ′′ is equal to k(δJ)σ for some

J 	= [i] such that <(J) = i, which contradicts to the condition (i), hence the

map ι must be zero.

We next prove the claim under the condition (ii). We assume that the

map ι is not zero. Because W ′′ is a successive extension of ∧jWi−1⊗∧i−jW ′
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for 0 � j � i− 2, we obtain a saturated injection

W (δ[i]

∏
σ∈P

σ−kσ) ↪→ ∧jWi−1 ⊗ ∧i−jW ′

for some 0 � j � i − 2 and for some {kσ}σ∈P ∈
∏

σ∈P Z� 0. Because, each

σ-part of the Hodge-Tate weight of W ′′ is equal to k(δJ)σ for some J 	= [i]

such that <(J) = i, there exists such a J such that

kσ = k(δ[i])σ − k(δJ)σ >
(d− 1)2

f
v0

by the condition (ii). Because the slope of W (δ[i]

∏
σ∈P σ−kσ) is equal to

1

f
vp(δ[i](πK))− 1

[K : Qp]

∑
σ∈P

kσ <
i

f
v0 −

(d− 1)2

f
v0 =

i− (d− 1)2

f
v0,

so the smallest slope, which we denote by s′′, of ∧jWi−1 ⊗ ∧i−jW ′ satisfies

s′′ <
i− (d− 1)2

f
v0.

On the other hands, because we have an injection W (δ[i−1])⊗W ′ ↪→W (∧iV )

and W (∧iV ) is étale, the smallest slope s′ of W ′ satisfies

s′ � − 1

f
vp(δ[i−1](πK)) � −(i− 1)

f
v0

by Corollary 1.6.9 of [Ke08]. Because all the slopes of Wi−1 are positive or

zero by Corollary 1.6.9 of [Ke08], then the smallest slope s′′ of ∧jWi−1 ⊗
∧i−jW ′ satisfies that

s′′ � min{is′, 2s′} � −(i− 1)i

f
v0

by Remark 1.7.2 of [Ke08]. Hence, we obtain an inequality − (i−1)i
f v0 � s′′ <

i−(d−1)2

f v0, which implies that (d − 1)2 < i2, this is a contradiction, hence

the map ι must be zero. We finish to prove the claim in both cases.

This claim implies that the given injection W (δ[i]) ↪→ W (∧iV ) factors

through a saturated injection

W (δ[i]) ↪→W (δ[i−1])⊗W ′ ↪→W (∧iV ).
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Twisting the first injection by δ−1
[i−1], we obtain a saturated injection

W (δi) ↪→W ′. If we denote by Wi ⊆W (V ) the inverse image of W (δi) ⊆W ′

by the canonical surjection W (V ) � W ′, we obtain a short exact sequence

0→Wi−1 →Wi →W (δi)→ 0,

and we can check that Wi satisfies the desired properties. By induction, we

finish to prove the proposition. �

Lemma 3.15. Let W be a split trianguline E-B-pair of rank d with a

triangulation T : 0 ⊆ W1 ⊆ · · · ⊆ Wd−1 ⊆ Wd = W with the parameter

{δi}di=1. If {δi}di=1 satisfies the following conditions (1) and (2),

(1) for any 1 � i � d, δi|O×
K

=
∏

σ∈P σki,σ for some {ki,σ}σ∈P ∈
∏

σ∈P Z

such that k1,σ > k2,σ > · · · > kd,σ for any σ ∈ P,

(2) for any 1 � i < j � d, δi/δj 	=
∏

σ∈P σkσ |NK/Qp
|p for any {kσ}σ∈P ∈∏

σ∈P Z� 1,

then W is crystalline.

Proof. We prove this lemma by induction on the rank of W . If W is

of rank one, the condition (1) implies that W = W (δ1) is crystalline. We

assume that W is of rank d and Wd−1 is crystalline. For any B-pair W ′, let

H1
f (GK ,W ′) := Ker(H1(GK ,W ′)→ H1(GK ,W ′

e ⊗Be Bcris))

be the Bloch-Kato’s finite cohomology of W ′ defined in Definition 2.4 of

[Na09]. We claim that the natural injection

H1
f (GK ,Wd−1(δ

−1
d )) ↪→ H1(GK ,Wd−1(δ

−1
d ))

