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Deformations of Trianguline B-Pairs and
Zariskr Density of Two Dimensional

Crystalline Representations

By Kentaro NAKAMURA

Abstract. The aims of this article are to study the deforma-
tion theory of trianguline B-pairs and to construct a p-adic family of
two dimensional trianguline representations for any p-adic field. The
deformation theory is the generalization of Bellaiche-Chenevier’s and
Chenevier’s works in the Q,-case, where they used (¢, I')-modules over
the Robba ring instead of using B-pairs. Generalizing and modifying
Kisin’s theory of X, for any p-adic field, we construct a p-adic family
of two dimensional trianguline representations. As an application of
these theories, we prove a theorem concerning the Zariski density of
two dimensional crystalline representations for any p-adic field, which
is a generalization of Colmez’s and Kisin’s theorem for the Q,-case.
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1. Introduction

1.1. Background

Let p be a prime number and let K be a p-adic field, i.e. finite exten-
sion of Q. The theory of trianguline representations which form a class
of p-adic representations of Gy := Gal(K/K), in particular the theory
of their p-adic families turns out to be very important for the study of
the families of p-adic Galois representations over the eigenvarieties which
parametrize some p-adic automorphic representations. Inspired by Kisin’s
p-adic Hodge theoretic study of Coleman-Mazur eigencurve [Ki03], Colmez
[Co08] defined the notion of trianguline representations by using Fontaine’s
and Kedlaya’s theory of (¢,T')-modules over the Robba ring in the study
of p-adic Langlands correspondence for GL2(Q,). Based on their works,
Bellaiche-Chenevier [Bel-Ch09] and Chenevier [Ch09b] studied deformation
theory of trianguline representations and p-adic families of trianguline rep-
resentations. These theories are the fundamental tools for their applications
of the eigenvarieties to some number theoretic problems, e.g. a construction
of non trivial elements in some Selmer groups. Because all their studies are
limited to the case K = Q,, we didn’t have any results concerning the p-adic
Hodge theoretic properties of eigenvarieties over a number field F' except
when F'is Q or more generally is a number field in which p splits completely.

On the other hands, in [Na09], the author of this article generalized
many results of [Co08] for any p-adic field K. The author proved some
fundamental properties of trianguline representations and then classified
two dimensional trianguline representations for any p-adic field, where we
studied trianguline representations by using B-pairs, which were defined by
Berger in [Be09], instead of using (¢, I')-modules over the Robba ring.

The aim of this article is to generalize Kisin’s, Bellaiche-Chenevier’s
and Chenevier’s works for any p-adic field K, more precisely, to develop
deformation theory of trianguline representations and to construct a p-adic
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family of two dimensional trianguline representations for any p-adic field
K. The author expects that these generalizations are also fundamental
for applications to p-adic Hodge theoretic study of eigenvarieties for more
general number fields.

As an application of these theories, we prove some theorems (see Theo-
rem 1.6 and Theorem 1.7 in Introduction) concerning the Zariski density of
two dimensional crystalline representations for any p-adic field. These re-
sults are the generalizations of a theorem of Colmez and Kisin for K = Q,,
which played some crucial roles in the proof of p-adic Langlands correspon-
dence for GL2(Q,) ([Co10], [Kil0], [Pal0]).

In the next article [Nall] which is based on the results of this article,
we construct a p-adic family of d-dimensional trianguline representations for
any d € Z>1 and for any K and prove some theorems concerning the Zariski
density of d-dimensional crystalline representations for any d and K.

1.2. Overview

Here, we explain the contents of each section of this article.

In § 2, we study the deformation theory of trianguline B-pairs, which is
the generalization of the studies of [Bel-Ch09], [Ch09b] for any p-adic field.

In § 2.1, we recall the definition of B-pairs and some fundamental prop-
erties of trianguline B-pairs proved in [Na09] and then we extend these
notions to those over Artin local rings. Let E be a suitable finite extension
of Q, which is sufficiently large as in Notation below. We recall the defini-
tion of E-B-pairs of G, which is the F-coefficient version of B-pairs. Set
B, = Bfrizsl. An E-B-pair is a pair W = (We,WJFR) where W, is a finite
free B, ®q, £-module with a continuous semi-linear G k-action such that
WJ_R C Wyr := Bgr ®B, W, is a Gi-stable Bz{R ®Q, E-lattice of Wyr. The
category of E-representations of G is embedded in the category of E-B-
pairs by V i W (V) := (B, ®q, V,Bj; ®q, V). We say that an E-B-pair
is split trianguline if W is a successive extension of rank one E-B-pairs,
i.e. W has a filtration 0 = Wy C W1 C Wy C --- C W1 C W, =W
such that Wj is a saturated sub E-B-pair of W and W;/W;_; is a rank one
E-B-pair for any 1 < ¢ < n. We say that W is trianguline if W ®g E’
is a E’-split trianguline E’-B-pair for a finite extension E’ of E. We say
that an E-representation V' is split trianguline (resp. trianguline) if W (V)
is split trianguline (resp. trianguline). By these definitions, to study trian-
guline E-B-pairs, we first need to classify rank one E-B-pairs and then we
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need to calculate extensions between them, which were studied in [Co08]
for K = Q, and in [Na09] for general K. In § 2.1, we recall these results
which we need to study the deformation theory of trianguline F-B-pairs.
We define the Artin local ring coefficient version of B-pairs. Let Cg be
the category of Artin local F-algebras with the residue fields isomorphic
to E. For A € Cg, we say that W := (We,WjR) is an A-B-pair if W,
is a finite free B, ®Q, A-module with a continuous semi-linear G g-action
and W;R C Wyr := Bgr @B, We is a Gi-stable B(J{R ®Q, A-lattice. We
generalize some results of [Na09] for A-B-pairs.

In § 2, we study two types of deformations of split trianguline E-B-
pairs. In § 2.2, first we study the usual deformation for all E-B-pairs,
which is the generalization of Mazur’s deformation theory of p-adic Galois
representations. Let W be an E-B-pair and A € Cp. We say that (W4,¢) is
a deformation of W over A if Wy is an A-B-pair and ¢ : Wa@4 E = W is an
isomorphism. We define the deformation functor of W, Dy : Cg — (Sets)
by Dy (A) := {equivalent classes of deformations (Wy,t) of W over A }.
We prove the following proposition concerning the pro-representability and
the formal smoothness and the dimension formula of Dyy.

ProposITION 1.1 (Corollary 2.31). Let W be an E-B-pair of rank n.
If W satisfies the following conditions,

(1) Endg, (W) = E,
(2) H*(Gk,ad(W)) =0,

then the functor Dy is pro-representable by a pro-object Ry of Cg such
that
Rw = E[[Ty,--- ,Ty)] ford:=[K:Qyn?+1.

In § 2.3, we study the other more important type of deformations, i.e.
the trianguline deformations. Let W be a split trianguline E-B-pair of
rank nand 7 : 0 C Wy € Wy C --- C W,,_1 C W,, = W be a fixed
triangulation of W. For A € Cg, we say that (Wy,t,74) is a trianguline
deformation of (W,7) over A if (W4,¢) is a deformation of W over A and
Ta:0CWiaC--- CWpo14a CWya=Wjyis an A-triangulation of Wy
(i.e. W; 4 is a saturated sub A-B-pair of Wy such that W; 4/W;_1 4 is a
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rank one A-B-pair for any i) such that «(W; 4 ®4 E) = W; for any i. We
define the trianguline deformation functor Dy, 7 : Cg — (Sets) of (W, T)
by Dw.r(A) := {equivalent classes of trianguline deformations (Wa,t,74)
of (W, T) over A}. We prove the following proposition concerning the pro-
representability and the formal smoothness and the dimension formula of
this functor, which is the generalization of Proposition 3.6 of [Ch09b] for
any p-adic field. For the notations, see the main body of the article.

PROPOSITION 1.2 (Proposition 2.41). Let W be a split trianguline E-
B-pair of rank n with a triangulation :0C W C---C W, 1 C W, =W.
We assume that (W, T) satisfies the following conditions,

(0) Endg, (W) = E,

(1) For any 1 £ i < j < n, 6;/6; # Hoepaka for any {ko}oep €
HO'G'PZ§O

(2) Forany1=i<j=n, /8 # Ngg|Il,ep o™ for any {ks}oer €
HGGP ZE 1,

then Dy, 1 is pro-representable by a quotient ring Rw,r of Rw such that

n(n+1)

RVV,T :> E[[Tl, e 7TdnH fOT‘ dn = 5

(K :Qp +1.

In § 2.4, we define the notion of benign E-B-pairs, which forms a special
good class of split trianguline and potentially crystalline E-B-pairs, and
prove a theorem concerning the tangent spaces of the deformation rings of
this class. In § 2.4.1, we define the notion of benign E-B-pairs, in [Ch09b]
this class is called generic, in this article we follow the terminology of [Kil0].
Let W be a potentially crystalline E-B-pair of rank n such that W|g, is
crystalline for a finite totally ramified abelian extension L of K, which we
call a crystabelline representation. We assume that DZ. (W) := (Beis ®B,
We)GL = Ko®q, Fe1®---® Ko®q, Fe, such that Ko®q, Ee; are preserved
by (¢, Gal(L/K))-action and that ¢f(e;) = age; for some a; € E*, here
[ = [Ko: Qp] and K is the maximal unramified extension of Q, in K. We
denote by {kis.k20, " knot, g the Hodge-Tate weights of W such
that k1, = kg g = -+ 2 ky o for any o : K < K. In this paper, we define
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the Hodge-Tate weight of Q,(1) by 1. Let &, be the n-th permutation
group. For any 7 € &, we can define a filtration on DL, (W) by 0 C
Ko ®q, Eerq) € Ko ®q, Eerq) ® Ko ®q, Eerg) € -+ € Ko ®q, Ler1) @
@ Ko®q, Ber(n_1) C DL (W) by sub E-filtered (¢, Gk )-modules, where
the filtration of Ko ®q, Eer(1) @ -+ & Ko ®q, Ee,(;) is the one induced
from that of DIz (W) = L ®k, DL, (W). By the equivalence between
the category of potentially crystalline B-pairs and the category of filtered
(¢, Gi)-modules, for any 7 € &,,, we obtain the triangulation 7, : 0 C
Wi1 CWro C--- C W,,, = W such that W, ; is potentially crystalline and
Dg’ris(WT,i) = K ®Q, Ferq) @ -+ @ Ko ®q, Fe,(; for any 1 =i = n.

Under this situation, we define the notion of benign FE-B-pairs as
follows.

DEFINITION 1.3. Let W be a potentially crystalline E-B-pair of rank
n as above. Then we say that W is benign if W satisfies the following;

(1) For any i # j, we have o;/a; # 1,pf p 7,
(2) For any 0 : K — K, we have k1o >koo > > kn16>kno,

(3) For any 7 € &, and 1 < i < n, the Hodge-Tate weights of Wr; are
{k:170'> k2,07 B ki7U}O’ZK‘—>F‘

In § 2.4.2, we prove the main theorem of § 2. Let W be a benign E-
B-pair of rank n as above. For any 7 € &,,, we can define the trianguline
deformation functor Dy 7. as above. Let Ry, be the universal deformation
ring of Dy, and let Ry, 7, be the universal deformation ring of Dy, 7, for
each 7 € &,,. Let denote by t(Ry) and t(Ryw, 7, ) the tangent spaces of
Ry and Rw 1. respectively. For each 7 € &, t(Rw,7,) is a sub E-vector
space of t(Ry). The main theorem of § 2 is the following, which is the
generalization of Theorem 3.19 of [Ch09b] for any p-adic field.

THEOREM 1.4 (Theorem 2.62). Let W be a benign E-B-pair of rank
n, then we have an equality

> t(Rwz,) = t(Rw).
7€6,



Density of Two Dimensional Crystalline Representations 467

This theorem is a crucial local result for the applications to some Zariski
density theorems of local or global p-adic Galois representations. In fact, us-
ing this theorem for K = Q,, Chenevier [Ch09b] proved a theorem concern-
ing the Zariski density of the unitary automorphic p-adic Galois represen-
tations in the universal deformation spaces of three dimensional conjugate-
selfdual p-adic representations of G for any CM field F' in which p splits
completely. Moreover, this theorem is also a crucial result for the proof
of Zariski density of crystalline representations in the universal deforma-
tion spaces of p-adic Galois representations of p-adic fields. In the rest of
this paper § 3 and §4, we apply this theorem only for the two dimensional
case. Using this theorem for K = Q,, Chenevier [Ch10] recently proved
the Zariski density of crystalline representations for higher dimensional and
K = Q, case. In the next paper [Nall], the author uses this theorem for
proving the Zariski density of crystalline representations for higher dimen-
sional and any p-adic field case.

In § 3, we construct some p-adic families of two dimensional trianguline
representations for any p-adic field. To construct these, we generalize Kisin’s
theory of finite slope subspace Xy, in [Ki03] for any p-adic field. As in the
case of Q,, ([Ki03], [Kil0]), this family is essential for the proof of the Zariski
density of two dimensional crystalline representations in §4 and for the study
of the p-adic Hodge theoretic properties of Hilbert modular eigenvarieties.

In § 3.1, we prove some propositions concerning Banach Gx-modules
which we need for the construction of p-adic families of trianguline repre-
sentations. In particular, we show that these Banach G g-modules can be
obtained naturally from some almost C,-representations [Fo03]. For us, one
of the important properties of these Banach G x-modules is orthonormaliz-
ability as Banach modules over some Banach algebras. All these properties
follow from some general facts of almost Cp-representations.

In § 3.2, for any separated rigid analytic space X over E and for any
finite free O x-module M with a continuous G g-action and for any invertible
function Y on X, we construct a Zariski closed subspace X, of X, which
is “roughly” defined as the subspace of X consisting of the points x € X
such that D;S(M(aj))wfzy(m) # 0, where M (x) is the fiber of M at z. For
the precise characterization of Xy,, see Theorem 3.9. This construction is
the generalization of Kisin’s X ¢, in §5 of [Ki03] for any p-adic field. After

obtaining the results in § 3.1, the construction and the proof is almost all
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the same as that of [Ki03], but a difference is that we need to consider all
the embeddings 7 : K < K, which makes the situation more complicated.
For convenience of the readers or the author, we choose to re-prove this
construction in full detail.

In § 3.3, we apply this construction to the rigid analytic space associated
to the universal deformation ring of a two dimensional mod p-representation
of Gk. Let p: Gg — GLa(F) be a two dimensional mod p representation
of G, where F is the residue field of . For simplicity, in this paper, we
assume that Endpg,(p) = I, then there exists the universal deformation
ring R; of p, which is a complete noetherian local O-algebra, where O is the
integer ring of E. Let X(p) be the rigid analytic space over E associated to
Rj;. The universal deformation VWiV of 5 over R; defines a rank two free
Ox(p)-module Vv with a continuous Ox(p)-linear G k-action. The space
X(p) parametrizes p-adic representations V of Gx whose reductions are
isomorphic to p for some Gi-stable lattices of V. Let W be the rigid analytic
space over E which represents the functor Dyy : { rigid analytic spaces over
E} — (Sets) defined by Dyw(X) := {6 : O — I'(X,0%) : continuous
group homomorphisms } for each rigid analytic space X over E. Let §*™V :
O — (W, 0;,,) be the universal homomorphism. If we fix a uniformizer
mi € K, there exists a unique character Suniv G3> — T (W, O;,) such that
Suniv recK\OIx( — WiV apd §univ o reck (mr) = 1, where recy : K — G%P
is the reciprocity map of the local class field theory. We denote by X (p) :=
X(p) xg W xg Gj'p and denote by p1 : X(p) — X(p), p2 : X(p) = W
and p3 : X(p) — G} the canonical projections. For x € X(p), we denote
by E(x) the residue field at z which is a finite extension of E. Let x =
[V] € X(p) be a point which corresponds to a two dimensional trianguline
representation V' with a triangulation 7 : 0 € W (é1) € W(V ®@p) E')
for some E’, then we define a point Ty = ([V],61|(X9K,61(7TK)) € X(p).
We define M := p]k(vuni")((@g“ni")*l) a rank two Oxp-module with a
continuous O x ()-linear G ic-action. Let Y := p3(T) € (’))X((ﬁ) be the pullback
of the canonical coordinate T" of G2 .. If we apply the construction of X, to
the triple (X (p), M,Y’), we obtain a Zariski closed subspace X (p) ¢s of X (p),
which we denote by £(p) := X(p) ts. The main result of § 3 is the following
theorem (see Theorem 3.17 and Theorem 3.22 for more precise statements),
which is a generalization of Proposition 10.4 and 10.6 of [Ki03].
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THEOREM 1.5. &(p) satisfies the following properties.

(1) For any point x := ([V], 6z, \z) € E(p), Vi is a trianguline represen-
tation.

(2) Conversely, if x = [Vz] € X(p) is a point such that V, is a split
trianguline E(x)-representation with a triangulation T : 0 C W (61) C
W (V) satisfying all the conditions in Proposition 1.2, then the point
x(v, 1) € X(p) defined as above is contained in E(p).

(3) For each point x(y, 1y as in (2), there exists an isomorphism

@g(ﬁ)7$(v - = Ry, 7, in particular E(p) is smooth of its dimension
3[K : Qp] + 1 at such points.

In the next paper [Nall], the author will generalize all these results for
higher dimensional case.

In the final section § 4, as an application of § 2 (in the two dimen-
sional case) and of § 3, we prove the following theorems concerning the
Zariski density of two dimensional crystalline representations. We denote
by X(p)reg—cris = {x = [Vi] € X(p)|V is crystalline with the Hodge-Tate
weights {k1,5,k2,0},. ¢ Such that ki, # ko, for any o}, X(p)y, == {z €
X(p)|Vy is crystalline and benign }. We denote by X(p),, the Zariski closure
of X(p)y in X(p).

THEOREM 1.6 (Theorem 4.13). If X(p)reg—cris @S non empty, then
X(p)b is also non empty and the closure X(p), is a union of irreducible
components of X(p).

Moreover, under the following assumptions, we prove the following
stronger results concerning the Zariski density.

THEOREM 1.7 (Theorem 4.15, Theorem 4.16). Assume the following
conditions,

(0) EndGK (ﬁ) = IF;
(1) %(ﬁ)regfcris 18 not empty

Moreover, assume one of the following two conditions (2), (3),
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(2) ¢ & K (¢p is a primitive root of unity) and p satisfies one of the
following conditions (i), (i),
(i) If p is absolutely reducible, then p QrF (é :) ® x for any
x:Gxg — FX, where w is the mod p cyclotomic character,
(ii) If p is absolutely irreducible, then [K((p) : K| # 2 or p|1, ®FF #

inf
0 x7
fundamental character of the second kind,

L0 i(nf — —
<X2 ) such that X;(p D _ Wy, where x2 : Ik — F* s a

(3) ¢ € K and p # 2,

then we have an equality X(p), = X(p).

This theorem generalizes the results of Colmez [Co08] and Kisin [Kil0]
for K = Q, to the case of any p-adic field. As is stated in the above
paragraph, Chenevier recently proved similar results for higher dimensional
and for K = Qy,, and the author will prove these theorems in full generality
(i.e. for higher dimensional and for any p-adic field) in the next paper.

Notation. Let p be a prime number. Let K be a finite extension of @),
K be a fixed algebraic closure of K, K be the maximal unramified extension
of Q, in K, K" be the Galois closure of K in K. Let G := Gal(K/K)
be the absolute Galois group of K. Let O be the ring of integers of K,
7k € Ok be a uniformizer of K, k := O /mxOk be the residue field of
K, g = p/ := #k be the order of k. Denote by Xp : Gk — Z, the p-adic

cyclotomic character (i.e. g((n) = C;(n(g ) for any p”-th roots of unity and

~

for any g € Gg). Let C, := K be the p-adic completion of K, which
is an algebraically closed p-adically completed field, and Oc, be its ring of
integers. We denote by v, the normalized valuation on C; such that vy (p) =
1. We denote by | — |, : C, — R>( the absolute value such that [p|, = %.
Let E be a finite extension of Q, in K such that K" C E. In this paper,
we use the notation E as a coefficient field of representations. We denote by
P:={0:K — K} ={o: K — E} the set of Q,-algebra homomorphisms
from K to K (or E). Let xrr : Gxg — Oy be the Lubin-Tate character
associated with the fixed uniformizer wg. Let recg : K* — G*}}f’ be the
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reciprocity map of local class field theory normalized such that recy (mx)

is a lifting of the inverse of g-th power Frobenius on k. We remark that

xrT o reck 1 KX — Oj satisfies xrr o recgx (mx) = 1 and xpr o recK |pnx =
K

ldolx(.
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2. Deformation Theory of Trianguline B-Pairs

2.1. Review of B-pairs
2.1.1 FE-B-pairs

We start by recalling the definition of E-B-pairs ([Be09], [Na09]) and
then recall some fundamental properties of them established in [Na09].
First, we recall some rings of p-adic periods [Fo94] which we need for defining
B-pairs. Let Et := lim ,Oc, = liﬂln(’)g/p(’)(cp, Wherithe limits are taken
with respect to the p-th power map. It is known that ET is a complete val-
uation ring of characteristic p whose valuation is defined by v(z) := v,(z(®)
for x = (:r(”))nzo € lim,Oc,. We fix a system of p"-th roots of unity
{e™}, > such that e =1, ()P = ™ for any n, e # 1. Then
e = (™), > is an element of E* satisfying v(e — 1) = p/(p — 1). The
topological group G acts on this ring continuously in natural way. We
put At := W(E"), where we denote by W(R) the ring of Witt vectors
in R for any perfect ring R. We put Bt = ;ﬁr[%] These rings are
equipped with the weak topology and also have a natural continuous G-
action and have a Frobenius action ¢. We have a Gx-equivariant surjection
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6: AT — Oc, :+ SpoopFlak] — Zzozopkxl(go), where [] : EY — AT is
the Teichmiiller lift. Inverting p, we obtain a surjection Bt — C,. We
put By := mn]§+ /(Ker(#))™, which is a complete discrete valuation ring
with the residue field C, and is equipped with the projective limit topol-
ogy of the Q,-Banach spaces B+ /(Ker(#))" (n = 1) whose Zy-lattice is the
image of the natural map AT — BT /(Ker(A))™. Let Apax be the p-adic

completion of _Xﬁr[@], where p := (p(™) is an element in E* such that
pO = p, (VY = p( for any n. We put BE, = Amax[zl—?]. A hax

and B . have a continuous G-action and a Frobenius actions ¢. We

have a natural Gg-equivariant embedding K ®k, B, — Big. If we

put t := log([e]) = >_o° 1(_1)71_1@’ then we can see that ¢t € Apax,

o(t) = pt,g(t) = Xp(g)t_for any g € Gg and Ker(d) = tBl; C Bl is the

maximal ideal. If we put Brax := B[], Bar := B3 [1], we have a natu-

ral embedding K ® g, Bmax — Bar. We put B, := B¢ which is equipped
with the locally convex inductive limit topology of B, = Un(tinBJr ye=t

max

where the topology on each (&Bif)?=" = EB&"" is induced that of
Bf... We put Fil'Bggr := tiB;fR for any ¢ € Z. On Bgg, we also equipped

with the locally convex inductive limit topology of Bggr = liigntinB;fR.

In this paper, we fix a coefficient field of p-adic representations or B-
pairs. Hence we start by recalling the definition of E-coeflicient versions of
p-adic representations and B-pairs.

DEFINITION 2.1. An FE-representation of Gk is a finite dimensional
E-vector space V with a continuous FE-linear action of Gx. We call E-
representation for simplicity when there is no risk of confusion about K.

DEFINITION 2.2. A pair W := (WL, W;R> is an E-B-pair if

(1) Weis a finite B, ®q, F-module which is free over B, with a continuous
semi-linear G g-action.

(2) Wi is a Gg-stable finite B} ®q, E-submodule of Bgr ®5, We which
generates Bqr ®B, We as a Bgg-module.

We have an exact fully faithful functor W(—) from the category of E-
representations to the category of E-B-pairs defined by

W (V) := (B ®q, V,Bjg ®g, V)
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for any F-representation V', where the fully faithfulness follows from the
Bloch-Kato’s fundamental short exact sequence,

0—>Qp—>BeEBB3'R—>BdR—>O.

We remark that W, is a free B, ®Q, FE-module and W qr 1s a free B R®Q, F
module by Lemma 1.7, 1.8 of [Na09]. We define the rank of W by

rank(W) := rankg, gq, 2(We).

For E-B-pairs Wy := (Wy ., W, dR) and Wy := (Wa e, W, dR) we define the
tensor product of Wi and Wy by

Wi @ Wy = (Wi ®B.wg, E W2,es Wde ®BIR®Q;)E WgJ,rdR)
and define the dual of W7 by
v +,V
Wl = (HomBe®@pE(W1,ea Be ®Qp E), Wl,dR)
where we define
Wf,réﬁ = {f € Hompreq, #(Bdr ©@B, Wi, Bar ®q, E)|f (W) 4r)
C Bl ®q, E})

(remark: there is a mistake in the definition 1.9 of [Na09]). The category of
FE-B-pairs is not an abelian category. In particular, an inclusion Wy <— Wy
does not have a quotient in the category of E-B-pairs in general. However
we can always take the saturation

sat .__ sat —+,sat
W= (W3, Wi et

such that I/VlSat sits in W7 — Wlsat — Wy and Wy, = Sat and Wy/ WSaLt
an E-B-pair (see Lemma 1.14 of [Na09]). We say that an inclusion W) —
W, is saturated if Wy /W is an E-B-pair, i.e. W = Wsat.

Next, we recall the p-adic Hodge theory for B-pairs. Let W = (W, W)
be an E-B-pair. We define

Deris(W) := (Bmax @B, We ) Dchls(W) = (Bmax @B, We)GL
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for any finite extension L of K and define
Dar(W) = (Bar ®, We) %, Dur(W) := (Bur ©c, (Wi /tWz))7*,

here Byt := C,[T,T7!] on which G acts by g(aT?) := x,(g)'g(a)T* for
any g € Gg,a € Cp,i € Z.

DEFINITION 2.3. We say that W is crystalline (resp. de Rham, resp.
Hodge-Tate) if dimg, D (W) = [E : Qprank(W) for * = cris (resp. * =
dR, resp. * = HT), where K, = Ky when % = cris and K, = K when
* = dR, HT. We say that W is potentially crystalline if dim, (DL, (W)) =

[E : QpJrank(WV) for a finite extension L of K, where Lg is the maximal
unramified extension of Q, in L.

DEFINITION 2.4. Let L be a finite Galois extension of K. Set G x 1=
Gal(L/K). We say that D is an E-filtered (¢, G, /x)-module over K if

(1) D is a finite free Ly ®q, F-module with a ¢-semi-linear action ¢p :
D = D and a semi-linear action of G, /K such that ¢p and the action
of G x commute, where (¢-)semi-linear means that pp(a ®b-x) =
ela)@b-pp(z), gla®b-x) = g(a)®b- g(x) for any a € Lg,b € E,x €
D,g € Grk,

(2) Dr, := L®r, D has a separated and exhausted decreasing G Kk-stable
filtration {Fil’Dy};cz by L ®q, E-submodules.

Let W be a potentially crystalline E-B-pair such that W|q, is crystalline
for a finite Galois extension L of K, then we define an E-filtered (v, G/ )-
module’s structure on DL, (W) as follows. First, DL, () has a Frobenius
action induced from that on Bpax and has a G,/ g-action induced from those
on Byax and We. We define a filtration on L®y, Dchis(W) = LRk Dgr(W)
by

Fil'(L @1, D (W) i= (L @k Dar(W)) N W,

for any ¢ € Z.