is a bijection, which proves that W is crystalline. We prove this claim

by computing the dimensions of both E-vector spaces. First, we have

H2(GK ,W (δi/δd)) = 0 for any 1 � i � d − 1 by the condition (2) and

Proposition 2.9 of [Na13]. Because Wd−1(δ
−1
d ) is a successive extension

of W (δi/δd), we also have H2(GK ,Wd−1(δ
−1
d )) = 0. Hence, we obtain an

equality

dimEH1(GK ,Wd−1(δ
−1
d )) = [K : Qp](d− 1) + dimEH0(GK ,Wd−1(δ

−1
d ))
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by Euler-Poincaré characteristic formula (Theorem 2.8 of [Na13]). On the

other hands, because Wd−1(δ
−1
d ) is crystalline, we have an equality

dimEH1
f (GK ,Wd−1(δ

−1
d )) = dimEDdR(Wd−1(δ

−1
d ))/Fil0DdR(Wd−1(δ

−1
d ))

+ dimEH0(GK ,Wd−1(δ
−1
d ))

by Proposition 2.7 of [Na09]. Because Wd−1(δ
−1
d ) is a successive exten-

sion of W (δi/δd), the condition (1) implies that Fil0DdR(Wd−1(δ
−1
d )) = 0.

Therefore, we obtain the following equalities

dimEH1
f (GK ,Wd−1(δ

−1
d )) = dimEDdR(Wd−1(δ

−1
d ))

+ dimEH0(GK ,Wd−1(δ
−1
d ))

= [K : Qp](d−1)+dimEH0(GK ,Wd−1(δ
−1
d )) = dimEH1(GK ,Wd−1(δ

−1
d )).

We finish to prove the claim, hence we finish to prove the lemma. �

We define two subsets XV ,reg−cris and XV ,b of XV by

XV ,reg−cris := {x = [Vx] ∈ XV |Vx is crystalline with Hodge-Tate weights

{ki,σ}1� i� d,σ∈P such that ki,σ 	= kj,σ for any i 	= j and σ ∈ P}

XV ,b := {x = [Vx] ∈ XV |Vx ⊗E(x) E
′ is benign for

a finite extension E′of E(x) and Tτ satisfies

the condition (1) of Theorem 3.10 for any τ ∈ Sd}
Using the propositions proved in this subsection, we can prove the

following theorem, which states the Zariski density of crystalline points in

EV .

Theorem 3.16. Let z(Vx,Tx) ∈ EV be an E-rational point satisfying all

the conditions in Theorem 3.10. Then, for any admissible open neighborhood

U ⊆ EV of z(Vx,Tx), there exists a smaller admissible open neighborhood

U ′ ⊆ U of z(Vx,Tx) such that the subset defined by

U ′
cris := {z = ([V ], δ1, · · · , δd−1) ∈ U ′|[V ] ∈ XV ,reg−cris}

is Zariski dense in U ′.

Proof. If we use Proposition 3.12 and Proposition 3.13, the proof of

this theorem is same as that of Lemma 4.7 of [Na13]. �
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4. Zariski Density of Crystalline Representations for Any p-Adic

Field

In this final chapter, we prove the main theorems of this article.

Lemma 4.1. Let x = [Vx] ∈ XV ,reg−cris be a point. Then, for any

admissible open neighborhood U ⊆ XV of x, U ∩ XV ,b is not empty.

Proof. This lemma is a generalization of Lemma 4.12 of [Na13]. We

may assume that E(x) = E and that the set of Hodge-Tate weights τ :=

{ki,σ}1� i� d,σ∈P of Vx satisfies k1,σ > k2,σ > · · · > kd,σ for any σ ∈ P.

By Corollary 2.7.7 of [Ki08], the subset X τ
V ,cris

of XV consisting of the

points corresponding to crystalline representations with Hodge-Tate weights

{ki,σ}1� i� d,σ∈P forms a Zariski closed subspace of XV corresponding to a

quotient Rτ
V ,cris

of RV . We consider the universal framed deformation ring

R�
V

of (V , β), where β is a fixed F-base of V . Then, in the same way as

Rτ
V ,cris

, we obtain a quotient R�,τ

V ,cris
of R�

V
and we have a natural map

Rτ
V ,cris

→ R�,τ

V ,cris
which is induced from the map RV → R�

V
corresponding

to the forgetting map D�
V

(A)→ DV (A) : (VA, ψA, β̃) �→ (VA, ψA) (A ∈ CO),

where β̃ is an A-base of VA which is a lift of β. Therefore, if we denote by

X�,τ

V ,cris
the rigid analytic space associated to R�,τ

V ,cris
, it suffices to show the

following lemma. �

Lemma 4.2. Let x be a point of X�,τ

V ,cris
and let U be an admissible open

neighborhood of x, then there exists a point z of U whose corresponding

representation is benign and satisfies the condition (1) of Theorem 3.10.