Let D := Loe be a rank one Q,-filtered (¢, G, x)-module with a base
e, then we define ¢t (D) := vp(a) where ¢p(e) = « - e and define ty (D) :=
¢ such that FiliDL/FilH'lDL % 0. For general D of rank d, we define
tn(D) :=tny(AYD), tg(D) := ty(ALD). We say that D is weakly admissible
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if tn(D) = tg(D) and ty(D') 2 tg(D') for any sub Q,-filtered (¢, G/ )-
module D’ of D.

THEOREM 2.5. Let L be a finite Galois extension of K, then we have
the following results.

(1) The functor W +— DZL. (W) gives an equivalence of categories between
the category of potentially crystalline E-B-pairs which are crystalline
if restricted to G, and the category of E-filtered (v, G i )-modules
over K.

(2) Restricting the above functor to E-representations, the functor V —
L

Dcris
potentially crystalline E-representations which are crystalline if re-
stricted to Gp and the category of weakly admissible E-filtered

(¢, Gr/K)-modules over K.

(V') gives an equivalence of categories between the category of

PROOF. See Proposition 2.3.4 and Theorem 2.3.5 of [Be09] or Theorem
1.18 of [Na09]. O

Next, we recall the definition of trianguline E-B-pairs, whose deforma-
tion theory we study in detail in this chapter.

DEFINITION 2.6. Let W be an E-B-pair of rank n, then we say that
W is split trianguline if there exists a filtration

T:0CWCWC---CW, =W

by sub E-B-pairs such that W; is saturated in W;i1; and W11 /W; is a
rank one E-B-pair for any 0 < i < n — 1. We say that W is trianguline if
W ®pg E', the base change of W to E’, is a split trianguline E’-B-pair for a
finite extension E’ of E.

By this definition, to study split trianguline E-B-pairs, it is important
to classify rank one E-B-pairs and calculate extension classes of rank one
E-B pairs, which were studied in [Na09]. We recall some results concerning
these.



476 Kentaro NAKAMURA

THEOREM 2.7. There exists a canonical one to one correspondence
6 +— W(6) between the set of continuous homomorphisms 6 : K* — E*
and the set of isomorphism classes of rank one E-B-pairs.

PROOF. See Proposition 3.1 of [Co08] for K = Q, and Theorem 1.45
of [Na09] for general K. For the construction of W (§), see §1.4 of [Na09]. O

This correspondence is compatible with the local class field theory, i.e.
for any unitary homomorphism 6 : K* — Of, if we take the character
b G%}) — O}, satisfying §orecg = 6, then we have a canonical isomorphism

W(8) = W(E(6)).

This correspondence is also compatible with tensor products and with duals,
i.e for continuous homomorphisms 61,82 : K* — E*, we have canonical
isomorphisms

W (61) @ W (62) = W(6182) and W (61)Y = W (87 h).

There are some important examples of rank one FE-B-pairs which we
recall now. For any {ks}sep € [[,cp Z, we define a homomorphism

H ofe i KX - EX iy — H o(y)ke,
ocP ocP
then we have an isomorphism

W( H O—ka) = (Be ®@p E7 @aeptkoBg—R ®K,U E)
c€P

(see Lemma 2.12 of [Na09]). Let Ngq, : K* — Q, be the norm and
| —]:Qy — Q* — E* be the p-adic absolute value such that |p| = zla’ and

we define [N q,| : K* — E* the composite of N @, and | — |, then we
have an isomorphism

W(INksg,| [T o) = W(E()),
ocP

which is the E-B-pair associated to the p-adic cyclotomic character x.
Next, we recall the definition and some properties of Galois cohomology of
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E-B-pairs. For an E-B-pair W := (W, WJ’R), we put Wyr := Bgr ®B, We.
We have natural inclusions W, «— Wyr and W;R — Wyr. We define the
Galois cohomology H'(G g, W) of W as the cohomology of the continuous
cochains of G with values in the complex

We@W;RHWdRi(l',y)’—}l'—y,

see the appendix of this article or §2.1 of [Na09] for the precise definition.
As in the case of usual p-adic representations, we have the following isomor-
phisms of E-vector spaces

HY(Gg, W) = Homg, (Bg, W), HY(Gx, W) = Ext!(Bg, W),

where B := (B, ®q, E, Bl ®q, E) is the trivial E-B-pair and Homg, (—,
—) is the group of homomorphisms of E-B-pairs and Ext!(—, —) is the ex-
tension class group in the category of E-B-pairs. If V is an E-representation
of G, we have a canonical isomorphism

H'(Gg,V) 5 H(Gg,W(V)),

which follows from the Bloch-Kato’s fundamental short exact sequence.
Moreover, we have the following theorem, the Euler-Poincaré characteristic
formula and the Tate duality for B-pairs.

THEOREM 2.8. Let W be an E-B-pair.

(1) Fori = 0,1,2, H (G, W) is finite dimensional over E and H (G,
W) =0 fori#0,1,2.

(2) 37 (1) dimpH (Gg, W) = [K : Qplrank(W).

(3) For any i = 0,1,2, there is a natural perfect pairing defined by cup
product,

H (G, W) x HH(Gr, WY (xp)) = H2(Gr, W @ WY (xp))
— H*(Gk, W(E(xp)) = E,

where the last isomorphism is the Tate’s trace map.



478 Kentaro NAKAMURA

PROOF. See Theorem 5.9 and Theorem 5.10 in the appendix. [J

REMARK 2.9. In [Li08], Liu proved all these results for the cohomol-
ogy of (p,T')-modules over the Robba ring. In the appendix of this arti-
cle, we first prove the finiteness and the Euler-Poincaré formula (Theorem
5.9) for the Galois cohomology of B-pairs using the theory of almost C,-
representations. Then, we prove the Tate duality (Theorem 5.10) for the
Galois cohomology of B-pairs using the Liu’s argument. After establishing
these properties, we prove the comparison results (Theorem 5.11) between
the cohomology of (¢, I')-modules with that of the corresponding B-pairs.

Using these formulae, we obtain the following dimension formulae of
Galois cohomologies of rank one E-B-pairs.

PrOPOSITION 2.10. Leté : K* — E* be a continuous homomorphism,
then we have:

(1) HY(Gk,W(8)) = E if 6 = [[,ep 0" such that {ko}oep € [Iyep Z<os
and HO (G, W (8)) = 0 otherwise.

(2) H2(Gg,W(6)) = E if 6 = Nk, [oepr oo such that {ky}sep €
[loep Z>1, and H* (G, W (8)) = 0 otherwise.

3) dimgHY G, W) = [K : Q)+ 1 if 6§ = oke such that
D oeP
{kotoer € [lyep Z<o or 6 = [Nk, [ vep oko such that {ko}oep €
[T,ep Z>1, and dimpHY (G, W (8)) = [K : Qp] otherwise.

PROOF. See Theorem 2.9 and Theorem 2.22 of [Co08| for K = Q.
For general K, the results can be proved by using Proposition 2.14 and
Proposition 2.15 of [Na09] and Tate duality for B-pairs. O

2.1.2 B-pairs over Artin local rings
Here, we define B-pairs over Artin local rings, which we need to de-
fine the notion of deformations of E-B-pairs. Let Cg be the category of
Artin local E-algebra A with the residue field E. The morphisms in Cg are
given by local F-algebra homomorphisms. For A € Cg, we denote by m 4 the
maximal ideal of A. We define the A-coefficient version of B-pairs as follows.

DEFINITION 2.11.  We call a pair W := (W, W) an A-B-pair of Gg
if
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(1) W, is a finite B, ®q, A-module which is flat over A and is free over
B, with a continuous semi-linear G g-action.

(2) Wiy is a finite generated B ®gq, A-submodule of Bqr ®, We which
is stable by the Gi-action and which generates Bgr @B, W, as a
Bgr ®q, A-module such that W;R / tW;R is flat over A.

For an A-B-pair W := (W, W(;FR), we put Wyr := Bgr ®B, We.
We simply call an A-B-pair if there is no risk of confusing about K.

LEMMA 2.12. Let W := (W.,WjR) be an A-B-pair. Then W, is a
finite free Be ®q, A-module, W(;LR is a finite free BIR ®q, A-module and
Wik /tWik is a finite free C,, ®q, A-module.

Proor. First, we prove the assertion for W,. Because the submodule
maW, C W, is a G-stable finite generated torsion free B.-module and
because B, is a Bézout domain by Proposition 1.1.9 of [Be08], moW, is a
finite free Be-module by Lemma 2.4 of [Ke04]. By Lemma 2.1.4 of [Be0§],
the cokernel W, ®4 F is also a finite free B.-module (with an E-action). By
Lemma 1.7 of [Na09], W.®4 E is a finite free B, ®q, £-module of some rank
n. We take a B, ®(, A-linear morphism f : (B, ®q, 4)" — W, which is a
lift of a B, ®q, E-linear isomorphism (B, ®q, E)" = W, ®4 E. Because A
is Artinian, f is surjective. Because W, is A-flat, we have Ker(f)®4 E =0,
hence Ker(f) = 0. Hence W, is a free B, ®q, A-module.

Next, we prove that W(;'R is a free B(“;R ®Q, A-module. Because W, is a
free Be ®q, A-module, Wyr is a free Bqr ®q, A-module, in particular this is
flat over A. Because Wi, /tWi; is a flat A-module, War /W is also a flat
A-module. Hence WJFR is also flat over A. By the A-flatness of WyR/ W;R,
we have an inclusion W(TR R4 E — Wyr ®4 E, hence W(;FR ®4 F is a finite
generated torsion free BIR—module, hence is a free B(J{R—module. By Lemma
1.8 of [Na09], we can show that W is a free B} ®g, A-module in the same
way as in the case of We. The freeness over C, ®q, 4 of Wik /tW i follows
from the B ®q, A-freeness of Wji. O

DEFINITION 2.13. Let W = (W,, W) be an A-B-pair. We define the
rank of W by rank(W) := rankg,.eg,a(We).
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DEFINITION 2.14. Let f: A — A’ be a morphism in Cg, and let W =
(We, War) be an A-B-pair. We define the base change of W to A’ by

W ®a A = (We XA A/,WJR XA A/).
By Lemma 2.12, we can easily see that this is an A’-B-pair.

DEFINITION 2.15. Let Wi = (We,1, Wi 1), Wa = (We2, Wik 5) be A-
B-pairs. We define the tensor product of Wy and Wy by Wy @ Wy =
(Wen ®B.2g, A We,Q,WJR?l ®B:IFR®QPA W;R,z) , and define the dual of W}

by Wy = (HomBe®QpA(We,17Be ®Q, A),W;ﬁ?/l). Here, WCTP;YI = {f €

HodeR@)QpA(WdR,l, Bar ®q, A)’f(W;R,l) C B(J{R ®Q, A}. By Lemma 2.12,
we can easily see that these are A-B-pairs.

Next, we classify rank one A-B-pairs. Let § : K* — A* be a continuous
homomorphism, then we define a rank one A-B-pair W (6) as follows. Let
u € E* be the image of u := §(mx) € A* by the canonical projection
A — A/my = E. We define a homomorphism ¢y : K* — A* such that
60|le< = 6\0;(, 6o(mk) = u/u. Because u/u € 1+ mya , (u/u)?" (n — o0)

converges to 1 € AX. If we fix an isomorphism K* = OF x Z : vnl
(v,n) (v € Of), then § uniquely extends to a continuous homomorphism
& Of x L — OF x Z, — A*, where the first map is induced by the
natural projection Z — Zy. By the local class field theory, then there
exists a unique character g : GE}? — A* such that &g = 6y o reck, where
recg : K* — G%‘ is the reciprocity map which is normalized as in Notation.
Using 8o, we define an étale rank one A-B-pair W (A(&y)), which is the A-
B-pair associated to the rank one A-representation A(go). Next, we define a
non-étale rank one A-B-pair by using u € E*. For this, we first define a rank
one E-filtered ¢-module Dy := Ky ®q, Feg such that ol (eg) := ey and
Fil’(K ®x, Di) := K ®k, Da, Fil'(K ®k, Dg) := 0. From this, we obtain
the rank one crystalline E-B-pair W(Dy) such that Deis(W(Dg)) = Dy

which is pure of slope %(a) By tensoring these, we define a rank one A-B-

pair W (6) by W(6) := (W(Dgz) ®g A) @ W(A(b)), which is pure of slope
vp (@)

The following proposition is the A-coefficient version of Theorem 1.45
of [Na09].
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PROPOSITION 2.16.  This construction 6 — W () does not depend on
the choice of uniformizer wg, and gives a bijection between the set of con-
tinuous homomorphisms 6 : K* — A* and the set of isomorphism classes
of rank one A-B-pairs.

PrROOF. The independence of the choice of uniformizer and the injec-
tion can be proved in the same way as in the proof of Theorem 1.45 of
[Na09]. We prove the surjection. Let W be a rank one A-B-pair. As an
E-B-pair, W is a successive extension of the rank one F-B-pair W ®4 E.
By Lemma 1.42 of [Na09], W ®4 E is pure of slope fc% for some n € Z.
Then, W is also pure of slope .ﬁ% by Theorem 1.6.6 of [Ke08]. We define a
rank one E-filtered p-module Drn := Ko ®q, Eern in the same way as for
Dy, where mg is a uniformizer of E. Then, W & (W(Dqxn) ®g A)" is pure of
slope zero by Lemma 1.34 of [Na09]. Hence, there exists & G — A such
that W& (W (Dgp)®@pA)Y = W(A(S')). We put § := & orec : KX — AX
and define § : K* — A* such that 5\0;( = 6’|le( and 6(mg) = O'(mg ).

Then, we have an isomorphism W = W (§), which can be easily seen from
the construction of W (6). O

By the local class field theory, we have a canonical bijection § — A(0)
from the set of unitary continuous homomorphisms from K* to A* (here,
“unitary” means that the image of the composition of §6 with the projection
A* — E* is contained in OF) to the set of isomorphism class of rank one
A-representations of G, where 5 G%’ — A* is the continuous homomor-
phism such that § = & o recx. By the definition of W (6) and by the above
proof, it is easy to see that there exists an isomorphism W (8) = W (A(6))
for any unitary homomorphism ¢ : K* — A*. Moreover, it is easy to
see that, for any continuous homomorphisms 61,609 : K* — A*, we have
isomorphisms W (81) ® W (62) = W (8162) and W (6;)Y = W (&7 h).

Next, we generalize the functor D5 to potentially crystalline A-B-pairs.
First, we define the A-coefficient version of filtered (¢, G )-modules. Let L
be a finite Galois extension of K, we denote by G,k := Gal(L/K).

DEFINITION 2.17. Let A be an object of Cg. We say that D is an
A-filtered (¢, G,/ )-module of K if D satisfies the following conditions.

(1) D is a finite Ly ®Q, A-module which is free as an A-module with a
@-semi-linear action ¢ : D = D.
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(2) Dr, := L®r, D has a decreasing filtration Fil'D;, by L ®q, A-submod-
ules such that Fil*D; = 0 and Fil™*D;, = Dy, for sufficiently large k
and that Fil*D;, / Fil**'D; are free A-modules for any k.

(3) Gk acts on D by Lo ®q, A-semi-linear automorphism which com-
mutes with the action of ¢ and preserves the filtration.

REMARK 2.18. Using the ¢-structure on D, we can easily see that D
is a free Lo ®q, A-module.

Let Wy := (W4, WZdR) be an A-B-pair such that Wy|q, is crystalline
as an F-B-pair for a finite Galois extension L of K. As in the case of FE-
B-pairs, we define DL, (Wj) := (Buax ®B, We)“" with a ¢p-action induced
from that on By, then the natural map L ®r, Déis(WA) — DdLR(WA) =
(Bar ®B, W)Y is isomorphism. We define Fil*Dk (W,) := DIz (Wa) N
tijR for any k € Z. These are naturally equipped with a G/ g-action.

LEMMA 2.19. In the above situation, DL. (W,) is an A-filtered
(¢, Gk )-module of K.

PrOOF. It suffices only to show the A-freeness of DL. (W),
Fil* D4, (Wa), Fil* DX, (W) /Fil" ' D4, (W4). Here, we only prove the A-
(W4), other cases can be proved in a similar way. By the

exactness of DCLris for E-B-pairs which are crystalline when restricted to G,
we have a natural isomorphism DL, (W4)®@4 N = DE. (W4 ®4 N) for any
finite A-module N. From this, for any A-linear injection N < Nj of finite
A-modules, we have an inclusion D, (W,4) ®4 N = Dfris(WA ®4 Np) —

cris
Dfris(WA ®aA No) = Dchis(WA) ®4 N because Wy, is A-flat. Hence,
DE. (Wa) is A-flat. O

cris

L
freeness of D

Conversely, let D be an A-filtered (¢, G/ )-module of K, then we de-
fine We(D) := (Beyis ®1, D)¥=!. We have a natural isomorphism Bggr ®B,
We(D) = Bar ®1 Dr. We define Wi (D) == Fil’(Bar ®1, D1) C Bar ®B,
We(D). We write W(D) := (We(D), Wiz (D)) which is a potentially crys-
talline F-B-pair with an A-action.

LEMMA 2.20. In the above situation, W (D) is a potentially crystalline
A-B-pair.
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PrROOF. It suffices to show the A-flatness of W, (D) and Wi, (D)/
tW;R(D). We can prove these in the same way as in Lemma 2.19 by
using the exactness of the functor W (D) and the A-flatness of D and
Fil*Dy, /Fil**' Dy, for any k. O

COROLLARY 2.21. For any A € Cg, the functor DCLriS gives an equiv-
alence of categories between the category of potentially crystalline A-B-
pairs which are crystalline if restricted to G, and the category of A-filtered
(¢, Gk )-modules of K.

PrRoOF. This follows from Lemma 2.19 and Lemma 2.20 and Theorem
2.5. 0

Next, we prove some lemmas which will be used in later sections.

Let W4 be an A-B-pair which is not potentially crystalline in general
and L be a finite Galois extension of K, then we can define DL, (Wy) in
the same way as in the case where W4 is potentially crystalline. This is an
E-filtered (¢, G'/x)-module, but this may not be an A-filtered (v, G/ )-

module in general.

LEMMA 2.22. Let W be an E-B-pair. Let D C Dis(W) be a rank one
sub E-filtered p-module whose filtration is induced from that of Deys(W),
then there exists a natural saturated inclusion W (D) — W.

Proor. Twisting W by a suitable crystalline character of the form
[T,ep o(xir), we may assume that Fil’(Dg) = Dg and Fil'(Dg) = 0,
where we put Dig := K ®g, D. We have natural inclusions W (D). =
(Bmax ®K0 D)wZI g (Bmax ®Ko :Dcris(‘/v))(p:1 g (Bmax ®Be We)sa:l - We
and, under the above assumption, Wi (D) = Fil’(Bar ®x Dk) = B} ®x
Dg C Fil’(Bqr ®k Dar(W)) € Wi, which define an inclusion W (D) <
W. Hence, it suffices to show that this inclusion is saturated, i.e. suffices
to show that we have BIR ®Kx Dg = (Bar ®x D) N W;R. We can write
(Bar ®x Dg) N W&"R = Byep tk%B:fR ®K,o Di o for some k, € Z>, where
we decompose D by Dx — @eepDi DKo, Bowidy £ =1 ®ocpDro. If
ky = 1 for some o € P, then Dk, C tk”WJR. Because the filtration
on D is induced from Ds(W), this implies that Filk”DK,a = Dk s, this
contradicts to FillDK’o- = 0. Hence k, = 0 for any ¢ € P, which implies
that BQ_R QK D = (BdR KK DK) N W;R O
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LEMMA 2.23. Let W4 be an A-B-pair. Let D C D¢ys(Wa) be a sub
E-filtered p-module which is an A-filtered p-module of rank one, where the
filtration on D 1is the one induced from that of Deyis(Wa). We assume that
the natural map D@y E — Deyis(Wa®4 E) remains an injection. Then, we
have a natural injection of A-B-pairs W (D) < Wy such that the cokernel
Wy /W (D) is also an A-B-pair.

PROOF. In the same way as in the above proof, we have a natural
injection W (D) < Wy. Because the natural map DRAE — D is(WARAE)
is an injection, we obtain an injection W(D)@4 E = W(D®aE) — Ws®4
FE and this injection is saturated by the above lemma. Hence, it suffices to
show that if W7 < W5 is an inclusion of A-B-pairs such that Wy ® 4 £ —
Wy ® 4 E remains to be injective and saturated, then the cokernel Wy /W)
exists and is an A-B-pair. We put W3, W; ar the cokernels of Wy, —
Wae, Wlde — W;de respectively. By Lemma 2.2.3 (i) of [Bel-Ch09], these
are A-flat. Hence, it suffices to show that these are free over B, B;{R

respectively. We can prove this claim in the same way as in Lemma 2.2.3
(iii) of [Bel-Ch09]. O

2.2. Deformations of B-pairs

In this subsection, we develop the deformation theory of B-pairs, which
is a natural generalization of Mazur’s deformation theory of p-adic Galois
representations.

DEFINITION 2.24. Let A be an object in Cg, and let W be an E-B-pair.
We say that a pair (Wy,t) is a deformation of W over A if Wy is an A-B-
pair and ¢ : W4 ®4 E = W is an isomorphism of E-B-pairs. Let (Wa,e),
(W), ) be two deformations of W over A. Then, we say that (W4,¢) and
(W/,/') are equivalent if there exists an isomorphism f : W4 = W/ of
A-B-pairs which satisfies ¢ =/ o f, where f: W4 ®4 E = W/ @4 E is the
isomorphism naturally induced by f.

DEFINITION 2.25. Let W be an E-B-pair, then we define the deforma-
tion functor Dy from the category Cg to the category of sets by

Dy (A) := { equivalent classes (Wa4,t¢) of deformations of W over A}

for A € Cg.
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We simply denote by W4 if there is no risk of confusing about ¢.

Next, we prove the pro-representability of the functor Dy under suit-
able conditions. For this, we recall Schlessinger’s criterion for pro-repre-
sentability of functors from Cg to the category of sets. We call a mor-
phism f : A — A in Cg a small extension if it is surjective and the
kernel Ker(f) = (t) is generated by a nonzero single element ¢t € A’ and
Ker(f)-ma = 0. E[e] is the ring defined by E[e] := E[X]/(X?) : e — X.

THEOREM 2.26. Let F be a functor from Cg to the category of sets such
that F(E) consists of a single element. For morphisms A’ — A, A” — A
in Cg, consider the natural map

(1) F(A" x4 A7) = F(A') xpa) F(A7),

then F' is pro-representable if and only if F' satisfies properties (Hy), (Hz),
(Hs), (Hy) below:

(H1)

(H2)

(H3) dimg(tp) < oo (where tp := F(E[e]) and, under the condition (Ha),
it is known that tp naturally has a structure of an E-vector space).

(1) is surjective if A” — A is surjective.

1
(1) is bijective when A = E and A” = E[e].

(Hy) (1) is bijective if A’ = A” and A’ — A is a small extension.

PROOF. See [Schl68] or §18 of [Ma97]. O
Using this criterion, we prove the pro-representability of Dyy.

PROPOSITION 2.27. Let W be an E-B-pair. If Endg, (W) = E, then
Dy is pro-representable by a complete noetherian local E-algebra Ry, with
the residue field E.

To prove this proposition, we first prove some lemmas.

LEMMA 2.28. Let ad(W) := Hom(W, W)(= W @ WV) be the internal

endomorphism of W, then there exists an isomorphism of E-vector spaces

Dw(E[e]) = HY (G, ad(W)).
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PrOOF. Let Wgig = (Wgig,e, Wg[s],dR) be a deformation of W over

Ele]. From this, we define an element in H* (G ¢, ad(W)) as follows. Because
we have natural isomorphisms eWg) . = W, and WE[e) e /€WE[E],e = W,
(here we put W := (We, Wj)), we have a natural exact sequence of B, ®(,
E[Gk]-modules

0— We — Wgpge = We — 0.

We fix an isomorphism of B, ®q, E-modules Wk . = Weep @ Wees such
that first factor Weeiis equal to eWg as Be ®q, E[G k]-module and that
the above natural projection maps the second factor Weeo to W, by zes — x
for any x € W,. We define a continuous one cocycle by

¢e : G — Homp,gg, 5(We, We) by g(yea) := cc(g)(g9y)er + gyea

for any ¢ € Gg and y € W,. For W;R, we fix an isomorphism
W}er[a], dR = W;Rel @ W;Re’z as in the case of W,, then we define a one
cocycle by

car 1 Gx — HOHlB;R(@QpE(WJRv Wik) by g(yes) = car(g)(gy)er + gyeh

for any g € Gx and y € Wj,. Next, we define c € HodeR@)@pE(de WaRr)
as follows. Tensoring Wgy . and WE[E] qr With Bggr over B or B(“;R, we
have an isomorphism f : Ware1 © Warea — WEle.dr = Warer ® Wqreh of
Bgr ®q, E-modules. We define

c: War — War by f(yes) = c(y)e1 + yeh

for any y € Wygr. By the definition, the triple (¢, cqr, ¢) satisfies
ce(9) — car(g) = gc — ¢ in Homp g, 5(War, War)

for any g € Gk, i.e. the triple (ce,cqr,c) defines an element of H'(G,
ad(W)) by the definition of Galois cohomology of B-pairs (§ 2.1 of [Na09)]),
then it is standard to check that this definition is independent of the choice
of a fixed isomorphism Wg . = Weer @ Wees, etc, and it is easy to check
that this map defines an isomorphism Dy (E[e]) = H} (G, ad(W)). O
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LEMMA 2.29. Let W4 be a deformation of W over A. If Endg, (W) =
E, then Endg, (Wa) = A.

PrROOF. We prove this lemma by induction on the length of A. When
A = F, this is trivial. We assume that the lemma is proved for the rings of
length n and assume that A is of length n + 1. We take a small extension
f:A— A Because we have Endg, (W) = H'(Gg, WY @ W), we have the
following short exact sequence

0— Ker(f) KRR EndGK(W) — EndGK(WA) — EndGK(WA XA A/).
From this and the induction hypothesis, we have

length(Endg, (Wa)) < length(Endg, (W4 @4 A'))
+ length(Ker(f) ®g Endg, (W))
= length(A’") + 1 = length(A).

On the other hand, we have a natural inclusion A C Endg, (Wj4). Compar-
ing the length, we obtain an equality A = Endg, (Wa4). O

PROOF OF PROPOSITION 2.27. Let W be an E-B-pair of rank n sat-
isfying that Endg, (W) = E. For this W, we check the conditions (H;)
(1 =1 ~ 4) of Schlessinger’s criterion. First, by Lemma 2.28, we have

dlmE(Dw(E[é‘])) = dlmE(Hl(GK,ad(W))) < 00,

hence (Hs) is satisfied. Next we check the condition (H;). Let f: A" —
A, g : A” — A be morphisms in Cg such that g is a surjection. Let
([War], [War]) be an element in Dy (A’) X p,,, (a) Dw(A”). We take defor-
mations Wy 1= (WA/@W:{/,dR), War = (WAw,e,W;,’dR) over A" and A”
which are representatives of equivalent classes [W /| and [W4»] respectively,
then we have an isomorphism h : Wy @ A = Wy @0 A =1 Wy =
(Wae, W;L qr) Which defines an equivalent class in Dy (A). We fix a basis
€1, ,en of War o as a Be®q, A’ -module and denote by €1, - - - , €, the basis
of Wy e @4 A induced from ey, --- ,e,. By the surjectivity of g : A7 — A
and by the A”-flatness of W4~ ., we can take a basis €1, - - , €, of Wx» . such
that the basis e, -- , e, of Wa» e ®4» A induced from ey, --- ¢, satisfies
h(€;) = &; for any i. If we define W." by

!/

VV;7 = WAlye XWae WA”,e = {(ZL‘,y) € WA’,e X W;wﬂh(i) = @},
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then W, is a free B, ®Q, (A" x4 A”)-module with a basis (e1,€1),---,
(én,€n). In the same way, we define Wd}: by Wd};r = WX,’ dR XW;{,dR

WI”,de which is a free B:{R ®Q, (A’ x4 A”)-module. If we put War Xy,
War = (W, W(;;{r), then this is a (A’ x4 A”)-B-pair which is a deforma-
tion of W over A’ x4 A” such that the equivalent class Wy Xy, Wa»| €
Dy (A" x4 A7) maps ([Wa'l,[War]) € Dw(A’) xp,, (4) Dw(A”). Hence, we
have checked the condition (Hy).

Finally, we prove that if g : A” — A is a surjectition, then the natural
map Dy (A" x4 A”) — Dw(A’) Xp,,a) Dw(A”) is bijective, which proves
the conditions (H2) and (Hy), hence proves the pro-representability of Dyy .
Let W,, W, be deformations of W over A’ x 4 A” such that [W;” ® arx , 4~
Al] = [WQ/” R A’ x 4 A A/] in Dy (A/) and [Wlm R A x 4 A” A”] = [WQII” R Al x 4 A A”]
in Dy (A”). Under this situation, we want to show that [W,"] = [W,’] in
Dw(A, XA/A”). We put Wy 4 = I/Vlh7 QA% 4 A” A Wigr = Wlm QDA% 4 A” A7,
Wia = Wl” ®arx 4 A A, and similarly for Waur, Wag», Waya, then we have
natural isomorphisms Wll S Wia Xw, 4 Wia» and WQI 5 Wou X Wos Wan»
defined as in the previous paragraph. Because we have [Wiu/] = [Wau/]
and [Wi4»] = [Waa»], we have isomorphisms A’ : W4 = Wou and h” :
Wia» = Waa». By the base change to A, we obtain an automorphism
B oh1:Wos 5 Wig = Woa. By Lemma 2.29 and by the surjectivity of
g: A" — AX, we can find an automorphism h: Waur = Woa» such that
h=h"oh’ L. If we define a morphism

B Wiar Xy, Wiar — Waar X,y Wour = (2,y) = (ha(x), ho ha(y)),
then we can see that this is well-defined and is isomorphism. Hence, we
finish to prove the proposition. [

PROPOSITION 2.30. Let W := (W,, W) be an E-B-pair of rank n. If
H2(Gg,ad(W)) = 0, then the functor Dy, is formally smooth.

PrOOF. Let A’ — A be a small extension in Cg, we denote the kernel
by I C A'. Let W4 := (We,a, WJR ) be a deformation of W over A, then it

suffices to show that there exists an A’-B-pair W4 such that Wy @4 A =
Wa. We fix a basis of W, 4 as a Be ®q, A-module. Using this basis and
the G k-action on W, 4, we obtain a continuous one cocycle

pe : G — GLn(Be ®q, A).
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- - + +
In the same way, if we fix a basis of WdR, 4 as a Bjp ®q, A-module, we
obtain a continuous one cocycle

PdR - GK — GLn(B:{R ®Qp A).

From the canonical isomorphism W, 4 ®B, Bar = WJR A ®B:IFR Bgr, we
obtain a matrix P € GL,(Bgr ®q, 4) which satisfies

Ppe(9)g(P)~" = par(g) for any g € G.

We fix an E-linear section s : A — A’ of A’ — A and fix a lifting P €
GL,(Bgr ®q, A") of P. Using this section, we obtain continuous liftings

pe =50 pe: Gg — GLy(Be ®q, A

of p. and
PdR = SO pgr : Gx — GLn(B(—j’—R XQ, A/)

of pgr. Using these liftings, we define
Ce : G xGg — I RE HOHlBe®QpE(We7We)
by

Pe(9192)91(Pe(92)) " Pe(g1) ™! = In + ce(g1, 92) € In + I ©4 My (Be ®q, A')
=I,+1Q®g HomBE@,QpE(We, We)

for any gi1,g92 € G, where [, is the identity matrix. In the same way, we
define
: + ot
car: Gk X Gg — 1 ®g HomBIR(@QpE(WdR’WdR)

b
' par(9192)91(Par(92)) " Par(g1) ™" = In + car (91, 92)-
We define
¢: Gx — I ® Homp,; gq 5(War, War)
by

Ppe(9)9(P) 'par(g) ' =1+ clg) € I, + I ®p Homp,yeq, #(War, War)-
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These c. and cqr are continuous two cocycles, i.e. these satisfy

91¢x(92,93) — ¢«(9192, 93) + c«(91, 9293) — c«(g1,92) =0

for any g1, g2, 93 € Gk (* = e,dR). Moreover, we can check that ¢, and cqr
and c satisfy

ce(91,92) — car(91, 92) = 91(c(g2)) — c(g192) + c(g1)

for any g1, g2, 93 € Gk, here we note that the isomorphism Homp, gq, (W,
We)®B,Bar — HomB;R®QpE(W$R, WdJFR)®BIR Bggr is given by ¢ — P~1cP,
where P € GL,(Bar ®q, E) is the reduction of P € GL,(Bar ®q, 4). By
the definition of Galois cohomology of B-pairs, these mean that the triple
(Ce,Car,c) defines an element [(ce,cqr,c)] in I @p H?(Gg,ad(W)) . We
can show that [(ce,cqr,c)] doesn’t depend on the choice of s or P, ie.
it depends only on W,4. Under the assumption that H?(G,ad(W)) = 0,
there exists a triple (fe, far, f), where f. : Gg — I®EHomBe®QpE(W6, We)

and fqr : Gx — [ ®p HomBéLR (Wi W) are continuous maps and

®Q,E
fel®g HodeR®QpE(WdR, Wyr), satisfying that

ce(91,92) = g1fe(92) — fe(g192) + fe(g1)

and
car (91, 92) = g1far(g2) — far(g9192) + far(g1)

and
c(g1) = far(g1) = P fe(g1)P + (g1f — f)

for any g1,92 € Gg. Using these, we define new liftings p, : Gx —
GL,(B. ®q, 4") by
Pe(9) = (1 + fe(9))Pe(9),
and plip(9) : Gk — GL, (B} ®q, 4') by
Par(9) == (1 + far(9))par(9);

and define a matrix

P := (1+ f)P € GL,(Bar ®q, 4).
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Then, we can check that these satisfy the equalities

pe(9192) = pi(91)91(p.(92)) and pir(9192) = Par(91)91 (PR (92))

and
P'ol(g)g(P)) ™" = phr(g1)

for any ¢1,92 € Gg. By the definition of A’-B-pair, these equalities mean
that the triple (pl, pljp, P’) defines an A’- B-pair which is a lift of Wy, which
proves the proposition. [J

COROLLARY 2.31. Let W be an E-B-pair of rank n. If Endg, (W) =
E and H?(Gg,ad(W)) = 0, then the functor Dy, is pro-representable by
Ry such that

Rw = E[[T1,---,Ty)] ford:=[K:Qyn*+1.

ProOOF. The existence and the formal smoothness of Ry follow from
Proposition 2.27 and Proposition 2.30. For its dimension, we have

dimp Dy (E[e]) = dimpH' (G, ad(W))
= [K : Qp)n* + dimpgH" (G, ad(W))
+ dimpH?(Gr,ad(W)) = [K : Qyn® + 1

by Theorem 2.8 and Lemma 2.28. [J

2.3. Trianguline deformations of trianguline B-pairs

In this subsection, we define the trianguline deformation functor for
split trianguline F-B-pairs and prove the pro-representability and the for-
mal smoothness under some conditions, and calculate the dimension of the
universal deformation ring of this functor. These are the generalizations of
Bellaiche-Chenevier’s works in the Qp-case. In § 2 of [Bel-Ch09], Bellaiche-
Chenevier proved all these results in the QQ-case by using (¢, I')-modules
over the Robba ring and Colmez’s theory of trianguline representations
[Co08]. We generalize their results by using B-pairs and the theory of
trianguline representations for any p-adic field ([Na09] or § 2.1).

We first define the notion of split trianguline A-B-pairs as follows.
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DEFINITION 2.32. Let W be an A-B-pairs of rank n. We say that W
is a split trianguline A-B-pair if there exists a sequence of sub A-B-pairs

T:0=WoCW1CWoC---CW,1CW, =W

such that W is saturated in W;1; and the quotient W;y;/W; is a rank one
A-B-pair for any 0 < ¢ <n— 1.

By Proposition 2.16, there exists a continuous homomorphisms §; :
K* — A* such that W;/W;_1 = W(é;) for each 1 < i < n. We say
that the ordered set {6;}" ; is the parameter of the triangulation 7.

Next, we define the trianguline deformation functor. Let W be a split
trianguline E-B-pair of rank n. We fix a triangulation

T:0CWC---CWp 1 CW, =W
of W. Under this situation, we define the trianguline deformation as follows.

DEFINITION 2.33. Let A be an object in Cgp. We say that (Wa,¢,74)
is a trianguline deformation of (W, 7) over A if (Wy,t) is a deformation of
W over A and Wy is a split trianguline A-B-pair with a triangulation

TAa:0CWigC--- CWya=Wy

such that «(W; 4 ®a E) = W, for any 1 < i < n. Let (Wa,t,74) and
(W', /', T}) be two trianguline deformations of (W, 7) over A. We say that
(Wa,t,Ta) and (W), !/, T)) are equivalent if there exists an isomorphism of
A-B-pairs f : W4 = W/, satisfying that « = /o f and f(W; 4) = W/ , for
any 1 < i < n. ,

DErFINITION 2.34. Let W be a split trianguline E-B-pair with a trian-
gulation 7. We define the trianguline deformation functor Dy 7 from the
category Cg to the category of sets by

Dy 7(A) := {equivalent classes (Wa4,¢,74) of

trianguline deformations of (W,7) over A}.

for A € Cg.
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By definition, we have a natural map of functors from Dy 7 to Dy by
forgetting the triangulations, i.e. defined by

Dw1(A) = Dw(A) : [(Wa, 1, Ta)] = [(Wa, 0)].

In general, Dy 7 is not a subfunctor of Dy, by this map, i.e. a deformation
W4 can have many liftings of the triangulation 7. Here, we give a sufficient
condition for Dy, 7 to be a subfunctor of Dy . Let {6;}}_; be the parameter
of triangulation 7.

LEMMA 2.35. Assume that 0;/6; # [, cp ofs forany 1 <i<j<n
and {ks}oep € [I,ep Z<o, then the functor Dw,T is a subfunctor of Dy .

Proor. Let W4 be a deformation of W over A, let 0 C Wy C--- C
Wan-1 C Wy and 0 C W1/4,1 C ... C Wg’nfl C W4 be two triangulations
which are lifts of 7. It suffices to show the equalities W4 ; = W), ; for all 4.
By induction, it suffices to show the equality W4 ; = W/ ;. To f)rove this,
we first consider Homg, (W7 4, W4). This is equal to HO(CK, Wl\fA QR Wa).
Because H?(Gg, —) is left exact and because H(G g, W (§)) = 0 for any
§ 1 K* — E* such that 6 # [[,ep o™ for any {ks}oep € [I,ep Z<o by
Proposition 2.10, we have

HO (G, WY 4 ® (Wis1,4/Wia)) = H(Gr, Wy 4 @ (W a/W/ia) =0
for any 7 = 1. Hence, we obtain equalities
Homg,, (W1 4, Wi 4) = Homg, (W1,4, Wa) = Homg, (W1 4, W1/7A)-

This means that the given inclusion Wy 4 < Wy factors through 1’ A=
W4. By the same reason, the inclusion Wl’ 4 — Wy also factors through
Wi,4 — W4. Hence, we obtain an equality Wi 4 = W{ 44

Next, we prove relative representability of Dy, 7. Before doing this, we
need to define the following functor which is the B-pair version of Lemma
2.3.8 of [Bel-Ch09]. Let W = (W, W) be an E-B-pair. Then we define a
functor by

FW):={z e W.NWi|3In € Z>1,(01 —1)(02 — 1)+ (o — 1)z =0,
\v/o-lf" 7Un€GK}
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which is an E-vector space with a Gx-action, hence F' is a left exact functor
form the category of E-B-pairs to that of E[Gk]-modules. By this defini-
tion, we obtain the following lemma, which is the B-pair version of Lemma
2.3.8 of [Bel-Ch09].

LEMMA 2.36. Let 6 : K* — E* be a continuous homomorphism, then
F(W(6)) # 0 if and only if H*(Gk, W (6)) # 0.

PrROOF. The proof is essentially the same as that of Lemma 2.3.8 of
[Bel-Ch09], so we omit it. [J

Using this lemma, we prove the relative representability of Dy 7.

PROPOSITION 2.37. Let W be a trianguline representations with a tri-
angulation T such that the parameter {&;}7, satisfies 6;/6; # [1,ep o™ for
any 1 =i < j < n and {ks}oer € [l,epZ<o, then the natural map of
functors Dw 1 — Dy is relatively representable.

PRrOOF. By §23 of [Ma97], it suffices to check that the map Dy 7 —
Dyy satisfies the fallowing three conditions (1), (2), (3).

(1) For any map A — A’ in Cg and W € Dy 7(A), we have Wy @4 A’ €
Dy, r(A).

(2) For any maps A’ — A, A” — Ain Cp and W~ € Dy (A’ x4 A”), if

W @ a0 A€ Diwr(A) and W™ @41« ,a» A” € Dy 7 (A”), then
we also have W e Dy (A x4 A).

(3) For any inclusion A — A’ in Cp and W4 € Dy (A), if Wy @4 A’ €
Dy 7r(A"), then we have Wy € Dy r(A).

The condition (1) is trivial. For (2), let W~ € Dy (A x4 A”) be a
deformation such that Wa == W'~ @4/« A A€ Dywr(A') and Wy =
w” Quarx a7 A7 € DWT(A”). We put Wy = W ®arx 44 A. In the same
way as in the proof of Proposition 2.27, we have an isomorphism |-
War Xw, Wa». By Lemma 2.35, the triangulations of W, induced from
W4, and Wy» coincide, hence these triangulations induce a triangulation of

1~

W7 5 War xyw, War, ie. W € Dyr(A x4 A).



Density of Two Dimensional Crystalline Representations 495

Finally, we check the condition (3). The proof is essentially the same
as that of Proposition 2.3.9 of [Bel-Ch09], but here we give the proof for
convenience of readers. Let W € Dy (A) and A — A’ be an inclusion such
that Wa®4 A" € Dy r(A"). Let 0C Wy 40 C--- C Wy ar CWa®4 A be
a triangulation which is a lifting of 7. By induction on the rank of W, it
suffices to show that there exists a rank one sub A-B-pair W; 4 C Wy such
that Wi 4®4 A" = Wy 4 and that W4 /W 4 is an A-B-pair. By Proposition
2.16, there exists a continuous homomorphism 61 4/ : K* — A" such that
Wi ar = W (61,4r). Twisting W by 6;1, we may assume that 61 4+ = 1 (mod
mu/). Under this assumption, we apply the functor F'(—). Because 61 4/
is unitary, there exists a continuous character 517 e G?}) — A" such that
W(S1a0) S W(ABya)) = (Be ©g, A'(Br.41), Bl ©, A'(51,41)), hence we
have Wy a7 N Wfr AR = A (51 Ar). Moreover, because the image of 6; 4/
is in 1 + my/, we also have F(W; 4/) = A’(f(SVLA/). Next, because (W4 ®4
A')/W7 ar is a successive extension of W (8;67") (i = 2) as an E-B-pair,
the left exactness of F' implies that F((W4 ®4 A’)/W1 4) = 0 by Lemma
2.36. Applying F' to the short exact sequence 0 — Wi 4 — Wy ®4 A" —
(WA®AA/)/W17A/ — 0, we obtain A/(’(SVLA/) 5 F(Wl,A’) = F(WA®AA’). In
the same way, we obtain £ = F(W;) = F(W). Then, by the left exactness
and by considering the length, we can show that F(Wy4) is a free A-module
of rank one and that the natural map F(W4) — F(W) induced by the
natural quotient map W4 — W is a surjection and that the natural map
FWys)®4 A" — F(W4 ®4 A') is isomorphism. If we define the character
517/1 : G‘}P — A such that F(W,) = A(gl,A) and define W, 4 as the image
of the natural map (B, ®q, F(Wa), Bl ®q, F(Wa)) — W4 induced form
FW) — Wape, F(W) — W:{’dR, then we can check that W; 4 is a rank
one A-B-pair and that the quotient W4 /W 4 is also an A-B-pair and that
Wia®yq A = Wi 4r, which proves the condition (3), hence we finish to
prove the proposition. [

COROLLARY 2.38. Let W be a trianguline E-B-pair with a triangula-
tion T. Assume that Endg, (W) = E and that the parameter {6;}7 , of T

satisfies §;/6; # [ ep o™ forany1l < i < j < n and {ko}oep € [oep Z<o,
then the functor Dy, 1 is pro-representable by a quotient Ry, of Ry .

PrOOF. This follows from Proposition 2.27 and Proposition 2.37. [
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Next, we prove the formal smoothness of the functor Dy 7.

ProrosiTION 2.39. Let W be a trianguline E-B-pair of rank n with a
triangulation T. Assume that the parameter {6;}1—, of T satisfies 6;/0; #
INg /@, [oep oke for any 1 < i < j < n and {ko}toep € [Iyep Z=1, then
the functor Dy, 1 is formally smooth.

PrOOF. We prove this proposition by induction of the rank of W.
When W is of rank one, then we have Dy, 7 = Dy and ad(W) is the trivial
E-B-pair. Hence H?(Gg,ad(W)) = 0 by Proposition 2.10, and Dyy1 is
formally smooth by Proposition 2.30. Let’s assume that the proposition
is proved for all trianguline F-B-pairs of rank less or equal n — 1. Let
W be an E-B-pair of rank n with a triangulation 7 : 0 C W; C --- C
Wy—1 € W,, = W whose parameter {6;}}' , satisfies the condition in the
proposition. Let A — A be a small extension in Cg, and let W4 be a
trianguline deformation of (W,7) with a triangulation 74 : 0 € Wy a4 C
<o C Who1,4 € Wy 4 = W4 which is a lift of 7. Then, it suffices to show
that there exists a split trianguline A’-B-pair W4 with a triangulation
0C Wia C - C W14 € Wya = Wy which is a lift of W4 and
Ta. We take such a lift as follows. Applying the induction hypothesis to
Wy—1, there exists a trianguline A’-B-pair W,_; 4 with a triangulation
0C Wia C--- CWy9a € Wy_q 4 which is a lift of W;,_; 4 and 0 C
WiaC--- CWyo1,4. Weput gr,Wy := Wu/W,_1 a. By the rank one case
and by Proposition 2.16, there exists a continuous homomorphism 6, 4+ :
K* — A such that the rank one A’-B-pair W (&, ) satisfies W (8, /) ® 4
A = W(bpa) = gr,Wa, where 6, 4 : K* — A* is the composition of
O, ar with A" — A. We see the isomorphism class [IW4] as an element in
Extl(W((Sn’A), Wn-1.4) — H(Gk, Wn,l’A(égl )). If we take the long exact
sequence associated to 7

0—I®p Wn 1(6,") = Wa1a(8, ) = Wa1,.4(8,) — 0,
where I C A’ is the kernel of A’ — A, then we obtain a long exact sequence
= HY (G, Wo1a (6, 4)) = HY (G i, W1,.4(6, )
— I @ H (G, Wn_1(6,")) — -+

By the assumption on {é;}/; and by Proposition 2.10, we have
H2(Gg,Wy—1(6;1)) = 0. Hence, we can take a lift [Wa/] € Ext! (W (8, a/),
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Woo1a4) = HY Gk, Wn_14/(6, %)) of [Wa], which proves the proposi-
tion. UJ

Next, we calculate the dimension of Dy, 7. For this, we interpret the
tangent space Dy 7(E[¢]) in terms of Galois cohomology of B-pair as in
Lemma 2.28. Let W be a trianguline E-B-pair with a triangulation 7 : 0 C
Wy C--- CWy_1 CW,, =W, then we define an E-B-pair ady (W) by

adr (W) :={f € ad(W)|f(W;) C W for any 1 < i < n}.

LEMMA 2.40. Let W be a trianguline E-B-pair, then there exists a
canonical bijection of sets

Dw.r(Elg]) = HY (G, adr (W)).

In particular, if Dy has a canonical structure of E-vector space (see the
condition (2) in Schlessinger’s criterion 2.26), then this bijection is an E-
linear isomorphism.

PrOOF. The construction of the map Dy 7(E[e]) — H(G g, adr(W))
is the same as in the proof of Lemma 2.28. We put ads (W) := (adg (W),
adr (W3s)). Let Wgig == We gL, W;R, E[E}) be a trianguline deformation
of (W,T) over Ele] with a lifted triangulation Tgq : 0 € Wy g, € --- C
Wo—1,Ble] € Wh Ele] = WE[g- Then, we can take a splitting W, gj.) = Wee1®
Wees as a filtered B, ®Q, F-module such that Wee; = EWeyE[E} and that the
natural map Weea — We g — We gl /eWe gl = W, sends yesy to y for
any y € We. If we define ¢, : Gg — HornB(:@QpE(T/V87 We) in the same way
as in the proof of Lemma 2.28, we can check that the image of ¢ is contained
in ady(We). In the same way, we can define cqgr : Gg — adT(W(;rR) from
a filtered splitting W;R, Ble] = W;Rel & W;RG,Q. Moreover, we can define
c € adr(Wyr) by yea = c(y)e1 + yel for y € Wyr. Then, the map

Dy, 7(Ele]) — HY(Gx,adr(W)) : (W], Tpp)] = [(ces car, ©)]

defines a bijection, and this is an E-linear isomorphism when Dy 7 (E[¢])
has a canonical structure of an E-vector space. [

We calculate the dimension of Ry 7.
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ProOPOSITION 2.41. Let W be a split trianguline E-B-pair of rank n
with a triangulation 7 : 0 C Wy C --- C W,.1 C W,, = W. We assume
that (W, T) satisfies the following conditions,

(0) Endg, (W) =E,
(1) 6;/6; # [Loep o for any 1 <i < j <n and {ks}oep € [Iyep Z<o,

(2) 81/65 # N | [lpep o® for any 1 i < j < n and {ko}oep €
HUE'P ZZ 1,

then the universal trianguline deformation ring Rw 1 is a quotient ring of
Ry such that

n(n+1)

RVV,T :> EHT1, e 7Tdn]] fO’I“ dn = 5

(K :Qp + 1.

Proor. By Proposition 2.37 and Proposition 2.39 and Lemma 2.40,
it suffices to show that dimgpH!(G,adr(W)) = d,. We prove this by
induction on the rank n of W. When n = 1, then ad7 (W) = ad(W) is the
trivial E-B-pair, hence the proposition follows from Proposition 2.10. Let
(W, T) be a split trianguline E-B-pair of rank n satisfying all the conditions
in the propositionas. Put 7,1 : 0 € Wy, C --- C W,_o C W, _1 the
triangulation of W,,_1(C W) which is induced from 7. Then, for any f €
adr (W), the restriction of f to W,_; is an element of adz, ,(W,—1) and
this defines a short exact sequence of E-B-pair

0 — Hom(W (é,,), W) — ad7 (W) — adz, _,(Wp—1) — 0.

From this, we obtain

n(n+1)

rank(ad7 (W)) = rank(adz, ,(Wp-1))+n=14+2+---+n= 5

by induction. By Theorem 2.8, it suffices to show that H(G g, ads(W)) =
E and H(Gf,ad7(W)) = 0. For HY, this follows from the following natural
inclusions

E C HY(Gk,adr(W)) C HY(Gg,ad(W)) = E.
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We prove H3(Gf,ad7r(W)) = 0 by induction of the rank of W. When
n = 1, this follows from Proposition 2.10. When W is of rank n, from the
above short exact sequence, we obtain the following long exact sequence

- — H?(Gg,Hom(W (8,),W)) — H?(G g, adr(W))
— H*(Gk,adr, ,(W,_1)) — 0.

Because we have H?(Gx, Hom(W (6,,), W)) = 0 by Proposition 2.10 and by
the assumption on {§;}"_;, we obtain the equality H*(Gx,ad7(W)) = 0 by
induction, which proves the proposition. [

2.4. Deformations of benign B-pairs

In this final subsection, we study benign representations or more gener-
ally benign B-pairs which is a class of potentially crystalline and trianguline
B-pairs and have some very good properties for trianguline deformations
and play a crucial role in the problem of the Zariski density of modular
Galois (or crystalline) representations in some deformation spaces of global
(or local) p-adic Galois representations. This class was defined by Kisin in
the case where K = Q, and the rank is 2 in [Ki03] and [Kil0]. He stud-
ied some deformation theoretic properties of this class in [Ki03] and used
these in a crucial way in his proof of Zariski density of two dimensional
cryst@lline representations of Gg,. For higher dimensional and the Q,-case,
Bellaiche-Chenevier [Bel-Ch09] and Chenevier [Ch09b] were the first ones
who noticed the importance of benign representations in the study of p-adic
families of trianguline representations. In particular, Chenevier [Ch09b]
(where he calls “generic” instead of benign) discovered and proved a crucial
theorem concerning the tangent spaces of the universal deformation rings of
benign representations. In fact, by using this theorem, Chenevier [Ch09b]
proved some theorems concerning the Zariski density of modular Galois
representations in some deformation spaces of global p-adic representations.

The aim of this subsection is to generalize the definition of benign rep-
resentations and the Chenevier’s theorem for any K.

2.4.1 Benign B-pairs

Let P(X) € Ok[X] be a polynomial such that P(X) = 7 X (mod X?)
and P(X) = X? (mod 7y ), where ¢ := p/ and f := [Kj : Q,]. We take the
Lubin-Tate formal group law F over O such that [rx] = P(X), where [—] :
Ok = End(F). We denote by K,, the abelian extension of K generated by
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[1%]-torsion points of F (k) for any n, then we have a canonical isomorphism
XL Gal(K,/K) = (O /m"OK)*. We put Ky := U2 K, and G, :=
Gal(K,/K).

In [Kil0], [Bel-Ch09] or [Ch09b] etc, benign representation is defined
as a special class of crystalline representations. But, as we show in the
sequel, we can easily generalize the main theorem to some potentially crys-
talline representations. Hence, before defining benign representations, we
first define the following class of potentially crystalline representations.

DEFINITION 2.42. Let W be an E-Bpair. We say that W is crysta-

belline if W|¢, is a crystalline E-B-pair of G, for a finite abelian extension
L of K.

REMARK 2.43. Because a finite abelian extension L of K is contained
in K,,L’ for some m = 0 and for a finite unramified extension L’ of K, by
using Hilbert 90, we can easily show that W is crystabelline if and only if
WGy, is crystalline for some m = 1.