Proof. We remark that, by the proof of Theorem 3.3.8 of [Ki08], we

have a natural isomorphism ÔX�,τ

V ,cris
,y

∼→ R�,cris
Vy

for each y ∈ X�,τ

V ,cris
. By

Corollary 6.3.3 of [Be-Co08] and by Corollary 3.19 of [Ch09], there exists

an admissible affinoid open neighborhood U = Spm(R) of x in X�,τ

V ,cris
, such

that

Dcris(VR) := ((R⊗̂QpBcris)⊗R VR)GK

is a finite free K0⊗Qp R-module of rank d and DdR(VR)
∼→ K⊗K0 Dcris(VR)

which are compatible with base changes, where VR is the restriction to U of
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the universal deformation of V . For each σ′ ∈ Gal(K0/Qp), we denote by

Dσ′ the σ′-component of Dcris(VR). We denote by

T d + ad−1T
d−1 + · · ·+ a1T + a0 := detR(T · idDσ′ − ϕf |Dσ′ ) ∈ R[T ]

the characteristic polynomial of the relative Frobenius on Dσ′ , which is

independent of σ′ ∈ Gal(K0/Qp). Denote by ∆ ∈ R the discriminant of this

polynomial. Then, we claim that ∆ is a non zero divisor of R, i.e. the subset

U∆ ⊆ U consisting of the points z such that Dcris(Vz) have d-distinct relative

Frobenius eigenvalues is scheme theoretically dense in U . To prove this

claim, it suffices to show that ∆ 	= 0 in ÔX (ρ̄)�,τ
cris ,z

∼→ R�,cris
Vz

for any z ∈ U

because R�,cris
Vz

is domain by Theorem 3.3.8 of [Ki08]. It is easy to see that

Dcris(Vz) can be deformed over E(z)[ε] with d-distinct relative Frobenius

eigenvalues, hence ∆ 	= 0 in R�,cris
Vz

. In the same way, we can show that the

subset U ′′ ⊆ U consisting of the points z such that Dcris(Vz) have relative

Frobenius eigenvalues {αi}1� i� d satisfying αi 	= p±fαj for any i 	= j is

also scheme theoretically dense in U . Hence, their intersection U∆ ∩ U ′′ is

also scheme theoretically dense in U . Take an element z ∈ U∆ ∩ U ′′ ⊆ U .

Extending scalars, we may assume that

Dcris(Vz) = ⊕d
i=1K0 ⊗Qp Eei,z

such that ϕf (ei,z) = αi,zei,z for some αi,z ∈ E× (1 � i � d) such that αi,z 	=
αj,z, p

±fαj,z for any i 	= j. Because OX (ρ̄)�,τ
cris ,z

is Henselian by Theorem

2.1.5 of [Berk93], if we take a sufficiently small affinoid open neighborhood

U ′ = Spm(R′) of z in U∆ ∩ U ′′, then we can write

Dcris(VR)⊗R R′ = ⊕d
i=1K0 ⊗Qp R′ei

such that K0 ⊗Qp R′ei is ϕ-stable and ϕf (ei) = α̃iei for some α̃i ∈ R
′× for

1 � i � d satisfying that α̃i−α̃j , α̃i−p±f α̃j ∈ R
′× for any i 	= j. By Lemma

2.6.1 and by the proof of Corollary 2.6.2 of [Ki08], for sufficiently small U ′,
if we decompose DdR(VR)⊗R R′ into σ-components by

DdR(VR)⊗R R′ ∼→ DdR(VR′) = ⊕σ∈PDσ,

then, for each σ ∈ P, the σ-component Dσ of DdR(VR′) is equipped with a

filtration {FiliDσ}i∈Z by finite free R′-modules such that

FiliDσ ⊗R′ B
∼→ FiliDdR(VR′ ⊗R′ B)σ
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for any local R′-algebra B which is finite over E. From these facts, we can

obtain two R′-bases {ei,σ}di=1 and {fi,σ}di=1 of Dσ, where {ei,σ}di=1 is the

basis naturally induced from the basis {ei}di=1 of Dcris(VR′), and {fi,σ}di=1

is a basis which satisfies that

Fil−ki,σDσ = R′fi,σ ⊕R′fi+1,σ ⊕ · · · ⊕R′fd,σ

for any 1 � i � d. For each σ ∈ P, we define a (d×d)-matrix Aσ := (ai,j,σ)i,j
by fj,σ :=