Let W be a crystabelline E-B-pair of rank n such that W|g, = is crys-
talline for some m. Because K,, is totally ramified over K, Dg;g(W) =
(Bmax ®Q, W)GKm is a free Ko ®q, E-module of rank n. We take an embed-
ding o : Ko — E. This defines a map 0: Ko ®q, F — E:x®y — o(x)y.
Using this map, we define the o-component

DI (W), :=DEn (W) ©ksg, 2.0 B,

cris cris

this has a E-linear ¢f-action and a E-linear G,,-action. Let {ag, - ,an}
be the solution in E (with multiplicities) of the characteristic polynomial

det (T - id — (,0f|DK7n (W)g) € E[T)]. Because the actions of ¢/ and G,
commute, each generalized of-eigenvector subspace of Dg;’; (W), is pre-
served by the action of G,,. Hence we can take a E-basis {e1,6,--+ ,eno} of

Dg;; (W) such that e;  is a generalized eigenvector of of for the eigenvalue

a; € E” and G, acts on e; , by a character gl Gy — E” for any i. We
change the numbering of {ay,---,ay} so that the basis €1 5,€24, -, €n0
gives a of-Jordan decomposition of Dgi"; (W), by this order. Because we

have {o, ¢ 1o, , o~ Vg} = Homg, (Ko, E) and

¢ DERW) S DA W) ,ip iz @y — ¢l (z) @y

cris cris
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(zx € DEn(W)andy € E) is a E[@/, Gyn]-isomorphism, the set {a, - - -, an }

cris

doesn’t depend on the choice of ¢ : Ky — E. If we put

€ = €jo + @(ei,o) +- Cpf_l(ei,o) € DKm (W) RF E7

cris

we have

DX (W) ®@p E = Ko ®q, Ee1 @ - - ® Ko ®q, Een,

cris

such that the subspace Ko ®q, Eei®---® Ky ®Q, Ee; is preserved by ¢ and
the action of Gy, for any i. Moreover, if we take a sufficiently large finite
extension E’ of E, then we have e; € DX (W) @z E' and

cris

DEm(W) @ E' = Ko ®q, E'e1 ® -+ ® Ko ®q, Eey,
and o; € E' and 6; : G, — E' for any 1.

Using these arguments, we first study a relation between crystabelline
FE-B-pairs and trianguline E-B-pairs.

LEMMA 2.44. Let W be an E-B-pair of rank n. The following condi-
tions are equivalent,

(1) W is crystabelline,

(2) W is trianguline (i.e. W ®p E' is a split trianguline E'-B-pair for a
finite extension E' of E) and potentially crystalline.

ProOOF. First we assume that W is crystabelline. By the above argu-
ment, for a sufficiently large finite extension E’ of E, we have DEm (W) @5
E'= Ky®q, E'e1 @ --- ® Ko ®q, E'e, as above and Ky ®q, E'e; @ --- @
Ko®q, E'e; is a sub E'-filtered (¢, G, )-module of DE(W®gE') for any i.
Hence W ®g E' is split trianguline and potentially crystalline by Theorem
2.5.

Next we assume that W is trianguline and potentially crystalline. By ex-
tending the coefficient, we may assume that W is split trianguline. We take a
triangulation 0 C W; C --- C W,, = W of W. Because the sub or quotient
B-pairs of crystalline B-pairs are again crystalline, W; and W;/W,;_; are
all potentially crystalline. Because W;/W;_; is of rank one, W;/W;_1|q,, is
crystalline for any ¢ and for any sufficiently large m. We claim that W|g,  is
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also crystalline. We prove this claim by induction on the rank n of W. When
n = 1, this is trivial. We assume that the claim is proved for the rank n — 1
case, hence W,,_1]g,, is crystalline. If we put W/W,,_1 = W(é,), we have
(W] € HY(G g, Wpn_1(6;1)). By the assumption, there exists a finite Galois
extension L of K, such that [W] is contained in Ker(H! (G, W,_1(6; 1)) —
HY G L, Bnax®B, (Wn_1(6,1))e)). Hence, it suffices to show that the natural
map Hl(GKm7 Bmax (®B‘i (Wn—l (6;1))6) - Hl(GLa Bmax ®Be (Wn—l(égl))e)
is an injection. By the inflation restriction sequence, the kernel of this map
is HY(Gal(L/Kp,), DL, (W,-1(6;1))) = 0. Hence W|g,, is crystalline, i.e.
W is crystabelline. [J

From now on, we consider a crystabelline F-B-pair W of rank n satisfy-
ing that DXm (W) = K, ®Q, Fe1®- - @ Ko®q, Fe, such that Ko®q, Fe; is
preserved by (¢, Gp,) and ¢f (e;) = aye; for some o; € E* such that a; # aj
for any ¢ # j. Let &,, be the n-th permutation group. For any 7 € &,,, we
define a filtration on DX (W) by E-filtered (¢, Gy, )-modules as follows,

Cris

Fri0CFy1 € C Frpy C Fryy = DER (W)

Cris

such that
Fri = Ko®q, Ee(1) @ --- ® Ko ®q, Ee,;)

for any 1 < i < n, where the filtration on F;; is induced from that on
DEm(W). We put gr, DK”(W) = Fr;/Fr;—1 for any 1 £ ¢ < n. By

Cris Cris
Theorem 2.5, there exists a filtration

IZ;':OQWT,I c--- gWT,Tl—l QWT,n:W
such that W, ;|q,, is crystalline and

Dl (Wri) = Fr.

Cris

For any i, W;;/W:,_1 is a rank one crystabelline E-B-pair such that
DEm(W, i /W,rii1) = gr, DKT”(W). By Lemma 4.1 of [Na09] and by

Cris Cris
its proof, there exists a set of integers {kz(” otoep and a homomorphism

6; : K* — E* satisfying 6; l1+amo, = 1 and 5 (rx) =1, such that

WT,i/WT,z’—l = W(éaT(i)gT(i) H o'k(ﬂi),a)
ocP
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for any 1 < ¢ < n, where é,, : K* — E* is the homomorphism such that
6ai’01><( = 1 and 0q,(7K) = a;. For any o € P, the set {k(;1)0sk(r2),00"" " 5
E(rn)o} is independent of 7 € &,, because these numbers are the ¢-com-
ponents of the Hodge-Tate weights of W. We denote this set (with multi-
plicities) by {ki,s, k2,0, ,kno} such that ki1 5 2 ko g = -+ 2 kp o for any
o € P. Under these notations, we define the notion of benign E-B-pair as
follows.

DEFINITION 2.45. Let W be a rank n crystabelline E-B-pair as above.
We say that W is a benign E-B-pair if the following conditions hold:

(1) For any i # j, we have o/ # 1,pf,p7.
(2) For any 0 € P, we have k1o > koo > -+ > kp_16 > kno.

(3) For any 7 € &, and o € P, we have k(, ;) , = ki, for any 1 =i = n.

REMARK 2.46. By definition, if W is a benign, then we have

Wei/Weio1 = W(éaw)@(i) H ohi)
o€P

forany 7 € 6, and 1 < i < n.

LEMMA 2.47. Let W be a benign E-B-pair. If W1 is a saturated sub
E-B-pair of W, then Wi and W/W7 are also benign E-B-pairs.

Proor. This follows from the definition and the fact that all the sub
or quotient FE-B-pairs of crystabelline E-B-pairs are crystabelline E-B-
pairs. [J

2.4.2 Deformations of benign B-pairs

LEMMA 2.48. Let W be a potentially crystalline E-B-pair satisfying
the condition (1) of Definition 2.45, then we have H?(Gg,ad(W)) = 0
and (W,T;) satisfies the conditions in Proposition 2.41 except the condi-
tion Endg, (W) =E for any 7 € &,

PROOF. That H?(Gg,ad(W)) = 0 follows from the condition (1) of
Definition 2.45 and from (2) of Proposition 2.10 because ad(W) is split
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trianguline whose graded components are of the forms (W.;/W.;, 1) ®
(Wr,;/Wrj—1)Y for any fixed 7 € &,. Other statements follow from the
condition (1) of Definition 2.45. [J

LEMMA 2.49. Let W be a benign FE-B-pair of rank n, then
Endg, (W) =E.

Proor. We prove this by induction on n, the rank of W. If n = 1,
Endg, (W) = HY(Gk, (Be,Bjg)) = E. We assume that the lemma is
proved for n — 1. Let W be a benign E-B-pair of rank n. We take
an element 7 € &, and consider the filtration 7, : 0 C W,; C ... C
Win—1 € Wy, = W. By Lemma 2.47, W, ,_1 is benign of rank n — 1,
hence we have Endg, (W;,—1) = E by induction. Let f : W — W
be a non-zero morphism of E-B-pairs. By (1) of Definition 2.45 and by
Proposition 2.10, we have Homg , (W7 -1, W/W; 1) = 0. Hence we have
f(Wrn—1) € Wr,—1. Because we have Endg, (W;,—1) = E, then we have
flw,n.y = a-idw,,_, for some a € E. If a = 0, then f : W — W
factors through a non-zero morphism [ : W/W,,_1 — W. Because
Homg, (W/W;p—1,Wrpn-1) = 0 by (1) of Definition 2.45 and by Proposi-
tion 2.10, the natural map Homg, (W/W, —1, W) — Homg, (W/W, 1,
W/W;n—1) = E is injective, hence the composition of f’ with the nat-
ural projection W — W/W,,_; induces an isomorphism W/W;,_q 5
W/W; n—1. This implies that the short exact sequence 0 — W,, 1 —
W — W/W;,—1 — 0 splits. If we take a section s : W/W, 1 — W,
then we can choose 7" € &,, such that W, ; = s(W/W,,_1), then this 7/
doesn’t satisfy the condition (3) in the definition of benign B-pairs. It’s
contradiction. Hence the above a must not be zero. If a # 0, consider the
map f —a-idwy € Endg, (W), then the same argument as above implies
that f = a-idy. Hence we obtain the equality Endg, (W) = E. O

COROLLARY 2.50. Let W be a benign E-B-pair of rank n. The functor
Dw is pro-representable by Ry which is formally smooth of its dimension
n?[K : Qpl+1. For any T € &, the functor Dy, 1. is pro-representable by a
quotient Ry, 1, of Ry which is formally smooth of its dimension M[K :

2
Qp) + 1.

ProOOF. This follows from Proposition 2.41. [
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Next, we want to consider the relation between Ry, and Ry7. for all
T € ©,. In particular, we want to compare the tangent space of Ry and
the sum of tangent spaces of Ry 7. for all 7 € &,,. For this, we first need
to recall the potentially crystalline deformation functor.

DEerFINITION 2.51. Let W be a potentially crystalline E-B-pair. We
define the potentially crystalline deformation functor DIC/{}S which is a sub-

functor of Dy defined by
DSIS(A) := {[W4] € Dy (A)|W, is potentially crystalline }
for A € Cg.

LEMMmA 2.52. Let W be a potentially crystalline E-B-pair. If
Endg, (W) = E, then D is pro-representable by a quotient RS of Ry
which is formally smooth of its dimension equal to

dimg (Dgr (ad(W)) /Fil®Dyg (ad(W))) + dimg(H (G g, ad(W))).

PRrOOF. For the pro-representability, by Proposition 2.30, it suffices to
relatively representability of Df/{,is — Dy as in the proof of Proposition 2.37.
In this case, the conditions (1) and (2) are trivial and (3) follows from the
fact that any sub E-B-pair of a potentially crystalline F-B-pair is again po-
tentially crystalline. The formal smoothness follows from Proposition 3.1.2
and Lemma 3.2.1 of [Ki08] by using the deformations of filtered (¢, Gk)-
modules. For the dimension, we take a finite Galois extension L of K such
that W|g, is crystalline. By the same argument as in the proof of Lemma
2.44, any W4 € DIS(A) is crystalline when restricted to G. It’s easy to
check that the map Dy (E[e]) = H!(Gk,ad(W)) induces an isomorphism
DIS(Efe]) = Ker(HY(Gk,ad(W)) — HY(G L, Bimax ®B, ad(W).)). In the
same way as in the proof of Lemma 2.44, the natural map H' (G, Biax ®B,
ad(W).) — HY (G, Bimax ®B, ad(IW).) is an injection. Hence we obtain an
isomorphism

D (Ele]) = Ker(H! (G, ad(W)) — H' (G, Buax 8, ad(W)e)).

We can calculate the dimension of this group in the same way as in the
proof of Proposition 2.7 [Na09]. O
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COROLLARY 2.53. Let W be a benign E-B-pair of rank n, then Rf,vris
1s formally smooth of its dimension (n_;)" (K :Qp) + 1.

PrROOF. This follows from Lemma 2.49 and the equality

dimg(Dgg (ad(W))/Fil®Dgg (ad(W))) = W[K L Q)

which follows from the condition (2) in Definition 2.45. O

DEFINITION 2.54. Let W be a benign E-B-pair of rank n such that
Wlgy,, is crystalline. For any 7 € &,, we define a rank one saturated
crystabelline E-B-pair W C W such that Dgg(WT’) = Ko ®q, Lerm) C

D/ (W) and define a subfunctor D of Dy by
‘C,[r}sl;(A) := {[W4] € Dw(A)| there exists a rank one crystabelline
saturated sub A-B-pair W, C Wy such that W) ® 4 E = W/}.

LEMMA 2.55. Under the above condition. The functor Df/{}i s pro-

representable by a quotient R?,f,‘ST of Ry which is formally smooth and of its
dimension n(n — 1)[K : Qp] + 1.

Proor. The relatively representability of Dﬁ{}i — Dy and the formal
smoothness easily follows from the combination of f;I‘OOfS of Proposition 2.37
and Proposition 2.39 and Lemma 2.52. Here, we only prove the dimension
formula. Let ad (W) := {f € ad(W)|f(W.) C W/}, then we have the
following short exact sequence

0 — Hom(W/W., W) — ad,. (W) — ad(W.) — 0.
Taking the long exact sequence, we obtain the following short exact sequence

0 — HY (G, Hom(W/W., W)) — H (G, ad,(W))
— H'(Gg,ad(W))) — 0
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by Proposition 2.10. We define a subspace H}J(GK,adT(W)) of H!(Gk,
ad,(W)) as the inverse image of H}(GK,ad(WT’))(Q HY(Gk,ad(W.))).
Hence we obtain a short exact sequence

0 — H' (G, Hom(W/W/, W)) — H} (Gx,ad,(W))
— H}(Gk,ad(W))) — 0.

In the same way as in Lemma 2.52, we can show that the natural isomor-
phism Dy (Ee]) = H(Gg,ad(W)) induces an isomorphism

W (Ele]) = Hy (G, ad (W)).
By Theorem 2.8 and Proposition 2.10, we obtain the equality
dimpH (Gg, Hom(W/W., W)) = n(n — 1)[K : Q).

Because ad(W7) is the trivial E-B-pair, we have dimpH} (G, ad(W))) = 1
by Proposition 2.7 of [Na09]. Hence we obtain the equality

dimpH} (G, ad(W)) = n(n — 1)[K : Q] + 1.
This proves that the dimension of R%‘ST isn(n—1)[K:Q,]+1.0

LEMMA 2.56. Let W be a benign E-B-pair of rank n. Let W4 be a
deformation of W over A which is potentially crystalline, then [W4] €
Dw 1. (A) and [Wy] € D%r}i(A) for any T € &,

PROOF. Let Wy be as above. If W|g, is crystalline, then Walg,,
is crystalline by the proof of Lemma 2.52. Hence it suffices to show that
DX&m (W4) is of the form Dim (Wa) = Ko®q, Ae1 DK o®q, Aea®- - -G KR,

cris cris

Aey, such that Ko ®q, Ae; is preserved by (¢, Gy,) and ol (e;) = aye; for a
lift a; € A* of a; € E* for any 1 <4 < n. To prove this claim, we first note
that DXm (W) is a free Ky ®q, A-module of rank n and DEm(W )@ E S

cris cris

DEm (W) by Proposition 1.3.4 and Proposition 1.3.5 [Ki09]. Then, for any

cris
oc:Ky— FE, DK’"(VVA)(7 is of the form DK’”(WA)U =Ae1, @D Aeno

cris cris
such that gpf(ei,g) = e, (mod my) for any 1 <4 < n. By an easy linear
algebra, we can take an A-basis €} ,, €5 5, €, , of DX (W), such that

ol (€ ,) = aie}, for a lift &; € A of a; for any i. Because the actions of
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¢ and Gy, commute and we have o; # «j, Aegﬁ is stable by G,,. If we
take e; := e, + (e} ,) + -+ o€ ) € DEm(Wy), then DEm(W,) can

1,0 cris cris

be written by DX (Wa) = Ko ®q, Ae1 © --- ® Ko ®q, Ae, satisfying the

cris

property of the claim. [J

LEMMA 2.57.  Let W be a benign E-B-pair of rank n such that Wg,
is crystalline, and let 7 € &,. Let [Wa] € Dwr,(A) be a trianguline
deformation over A with a lifting 0 C Wy 4 € Wayu C ---Wpa = W4 of
the triangulation T.. If W; A/W;_1,4 ts Hodge-Tate for any 1 < i < n, then
Walagy, is crystalline.

PROOF. First, we prove that (W; a/W;_ 1 4)|ag, 1is crystalline with
the Hodge-Tate weights {k;,}sep. Because W; 4/W;_1 4 is written as
a successive extension of Wr;/W.;_1, W; 4/W;_1 a4 has the Hodge-Tate
weights {k; »}ocp with multiplicity. Twisting W4 by the crystalline char-
acter 6;71(1_) ngp o ki KX A* | we may assume that W; 4/W;_1 4 is
an étale Hodge-Tate A-B-pair of rank one with the Hodge-Tate weight zero
and is a deformation of an étale potentially unramified E-B-pair W(gf(i)).
By Sen’s theorem ([Se73] or Proposition 5.24 of [Be02]), W; 4/W;_1 4 is
potentially unramified, hence there exists a unitary homomorphism ¢ :
K* — A* such that 6|OIX< has a finite image and W; 4/W;_1 4 — W(6)

= {1}, then we have
6|OI><( = 67(1-)](,);( : O — A, hence Wi a/Wi-1,4lcy,, is crystalline. Next,

and ¢ is a lift of ET(i). Because (1 +ma) N AL oo
we prove that WA|GKm is crystalline by induction on the rank of W. When
n = 1, we just have proved this. Assume that the lemma is proved for
n — 1, then W, 1 algy, is crystalline. If we put Wa/W;,_1 4 = W(ban),
then we have [W4] € HY(Gk, Wn—l,A(5Z}n))- By considering the Hodge-
Tate weights of W4 and the condition (3) of Definition 2.45, we have
FilODdR(Wn_LA(ég’z)) = 0. Comparing the dimensions, we obtain the
equality H}(GK, WA7n_1(6271n)) = HY(Gk, WA,n—l((SZ}n)) by Proposition 2.7
of [Na09]. In particular, Walg,. is crystalline. O

LEMMA 2.58. Let W be a benign E-B-pair of rank n, and let W1 be a
rank one crystabelline sub E-B-pair of W. Then, the saturation W% :=
(Wf,%t,W;rc’l“}gt) of Wi in W is crystabelline and the natural map
Homg, (W%, W) — Homg, (W1, W) induced by the natural inclusion
W1 — W% is isomorphism between one dimensional E-vector spaces.
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PROOF. Because we have Wi, = W% by Lemma 1.14 of [Na09], so
W is crystabelline. By the definition of benign FE-B-pairs, the Hodge-
Tate weights of W% are {ki,}sep. Consider the following short exact
sequence of complexes of G g-modules defined in p.890 of [Na09]

0— C*(W ® (Wi™)Y) — C*(W @ W)
= (W W) {r/(W @ (Wi*)) dp)[0] — 0,

where, for an E-B-pair W, we denote by C*(WW) the complex

COW) == W, & Wi, 27 Wyp = CH (W),
From this, we obtain an exact sequence

0 — H(Gk, W@ (Wi™)") — H(Gk, W @ WY)
= H (G, (W @ W)/ (W @ (Wi))§g) —

By the condition (3) in Definition 2.45, we have
dimpH (G, (W @ (W) 1) = dimpH (G, (W @ WY)1p) = n[K : Q).

Hence, by a standard argument of the theory of B+R representations, we
obtain the equality HO(Gg, (W @ Wy)Iz /(W @ (Wie)V)1.) = 0. Hence
the map HY(Gg, W ® (W;4)V)) 5 HY(Gk, W @ (W7)Y) is isomorphism.
Finally, for the dimension, we have dimgH%(Gr, W ® (W74)V) = 1 by the
condition (1) in Definition 2.45 and by Proposition 2.10 of [Na09]. O

LEMMA 2.59. Let W be a benign E-B-pair, and let W4 be a deforma-
tion of W over A. If there exists a crystabelline sub A-B-pair Wi 4 C Wy
of rank one such that the base change Wi := Wi g @A E — Wy @4 F
remains to be injective, then the saturation Ws‘lt of Wia in Wy as an
E-B-pair is a crystabelline A-B-pair and WA/WIS,“ 18 an A-B-pair and
Wsat ®4 E _) Wsat(c W)

ProOOF. First, by Proposition 2.14 of [Na09] there exists {ly}sep €
[Tyep Z< o such that W3 5 Wy @ W([],cp 0'7). We claim that the inclu-
sion

Homg, (W14 @ Wa([] '), Wa) — Homg, (W14, Wa)
o€P
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induced by the natural inclusion Wy a4 — Wi a4 @ Wa(Il,cp olo) is iso-
morphism and that these groups are rank one free A-modules. By the same
argument as in Lemma 2.58, the cokernel of Home, (W1,4 @ Wa(I],cp '),
Wa4) — Homg, (Wi 4, Wa) is contained in HO(Gg, (W4 ® Wl\fA):fR/(WA ®
W4 @ Wall,ep o~l7))iz), which is zero by the proof of Lemma 2.58.
Hence the natural inclusion

Homg,, (Wi,4 @ Wa([] 0'), Wa) = Home, (W1,4, Wa)
oceP

is isomorphism. Next, we prove that Homg , (W7, 4, Wa) is a free A-module
of rank one by induction on the length of A. When A = F, this claim is
proved in Lemma 2.58. Assume that A is of length n and assume that the
claim is proved for Wy := W ®4 A’ for a small extension A — A’. We
denote by I the kernel of A — A’, Wy a4 := Wi 4 @4 A’. From the exact
sequence

0—1 XKXE HomgK(Wl, W) — HOIIlGK(WLA, WA) — HOIIIGK(WLA/, WA/)

and the induction hypothesis, we have lengthHomg, (W7 4, W4) < lengthA.
On the other hand, the fact that the given inclusion ¢ : Wi 4 < W4 remains
to be injective after tensoring £ and the fact that dimpHomg, (W7, W) =1
and the induction hypothesis imply that the map A — Homg, (W14, Wa) :
a +— a - is an injection. Hence we obtain the equality length(A) =
lengthHomg, (W1,4,Wa). These facts prove the claim for A. From this
claim, the given inclusion ¢ : Wy 4 — Wy factors through a map

T:Wig=Wia® WA(HO’Z") — Wy.

Because the injectiveness of morphisms of B-pairs is determined only by
the We-part of B-pairs and we have W1 4. = (W14 ®@ Wa([l,ep 0'7))e, the
map ¢ is also an injection. Under this situation, we claim that the map ¢
gives an isomorphism Wf‘ﬁ = | 4 and satisfies all the properties in this
lemma. By induction on ‘the lengéh of A, we may assume that this claim
is proved for A’. First, we prove that W4/ Wl’ 4 is an E-B-pair. To prove

this, by Lemma 2.1.4 of [Be08], it suffices to show that W ;r/ Wll'; 4R s a
free B:{R—module. By the snake lemma, we have the following short exact
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sequence
t / /
0= I @p War/Widan = Waan/Wilaar = Waran/ (Wil g @4 A) = 0.

From this and the induction hypothesis, WI ar/ Wlltl 4r is a free BIR—
module. Finally, we prove the A-flatness of Wy/ Wll - This follows from
the fact that the map T® idg : WLA ®aFE — Wy ®a FE is saturated, which

can be seen from the proof of the above first claim. Hence W4/ Wll 4 is an
A-B-pair. We finish the proof of the lemma. [

LEMMA 2.60. Let W be a benign E-B-pair of rankn. For any T € G,
we have

Dz, (Ele]) + Diy(Ele]) = Dw (Ele]).

Proor. By Corollary 2.50 and Lemma 2.52 and Lemma 2.55, we ob-
tain an equality

dimgDw (E[e]) + dimpD{i**(E[e]) = dimgDw,z, (E[e]) + dimp D{i's (E[e]).
Hence, it suffices to show that we have an equality
Dw,, (A) N D5 (A) = Dii™(A)

for any A € Cg. We first note that the inclusion D$IS(A) C Dy (A) N
Dy -(A) follows from Lemma 2.56.

We prove the opposite inclusion D7, (4) N DS (A) C D$FS(A) by
induction on the rank n of W. When n = 1, this is trivial. Let W be of
rank n and assume that the lemma is proved for n — 1. Take any [W4] €
Dw.r.(A) N DS (A). By the definitions of Dy,z, and DS, then there
exist an A—triarigulation 0C Wia S Wypg C--- C Wn—l,’A C Wpa =
W4 such that W; 4 @4 E = Wi for any 7 and a saturated crystabelline
rank one A-B-pair W| , C Wy such that W] , ®4 E = W.. We first
claim that the composition of Wl/,A — Wy W{th Wy — Wa/Wia is an
injection. Because Ker(W{,A — W /Wi 4) is a sub E-B-pair of W; 4 and
we have Homg, (Ker(W] 4 — Wa /Wi a), Wi a) = 0 by the condition (1)
of Definition 2.45 and Pfoposition 2.14 of [Na09], hence the composition
map Wi 4 — Wa/Wy 4 is an injection. Hence, the saturation (W7 4)** of
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W{ 4 in W4 /Wy 4 is a rank one crystabelline A-B-pair satisfying the similar
conditions as those of W{ , < W4 by Lemma 2.59. Hence, W4 /W 4 is
crystabelline by inductioﬂ, and the Hodge-Tate weights of W, /W; 4 are
{k2,6, k3.0, ,knotocp (with multiplicity [A : E]) by the condition (3)
of Definition 2.45. Moreover, W] 4, has the Hodge-Tate weights {k1,}sep
(with multiplicity) by (3) of Definition 2.45. Because k; , # ki, for any
i # 1 and there is no extension between the objects with different Hodge-
Tate weights by a theorem of Tate, so W4 is a Hodge-Tate E-B-pair. Hence,
Wy is crystabelline by Lemma 2.57, and we have that [W4] € D&S(A). O

DEFINITION 2.61. For R = Ry or Ry, 7., we denote by
t(R) := Homp(mp/m%, F)

the tangent space of R. We have a natural inclusion ¢(Ryw, 7, ) — t(Rw ) for
each 7 € G,,.

The following theorem is the main theorem of § 2, which is crucial for the
applications to some problems on the Zariski density of crystalline points or
modular points. This theorem was first discovered by Chenevier (Theorem
3.19 of [Ch09b]) for K = Q,.

THEOREM 2.62. Let W be a benign E-B-pair of rank n. We have an
equality

> H(Rwz,) = t(Rw).

TE G'n

PrRoOOF. We prove this theorem by induction on n. When n = 1, then
the theorem is trivial. Assume that the theorem is true for the rank n — 1.
Let W be a benign E-B-pair of rank n. We take an element 7 € &,,. We
define a subfunctor Dyy,, of Dy by

Dy -(A) := {[Wa] € Dw(A)| there exists a rank one
sub A-B-pair Wi 4 C Wy such that the quotient
Wa /Wi 4 is an A-B-pair and Wy 4 @4 E = W},

where W is defined in Definition 2.54. Then, Df/{}sl; is a subfunctor of Dyy -,
and we can show in the same way that

Dy, (E[e]) = H'(Gk,ad-(W)),
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where we define
ad-(W) := {f € ad(W)|f (W) € W7}
By Lemma 2.60, we obtain an equality
HY (G, ad(W)) + HY(Gk,adr. (W)) = HY(Gg,ad(W)).

Because we have a natural inclusion Dw,7, C D, for any 7€ &y =
{r' € &,|7'(1) = 7(n)}, we have a natural map H'(Gg,adz,(W)) —
HY(Gf,ad,(W)) for each such 7/. Therefore, it suffices to prove that the
map

®res, ' (Gx,adr, (W)) — H'(Gk, ad-(W))

is a surjection. We prove this surjection as follows. By the definition, we
have the following short exact sequences of E-B-pairs for each 7/ € &, ,

(1) 0 — Hom(W/W., W) — ad,.(W) — ad(W.) — 0,

and

(2)  0— {f €adg, (W) F(W)) = 0} — adz, (W) — ad(IW) — 0.
Moreover, we have

(3)  0— Hom(W/W., W!) — Hom(W/W. W) — ad(W/W.) — 0,
and

(4) 0 — Hom(W/W7, W]) — {f € adz, (W)|f(W}) = 0}
— adr, (W/W]) — 0,

where, for 7/ € &, ,,, we denote by
To : 0 C Woo/W] C Wy /W, C oo C Wy /W) CW/W),

the triangulation of W/W! induced from 7,,. We have H?(G r, Hom(W /W,
W’)) = 0 by the condition (1) of Definition 2.45 and Proposition 2.10,
and H?(Gg,adz.(W)) = 0 by the proof of Proposition 2.41. Hence, from
the short exact sequence (4) above, we obtain the equality H?(Gg, {f €
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ad(W)|f(W!) = 0}) = 0. From this and from (1) and (2) above, it suffices
to show that the map

Dres,, H'(Gr. (f € ady (W) F(WY) = 0}) — H' (G, Hom(W/WZ, W)

is a surjection. By (3) and (4) above and the fact that H?(G g, Hom(W/W/,
W) = 0, this surjectivity follows from the surjectivity of the map

®res, , H (Gk,adr, (W/W.)) — H (Gk, ad(W/W))),

which is the induction hypothesis. Hence we have finished the proof of the
theorem. [

3. Construction of p-Adic Families of Two Dimensional Triangu-
line Representations

In this section, we generalize the Kisin’s theory of the finite slope sub-
space for any p-adic field, and then construct p-adic families of two dimen-
sional triangulline representations, which are crucial for the density of two
dimensional crystalline representations.

3.1. Almost C,-representations

In the first subsection, we prove some propositions concerning Banach
G r-modules, which we need for the generalization of the Kisin’s theory of
the finite slope subspace.

We first recall some rings of Lubin-Tate’s p-adic periods defined by
Colmez [Co02] and the definition of almost C,-representations defined by
Fontaine [Fo03].

Let i be a fixed uniformizer of K. Let P(X) € Og[X] be a monic
polynomial of degree ¢ := p/ such that P(X) = mx X (mod X?) and P(X) =
X? (mod mg). Let Fr, be the Lubin-Tate formal group law over Ok
on which the multiplication by 7 is given by [rx] = P(X). Let xrr :
G — OIX( be the Lubin-Tate character associated to mx. Put Ay g =
AT R0y, Ok, which is equipped with the weak topology on which Gg
acts continuously. The ring A;,¢ i also has a Og-linear continuous g =
gpf -action. Any element of Ajyr g can be written uniquely of the form
ZZOZO[l’k]Wlf{ (ry € E+) Put Biyx = Amny[p_l]. By Lemma 8.3 of
[Co02], for each # € Et, there exists a unique element {z} € At i such
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that {x} is a lift of z and px({z}) = [rx]({z})(= P({z})). We fix a set
{wn}n >0 such that wy € mg is a primitive [rx]-torsion point of Fr, (K)
and [7g](wpy1) = wp for any n 2 0, then (@), > defines an element
in EX 5 lim ,,Oz /7K O where the projective limit is given by the g-th
power Frobenius map. We define wi = {(@n)n>0} € Ainr,x- By the
definition of {—} and the uniqueness of {—}, the actions of Gx and px on
wg are given by g(wg) = [xrr(9)](wk) for ¢ € Gk (which converges for the
weak topology) and ¢k (wk) = [rk](wk). Take a subset {m,},>0 € O
such that my = mx and WZH = 7, for any n, and put g = (T,)p,>0 €

E*. Define Anax k= Ainf,K{[ﬁ-K]] the p-adic completion of Ainf7K[[ﬁ-K]],

Define B;;ax = Amax, x[p71], Wlffich is a K-Banach space with Continugus
actions of G}{ and @g. By the definition, we have a canonical isomorphism
K @K, Biwg, — Brmaxx (Remark 7.13 of [Co02]). By Lemma 8.8 and
Proposition 8.9 of [Co02], there exists a power series F(X) € K[[X]] which
is the Lubin-Tate’s logarithm such that Fx(X) o [a] = aFg(X) for any
a € Ok, and tg := Fi(w) converges in Apax i such that g (tx) = ik,
9(tr) = xur(9)tk for g € Gx. We define Byax k1= B:;&X’K[t;(l]. We define
B = liLnnB;;f,K (Ker(6))™ which is equipped with the projective limit
topology of K-Banach spaces {Bi';f’K (Ker(6))"},,>1 whose Ok-lattice is
defined as the image of Aju¢ x — B;;f,K (Ker(#))"™. By Proposition 7.12 of
[Co02], this B:{R is canonically topologically isomorphic to the usual Bj{R
defined in §2. We define Bar := Bl [t7!] = BI;[t4']-

Using these preliminaries, we define a functor from the category of ¢ g-
modules to the category of almost C,-representations defined by Fontaine.
We can see this construction as a very special case of a generalization of
Berger’s results [Be09] to the case of Lubin-Tate period rings.

DEFINITION 3.1. We say that D is a px-module over K if D is a finite
dimensional K-vector space with a K-linear isomorphism ¢ : D = D.

Let D be a pg-module over K, we extend the action of g to Kur Rk D
by vr(a® ) = px(a) ® pr(x), where K is the p-adic completion of the
maximal unramified extension K" of K and px € Gal(l/(:u\r /K) is the lift
of g-th Frobenius in Gal(F/F;). The Dieudonné-Manin theorem gives a
decomposition .

K" @k D = @SGQD87
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where for any s = ¢ € Q such that (a,h) € Z x Z>, are co-prime, Dy is

zero or a finite direct sum of D, := I/(E”el @ K/:BCQ O D I/(?reh such
that ¢ (e1) = ez, pr(e2) = €3, ,px(en—1) = en, vr(en) = Tier. We

define the set of slopes of D as the set of s € Q such that Dy # 0. We
define a K '-semi-linear Gg-action on K™ @ D by g(a® ) := g(a) @z for
g€ Gk, ac€ I/(a, x € D, then Dy is preserved by this Gi-action for any
s € Q because the actions of Gk and ¢ commute each other. For s = ¢,
if we define D!, := {x € D|p" () = 7%}, then we have Dy = ﬁ@Kﬁr D’
and D, is preserved by G and ¢k, where K} is the unramified extension
of K of degree h.

The notion of almost Cp-representations was defined by Fontaine [Fo03].

DEFINITION 3.2. Let U be a Q,-Banach space equipped with a contin-
uous Qp-linear G'i-action. We say that U is an almost Cp,-representation if
there exists Q,-representations Vi, Vo and an integer d € Z> such that V;
is a sub G g-module of U and V5 is a sub G g-module of (CZ and there exists

an isomorphism U/V; & Cg /Va as Qp-Banach G g-modules.

REMARK 3.3. By Theorem C of [Fo03], B}, /t*Bl; is an almost Cp-
representation for any £ = 0. By Theorem B of [Fo03], for any continuous
Qp-linear G g-morphism f : Uy — Uz between almost Cp,-representations
Uy, Uy, it is known that Ker(f) and Coker(f) (as Qp[Gk]-modules) are
almost C,-representations and Im(f) is also an almost C,-representation
which is a closed subspace of Us.

Let D be a ¢x-module over K. We prove that Xo(D) := (B} . ®k

max,
D)?x=1 is an almost C,-representation.

LEMMA 3.4. Let D be a pr-module over K.

(1) Xo(D) is an almost C,-representation.

(2) If any slope s of D satisfies s > 0, then Xo(D) = 0.

PROOF. The proof is similar to that of Proposition 2.2 of [Be09]. If we
denote by K" ®@g D = ®seDs as above, then we have BIHXK Qg D =
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GBSEQB+ Qga Ds as a pg-module. For s = 7, B;%K Qrar Ds =

max, K
B:;ax’K Qppr D’ is preserved by the actions of Gx and ¢g. Hence, it

suffices to show that, for any s = &, (B x @xw D)#<=! is an almost
/

Cp-representation and is zero if a > 0. By the definition of Dy, we have a

h _._—a
. . . + / =1 +, P =T /
canonical inclusion (B, ®@gpr Dg)?K= C B J' 575 @ Dy By 8.5

h _._—a
of [Co02], we have B;g{’}; "K = for a > 0, and a short exact sequence

ur;—a +»<P}f<:7";_(a + —ap+
0 — Kp'tpw — Boalx © — Bap/t "Bag — 0

for a < 0, where tgyr € B;;ax K = B;;ax Ky is defined from the triple

(K™, i, ) in the same way as in the definition of tj defined from

K, 7K, ¢K). Moreover, because BT/t *BT, @guw D’ is a B, -represen-
¥ dR drR WK Hs dR

tation, so this is also an almost C,-representation by Theorem 5.13 of [Fo03].

+,oh = . .
Hence, B m;f(KK ¥ @y Dy is also an almost Cj-representation. Because we
)

have an equality

(B i @rcpr DY)PK=!

+,h =70 +pl=rg?
=Ker(pr —1: B S © @xpr Dy — B S % @k Dy),

max, K max, K

m.

3.3.0

SO (B+ax, K QK D!)#x=1 is also an almost Cp-representation by Remark

As an application of this lemma, we obtain the following corollary. We
fix an embedding ¢ : K — FE. For a K-vector space M and an F-vector
space N, we denote by M ®k , N the tensor product of M and N over K,
where we view N as a K-vector space by the map o : K — E.

COROLLARY 3.5. Let o« € FE* be a non-zero element, then
(B;gaXK QKo E)PE=% is an almost Cy,-representation. For any positive
z'ntege;" k such that k > exvy(a), where ex is the absolute ramified index of
K, the natural map

(B 4« ®Ko E)PK= = (BL /t"BL) @k, E

max,

is an injection, Moreover, if we denote the cokernel of this inclusion by
Uk, we have the following short exact sequence of E-Banach almost Cp-
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representations,

0— (B;a&K DKo B)PE= — (B:{R thgR) QKo E — Uy — 0.

PrOOF. For a € E*, we define a pg-module D, over K by D, := Fe
such that ¢ (ae) = atae for any a € E. D, has a unique slope —egv,()
and we have a natural isomorphism

~

Xo(Do) = (B

max,

Kk QKo E)PET

Hence, (Bl‘;aLX x @K E)?=% is a non-zero almost C,-representation by Lemma
3.4. Moreover, using Proposition 8.10 of [Co02], we can show that we have
an equality

(B:ﬁax,K QKo E)SOK:O( N (thzer QKo E) = (t];(Brtlax,K QKo E)WFa
for any k = 0, which is isomorphic to Xo(Dy(r,)-+). Because, D

has a unique slope (k — exvy(a)), so we have Xo(Dgg(ry)—+)
k > exvp(a) by Lemma 3.4. This implies that the natural map

ao(mg)~k
= 0 when

Bk OK.0 B)PK= — (B /t"Bl) ®k o E

is an injection. Because both of these are almost Cp-representations which
are also F-Banach spaces, hence the cokernel Uy, is also an E-Banach almost
Cp-representation by Remark 3.3. [

For two K-Banach spaces M; and My, we denote by M@y My the
complete tensor product of M; and Ms over K. Let R be a complete
topological E-algebra. We say that R is an E-Banach algebra if there exists
amap | — |g : R — R>( which satisfies the following,

(1) |1|lr =1, |z|gr = 0 if and only if z =0,
(2) ’.’IZ‘ + y’R § max{\x\R, ’y’R}a

(3) |zy|r = |z[rlylr and |az|g = |aly|z|R
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for any z,y € R, a € E, and if the topology of R is defined by the metric
induced from | — |g.

LEMMA 3.6. Let R be an E-Banach algebra, and let o € R be an
element of R such that o — 1 1is topologically nilpotent, then there exists
u € (K®k ,R)* such that px(u) = au.

PROOF. The proof is the same as that of Lemma 3.6 of [Ki03]. OJ

Here, we recall some terminologies concerning Banach modules from §2
of [Bu07]. Let R be an E-Banach algebra and let M be a topological R-
module. We say that M is a Banach R-module if M is a complete topological
R-module with a map | — | : M — R> which satisfies the following,

(1) |m| =0 if and only if m = 0,
(2) [m + n| < max{|m|, |n|},
(3) |am| = |a|r|m| (] — |r is a fixed E-Banach norm on R as above)

for any m,n € M, a € R, and if the topology on M is defined by the
metric induced from | —|. Let M be a Banach R-module. We say that M
is orthonormalizable if there exist a map | — | : M — R>( as above and a
subset {e;};er of M such that, for any m € M,

(1) there exists a unique {a;}ier (a; € R) such that a; — 0 (i — oo) and
m =) s Gici,
(2) we have |m| = max;er{|ai|r}-

We say that a Banach R-module M has the property (Pr) if there exists a
Banach R-module N such that M @ N is orthonormalizable.

The following proposition is also a generalization of Corollary 3.7 of
[Ki03] which will play a crucial role in the next subsection.

PROPOSITION 3.7. Let R be an E-Banach algebra and let Y € R* be
a unit of R. Assume that there exists a finite Galois extension E' of E and
A€ (R®p E')* such that E'[A] C R®pg E' is an étale E'-algebra and that
Y A=t — 1 is topologically nilpotent in R @ E'. Then, for any sufficiently
large k € Z~q, there exists a Banach R-module Uy with the property (Pr)
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which is equipped with a continuous R-linear G -action such that there
exists a G g -equivariant short exact sequence of Banach R-modules with the

property (Pr)
0— (B;ax K®K70R)¢K:Y - B;R/th(JirR(gKaaR — Uk —0

which is compatible with any base change, i.e. for any continuous homo-
morphism f : R — R’ of E-affinoid algebras, the complete tensor product of
the above exact sequence with R' is equal to

0— (B;aX,K®K70R,)wK:f(Y) — BIR/thQ—R@K,aR’ — Upy®rR' — 0.

PROOF. Decompose E'[N] = [[,c; s € R ®g E' such that each E; is
a finite extension of E’, and denote by \; € E; the image of X in FE;, then
we obtain a decomposition R®@p E' = [L;c; Ri such that E; C R; for any i.
By Corollary 3.5, we have a short exact sequence of F;-Banach spaces

0 — (B;aX’K Do Ei)PE=N Bl /"B, ® k.0 Ei — Upi — 0.

for any k € Z~q such that k > egv,()\;) for any i. Hence, if we take the
complete tensor product over E; of this sequence with R;, we obtain a short
exact sequence of orthonormalizable R;-Banach spaces

0— (Br—;ax,K@)K,URi)SOK:/\i — BXR/tharR@K,aRi — Ug,®p,R; — 0.

By the assumption, the element Y)\i_l — 1 is topologically nilpotent in R;,
hence we have an element u; € (@@KJRZ-)X such that g (u;) = Y)\;lui
by Lemma 3.6. Multiplying u; to the above short exact sequence, we obtain
a short exact sequence

0— (BgaX,K@’KﬂRi)wK:Y — B:{R/th(J{R@)KpRi — (Ug,i®p,R;) — 0.
Summing up for all ¢ € I, we obtain

0= (Bl k®Ko(R®E EN)# =Y = Bl /"B @k (Rop E)
— @ier(Uri®p,R;) — 0,
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which we can see as an exact sequence of R-Banach modules with the prop-
erty (Pr). Taking the Gal(E’/E)-fixed part, we obtain a short exact se-
quence

0— (B, x®KkoR)P*=Y - Bl /t"Bli®k R — Uy — 0

max,

satisfying all the conditions in the proposition, where U :=
(@Z'ej(Uk,fg@EiRi))Gal(El/E). Finally, the base change property of this ex-
act sequence is clear from the proof. [J

Let V be an E-representation, then we define

D! .(V) = (Bl ®g, V)%, Fil'Deyis (V) := Deyis(V) NFil’Dyr(V),

Cris max

where we recall that B = B+ax Q Then, we have a natural inclusion

D' (V) C Fil’Ds(V), which is not an equality in general.

Cris

LEMMA 3.8. Let a € E* be a non zero element. If a @-submodule D

of Dcris(V)‘pf:a is contained in Fil’Dggr(V), then D is also contained in
F—
DY, (V)#/=e.

PrOOF. It suffices to show that if an element x € (Byax ®qQ, F )‘pf:a
satisfies that ¢'(z) € Blz ®q, E for any i € Z>(, then z € (B, ®q,
E)“"f:a. If we write © = % for some a € (Bf,, ®q, £ )Wf:‘”‘pf and n = 0,
then we have ;15?2 = o'(x ) € B r ®Q, I for any 0 =4 = f — 1. Hence, we
have

. f_ F=apnf

¢'(a) € (Blax ®g, B)” 7" Nt"B ®g, E = (tk,Biha ®g, B)7 7",
where the last equality follows from Proposition 8.10 of [Co02]. Hence, we
®Q, F forany 1 <4 < f — 1.
Then we can write by a = (Hl 9 cp_’(t’}(o))a for some o' € B}, ®q, E by

Lemma 8.18 of [COOZ] Because Hi:(]l ¢ 4 (tk,) € Kt by Lemma 8.17 of
[Co02], we have z = & € B, ®q, £. O

can write a = ¢~ (t)%, )a; for some a; € B},

3.2. Construction of the finite slope subspace for general p-adic
field

In this subsection, we generalize the theory of the finite slope subspace

Xy for any p-adic field. Using Proposition 3.7, the construction and the
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proof is essentially the same as those for K = Q,, but there is a difference
that we need to consider all the embeddings ¢ : K — FE, which makes
the theory more complicated. Hence, for convenience of readers (and the
author), here we reprove the Kisin’s theory in detail in our generalized
setting.

Let X be a separated rigid analytic space (in the sense of Tate) over
E. Let M be a free Ox-module of rank d for some d = 1 equipped with a
continuous Ox-linear Gi-action, where “continuous” means that, for any
admissible open affinoid U = Spm(R) of X, the action of Gk on I'(U, M)
is continuous on which the topology is naturally induced by that of R. We
denote by MV := Homp, (M,Ox) the Ox-dual of M. For z € X, we
denote by Ox, the local ring at =, m, the maximal ideal at z, E(x) the
residue field at x which is a finite extension of E. We denote by M (z) the
fiber of M at x, which is a d-dimensional E(z)-representation of G

Under this situation, we briefly recall Sen’s theory [Se88] of the ana-
lytic variations of Hodge-Tate weights following [Be-Co08] and [Ch09a]. By
Lemma 3.18 of [Ch09a], we can take an affinoid covering {U; }icr of X such
that M; := T'(U;, M) is a free R; := T'(U;, Ox)-module with a G-stable
finite free RY-module M) such that M; = M?[p~!] for a model R) C R;
for any ¢ € I. Here, for an affinoid A, a model is defined as a topologically
finite generated complete Og-subalgebra of A which generates A after in-
verting p. Then, we can apply the results of [Be-Co08] to M; (and M) for
any @ € I. By Proposition 4.1.2 of [Be-Co08], there exists a unique monic
polynomial Py, (T) € K ®q, R;[T] of dimension d, which is defined as the
characteristic polynomial of Sen’s operator on Déen(Mi) for a sufficiently
large finite extension L of K, such that the specialization of Py, (T) at x
gives the Sen’s polynomial Py;\(T) € K ®q, E(z)[T] of M(z) for any
z € Spm(R;). By the uniqueness of D& (M;), { P, (T)}ier glue together
to a monic polynomial Py(T) € K ®q, Ox[T]. By the canonical decompo-
sition K ®Q, £ = @oepF : a @b+ (0(a)b)s, Pp(T) decomposes into the
o-components Py (T) = (Py(T)o)oep € ®oepOx|[T].

From now on, we assume that the constant term of Py (7T), is zero for
any o € P. We denote by Py (T), = TQ,(T) for Q,(T) € Ox[T].

Before stating the theorem, we recall some terminologies of rigid geome-

try from § 5 of [Ki0O3] which we need to characterize the finite slope subspace
Xts-
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Let X = Spm(R) be an affinoid over E, and let U be an admissible
open in X. We say that U is scheme theoretically dense in X if there
exists a Zariski open V' C Spec(R) which is dense in Spec(R) for the Zariski
topology and U = V2" where V?" is the associated rigid space of V. For
any rigid analytic space X over F, an admissible open U of X is said to
be scheme theoretically dense in X if there exists an admissible affinoid
covering {U, };er of X such that U N U; is scheme theoretically dense in U;
for any ¢ € I. The typical example is the following. For any f € I'(X, Ox),
we set Xy := {x € X|f(x) # 0} which is an admissible open in X. If f is a
non-zero divisor, then X is scheme theoretically dense in X.

Next, let Y € T'(X, O%) be an invertible function on X, and let R be
an affinoid algebra over E. We say that a morphism f : Spm(R) — X is
Y-small if there exist a finite extension E' of F and A\ € (R ®p E')* such
that E'[\] C R®g E’ is a finite étale E’-algebra and YA™! —1 € R@p E' is
topologically nilpotent. A typical example of Y-small morphism is following,.
For any € X and n € Z>, the natural map Spm(Ox,/m}) — X is Y-
small for any Y € I'(X, Ox)*.

The following theorem is the generalization of Proposition 5.4 of [Ki03]
for general K, which states the existence and the characterization of the
finite slope subspace Xy,. This theorem is the most important for the
construction of p-adic families of trianguline representations in the next
subsection. For an F-affinoid algebra R, we set B&LR®QPR = liLnkB;rR /
thérR@QpR which is equipped with the projective limit topology.

THEOREM 3.9. Let X be a separated rigid analytic space over E, and
let M be a free Ox-module of rank d with a continuous Ox-linear G-
action. Let Y € I'(X,0%) be an invertible function. We assume that the
constant term of Py;(T), is zero for any o € P. Then, there exists a unique
Zariski closed subspace X s of X satisfying the following conditions,

(1) Xfs0,) 8 scheme theoretically dense in Xy, for any o € P and
1€ Zg 05

(2) for any Y -small map f : Spm(R) — X which factors through Xq, g
for any o € P and i € Z<,, the following two conditions are equiva-
lent,

(i) f:Spm(R) — X factors through X,
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(i) any R-linear G k-equivariant map h : MY @p, R — Bé’R@@pR
factors through I/ : MV @0, R — K ®k, (BI—;ax@QpR)‘pf:Y-

As in [Ki03], we prove this theorem by several steps. We first prove the
following lemma.

LEMMA 3.10. Let X, M be as above. Let X' be a separated rigid an-
alytic space over E, and let f : X' — X be a flat E-morphism. If there
exists a Zariski closed subspace X ¢, C X which satisfies (1) and (2) of the
above theorem, then X} = X5 xx X' C X' also satisfies (1) and (2) for
X', M = f*M andY':= f*(Y) e (X', 0%,).

PrOOF. The condition (1) is satisfied for X  because the notion of

scheme theoretically dense is preserved by flat base changes and we have
1 (Pu(T)) = Ppa(T). That X} satisfies (2) is trivial. O

We next prove the uniqueness of Xy,.

LEMMA 3.11.  If two Zariski closed subspaces X1 and Xo of X satisfy
the conditions (1) and (2), then X1 = Xo.

Proor. For any admissible open U C X and ¢ = 1,2, X; NU C U
satisfies (1) and (2) for U by Lemma 3.10 because the inclusion U — X is
flat. Hence, it suffices to prove that X1 NU; = Xy N U; for any i € I for an
admissible covering {U;};c; of X. Hence we may assume that X = Spm(R)
is an affinoid. We denote by X; = Spm(R/I;), X2 = Spm(R/I2) for some
ideals I1,Is € R. Set X3 := Spm(R/I; N I2), then we claim that X3 also
satisfies the conditions (1) and (2) . For (1), we have inclusions R/I; —
R/IJ[Q%@)] for any j = 1,2, 0 € P and i € Z< by the assumption, hence we
also have an inclusion R/I1 NIy — R/I1 N IQ[Q%(Z-)] for any o € P,i € Z<y,
which proves that X3 satisfies (1). To prove that X3 satisfies (2), we take a
Y-small morphism f : Spm(R’) — X which factors f : Spm(R') — Xg_
for any o € P,i € Z<y. Set Y' := f*(Y) € R*. If f satisfies (i) of (2),
then f factors through X; and X5 by definition, hence also factors through
X3 because we have X1, Xo C X3. Next we assume that f satisfies (i) of
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(2). We have the following canonical decompositions

K Ko (Bmax®QpR,)Lpf v ((K B Ko Bmax)®@pR,)¢f v
= (Bilax,K@QpR/)wf_Y = @UEP(BmaX K®K UR/)cpK:Y/

and

Bl,00,R = ®oepBlr®k. R
Hence, it suffices to show that any Gg-equivariant R’-linear map
h : MY ®o, R — BdR®K0R factors through MY ®p, R —
(Bmax KOk R)?PE=Y" for any o € P. Because Q,(i) is invertible in R’
for any o € P and i € Z<( by the assumption, the natural map

(BQ—R@K,UM ®ox R/)GK = (le— th+ ®K oM R0, R')GK

is isomorphism for any o € P and k € Z>; by Proposition 2.5 of [Ki03].
Hence, it suffices to show that, for some k € Z>, any G ix-equivariant map
h: MY ®o, R — (B+R/th ROK o R) factors through MY ®p, R —
(B Ok oR)PE= Y We choose k € Z>4 sufficiently large such that
there exists a short exact sequence

(5) 0— (Brtax,K@K,UR,)QOK:Y B+ thdR®K0R/ — Uk,o‘ — 0

of Banach R/-modules compatible with any base change as in Proposition
3.7. If we set Spm(R}) := f~1(X;) C Spm(R’) for i = 1,2, then we have
an inclusion R’ — R} & R, because f factors through X3. From these
arguments, the above short exact sequence (5) can be embedded in the
following short exact sequence

0 — @1 (B o k@0 RY)FHT = e ' Blr/t"BiROK 0 R]

D71 Uk ®r R — 0.

max,

Then, the composition of h with BIR th§R®K70R’ — DL 1B
thdR®K(,R; factors through MY ®p, R — @%:1(B$aX7K®K7UR;)¢K S
by the definition of X;. Hence, h also factors through MY ®o, R —
(B k®KoR)PE =Y by a diagram chase. Hence, X3 also satisfies (1) and
(2).

Therefore, to prove the lemma, we may assume that X; C Xs. We
put W C Xy the support of I;/Is with the reduced structure. If z € Xo
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satisfies Qo (7)(x) # 0 for any 0 € P and i € Z<, then the natural map
Spm(Ox, /m}) — X2 which is Y-small factors through Spm(Ox, ,/m7) —
X, for any n 2 1 by the definition on X; and X5. This implies that there ex-
ists amap Ox, » — @) X,z such that the composition of this with the natural
map Ox, » — Ox, z is the natural map Ox, , — @ch- This implies that
the natural quotient map Ox,, — Ox, , is isomorphism, hence we have
x ¢ W. Hence, we obtain an inclusion W C Ugep icz. {2 € X2|Qqs(i)(2) =
0}. By Lemma 5.7 [Ki03], then there exists a Q € ['(Xy, Ox,) which is a
finite product of Q,(7) such that Xo o C Xo \ W = X3 \ W C X; C Xo.
Then, the condition (1) for Xy implies that X; = X5. We finish to prove
the lemma. []

Assume that there exists an admissible affinoid covering {U;}icr of X
such that the subspace U; r, C U; exists for any ¢ € I. By the uniqueness of

Xts, {Ui ss}ier glue to a Zariski closed subspace X}S C X satisfying that
X}s NU; = U, s for any i € I.