∑d
i=1 ai,j,σei,σ. We denote by a ∈ R the product of all k-th minor

determinants of Aσ for all 1 � k � d − 1 and σ ∈ P. By the definition

of benign representation, for any z ∈ Spm(R′), it is easy to see that Vz is

benign if and only if a(z) 	= 0 in E(z). Therefore, to prove the lemma, it

suffices to show that Spm(R′)a and Spm(R′)(α̃J1
−α̃J2

) for any 1 � i � d− 1

and for any subsets J1 	= J2 of [d] such that <(J1) = <(J2) = i are all

scheme theoretically dense in Spm(R′), i.e. it suffices to show that both a

and α̃J1 − α̃J2 are non zero divisors of R′. Because we have an isomorphism

R̂′
mz

∼→ R�,cris
Vz

and R�,cris
Vz

is domain for any z ∈ Spm(R′), it suffices to

show that both a and α̃J1 − α̃J2 are non zero in R�,cris
Vz

. Finally, this claim

can be easily proved by explicitly constructing lifts of the filtered ϕ-module

Dcris(Vz) over E(z)[ε] such that the values corresponding to a or α̃J1 − α̃J2

for the lifts are non zero. �

For a rigid analytic space Y over E and for a point y ∈ Y , we denote

the tangent space at y by

tY,y := HomE(y)(my/m
2
y, E(y)),

where my is the maximal ideal of OY,y.

Denote by X V ,reg−cris the Zariski closure of XV ,reg−cris in XV . The fol-

lowing theorems are the main theorems of this paper.

Theorem 4.3. X V ,reg−cris is a union of irreducible components of

X red
V

, and each irreducible component of X red
V

which is contained in

X V ,reg−cris is equidimensional of dimension d2[K : Qp] + 1.

Proof. Let Z be an irreducible component of X V ,reg−cris. Because the

singular locus Zsing ⊆ Z is a proper Zariski closed subset of Z, Lemma 4.1

implies that there exists a point x ∈ XV ,b ∩ Z such that Z is smooth at x.
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Moreover, XV is also smooth at x of its dimension d2[K : Qp]+1 by Corollary

2.50 of [Na13]. Because any irreducible component is equidimensional by

a remark in page.14 of [Con99], then it suffices to show that the natural

inclusion tZ,x ↪→ tXV ,x is an isomorphism.

By the definition of benign representation and by Proposition 3.7, the

point z(Vx,Tτ ) ∈ Z0 corresponding to the pair (Vx, Tτ ) is contained in EV for

each τ ∈ Sd. For each τ ∈ Sd, we denote by Yτ the irreducible component

of p−1(X V ,reg−cris) containing z(Vx,Tτ ), which is uniquely determined and

also an irreducible component of EV by Theorem 3.10 and Theorem 3.16.

Because the natural morphism p|Yτ : Yτ → XV factors through p|Yτ : Yτ →
Z ↪→ XV for any τ ∈ Sd, we obtain a map

tEV ,z(Vx,Tτ )
= tYτ ,z(Vx,Tτ )

→ tZ,x ↪→ tXV ,x

for each τ ∈ Sd, where the first equality follows from Theorem 3.10 and

Theorem 3.16. Summing up for all τ ∈ Sd, we obtain a map

⊕
τ∈Sd

tEV ,z(Vx,Tτ )
→ tZ,x ↪→ tXV ,x.

By Theorem 2.9 and Theorem 3.10, this map is surjective, hence we obtain

an equality

tZ,x = tXV ,x,

which proves the theorem. �

Let ω : GK → F× be the mod p cyclotomic character. Set ad(V ) :=

EndF(V ) and ad(V )0 := ad(V )trace=0.

Theorem 4.4. Assume that V satisfies the following conditions,

(0) EndF[GK ](V ) = F,

(1) XV ,reg−cris is non empty,

(2) H0(GK , ad(V )0(ω)) = 0,

(3) ζp 	∈ K×, or p 	 |d,
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then, we have an equality X V ,reg−cris = XV .

Proof. First, we prove the theorem when ζp 	∈ K×. It suffices to show

that XV is irreducible by Theorem 4.3. This claim follows from the fact that

H2(GK , ad(V )) = 0, which follows from the condition (2) and the fact that

H0(GK ,F(ω)) = 0 when ζp 	∈ K×.