LEMMA 3.12. In the above situation, X}S C X satisfies the conditions
(1) and (2) in the theorem, i.e. we have X} = Xys.

Proor. That X'  satisfies (1) is trivial. We show that X} satisfies
(2). Let f:Spm(R) — X be a Y-small map which factors through Xg_;
for any o € P and ¢ € Z<. Because X is separated, f~1(U;) is an affinoid
for any i € I. Set Spm(R;) := f~(U;). First, we show that (i) implies (ii).
We assume that f factors through X} . Let h : MY @0, R — Blr®k R
be a R-linear G g-equivariant map. By Proposition 2.5 of [Ki03], it suffices
to show that h : MV ®oy B — BQ’R@KJR — BarR/th;R(ﬁéKpR factors
through MY ®o R — (B, x©K o R)?¥=Y for some k € Z> . We choose
k € Z>4 such that there exists a short exact sequence

0— (Bl kO oR)PETY - Bl "Bl &k R — Upy — 0

of Banach R-modules as in Proposition 3.7. By the base change property,
this short exact sequence can be embedded into the following exact sequence

0— H(B$aX7K®K70Ri)¢K:Y - H Bl /t"Bir @Ko Ri
il il

— H Uk,o®RRz‘ — 0.
el
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By the assumption, the map MY ®o, R LN B:er/thgLR@K,gR —
B(J{R thjR@Ai)KJRi factors through MY ®p, R — (B;qax’K@K,URiVK:Y
for any i € I. Hence, h : MY ®0, R — Bj/t*!Bi;®K R also factors
through MV ®p, R — (B;ax,K@)K,C,R)WK:Y by a diagram chase of the
above two exact sequences.

Next, we assume that, for any ¢ € P, any R-linear G g-equivariant
map h : MY ®p, R — B;R@)K,UR factors through MV ®p, R —
(B x®KsR)¥x=Y. Because we have Q,(j) € R for any o € P and
jE Zg’o, the natural map

(Blr/t"Bir®K oM @0y R)“% @r R = (Bl /t"Bir®@k,oM @0, R;)Cx

is isomorphism for any k£ = 1 and ¢ € I by Corollary 2.6 of [Ki03]. Hence,
any R;-linear Gi-equivariant map h; : MV ®ox R — B:{R/thjR(éK,gRi
factors through MY ®o, R — (B$aX7K®K70Ri)WK:Y for any ¢ € I. This
implies that f|gpm(r,) : Spm(R;) — U; factors through Uj fs for any i € I.
Hence, f also factors through X} ,. [

By this lemma, it suffices to construct X s when X = Spm(R) is affinoid.
Moreover, in the same way as in (5.9) of [Ki03], we may assume that |Y|
satisfies |Y||Y 7Y < m for a norm | — | : R — R>( which defines the
topology of R as in §3.2. Then, we construct X; C Spm(R) as follows. We
first construct an ideal of R which defines Xy,. Let A € E be an element
such that [Y 1|71 < |A|, £ |V, and let E’ be a finite Galois extension of E
which contains A. By Corollary 3.5, we can take a sufficiently large k € Z>
such that there exists a short exact sequence of E’-Banach spaces -

0— (B;a& KkOKENFETITON B Bl @k o B — Uppp — 0

for any A\, E’ as above and o € P. Fix such a k = 1 until the end of the
proof of this theorem. For any x € ET such that v(z) > 0, we define an
element

Y n Y n

nez

P(z,

_o(m)A
Y

€ (B xOKoR®p E)?PK=
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This element converges because we have

o(mr)A - - .
= S o)A Y < o () MY ]yt £ 1

and @%([x])(ﬁ)” — 0 (n — +00) (see Corollary 4.4 of [Ki03]). For any
o € P and any R-linear G g-equivariant map h : MV — BIR/th§R®K7O—R,

we consider the composition of this map with the maps

Y
o(mr)A

BIR thIR(f@KJR — BjR/thérR@K,gR ®p E v P(z, )
and BXR/th:{Ré@K,GR@EE’ — Uk707,\®E/ (R®pE") which is the base change
of the surjection BZ{R/thjR(X)K’JE/ — U0, in the above short exact se-
quence. We denote this composition by

hyy: MY — Up o \@p (R@p E').

Fix an orthonormalizable E'-base {e;}icr of U o . For any m € MY, then
we can write uniquely by

hea(m) = Zam)\’i(m)ei for {azxi(m)}ier CR®p E'.
el
We define an ideal
I(h,z,A\,m) C R@g E’

which is generated by agx;(m) for all i € I. Because we have 7(I(h,x,
A,m)) =1I(h,z,7(\),m) C R®g E’ for any 7 € Gal(E'/FE), the ideal

> I(hz,7(A),m) CRep E
r€Gal(E'/E)

descends to an ideal I'(h,z,\,m) C R and this ideal is independent of the
choice of E'. We define an ideal I of R by

I:= Y I'(hyz,\,m)CR,
h,x,A\,m

where the sum runs through all h,z, A\, m and o € P as above.
Next, we denote by J(ny{,,l}?:w{il}?zo)(g I) the kernel of the natural map

R — R/I[m] for any triple (n, {0}, {i1}]~y) such that n = 1,
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o1 € P,i; € Z<y. Denote by J(2 I) the sum (in fact a finite union) of
the ideals Ji, (o3n  1iyp ) for all the triples (n, {oi}jLq, {i}j,) as above.
Then, Spm(R/J) is the largest Zariski closed subspace of Spm(R/I) such
that Spm(R/J)q, ) is scheme theoretically dense in Spm(R/J) for any
oceP,iZ0.

Finally, we prove the following lemma which claims that X5 =
Spm(R/J), hence proves the theorem.

LEMMA 3.13. The closed subspace Spm(R/J) C Spm(R) satisfies the
conditions (1) and (2) in the theorem.

PROOF. Because the map R/J — R/J[QU;(Z)] is injective for any o € P
and i € Z< by the definition of J, Spm(R/J) satisfies the condition (1).
We show that Spm(R/J) satisfies (2). Let f : Spm(R’') — Spm(R) be a
Y-small map which factors through Spm(R’) — Spm(R)q, ;) for any o € P
and i € Z<. In this situation, we first prove that (ii) implies (i). We assume
that any G g-equivariant map h : MY — Bl @k o R’ factors through MV —
(BIlaX’K@K,UR’)“pK:Y for any o € P. Then, for any h: MY — Bz ®k R,
A € E' and 2 € EV as in the construction of the ideal I C R, the map

Vh@pidr : MY — Uy o2 @p (R @p E')

is zero because the multiplication by P(z, ﬁ) sends (Brtax, kO R)PY

to (B:;ax,K@KpR®EE/)‘PK:J(”K))‘- Hence, the map R — R’ factors through
R/I — R’ by the definition of I. Because Q,(i) € R'* for any o € P,
i € Z<g, the map R/I — R’ factors through R/J — R’ by the definition of
J.

We next prove that (i) implies (ii). Assume that f : Spm(R') —
Spm(R) factors through Spm(R’) — Spm(R/.J) — Spm(R). Let h: MV —
BIR@A@ ko R be a R'-linear Gg-equivariant map. We want to show that the
map h factors through MV — (B:laX,KQA{)KUR’)‘PK:Y. By Galois descent, it
suffices to show that the map h factors through MV — (B$aX7K®K70R’ RF
E"N?x=Y for a sufficiently large finite Galois extension E’ of E. Hence, by
the definition of Y-smallness, we may assume that there exists A € E’ such
that YA~ — 1 is topologically nilpotent in R’ ® g E'. Moreover, because the
definitions of I and J are compatible with any base change R — R ®p F',
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we may assume that £ = E' and A\ € E. Under these assumptions, we
have |V~ < [f*(Y) ' = M\ = [F(V)Ir S Y] (|~ |r is a norm
on R'), hence A satisfies the condition in the construction of I C R. By

the definition of I, for any m € MV, P(x, ﬁ)h(m) is an element in
(B;;aX’K®K7(,R’)‘pK:"(”K)>‘ for any = € E* such that v(z) > 0. Take an

element u € (ﬁ@K,GR’)X"PK:% as in Lemma 3.6. Then we have
tguh(m) € (B QK R)PE=omxA

~ _o(mg)A
because we have txu € (B$aX7K®K’UR’)‘PK— v, and because the R'-

module generated by the sets {P(z is dense in

~ _o(rg)A . . .
(B$aX7K®K70R/)¢K_ v, which can be proved in the same way as in

Corollary 4.6 of [Ki0O3] by using Lemma 4.3.1 of [Ke05], and because
(BIlaX’K@K,UR’)‘pK:U(“K)A is closed in B /t*Bi;®k R by Proposition
3.7. Hence, we obtain

Y
) U(WK))\)}mEE+,v(m)>O

1 N _ N
h(m) € T (B B PR~ 80 1 B B o Y

_ (Brflax K®K7UR/)§OK:U(7FK)>\,

where the last equality follows from Proposition 8.10 of [Co02]. Hence,
we obtain h(m) € (BY ,®K,R)?%=Y, which proves the lemma, hence
finishes to prove the theorem. [

We next prove some important general properties of Xy,, which is a
generalization of Corollary 5.16 of [Ki03] for general K.

Let Spm(R) € X, be an affinoid open of Xfs. We assume that this
inclusion is Y-small. By Proposition 3.7, there exists k& > 0 such that, for
any o € P, there exists a short exact sequence of Banach R-modules with
the property (Pr)

0 — (B+ K®K,UR)90K=Y R Bji_R/thIR@K,UR — Up,e — 0.

max,

We denote by Mg the restriction of M to Spm(R).

PROPOSITION 3.14. Fiz k = 1 as above. For any o € P, let H, C R
be the smallest ideal of R such that any R-linear G g -equivariant morphism
My, — BjRA/thCTR@K,UR factors through My, — B:{R/thjR@)K,O—HU —
BIR/thIR@’KvUR' Set H := [[,cp Ho € R. Then the following hold:
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(1) For any o € P, the natural map

(B k@Ko Mp)PE=Y )0k — (B, /t" Bl @k, Mg)CX

max,

s isomorphism, i.e. the natural map

K @, D5 (MR)?x= — (Bl /t"Biz &g, Mr) <

cris
18 isomorphism.

(2) Spm(R) \ V(H) and Spm(R) \ V(Hy) (for any o € P) are scheme
theoretically dense in Spm(R), where V(H,) := Spm(R/H,).

(3) For any x € Spm(R), M(z) is a split trianguline E(x)-representation.
More precisely, there exists a short exact sequence of E(x)-B-pairs

0= Wby [[ o) - W(x))
oeP

— W (det(M ik

067>

for some {ks}oep € [1,ep Z>0, where, for any X € E(x)*, we define
a homomorphism 6y : K* — E(z)* such that §;(rx) = A and 6,\\(9;(

18 trivial.

Proor. We first prove (1). Take a point z € Spm(R) such that
r € Spm(R)g, () for any 0 € P and i € Z<(. By the characterization
of Xys, any Gg-map MR — B+ /t B iR ®K,0 Oxz/my factor through
My, — (Bi}aX’K QKo (’)X@/mx)W( =Y for any n 2 1 and o € P. We de-
note by V' C Spm(R) the set of points satisfying the above condition. By
the same argument as in Lemma 3.12, it suffices to show that the natural
map R — [[,cy,>1 Oxo/my is an injection. Let f € R be an element in
the kernel of this map. Let W C Spm(R) be the support of f with the re-
duced structure. Then we have W C Uyep i <oV (Qo(i)), hence there exists
@ € R a finite product of Q,(i) such that W C V(@) by Lemma 5.7 of
[Ki03]. Hence we have Xo C X \ W C X. This implies that f =0 € R[}],
and f = 0 in R by the condition (1) of Theorem 3.9. Hence, the map
R — [levnz>1 Oxo/my is an injection.
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We next prove (2). Let » € Spm(R) such that x € Spm(R)q, (;) for any
o € P and i € Z<. For any affinoid algebra R’ which is a quotient of Ox ,
then we have an isomorphism

(Bir/t"Blr®KkoMp)“% @r R = (BlR/t*Blg ®Kk.0 (Mg ®r ')

and this is a free R-module of rank one by Corollary 2.6 of [Ki03] for any
o € P. Hence we obtain an equality H,Ox, = Ox, for any o because
we have (BIR/thjR®K,JMR)GK ®@rOx/HsOx 2 = 0 by the definition of
H,, and then we also obtain an equality HOx ; = Ox . This implies that
we have an inclusion V(H) C U,ep i <oV (Qo(7)). Hence, there exists Q € R
a finite product of Q,(¢) such that Spm(R)g € Spm(R) \ V(H) C Spm(R)
by Lemma 5.7 of [Ki03]. Because Spm(R)q is scheme theoretically dense,
so Spm(R) \ V(H) is also scheme theoretically dense. Because we have
V(H,) CV(H), Spm(R) \ V(H,) is also scheme theoretically dense for any
oecP.

Finally we prove (3). Let = be any point of Spm(R). By (2), for any
o € P, there exists n, = 0 such that H, C m? and H, € m? 1. By the
definition of H,, there exists a Gg-map h : M% — (B:lax’K@K,gHa)‘pK:Y
which, by composing with B$aX,K®K7UH0 — B$ax,K Rk, m /mietl
induces a nonzero map My — (B x ®K o mye Jmle TP =Y () Hence,
by taking a suitable E(z)-linear projection m? /m*1 — FE(z), we
obtain a non zero Gg-map My — (Br‘gaX’K QKo E(x))Px=Y@)  This
implies that (B;;aX’K QKo M(x))$x=Y@) £ 0 and also implies that
D (M(z))?x=Y (@) £ 0, then M(z) is a split trianguline E(x)-representa-
tion as in the statement of (3). O

3.3. Construction of p-adic families of two dimensional triangu-
line representations

In this subsection, we will apply our theory of Xy in the previous sub-
section to the rigid analytic space associated with a universal deformation
ring of mod p Galois representation of G, which is a slightly modified
generalization of the results of §10 of [Ki03] for general K.

Let Co be the category of local Artin O-algebras with the residue field
F. Let p : Gx — GL2(F) be a continuous homomorphism, we denote by
V a two dimensional F-representation defined by p. As in the case of FE-
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representations, we define a functor D; : Co — Sets by
D;(A) := { equivalent classes of deformations of V over A}
for A € Co. In this paper, for simplicity, we assume that V satisfies that
H°(Gg,ad(V)) =F.

Then, Dj is pro-representable by a complete noetherian local O-algebra R
with the residue field F. When V does not satisfy H*(G,ad(V)) = F, we
can prove the same theorems below in almost the same way if we consider
the framed deformations of Kisin. Let V"™V be the universal deformation
over R, which is a free R;-module of rank two with a Rj-linear continuous
Gr-action. Let X(p) be the rigid analytic space over E associated to Rj.
Let V'™V be a free Ox(p-module associated to VWiV wwhich is naturally
equipped with an O -linear continuous G'k-action induced from that on
VWY where “continuous” means that G acts continuously on I'(U, ﬁu“i")
for any affinoid opens U = Spm(R) C X(p).

REMARK 3.15. For a point z € X(p), the fiber V, of V'™V at z is
a two dimensional F(x)-representation such that the reduction of a G-
stable Op(,)-lattice of V, is isomorphic to V ®F OF(2)/ME()- Because we
assume that Endpg,)(p) = F, we also have End g, (Vz) = E(x) for any
z € X(p).

Let Wg be the rigid analytic space over E which represents the functor
Dyy,, from the category of rigid analytic spaces over E to the category of
groups, which is defined by

Dy, (Y) :={6: O — I'(Y,Oy) continuous homomorphisms }

for any rigid analytic space Y over E, where “continuous” is the same
meaning as in the definition of VUi Tt is known that Wy is the rigid
analytic space associated to the Iwasawa algebra O[[Of]], which is non-
canonically isomorphic to a finite (this number is equal to the number of
torsion points in O ) union of [K : Qp]-dimensional open unit disc over E.
We denote by

6™ 1 O — T'(Wp, 1>/<VE)
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the universal continuous homomorphism, which is the composition of
the map Of — O[[Ok]]* : a — [a] with the natural map O[[Ok]]* —
T(WEg, Oy, ). Using a fixed 7, we extend S8V to KX by

8 KX — T(Wp, Oy, ) such that 6" (1) = 1, 6""V]x = ™.
By local class field theory, we can uniquely extend §"™V to a character
SV Gab L P (W, Oyy,.) such that SV — UV o pece

Set
X(p) == X(p) xe We x5 Glp.

Let Y be the canonical parameter of G%f - We denote the projections by
p1: X(p) — X(p), p2 : X(p) = Wk, p3: X(p) — Gi'g

respectively. We denote by N := pT‘N/“niV and M := N (pg(g“m")_l), which
is the twist of M by the cahacter p3(6"™V)~! : G5 — T'(X(p),Ox(p)~.

These are rank two free Oy p)-modules with Ox z)-linear continuous G-

‘ p)
actions.

REMARK 3.16. In §10 of [Ki03], Kisin applied his theory of X, (for
K = Qp) to the family ¢V'™Y on the space Y(p) = X(p) Xg GO s
where ¢1 : Y(p) — X(p) is the natural projection. This is because he
applied the results to a study of the family of p-adic representations asso-
ciated to Coleman-Mazur eigencurve, one of whose Hodge-Tate weights is
always zero. On the other hands, in this article, we want to study all the
two dimensional trianguline representations without any conditions on the
Hodge-Tate weights. Hence, we use the space X (p) and the representation
M = N(p%(guni")*l) instead of Y (p) and ¢V"iv,

A point = of X(p) can be written as a triple x = ([V4], 6z, A\y), where V,
is an E(x)-representation such that the reduction of a suitable Gi-stable
Op(z)-lattice of V is isomorphic to Vv R0y OF(x)/ME(2): and &y O —
E(x)* is a continuous homomorphism, and A, € E(x)*. We denote by

Py(T) = (Py(T)o)oer = (T? — a1,6T + ao.0)oep € K @q, Ox(p)[T]
=[] 0x»7]

c€P
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the Sen’s polynomial of M. Let Xo(p) € X(p) be the Zariski closed subspace
defined by the ideal generated by ag, for all o € P. Let My := M|, ;) be
the restriction of M to X¢(p), then we have

PMO(T) = (T(T - al,o‘))a‘E’P S H OXo(ﬁ) [T]
oceP

We denote by Q(T) :=T — a1, € Oxo(p) [T] for each o € P. Under this
situation, we apply Theorem 3.9 to Xo(p) and My and Y := (p3Y)|x,(5),
then we obtain a Zariski closed subspace

£(p) = Xo(p) s € Xo(p)-

For the properties of £(p), we have a following theorem, which is a modified
generalization of Proposition 10.4 of [Ki03] for general K. For any A € EX,
we define a unramified continuous homomorphism 6y : K* — E™ such
that 6)\(mx) := X and (S)\|O}><( is trivial. For a point § € Wg(E), i.e. for

a continuous homomorphism é : O — Ex, we denote by the same letter
§: K* — E” the homomorphism such that 6(rx) = 1 and 6l = 0.
K

THEOREM 3.17.

(1) For any point x = ([Vi],0z, \z) € E(p), there exist {ks}oep €
[l,cp Z>o and a short exact sequence of E(x)-B-pairs

0 — W(81) — W (Vy) — W(det(V;)d; 1) — 0

for 61 := 6,6, HaeP o ko

(2) Conwversely, if a point x := ([Vy], 6z, \z) € X(p) satisfies the following
conditions (i) and (ii),

(i) Vi is a split trianguline E(x)-representation with a triangulation
T, : 0 C W(8:65,) € W(Va),
(ii) (Vi,T) satisfies all the assumptions in Proposition 2.41,

then we have x € £(p).
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PrROOF. The property (1) follows from (3) of Proposition 3.14.

We prove (2). Extending the scalars from E to E(x), we may assume
that E(z) = E. Let x := ([Va],6z,\z) € X(p) be an E-rational point
satisfying the conditions (i), (ii) in (2). Then, the trianguline deformation
functor Dy, 7, is representable by a formally smooth quotient Ry, 7, of the
universal deformation ring Ry, of V, by Proposition 2.41. Moreover, we
have a canonical isomorphism Ry, — Ogg(p) L (z), and yuniv— J/univ R0 x5

(’)35([—,)7131(95) is the universal deformation of V,, by Proposition 9.5 of [Ki03].
Taking a quotient, we obtain a map

Ox ()0 = Ox(p) o1 (2) O EOW3 () OEOGE s ()
— Ry, 7,050y, pz(x)®EOG“"E7p3(x)

By the definition of Ry, 7, there exists a continuous homomorphism 67, :
K* — Ry .7, Which gives the universal triangulation, i.e. we have the
following compa‘mble triangulation

ﬁlniv,n :0C W((S’Tx,n) - W(quniv ®RVz RVx,'Ez/mn)

of V™ ®@p, Ry, 1,/m" for each n 2 1, where m is the maximal ideal of
Ry, 7, and 47, 5, is the composition of 67, with the natural quotient map
Ry, 1, — Ry, 1,/m". Set A1, := é7,(rk) € Ry, ;. Denote by (5“11(1;) :

X X
0 — OWEJ?z( )

O — I'Wg, Ow,)™ with the natural map I'(Wg, Ow,,)* O;;VE pa(2)"

Then, the E-algebra OWE‘ p2(x) 18 topologically generated by {6“““’ (a) —

the composition of the universal homomorphism 68““’ :

6z(a)la € OFX}. Denote by R a quotient of Ry, 7, ®EOWE P2(2)OE
OG%L,E’PS(@") by the ideal generated by é7,(a) ®1®1—-1® 5;;1(‘;’)( a)®1 (any
a€Op)and A\, ®1®1—-1®1®Y. Then, we can see that the composition
of the map Ry, 1, — RVz,'E@E(m)OWE,pQ(x)@OG‘m E@) ‘2P 2® 1®1

m,E>
— R

is an isomorphism Ry, 7, — R, and, if we denote by § : O — R and
Y € R” the reduction of 1 ® 6}‘3‘“@’) ®1and 1®1®Y, then the universal tri-
angulation Zuniv := {Zuniv,n}n>1 00 Ry, 7, is transformed to the following

triangulation

with the natural quotient map Ry, 7, ®E(x)@WE,p2(z)®E( )OGanE 3@ )

T :0CW(bby) C W(HiV™) ®oy, R)
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(here we drop the notation n € Z>; to simplify the notation).

Put Vg := (p V7 umiv) RO (») R, and put R, := R/m" and V; := V@5
R, for each n > 1. Denote by the same notation ¢ : G%) — R” the character
such that 6|OIX< = 6 and 6(recx(mx)) = 1. Under this situation, we first

claim that the natural map Spm(R,) — X(p) factors through Xo(p) for
any n 2 1. This immediately follows from the facts that W (Vg (571)) has
a triangulation 0 C W (éy ) € W (Vg (3_1)) and that W (6y ) is crystalline
with the Hodge-Tate weight zero, where Y, € R,, is the reduction of Y.
This fact also implies that Deris(W (3 )) which is equal to
Dcris(W((S?n))‘pK:?"ﬁFilODdR(W((S?n)) is a p-stable Ko®q, Rn-submodule

of Deris(V, (5_1))‘9’( =Y of rank one contained in Fil’Dagr (Vg (6 1)) By
Lemma 3.8, then we have a natural inclusion

(6) Desis(W (857, )) € Dy (Vi (5 ))#7 .

Next, we take an affinoid open Spm(R) C Xy(p) which contains x and
satisfies the condition in the construction of X, (see the paragraph after
the proof of Lemma 3.12). Let J be the ideal of R which defines Spm(R) .
We claim that the natural map R — R factors through R/J — R, which
proves that z € £(p)(E) because x is the point corresponding to the kernel
of the map R — R — R/m. By construction of .J, it suffices to show the

following lemma. [

LEMMA 3.18. In the above situation, the following hold:

(i) For any k 21 and o € P, the natural map

. —=—1 -V
an(Bj;laX’K Rro Vg, (6 ))PK V.G
n
. <1
— lim(B g /t*Big @x,0 Vg, (6

))<x

18 a surjection.

(ii) For any o € P and i € Z<, Q,(i) is nonzero in R.

PROOF. Because R = Ry, 7, is domain, (i) follows from (ii) and from
the above inclusion (6) by the same argument as in the proof of Proposition
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2.8 of [Ki03]. We prove (ii). On R, we have Q,(T) = T — a1, where
@1, € R is the image of a1, € Ox(p) by the natural map R — R. Hence,
a1, € R is the o-part of the Hodge-Tate weights of det(V) (572) for any

o €P. Set oy = det(Vm)]O}x( 672 OF — E*. By Lemma 3.19 below, then

X
a1, € R is the image of the o-part of the Hodge-Tate weight ai"V € Rs,
of the universal deformation 6510““’ : O — Rg by the injection Rs, —
Ry, 7, — R induced by a morphism f : Dy, 7, — Ds, defined below, where
the injectiveness follows from Lemma 3.19 below. Hence, for any i € Z<y),
we have Q,(i) = (i — @1,,) # 0 € R by Lemma 3.20 below. [J

Let 6p : O — E* be a continuous homomorphism. We define a functor
Ds, : Cg — Sets by

Dsy(A) := {64 : Ojp — A* : continuous homomorphisms
oA (mod mA) = 50}

for A € Cg. It is easy to show that this functor is pro-representable by
a ring Rs, which is isomorphic to E[[T1,Ts,---,Ty]] for d := [K : Q).
Let W be a split trianguline E-B-pair of rank two with a triangulation
T :0 C W(é) C W such that W/W(8;) = W(62) for some continuous
homomorphisms 63,82 : K* — E*. We put &y := (62/51)\(9;(. We define a
morphism of functors f : Dy 7 — Ds, as follows. Let [(Wa,74)] € Dw,7(A)
be an equivalent class of trianguline deformation of (W,7) over A with a
triangulation 74 : 0 C W (61.4) € Wa such that Wa/W (61.4) = W (62,4)
for some 614,62 4 : K* — A*, then we define f by

F(IWa, Ta))) i= (82,4/61,4)lox € Déy (A).

LEMMA 3.19. Let W be a two dimensional split trianguline E-B-pair
with a triangulation T : 0 C W (61) € W such that W/W (61) = W (62).
Assume that H2(G g, W (61/62)) = 0, then the morphism of functors f :
Dyw.1 — Ds, defined above is formally smooth.

PrRoOOF. Let A € Cg and I be an ideal of A such that Im4 = 0. Take
any [(Wayr,Tajr)] € Dw(A/I) and 64 € Dgy(A) such that f([(War,
Tas1)]) = 04®idy,r € Ds,(A/I). Then, it suffices to show that there exists
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a lift [(Wa,7a)] € Dw,r(A) of [(Wa,r,T4,r)] such that f([(Wa,7Za)]) = 0a.
Denote Ty/; : 0 C W(b1ay1) € Wayr and Wy, /W (61,a/1) = W(b2,.4/1)-
Because Ds, is formally smooth, there exists 61 4 : K* — A* such that
61,4 @A AJT = 61 41 We take a lift A € A* of 6 4/7(7k) € (A/I)*, and
define 69 4 : K* — A* by 62.4(7K) = X and 627A|OI><( = 61461,14\0;{, then we
have the following short exact sequence

0 — W((Sl/(SQ) ®E I — W(617A/(527A) — W((Sl,A/I/(SZA/[) — 0
This sequence implies that the natural map

HY (G, W (61,4/62,4)) — H' (G, W (61,4/1/62,4/1))

is a surjection because we have H?(Gg, W (61/62)) = 0 by the assump-
tion. Hence, there exists a lift [(Wa,74)] € Dw,r(A) of [(Wa/r,Tasr)] €
Dy 7(A/I) satistying that f([Wa,74]) = (627,4/517,4)\0;( = 64. We finish
the proof of the lemma. [

Let A € Cg, and let § : O — A* be a continuous homomorphism, then
it is known that this is locally Qp-analytic by Proposition 8.3 of [Bu07].
Then, for any o € P, we define the o-component of Hodge-Tate weights of

o by gg(fc) lz=1 € A, which is equal to the o-part of Hodge-Tate weights of

A(5) where 6 : G3> — A* is any character such that o recK|Ox =6 (see
Proposition 3.3 of [Nall]).

LEMMA 3.20. Let &y : O — E* be a continuous homomorphism. Let
Rs, be the universal deformatwn ring of Ds,. Let 63V : O — Réxo be the
universal deformation of 6y. For any o € P, define by agni" = (aon) €
Rs, = lim, Rs,/m™ the o-part of Hodge-Tate weights of 68“1", where we
denote by aqy the o-part of Hodge-Tate weights of S0V & ingo/mn for each

n = 1. Then, aﬁ“iv is mot constant, i.e. not contained in E, for any o € P.

PROOF. Let a := {as}oep € [[,cp £ be any element, then we define
a deformation of &y over Ele] by

ba : OF — E[e]* : ba(x) 1= bo(2) (1 + (D aslog(a(x)))e).

ceP
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98o(x)

Do) \x 1 + age. The lemma

The o-part of Hodge-Tate weights of ¢, is
follows from this. [J

COROLLARY 3.21. Let © = [V3] € X(p) be a point such that V is a
crystabelline E(x)-trianguline representation satisfying the conditions (1)
of Definition 2.45. Then, the point x, := ([%]’6771’(92’6771(7TK)) € X(p) is
contained in E(p) for any T € Sy, where we denote the triangulation T, by

0C W(8r1) CW(Vy).

Proor. This follows from (2) of Theorem 3.17 and from Lemma
2.48. 0

Next, we describe the local structure of £(p) at the points satisfying
the conditions (i), (ii) in (2) of Theorem 3.17 by the universal trianguline
deformation rings. We prove the following theorem, which is a generalization
of Proposition 10.6 of [Ki03].

THEOREM 3.22. Let x := ([V], 64, A\z) € E(p) be a point such that the
conditions (i), (i) in (2) of Theorem 3.17 hold. Then, we have a canonical
E(x)-algebra isomorphism

65(/3)733 :> vava'
In particular, £(p) is smooth of its dimension 3[K : Q,] + 1 at .

PrROOF. We may assume that E = E(x).

In the proof of Theorem 3.17,we have already showed that the natural
map (’)X(p) — R = Ry, 7, factors through Og( o) — R= RVI, T,-

We prove the existence of the inverse map Ry, 7, 5% R— (95( 5)z- De-
cause x is an F-rational point, we can take a Y-small affinoid nelghborhood
Spm(R) of x in £(p). By Proposition 3.7 and Proposition 3.14, for any suffi-
ciently large k > 0, there exists a short exact sequence of Banach R-modules
with the property (Pr)

0— (B, k®KroR)<= - Bl/t"Biz®K R — Uy — 0

max,

for any o € P, and we have a natural isomorphism

K®Ko D (V (6un1v 1))90f =Y ~ (BIR/th ®Q V (6un1v 1))G

cris
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Fix such a & > 0, then we defined an ideal H, C R for each ¢ € P in
Proposition 3.14 such that Spm(R)\ V(H) (H :=[],cp Hs) and Spm(R) \
V(H,) are scheme theoretically dense in Spm(R).

Under this situation, we prove the existence of the inverse Ry, 7, — R —
@5( 5.2 First, we claim that D (V, (5;1))90f:’\1 is a free Ko®q, F-module

Cris
of rank one. By the definition and by Lemma 3.8, this module contains a
submodule Dyis(W(6y,)) = DcriSN(W(éAﬁ))w:)‘”” N Fil®Dgr (W (6y,)) which

is of rank one. Hence D;FHS(VQC(&;l))Sof:/\m is of rank one or two. If this
is of rank two, then V, ((5 1) is crystalline with the Hodge-Tate weights
{0, ks }sep such that k, € Z< for any o € P With a unique pi-eigenvalue

Az. These conditions imply that 62/61 = [] ocP, o*7, which contradicts the

assumption on (V,,7;). Hence D;QIS(V (5; 1))9" Am is of rank one and the

inclusion Deis(W (0, )) — D;;ls(Vx((Sx 1))#/ =+ i isomorphism.
In the same way as in the proof of Proposition 10.6 of [Ki03], we take

the blow up T of Spm(R) along H. By the definition of blow up, for any

point Z € T above z € Spm(R) and for any o € P, there exists fo € H

such that f, is a non zero divisor of OT _and that H, (9~ = foO0s7

the definition of H,, for any o € P and for any z € T above x, there ex1sts
a G g-equivariant map Vg (6"ivV—1)v (B+aX x@K o R)¥%=Y such that the
composite with the map

(Br:ax,K(gK:UR)LpK:Y - (Br—ir_lax,l((gf{»a'fUC)~ N)SOK:Y

= (Bjr_lax,K(gKaU@T@)(pK:Y (B+ K ®K,U‘ E(f))QOK:Y(E)

max,

is non zero, where the isomorphism

N v . N v
(B$3X7K®K7U'fo >¢K (Bimx,K@K,UOT,%)WK

a

is given by a ~— i Using this map and using the fact that

D! (Vy (5;1))90f:’\”” is rank one, we can see by induction on n that

D . (VR(6™¥ 1) @p @T%/mg)wzy is a free Ko ®q, (/’)\T%/mg—module of

cris ,
rank one and that the natural base change map

D (Va(6™ ) @ O, /ml)? = @0, B(@)

Cris

% DE(Vel(8Y) @p B(@)? Y@

Cris
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is isomorphism for any n = 1. Because we have an equality
Fil! (K @, Do (Va(8; )7 =) = Fil' Dar (W (83,)) = 0,

then DT

+ (VR(6™V-1) @p (/’)\T@/mg)“’fzy is a ((5T7%/mg)—ﬁltered p-module
of rank one such that Fil® = K ®@x, DI, (Va(6™V 1) @p (’)T%/mg)spfzy
and Fil' = 0. By Lemma 2.23, this shows that Vi ®@g @T , is the projective
limit of split trianguline (O, /m?)-representations with triangulations 0 C

W(gzni"éyn) C W(Vr ®r 6T§3 /m2) which are trianguline deformations of
(Va, T;) @ E(7) (for n € Z>), hence the natural map Ry, — @g(ﬁ)w —

~

O . factors through Ry, — Ry, 7, for any 7 € T above z. Moreover,
because the natural map

Ose = 1]  Ora

is an injection by Lemma 10.7 of [Ki03] and by (2) of Proposition 3.14

(where p : T" — Spm(R) is the projection), the map Ry, — Og also

p)sx
factors through Ry, 7, — Og(5),- By this natural construction, we can
easily check that this is the inverse of the map giving the above. We finish

to prove the existence of the isomorphism Og; 5 Ry, 1, for such points.

)7I
Because this isomorphism is preserved by the base change from F to any
finite extension E’ by Lemma 3.10, the smoothness around these points

follows from this isomorphism and from Lemma 2.8 of [BLR95]. O

4. Zariski Density of Two Dimensional Crystalline Representa-
tions

In this final section, as an application of Theorem 2.62 (in the two di-
mensional case) and of Theorem 3.22, we prove the Zariski density of two
dimensional crystalline representations for any p-adic field.

We define a map 7 : £(p) — Wg xg Wg by ([Va], 0z, A\z) — (6,
det(Vx)\OIx( 2671,

PROPOSITION 4.1.  For any point x € E(p) which satisfies all the con-
ditions of Theorem 3.22, the map w : £(p) — Wg xg WEg is smooth at x.
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PrOOF. Let = := ([Vi],0z,Az) € E(p) be such a point. Set 8, :=
det(Vm)\OIx( -6, 1. By the same argument as in Proposition 9.5 of [Ki03], we

have a natural isomorphism isomorphism

OWe x 5Wi,(62,8.) — OWp 6. QB (2)Owpg.6, — Rs, Qp(2) R,

Hence, by Theorem 3.22, the completion of m at x is the morphism

T Spf(@g(ﬁ)@) - Spf(@\WEXEWE:(ﬁzyégc))

induced by the morphism of functors
e Dy, 7, = Ds, X Ds;, : [(Wa, Ta)] = (61,4lpx: 62,4l0x),

where T4 : 0 C W(81.4) C Wa and Wa /W (61,.4) — W (62.4) for A € CE(z)-
Then, we can prove the formal smoothness of this morphism of functor in
the same way as in the proof of Lemma 3.19. Hence, 7 is smooth at x by
Proposition 2.41 and by Proposition 2.9 of [BLR95]. O

Let x := ([V], 02, Az) € E(p) be an E-rational point such that V is a
crystalline split trianguline FE-representation with a triangulation 7, : 0 C
W (6465, ) € W(V,) satisfying the condition (1) of Definition 2.45 (see Corol-
lary 3.21). By Proposition 3.14, for any Y -small affinoid open neighborhood
U = Spm(R) of z in £(p), there exits k > 0 and there exists a short exact
sequence of Banach R-modules with the property (Pr)

0 — K ®k, (Biax®q,R)*' =Y — Bl /t*Bl&g,R — Uk — 0
and we have a natural isomorphism
K @, Db (Va6 )= = (Bg/1"Blpég, Va(6,") O
and, for any o € P, there exists the smallest ideal H, C R satisfying that
B/t Bip@ o HoVa(d5') 9 = (Bip/t*Bla®r.o Va(dz') ",

where we put Vg := D(U, pt(V'™V)) and 65 : O — R* is the restriction
of p3(6""V) to U. Moreover, if we put Q := HJEP,O§i§k Qs (—i) € R, then
we have inclusions Spm(R)g € Spm(R) \ V(H,) € Spm(R) by the proof
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of Proposition 3.14. Moreover, shrinking U suitably, we may assume that
vp(Ay) = vp(Ag) for any y = (V};,64,Ay) € U and that 7|y is smooth by
Proposition 4.1.

Under this situation, we study the map «|y : U — Wg xg Wg around
x in detail. Because V,, is crystalline, we can write

m(z) = (][] o™, [] ") € We xe We

oeP oeP

for some integers {k1 o, k2, }oep. Define a subset

Wi x5 We)aa = {([] o™ [[ e" ™) € We xg Weln, € Z,

oeP oeP
My € L 41 for any o € P and Z My 2 2exvp(Ag) + [K 0 Qp) + 1},
oc€P

where eg is the absolute ramified index of K. Then, for any admissible
open neighborhood V' of 7(x) in Wg xg Wg, there exists an affinoid open
V' C V which contains 7(x) such that VJ , := Wg xg Wg)a. NV’ is
Zariski dense in V/. Under this situation, we prove the following lemma.

LEMMA 4.2. Let y = ([[,ep o™ Ilyep o™ ™) be an element in
Wg XEWE)a. and let z := ([V2],6:,X;) be a point in UNn~1(y), then V,
is crystalline and split trianguline E(z)-representation with a triangulation
T.: 0 C W(b:6x,) C W(V,) which satisfies the conditions (1) and (2) of
Definition 2.45.

PROOF. Let z be such a point. By Corollary 2.6 of [Ki03], we have a
natural isomorphism

(Bn/t"Bin®g, Va(or') " @r E(2) = (Blp/t'Bly ®g, V2(6,1))%"
and this is a free K ®q, E(z)-module of rank one. Because we have an
isomorphism

K®K0 D'

cris

oy~ . ~
(VR(‘SRI))‘K) = (BIR/thgR(ngVR(éRl))GK
and an injection

K®K0 D+

cris

T f= T
(Va6 )P =2 = (Bip/t"Big g, V(6 1))
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induced from the injection K ®, (B, ®q, E(z))? =% — B /t"Bi; ®q,
E(z), we obtain an isomorphism

K @, DE (VA (651)7 =Y 5 (B, /P B, ®g, Va(8;1))5x.

z

On the other hand, because the Hodge-Tate weights of V,(671) are
{0,—mo}oep and me = k41 2 1, (FMBJR ®qg, V2(6;1))9F is also a
free K ®q, £(z)-module of rank one. These implies that Dar(V2(6;1)) is a
free of rank two K ®q, E(z)-module, i.e. V.(671) is potentially semi-stable

and split trianguline with a triangulation 7 : 0 C W (6,,) — W (V.(6;1)).
Moreover, if we set 82 := det(V;) - 6;26;21 : K* — E(z)*, then we have
W(V.(6:1)/W(6x.) = W(62) such that 62\(,);( = [Iyep o™ ™ because

z € 7~ 1(y), which implies that V(6 1) is semi-stable. Finally, we claim that
V. (671 is crystalline. If we assume that V5 (6;1) is semi-stable but not crys-
talline, then the /-eigenvalue of W (8;) is A\.p’ or A.p~/. By the weakly ad-
missibility of Dgt(V;(8; 1)), we have an equality tx(V2(5; 1)) =t (V2(5;1)).

z z

~

On the other hand, because we have an isomorphism W (det(V,(6;1))) =
W (6x.62), we obtain the equalities

and (V. (3-1)) = m(Zma),

c€P

hence we obtain ty(Vz(6:1)) < ta(Va(6;1)) because y € (W xg WE)elz»
which is a contradiction. Hence, VZ(SZ_1) is crystalline, and V, is also crys-
talline because gz is crystalline. Finally, twisting 7, by 6., we obtain a
triangulation 7, : 0 C W (6,6x.) € W(V,) which satisfies (1) and (2) of

Definition 2.45. [

LEMMA 4.3. Let z = ([V.],6.,\,) be a point in U N7 t(y) as in the

above lemma. Then we have a natural isomorphism Or-1(, . — Ry/*.

ProoF. First, by Lemma 2.48 and Theorem 3.22 and Lemma 4.2, we
have a triangulation 7, : 0 C W (6,65,) € W(V), and the functor Dy, 7,
is representable by Ry, 7., and we have an isomorphism Ogp) . 5 Ry, 1..
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Then, the completion at z and 7(z) of the morphism 7 : £(p) — Wg xgWg
is the morphism

7. : Spf(Ryv..1.) — Spf(Rs. @) Rs.)
induced by
Dy..7. = Ds. X D [(Va, Ta)] = (61,4l 62,40 0x);

> . Under this interpretation, we have

where we set ¢, = det(Vz)\OIx( 6t
an equality Spf(@wq(y)’z) = 7. ((6,,6%)), and this corresponds to the sub-

functor D’ of Dy, 7, defined by

D'(A) := {[(Va, Ta)] € Dv. 1.(A)|81,.4lpx = b ®p() ida,
b2,4l0x = 8, @p(z) ida}

for A € Cg(;). Because V, is crystalline, this is equivalent to that Vj is
crystalline by Lemma 2.57. Therefore we have D' = D%};is, hence we obtain

an isomorphism R({/rzis = Or-1(y),- U

In the situation of Lemma 4.3, for any y := ([[,cp 0™, [[yep o™ ™) €
(Wg X g WE)a.z, we set Uy := n~1(y) N U, which is smooth over E(y) by
the assumption on U, and define a subset

Uyp :={z = ([V2], 6., Az) € Uy|V. is benign}.

PROPOSITION 4.4. In the above situation, if Uy is not empty, then Uy
is an admissible open which is scheme theoretically dense in Uy, in particular
Uy is non-empty.

PRrROOF. Set U, := Spm(R’). By Lemma 4.2, any point z € U, satisfies
the condition (1) and (2) of Definition 2.45 and V, is crystalline with the
Hodge-Tate weights {ns, ne — Mgy }sep. Because Uy is smooth, so in partic-
ular Uy is reduced. Hence, by Corollary 6.3.3 of [Be-Co08] and Corollary
3.19 of [Ch09a],

@0, Vi (01)) "

—\n max

Dcris(VR’(g]_{/I)) = hm(iB+
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is a locally free Ko ®q, R'-module of rank two, and we have natural isomor-
phisms

Deis(Va (EE})) Qr B(z) > DCriS(VZ(gz_l)) for any z € U,
and
K ®k, Dexis (Vi (651)) = (Bar®0, Vi (6:1))9% = (B &0, Vi (7)) FK
Ko Ycris\VR'\Op/ dRYQ, VR \Op/ dR®Q, VR \OR )

where the last equality follows from the assumption on the Hodge-Tate
weights of V,, for any z € U,. Because U, C Ug, we have an isomorphism

(Bin/t"Bir®q, Va(8g)) 7" ©r R’ = (Bl /t*Bl &0, Vir (35)) 7%,

which is a locally free K®q, R’-module of rank one by Corollary 2.6 of [Ki03].
Because the natural map K ®g, (B$3X®QPR’)W =V — B /t"Blr&q, R is
an injection, hence we obtain an isomorphism

K @5y DL (Vi (6510)97=Y 2 (BL, /1" Bl &, Vi (67)) %

cris

From these facts, we can see that the natural map
(Bindg, Vir (651 — (Bin /1Bl b, Vir (671)) 7
is a surjection. Hence, we obtain a short exact sequence

0 — Fil*Dyr (Vi (6571)) — Dir (Vi (657))
— (BJp/t"Bir®q, Vi (85)7% — 0,

where we define Fil*Dgg (Vi (5];,1)) = (t"Bly ®QPVR’(5R/ )¢5 which is a
locally free K ®q, R'-module of rank one. If we set

Dy := Deyis (Vi (851)) /D (Vi (651))7 =Y,

then the above facts imply that Do is also a locally free Ko ®q, R-module
of rank one. By taking a sufficiently fine affinoid covering of Spm(R’), we
may assume that all these modules are free over Ko ®q, R’ or K ®q, R'. If
we decompose Dis(Vg (5}_%,1)) = Br.ry—K,Dr etc, then we obtain a short
exact sequence

0— Dj"pfzy — Dy =Dy, — 0
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of free R'-modules with an R'-linear ¢f-action for any 7. Define Y; € R~
by gof(e) = Yie for a R'-base e of Dy,. Because Y; is a lift of the other
Frobenius eigenvalue of Deyis(Vz(651)) (one is A,) for any z € Uy, = Spm(R’)
and because Dcris(Vz(gz_l)) is weakly admissible, the condition ) _.pms =
2exvp(A;) + [K : Qp] + 1 for any z € U, implies that

Y —Yi( andY—pile) € R~

Then, an easy linear algebra implies that there exists a decomposition D, =
f= f— f—

R'¢} @ R'é) such that R'e) = D' =Y = D% =Y and R'e) = DZ =,

Twisting these by ¢’ for any 0 <4 < f — 1, we obtain a decomposition

= f— f—
DcriS(VR’(‘SRfl))_ crls(VR/(6 ))w Y@Dcrls(VR’(éR/))w Yl

We denote by e; (resp. e) a Ko ®q, R'-basis of D, (Va (6 ") =Y (resp.
Dcm(VR/(é ))‘/’f Y1), For any 0 € P, we denote by 10,62, the R'-
basis of the o-component of D (Va (5;3,1)) 5 K ®p, ms(VR/(5 1) nat-
urally induced from ej, e5. Under this situation, we write the o-component
Fil*Dgr (Vi (g};})) by using the basis ej,,e2, as follows. Because the
natural map Djns(VR/((S H)e' =Y X = (Big/t"BY; ®QPVR/(6R,))GK is iso-
morphism, the natural map

Fll DdR(VR/(6 /)) — K®K0 Dg,
which is the composition of the natural inclusion
Fil*Dagr (Vi (671)) — Dar(Vir (051)) = K ®, Deris(Vir (071))

with the natural projection K ®px, Deris(Vr/ (5}_%/1)) — K ®g, D, is an
isomorphism.  Hence, for any ¢ € P, we can take a R'-basis of
FildeR(VR/(g;z,l))a of the form ey, + ase1, for some a, € R'. Then,
by the definition of benign representations, for any z € Uy, V. is benign
if and only if [[,cpas(2) # 0 € E(z) because we have isomorphisms
Dan(Vir (671)) @ E(2) > Dan(Va(6:1)) and Derio (Vi (87)) @ B(2)
Deris(V2(61)) ete. Hence, to finish the proof of the proposition, it is enough
to show that [] .p ao is a non-zero divisor in R’. To prove this claim, it
is enough to show that a, € @Uy,z = R%}zis is non-zero for any o € P and
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z € Uy because R%}Zis is domain. To prove this claim, we first note that we
have isomorphisms

Dcris (VR’ (5}5/1 )) ®R’ R(\:/I;ls :> Dcris (VR“:/Y;S (61;‘31;15 ))

. -1
= lin DCHS(VR(‘:;ZIS/mn (6R%/ns,n))
n=1 #

and

~

Dar (Vi (65/)) @ RE® ™ Dar (Vigrs (00))

Rgtis
. -1
= l%n DdR(VRg/rzls/mn (6R%/ris?n))
n=1 *

by construction and by Corollary 6.3.3 of [Be-Co08], where we denote by
m the maximal ideal of R{/® and denote by 5R%/r;s : O — (B{F®)™ the
homomorphism induced from ' and denote by § Rggien ¢ OF — (RS /m™)*
the reduction of 6 Reris for n 2 1. Hence, the claim follows from the following

lemma. O

LEMMA 4.5. Let V be a crystalline E-representation with Hodge-Tate
weights {0, —ko}oep such that k, € Z>y for any o € P. Assume that
Dcris(VR%/ris) = Ko ®q, R%}isel © Ko ®q, R%}”iseg such that ©f(e1) = Nex,
¢ (e2) = Nyea for some N, Ny € (RSH)* and that FilkaDdR(VR%}ris)g is
generated by €3 o + age1 o for any o € P. Then, we have ay # 0 € R‘{/ris for
any o € P.

PROOF. Denote by \; := N; € EX and a, € F, the images of A and aq
by the natural quotient map R?}”is — FE. Then we have Ds(V) = K ®Q,
Fei @ Ky ®Q, Eeés such that gof(éi) = \;é; and Fﬂk“DdR(V)g = E(égyg +
as€1,5). For any b := {bs}sep € [[,ep E, we construct a deformation
D(b) of Deis(V') over Ele] by D(b) := Deuis(V) ®fg Ele| as a ¢-module and
Fil"(K @k, D(b)) = K ®k, D(b) and

Fil'(K @k, D(b))s = Fil* (K @, D(b))s := El¢](é2.0 + (Go + boc)E15),

Fil** YK @k, D(b))s = 0. For any b as above, D(b) is a deformation of
D.is(V) over Ele]. Here, we remark that D(b) is automatically weakly
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admissible because, as an FE-filtered ¢-module, D(b) is an extension of
Derys(V) by Derys(V) and because the weakly admissibility is closed un-
der extensions. The existence of such deformations implies that a, # 0 for
any o € P.

Next, we will prove a proposition concerning the Zariski density of be-
nign points in £(p). Before proving this proposition, we first prove some
lemmas concerning general (maybe well-known easy) facts about rigid ge-
ometry.

LEMMA 4.6. Let T, be the n-dimensional closed unit disc defined over
E. Then, for any admissible open U of T, which contains the origin 0 :=
0,---,0) € Ty, there exists m >> 0 such that {(z1,--- ,zp) € Tpl|lzi| =
1/p™ forany1<i<n}CU.

ProoOF. Because U is admissibly covered by rational subdomains, we
may assume that U is itself a rational subdomain, namely, we may assume
that there exist fi,---, fa,9 € E{{Th1,--- ,T,}} such that (f1,---, fa,9) =
E{Ty,-- \Th}} and U = {z = (21, - ,20) € Tl fi(2)| = |g(2)] for any
1 £ ¢ < d}. Then, the condition 0 € U means that |f;o| < |go| for any
i, where f; 0,90 € E are the constant terms of f; and g. If go = 0, then
fio = 0 for any ¢, and this implies that (fi,---, fa,9) € (11,12 ,Ty),
which is a contradiction. Hence we have gy # 0 and then, because the
norms of coefficients of f; and g are bounded, there exits m >> 0 large
enough such that |f;(z)| = max{|fiol, |90} = |go| and [g(x)| = [go for any
x = (z1, -+ ,xn) € T), such that |z;| < 1/p™ for any i, i.e. {x € Tp||zi| <
1/p™ for any i} CU. O

LeEMMA 4.7. Let x := ([V], 6z, Az) € E(p) be an E-rational point such
that V is crystalline trianguline as in Lemma 4.2, and let U C E(p) be an
admissible open neighborhood of x. Then, there exists an admissible open
neighborhood U' C U of x such that U} :=U' N7 Y (Wg xg WE)ax) is
Zariski dense in U'. ’

PrROOF. Re-taking smaller U, we may assume that U satisfies the prop-
erties as in before Lemma 4.2 and that the morphism 7|y : U — Wg xgWg
is smooth and U is irreducible smooth of its dimension 3[K : Qp] + 1
by Theorem 3.22 and Lemma 4.1. In particular, we may assume that



Density of Two Dimensional Crystalline Representations 551

7(U) € Wg xg Wg is an admissible open by Corollary 5.11 of [BL93].
By definition of Wg xg Wg and (WEg xg WE)a,» and by Lemma 4.6, if
we re-take U smaller, then we may assume that there exists an admissi-
ble open neighborhood V of y := w(x) which is isomorphic to T, = V
where n := 2[K : Q] such that y corresponds to the origin 0 € T,
and that, for any m 2 1, the set Vi1, := {& € T,||z;| £ 1/p™ for any
1=2i=n}N(Wg XEWE)a, is Zariski dense in V' and that 7(U) C V and
that 7|y : U — V factors through an étale morphism 7' : U — V xg T,y
satisfying 7’(z) = (y,0) for n’ := [K : Qp]+1. Because V¢, is Zariski dense
in V for any m, the set (V XgTp)eim = {(¥, 2) € Vam X5 Tol|zi| < 1/p™
for any 1 <4 < n'} is also Zariski dense in V x g T,,. Because «'(U) is an
admissible open neighborhood of (y,0) € V xg T, there exists m >> 0
such that (V X gT/)c1m is contained in 7/ (U) by Lemma 4.6. Then, we have
ﬂlfl((V X g T )etm) € 7 (Vam) C Uelz, then the lemma follows from the
following lemma. [

LEMMA 4.8. Let f:U :=Spm(B) — V := Spm(E{{T\1,--- ,T,}}) be
an étale morphism between E-affinoids for some n. We assume that U is
wrreducible and reduced. If Vo CV is a Zariski dense subset of V' such that
Va C f(U), then f=Y(Va) is also Zariski dense in U.

PROOF. By the assumption, the natural map A := E{{Ty,--- ,T,}} —
[I.cv, E(z) is an injection. To prove the lemma, it suffices to show that
the kernel of the natural map B — [[,c -1y, E(y) is zero. If I is the
kernel of this map, then the map A — B/I < [ cs-1(y,) E(y) is equal
to the map A — [y, E(z) = [ ep-1(v,) E(y). Because we have Vo C
f(U) by the assumption, the map [], ey E(z) — [l er-1(v,) E(y) is an
injection. Therefore, the map A < B/I is also an injection. Then, we have
dim(A4) = dim(B/I)(= dim(B)) by Lemma 4.9 below. From this, we have
dim(B/I) = dim(B) because B is étale over A. Because U is irreducible
and reduced, we obtain the equality I = 0. [J

LEMMA 4.9. Let f : Z := Spm(B’) — Spm(E{{T1, -+ ,Tn}}) be a
morphism of affinoids over E. We assume that the induced map A =
E{{Ty, -+ ,T,}} — B’ is an injection. Then, we have dim(A) < dim(B’).