Next, we prove the theorem when p 	 |d. Let P be the sub group of

O×
K consisting of all p-th power roots of unity. Let pn be the order of P ,

take ζpn ∈ O×
K a primitive pn-th roots of unity. Fix σ0 ∈ P. For each

1 � i � pn − 1, we define a subfunctor Di of DV by

Di(A) := {[VA] ∈ DV (A)|det(VA)(recK(ζpn)) = ιA(σ0(ζpn))i}

for A ∈ CO, where ιA : O → A is the morphism which gives the O-algebra

structure on A. In the same way as in the proof of Theorem 4.16 of [Na13],

we can prove that, under the condition (2), Di is representable by a quotient

Ri of RV which is formally smooth over O, and, if we denote by Xi the rigid

analytic space associated to Ri, we have an equality as rigid space

XV =
∐

0� i� pn−1

Xi

and Xi is irreducible. By the condition (1) and by Theorem 4.3, there exists

i such that Xi ⊆ X V ,reg−cris. Because we have χpf−1
LT ≡ 1(mod πK) and

χLT(ζpn) = ζpn , twisting by (σ0 ◦ χLT)(p
f−1)m for each m ∈ Z induces an

isomorphism Xi
∼→ Xim for 0 � im � pn − 1 such that im ≡ i + (pf − 1)dm

(mod pn). Because χLT is crystalline, this isomorphism implies that Xim ⊆
X V ,reg−cris. Under the assumption that p 	 |d, each 0 � j � pn − 1 is equal

to im for some m ∈ Z, hence we obtain an equality X V ,reg−cris = XV . �

Finally, when V is absolutely irreducible, we obtain the following corol-

lary, which is a generalization of Theorem A of [Ch13] for general K.

Corollary 4.5. Assume that

(1) V is absolutely irreducible,

(2) one of the following conditions holds,
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(i) p 	 |d and ζp ∈ K,

(ii) V 	 ∼→ V (ω),

then we have an equality X V ,reg−cris = XV .

Proof. By Theorem 4.4, it suffices to show that the condition (1), (2)

of the theorem implies the conditions (2), (3) of Theorem 4.4.

We first claim that, under the assumption (1), the condition (2) implies

(in fact is equivalent to) that H0(GK , ad(V )0(ω)) = 0. This claim easily

follows from the existence of the natural short exact sequence of F[GK ]-

modules

0→ ad(V )0(ω)→ ad(V )(ω)
trace−−−→ F(ω)→ 0,

which splits when p 	 |d.
We finally check that XV ,reg−cris is non empty under the assumption

that V is absolutely irreducible. This fact may be well known, but for

convenience of readers, we recall a proof of this fact. We use the nota-

tion used in the proof of Theorem 4.4. Let Kd be the unramified exten-

sion of K such that [Kd : K] = d. By extending E, we assume that

HomQp−alg(Kd, E) = HomQp−alg(Kd,Qp). Fix σ̃0 : Kd ↪→ E such that

σ̃0|K = σ0. Let χd : Gab
Kd
→ F×

qd
= (OKd

/πKOKd
)× be the fundamen-

tal character of degree d, i.e. the character defined by χd(recKd
(a)) := ā

(a ∈ O×
Kd

), χd(recKd
(πK)) = 1. Then it is known that there exists an

isomorphism

V
∼→ IndGK

GKd
((σ̃0 ◦ χd)

l)⊗F F(η)

for some l ∈ Z and η : Gab
K → F×. Because any η has a crystalline lift,

we may assume that V
∼→ IndGK

GKd
((σ̃0 ◦ χd)

i)). Let χd,LT : Gab
Kd
→ K×

d

be the Lubin-Tate character of Kd associated to πK ∈ K ⊆ Kd, and let

τ be a generator of Gal(Kd/K). For each σ ∈ P, choose σ̃ : Kd → E a

Qp-algebra homomorphism such that σ̃|K = σ. Then, one can take some

{aσ,i}σ∈P,0� i� d−1 ∈
∏

σ∈P,0� i� d−1 Z such that aσ,i 	= aσ,j for any i 	= j

and that

(σ̃0 ◦ χd)
l ≡

∏
σ∈P,0� i� d−1

(σ̃τ i ◦ χd,LT)aσ,i(mod πE).
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Then,

IndGK
GKd

(
∏

σ∈P,0� i� d−1

(σ̃τ i ◦ χd,LT)aσ,i)

is a lift of V which is a crystalline representation whose σ-part of Hodge-

Tate weights is {aσ,i}0� i� d−1, i.e. this is an element of XV ,reg−cris, which

proves the claim, hence proves the corollary. �
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