PROOF. Because A — B’ is an injection, the base change Frac(A4) —
Frac(A) ®a B’ is also an injection, in particular, the generic fiber of the
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morphism of schemes fj : Spec(B’) — Spec(A) induced from the injection
A — B’ is not empty. We denote by x the generic point of Spec(A) and
take a point y € fo_l(z). By Proposition 2.1.1 of [Berk93], if we denote
by k(x) and k(y) the residue fields (in the sense of scheme) at = and y,
then the natural inclusion x(x) < k(y) is an inclusion of valuation fields
which induces an inclusion k(z) < K(y), where k(—) is the residue field of
the valuation field x(—). Form this inclusion, we obtain (dim(A4) = n =
)s(k(z)/E) < s(k(y)/E), where s(k(—)/E) is the transcendence degree of
k(=) over E. By Lemma 2.5.2 of [Berk93|, then we also have s(k(y)/E) =
dim(B’), hence we obtain dim(A4) < dim(B’). O

Set
E(P)y := {x € £(p)|V, is benign and crystalline }.

PROPOSITION 4.10. Let x be an E-rational point in E(p) as in Lemma
4.7, and let U be an admissible open neighborhood of x. If we take an affinoid
neighborhood U’ := Spm(R) of x as in Lemma 4.7. Then, U] = E(p), NU’
is also Zariski dense in U’.

ProoOF. Consider any element f € R in the kernel of the natural map
R — HzeUb E(Z) Then, for any y € (WE XE WE)CI,J: N T(U>a f‘w*l(y)ﬂU S
Or-1(y)nv 1s equal to zero by Proposition 4.4 because Or-1(,)ny is reduced.

Hence, we obtain f =0 € R by Lemma 4.7. [J

COROLLARY 4.11. LetY be the Zariski closure of £(p)y, in E(p). Then,
Y is a union of irreducible components of £(p).

PrOOF. This follows from Proposition 4.10. [J

Set

X(P)reg—cris == {x € X(p)|V; is crystalline and the Hodge-Tate weights
of V, are {k1 4, k2.0 }oep such that ki , # ko, for any o € P},

and
X(p), := {x € X(p)|Vy is benign and crystalline }.
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LEMMA 4.12.  IfX(p)reg—cris is not empty, then X(p)y is also not empty.

PROOF. If X(p)reg—cris is not empty, then it is easy to show that there
exists some & € X(p)reg—cris Which satisfies the condition (1) of Definition
2.45. Then, the lemma follows from Proposition 4.4. [

For a rigid analytic space Y over E and for a point y € Y, we denote by
ty,y := Homp, (m, /m?, E(y))

the tangent space at y, where m,, is the maximal ideal of Oy,,,. The following
three theorems are the main theorems of this article concerning the Zariski
density of two dimensional crystalline representations.

We denote by X(p),, the Zariski closure of X(p)1, in X(p). The following
is a generalization of Corollary 1.10 of [Kil0] for general K.

THEOREM 4.13.  If X(p)reg—cris 5 non empty, then Wh is non empty
and a union of irreducible components of X(p).

ProOOF. By Lemma 4.12, Z := Wh is non empty.

To show that Z is a union of irreducible components of X(p), we first
claim that the dimension of any irreducible component of X(p) is at most
4[K : Qp] + 1. Take any point = := [V,] € X(p). Under the assumption
that Endp(p) = F, we also have Endg(y)q.(Vz) = E(z) and we have a
canonical isomorphism Ry, — @x(p),x by Proposition 9.5 of [Ki03]. Under
the condition End g(,)(q,](Ve) = E(2), it is easy to show that the dimension
of H*(Gk,ad(V;)) = HY(Gk,ad(Vy)(xp))" is at most one. By deformation
theory, then the dimension of Ry, is 4[K : Q,] + 1, from which the claim
follows.

By this claim, it suffices to show that the dimension of any irreducible
component of Z is at least 4[K : Q,]+1. Let Z’ be an irreducible component
of Z. Because the singular locus Z;ing C Z' is a proper Zariski closed set
in Z', there exists a benign point x € X(p), N Z’ such that Z’ is smooth at
x. By the definition of benign representation and by Theorem 3.17, there
exist the different two points

Ty = ([Vx]769317)\$1)’$2 = ([Vx]véﬂfw)‘xQ) € 5(/3)
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such that pj(z;) = = and satisfy the property (ii) in the Theorem 3.17. We
denote by Y/ an irreducible component of pfl(Z ) containing x; for i = 1,2
respectively. These are also irreducible components of £(p) by Corollary
4.11, and Y/ is unique for each ¢ = 1,2 by Theorem 3.22. Because the
natural morphism pi1lys : Y/ — X(p) factors through Z’ for i = 1,2, we
obtain a map

te()ws = Iy} as = 1202 7 1)

for ¢ = 1,2. Hence, we obtain a map

@ tep)a — 122 = tx(p)
i=1,2

By Theorem 2.62 and Theorem 3.22, this map is surjective, hence we obtain
an equality

tz' 2 = 1x(p),
Because z is smooth at Z’, hence Z' has dimension 4[K : Qp] + 1, which
proves the theorem. [

Concerning the assumption that X(p)reg—cris is non empty, in this paper
we prove the following (maybe well-known) lemma.

LEMMA 4.14. If p@pF # <LS i) ® x and p O F # <(1) i) ® x for

any character x : Gxg — FX, where w is the mod p cyclotomic character.
Then, X(p)reg—cris s non empty.

PRroOOF. First, we prove the lemma for the absolutely reducible case.
Extending F, we may assume that p is reducible. Because any character

X : Gg — F* has a crystalline lift, we may assume that p = <g T) for

a character n : Gxg — F* such that n # 1 and  # w. Using twists of
a Lubin-Tate character of K by ¢ € P and a unramified character, we
can take a crystalline lift 7 : Gxg — O* of n whose Hodge-Tate weights
are {k,}sep such that k, = 1 for any 0 € P. Under the assumption
n# 1,w, HY (G, O(7)) is a free O-module of rank [K : Q,] and the natural
map H'(Gg,O(7)) — H' (Gg,F(n)) is a surjection. Because k, = 1 for
any o € P, we have an equality H}(GK,E(T])) = HY(Gk, E(7)). These
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imply that any extension class in H' (G, F(n)) lifts to an extension class in
HY (G, O(7)) which is crystalline.

Next, we prove the lemma for the absolutely irreducible case. Denote by
K5 the unramified extension of K of degree 2, and denote by x2 : G‘}g —
IF;H the reduction of the Lubin-Tate character xo 17 : G%’? — (’)IX(2 of Ky
associated to the uniformizer g, := mx of K. Then, it is known that there
exists an isomorphism p — (Indg};2 x5)®x (possibly, after extending scalars)

for a character x : Gxg — F* and for some ¢ € Z such that ¢ Z 0 (mod
pf + 1), where we also denote by the same letter ys : G%’Q — F;w — [F*
for a fixed embedding F,, < F*. Hence, it suffices to show that IndgK b
p Ko
has a crystalline lift. Because x» is the reduction of x 1,1, we can take a lift
of X% of the form ] .p 5(X27LT)k" such that k, = 1 for all o € P, where
o : Ky — E is an extension of o. Then, Indgi X5 has a crystalline lift
2

Indg§2 (IT,ep 0(x2,uT)") whose Hodge-Tate weights are {0, ks }oep. O

Finally, we prove the following two theorems on the density of X(p)p in
X(p) under the following assumptions. In particular, we need to exclude the
case p = 2. Under these conditions, we will show below that X(p) is a finite
union of smooth irreducible components. Let (, € K be a primitive root
of unity. The difficulty of the proof to the theorems depends on whether
(p, € K or not, which corresponds to whether X(p) is irreducible or not
respectively.

We first prove the density when ¢, & K,

THEOREM 4.15.  Assume that (, ¢ K. Moreover, assume the following
conditions,

(0) Enda, (7) = F,

(1) X(P)reg—cris is not empty,

(2) if p is absolutely reducible, then p @ F (é :) ® x for any X :
Gk — FX,

(3) if p is absolutely irreducible, then [K((y) : K] # 2 or plr, @F F #

Xy 0 . i(pf —1)
0 Xl-pf for any © such that x4 1 = wlis
2
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then we have an equality X(p), = X(p).

PrROOF. We claim that X(p) is isomorphic to (4[K : Qp] + 1)-dimen-
sional open unit disc under the above conditions, from which the theorem
follows by Theorem 4.13.

To show the claim, it suffices to show that H?(G,ad(p)) = 0, hence
suffices to show that Homg, (p, p ® w) = 0 by the Tate duality. When p
is absolutely reducible, it is easy to see that the conditions (0), (2) imply
that Homg, (p,p ® w) = 0. When p is absolutely irreducible, then p is
of the form Indgi2 (x4) ® x for some i and x after extending scalars. If

Homg, (p, p®w) # 0, then there exists an isomorphism p = p®w by Schur’s

: 0 ~
lemma. The latter implies that det(p) = det(p)w? and Xzl i —
0 X2 |IK
Xéwhz{ 0 .
ipf . Because we assume that ¢, ¢ K, these imply that
0 X2 w|IK
K . K] = 2 and 2P -1 I~ = W|r., which proves the claim, hence
[ D X2 K K> p )
proves the theorem. [

Finally, we prove the theorem on the density when (, € K and p # 2
under the following assumptions.

THEOREM 4.16. Assume that ¢, € K and p # 2. Moreover, assume
the following conditions,

(0) Endgy (p) =F,

(1) %(ﬁ)reg—cris 1S not empty,

then we have an equality X(p), = X(p).

Proor. 1If (, € K, then X(p) never becomes irreducible. Hence, we
first need to know how to decompose X(p) into irreducible components under
the above assumptions.

Let P C O be the subgroup of O} consisting of all the p-th power
roots of unity, and let p™ be the order of P. Fix (,» € O a generator of
P, i.e. a primitive p™-th root of unity. For each 0 < i < p” — 1, we define a
subfunctor D;; of D by

Dypi(A) := {[Va] € Dp(A)|det(Va)(reck (Gpr)) = ea(Gr)'}
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for A € Co, where 14 : O — A is the morphism which gives an O-algebra
structure to A. It is easy to see that the canonical inclusion D;; — Dj
is relatively representable, i.e. this satisfies the conditions (1) and (2) and
(3) in the proof of Proposition 2.37. For each i, let R;; be the quotient
of Rp which represents Dj;, and let X(p); € X(p) be the Zariski closed
rigid analytic space associated to R;;. Then it is easy to see that, as rigid
analytic space, X(p) is the disjoint union of X(p); for 0 < i < p" — 1,

xp= I x0:

0si<pn—1

We claim that each X(p); is isomorphic to the (4[K : Q,] 4+ 1)-dimensional
open unit disc. To prove this claim, it suffices to show that the functor D;;
is formally smooth.

We prove the formal smoothness of D ; as follows. Let A be an object of
Co and I C A be a non zero ideal such that Im4 = 0. Let [V4,7] € D;:(A/I)
be a deformation of p over A/I. Then, it suffices to show that [V} ,;] lifts
to Dpi(A). Fixing a A/I-basis of V,,;, we represent V4,; by a continu-
ous homomorphism p,/; : Gk — GL2(A/I). Because the obstruction of
the liftings of det(p) comes only from that of det(p)|sec, (p), We can take
a continuous character ¢4 : G% — A* which is a lift of det(py /1) and
ca(recg (Cpn)) = ta(Cpn)'. We take a continuous lift p4 : Gxg — GL2(A) of
pasr such that det(pa(g)) = ca(g) for any g € Gk and then we define a
2-cocycle f: Gg x Gg — I @Fad(p) by

p4(9192)p4(92) " Palgr) ™ =1+ F(g1,92) € 1+I®aMa(A) = 1+I®pad(p).

Because det(pa) = ca is a homomorphism, f(gi1,g2) is contained in I ®p
ad’(p), where we denote by ad’(p) := {a € ad(p)|trace(a) = 0}. Hence, we
obtain a class of 2-cocycle [f] € H?(G,ad’(p)). Under the assumption (0)
and the assumption that ¢, € K and p # 2, we have

H*(Gk,ad’(p)) = H(Gk,ad’(p)(w))" = H(Gk,ad’(p))* =0

(we remark that we have HO(Gg, ad’(p)) = HO(Gk, ad(p)) = F when p = 2).
Hence, twisting pa by using a suitable continuous one cochain d : Gg —
I @ ad’(p), we obtain a continuous homomorphism p4 : Gx — GLa(A)
such that pa is a lift of p4/; and det(pa) = ca, which proves the formally
smoothness of Dj;.
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By this claim and by Theorem 4.13, to prove the theorem, it suffices
to show that X(p); N X(p), is non empty for any ¢ under the assumption
(1). We prove this claim as follows. First, there exists some ¢ such that
X(p)i N X(p)p is non empty by the assumption (1). We take a point z =
[Va] € X(); N X(p)y.

The twist Vw(xi(%)f_l)) of V. for any j € Z is contained in X(p), NX(p);;,
where we define i; such that 0 <i; < p" — 1 and i; =i + 2j(p/ — 1) ( mod
p"). Because we assume p # 2, i; runs through all 0 < i < p™ — 1, hence
X(p)pb N X(p)y is non empty for any i'. Hence, X(p)p is Zariski dense in
%(p). O

REMARK 4.17. We remark that, from § 3.3, we assume Endg, (p) = F.
However, even if End(p) # F, it may be possible to prove Theorem 3.17 and
Theorem 3.22 and Theorem 4.13 without any additional difficulties if we
use the universal framed deformations instead of usual deformations. But,
up to now, the author does not know whether the density is satisfied or not
when Endg, (p) #F.

5. Appendix: Continuous Cohomology of B-Pairs

In [Na09], we defined a cohomology H! (G, W) by using continuous
cochains of G which we review below. On the other hand, Liu [Li08] de-
fined another cohomology which we write by H}, (Gx, W) := HZOI(D(W))
by using a complex defined from the (¢, I')-module D(W') associated to W
(see 2.1 of [Li08] for the definition). Moreover, he proved that this coho-
mology satisfies the Euler-Poincaré formula and the Tate duality. In this
appendix, we first prove that H (G, W) also satisfies the Euler-Poincaré
formula and the Tate duality, and finally prove that H'(Gg, W) is canoni-
cally isomorphic to HY, (G, W).

We first recall the definition of H (G, W). Let G be a topological
group. For a continuous G-module M and i € Z>, we define the group of
i-th continuous cochains of G with values in M by

CY(G, M) := {c: G*" — M]|c is a continuous map }.
As usual, we define the boundary map

8" CI(G, M) — CHY(G, M)
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by
3i(0)(91792, s ,gi+1) = 910(92, te 7gi+1) + (—1)i+10(91>92, s 7gz‘)

i
+ Z(—l)ic(gl, ©tt 3 9s—159s9s+15,9s4+2; " agi-l-l)'
s=1

Let W = (We,WdJFR) be a B-pair. Set Wyg := W, ®p, Bqr. For W, we
define a complex C*(Gk,W) of Q,-vector spaces as the mapping cone of
the map

C*(Gk,We) & C* (G, W) — C*(Gx, WaR) : (Ce, CaR) — Ce — CaR,
i.e. defined by
CUGk, W) = C%Gk, W) ® CU(Gk, W)
and
CHGg, W) = C Gk, W) ® C (G, W) & C (G, War)
for i = 1 and the differential

O CUGr, W) ® CO(Gre, W)
— CYGk, We) ® CH(Gk, Wi) & C°(Gx, War)

is defined by
0°(ce, car) := (8°(ce), 8°(car), ce — car)

and, for 7 2 1, the differential
9" CH(Gr, W) ® CH (G, W) ® C Gk, War)
— C"Y G, W,) & CTH Gk, WiR) ® C (G, War)
is defined by
D' (e, car, €) = (9'(ce), 0% (car), ce — car — 0" 1(c)).
We define the cohomology of W by

H' (G, W) := H(C* (G, W)),
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and also define
H'(Gg, W) := H(C* (G, We))

and

H (G, W) :== H(C*(Gk, W), H(Gk, War) := H'(C*(Gx, War)).
By these definitions, we have the following long exact sequence,

= 7Y Gr, War) — H'(Gr, W) — H(Gg, We) @B (Gr, Wig) — -+

Before proving the Euler-Poincaré formula, we recall some results of
[Be09] on the relationship between B-pairs and almost C,-representations.
Let U be an almost Cp-representation. Let V; and V5 be Q,-representations
of Gk of dimension d; and dy respectively and d = 0 be an integer such
that we have V3 C U and V5 C (C;‘?d and U/V; & (Cgad/Vg. Then, we define
the dimension of U by

dimC(G’K)(U) =d

and the height of U by
ht(U) = dqp — da,

which are independent of the choice of Vi, V5 and are additive with respect
to exact sequences ([Fo03]). For a B-pair W := (W, W), we define

Xo(W) := W, N Wi and X1 (W) := War/(We + Wi).

Concerning Xo (W) and X; (W), Berger [Be09] proved the following theorem.

THEOREM 5.1. Let W be a B-pair of rank d, then
(1) Xo(W) and X1 (W) are almost Cy-representations,

(2) if W is pure of slope s < 0, then we have dime (g, )(Xo(W)) = —sd,
ht(Xo(W)) = d and X,(W) =0,

(3) if W is pure of slope s > 0, then we have Xo(W) = 0 and
dime (G ) (X1(W)) = sd, ht(X(W)) = —d.
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PROOF. See Theorem 3.1 of [Be09]. O

LEMMA 5.2. Let U be an almost C,-representation, then H'(Gg,U) is
finite dimensional over Q, fori=0,1,2 and zero for i = 3.

Proor. This follows from the definition of almost C,-representations
and the facts that H(Gg,V) = 0 for i = 3 for any Q,-representation V of
Gk and that H(Gg,C,) = 0 for i = 2 and that H (G, V) and H (Gg, C,)
are finite dimensional over Q,. [J

For an almost Cp-representation U, set x(U) := .2 (=1)" -
dimeHi(GK,U).

LeMMA 5.3. x(U)=—[K : Q,lht(U).

Proor. This follows from the definition of almost C,-representations
and the Euler-Poincaré formula for QQp-representations of G i and the fact
that x(Cp) =0. 0

LEMMA 5.4. LetW = (W, W;R) be a B-pair, then the following equal-
ities hold,

(1) C*(We) =limnC*(We N = Wi),

(2) C*(War) = lim,C*(Gk, m=WiR)-

Proor. For any n, tinWjR is closed in #WJR and the topology on
tinW(fR is the topology induced from W%WJR. Hence, by Proposition 5.6
of [Schn01], we obtain the equality (2). For W, if we fix an isomorphism
W, = B%? as B.-module, the topology on W, is defined by the direct sum
topology of B.. Because we have an equality

tBLe=P" = Ny > oKer (6 o ™ : Be=r"""

max max

— Cp)

by Proposition 8.10 (2) of [Co02], tinBItlgffp" is closed in #Bj{lg@:P"H and
the topology on =B " is the topology induced from ﬁBf{lg@:an.
Hence, by Proposition 5.6 of [Schn01], we have C*(G i, We) = lim ,C*(Gx,

(FBE ™)) = lim o C*(Gre, We N W) O
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LEMMA 5.5. Let WJR be a finite free B:;R—module with a continuous
semi-linear G g-action. Then the canonical map H'(Gx,Wi) —
lim ,H' (G, Wik /t"Wik) is isomorphism.

PROOF. Because we have C*(Gg, Wii) = lim,,C*(Gk, Wi /t"Wik),
for any i = 0, we have the following short exact sequence

0 — R'UIImH (G, Wiy /t"Wi) — H(Gr, W)

n
— lim H (G, Wi /t"W)) — 0.
n
Because H ! (G g, Wi /t"W ) is finite dimensional over Q,, Mittag-Leffler
condition implies that R'lim,H' "' (Gg, Wi, /t"W) = 0. The lemma
follows from this. [J

COROLLARY 5.6. Let W(;FR be as above. Let {hi,ha,--- ,hq} be the
generalized Hodge-Tate weights of W;R/tW;R. Let k = 1 be any integer
such that k+h; = 0 for any h; € Z. Then the natural map H'(Gx, W) —
HY(G e, Wi /t*WiR) is isomorphism and H (G g, t*H W) = 0 for any i.

PROOF. By the assumption on k, we have H (G, ! Wi /W) =0
for any | = k + 1. Then the corollary follows from Lemma 5.5. [J

COROLLARY 5.7. Let Wiy be as above, then H(Gg,Wi;) =
H (G, Wqr) = 0 fori = 2 and Hi(GK,W(fR) and H (G, Wqr) are finite
dimensional over Q, for i =0, 1.

PROOF. Because H'(Gg,WiL/t"Wii) = 0 for i = 2 and
H (Gk, Wi /t"WSy) is finite dimensional for i = 0,1, we obtain the corol-
lary for W;R by Lemma 5.6. We prove the corollary for Wyr. Because we
have an isomorphism C*(Gg, War) — lim,,C*(Gk, LWi) by Lemma 5.4
(2), we obtain an isomorphism H'(Gg, War) — lim ,H* (G, AW3s). Then
we can show that for n large enough the natural map H! (G, #W&*‘R) —
H' (G, WWJR) is isomorphism for any j = 0, then the natural map
H (G, tinWjR) — HY(Gx, WqRr) is isomorphism, the corollary for Wyg fol-
lows from this. [
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LEMMA 5.8. Let W = (W, W) be a B-pair. Then we have
HY (G, W) =0 fori = 3.

PrROOF. Because we have C*(Gk, W,) = lim ,,C*(G i, We N W) by
Lemma 5.4 (1), we have an isomorphism H*(G g, W,) = lii>nnHi(GK, W, N
tinW(fR). For any n, becagse WeN tL"Wci'_R is an almost C,-representation by
Theorem 5.1, we have H'(Gg, W, N tinWC;rR) =0 for ¢ 2 3 by Lemma 5.2.
The lemma follows from these facts. [J

THEOREM 5.9. Let W be a B-pair, then the following hold,

(1) H(Gg, W) is zero fori = 3 and H (G, W) is finite dimensional over
Qp fori=0,1,2,

(2) (Euler-Poincaré characteristic formula)

2
> dimg, (1) H (G, W) = —[K : QpJrank(W).
=0

PRrROOF. We first prove that H'(Gg, W) = 0 for i = 3. Because there
is an exact sequence

- — H™Y Gk, War) — H(Gg, W) — H (Gg, We) OH (Gxe, Wi) — -+,

the claim follows from Corollary 5.7 and Lemma 5.8. Next we prove that
H! (G, W) is finite dimensional over Q,. By slope filtration theorem, it
suffices to show this claim when W is pure. Let W be a B-pair pure of
slope s. When s < 0, we have the following short exact sequence,

OHWeﬂWJR%WEEBWJRHWdRHO

by Theorem 5.1 (2). Hence the natural map H/(Gg,W. N Wi) —
HY (G, W) is isomorphism. Because W, N WJFR is an almost C,-representa-
tion by Theorem 5.1, H (G, WeﬁWjR) is finite dimensional by Lemma 5.2,
which proves the claim for s £ 0. When s > 0, then we have the following
short exact sequence

0— W Wiy — War — War/(We + W) — 0
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by Theorem 5.1 (3). Hence we obtain a natural isomorphism H!(G g, W) =
H™Y G, War/(We + Wii)). Because Wyr/(W, + W) is an almost Cp-
representation by Theorem 5.1, H (G, War/(We + W) is finite di-
mensional, the claim for s > 0 follows from this.

Next we prove (2). For W a B-pair or an almost C,-representation, set
x(W) = Z?ZO(—l)idim@pHi(GK,W). It suffices to show (2) when W is
pure of slope s. When s < 0, then we have x(W) = x(Xo(W)) by the above
proof. By Lemma 5.3 and by Theorem 5.1 (2), we have equalities

X(XP(W)) = —[K : QJht(W) = —[K : QyJrank(W).

When s > 0, then we have x(W) = —x(X'(W)) by the above proof. By
Lemma 5.3 and by Theorem 5.1 (3), we have equalities

XX (W) = —[K; Qplht (X (W) = [K : QyJrank(W),
which proves (2). O

Next, we define the cup product pairing for B-pairs W := (W, W(;FR)

and W' .= (W/, W(;E) as follows. First, for two continuous cochains ¢ €
CYGg, W) and ¢ € CI(Gg,Wy) for Wy = We, Wik, War, we define a

continuous cochain
cucd € C(Gg, Wy @B, W)
by
cUd (g1, girg) = clgr, . 91) ® g1g2 - 9ic (git1, -+ + Gitj)

where B7 = Be7B§R7BdR when We = We,Wg'R, Wyr respectively. Then,
cU ¢ satisfies

Oti(cud) =i (c)ud + (—1)icud(c).
For

¢ = (e, ¢l car) € C/(Gg, We) & CH(Gg, W) ® C(Gk, War)
and

d = (C/e’ C;P_{’ c:iR) € CJ(GKv Wé) &) Cj(GKv W(;E) D Cjil(GKv WcliR)’
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and for a parameter v € Q,, we define
cUy d € CH (G, We @B, W) & C(Gi, Wig @pt. Wag)
S¥ CH_]_l (GK7 War @Bar WéR)
by
cUyc == (c U, clqg U c:l'ﬁ,
car U (ye, + (1= 7)eqp) + (=1 (1 = )ee +v¢fp) U chr))-

Then, we can check that if 9'(c) = 8(c/) = 0 then 9" (c U, ) = 0,
and if 9%c = 0 and ¢ = ¢~1(") (or ¢ = 0" Y(") and &7() = 0) then
cUycd € Im(9""7~1). Therefore, this paring induces a Q,-bi-linear paring

Uy : B (G, W) x B (G, W) — B (G, W @ W),

Moreover, we can check that U, doesn’t depend on the choice of a parameter
7, so we just write U instead of U,.
We define the paring

U:H' (Gk, W) x B (G, WY (xp)) — Qp
as the composition the following maps

H' (G, W) x H27H(Gr, WY (xp)) = HA(Gr, W @ WY (x))
- HQ(GIG W(@p(Xp))) o H2(GKa@p(Xp)) = @177

where the second map is induced from the evaluation map W @ WV (x,) —
W(Qp(xp)) and the third isomorphism is the natural comparison isomor-
phism and the fourth isomorphism is Tate’s trace map. The Tate duality
theorem for B-pairs is following.

THEOREM 5.10. Fori=0,1,2, the paring
U:H(Gg, W) x B> (G, WY (xp)) — Qp

18 a perfect paring.
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PROOF. We can prove this theorem in the same way as in the proof of
Theorem 4.7 of [Li08] if we use the Euler-Poincaré formula Theorem 5.9 and
the facts that HY(Gg, W ([[,ep o)) = 0 and H(Gg, W(|[[,ep o)) = O,
which are proved in Proposition 2.10. J

Finally, we prove that our continuous cohomology is canonically isomor-
phic to Liu’s cohomology. We first define an isomorphism between H° by
the functoriality

Hisu (Gx, W) = Homy,r (R, D(W)) = Hom(W (Qy,), W) = H*(Gx, W),

where D(W) is the (¢, I')-module associated to D and R is the trivial (¢, I')-
module, where the second isomorphism follows from the equivalence of cat-
egories between B-pairs and (¢, I')-modules.

THEOREM 5.11.  The above isomorphism HY, (G, W) = HY(Gk, W)

extends uniquely to an isomorphism of 6-functors Hiiu(GK,W) —
HY (G, W).

Proor. This follows from weakly effaceabilities of functors
Hi. (Gg,—)and H(Gk, —). ‘For Hi . | these facts are proved in the proof of
Theorem 8.1 of [Ke09]. For H'(Gk, —), we can also prove in the same way as
in Theorem 8.1 of [Ke09] because we have already proved the Euler-Poincaré
formula and the Tate duality for H (G, —) and we have a natural isomor-
phism H'(Gk, W) = Ext!(W(Q,), W) which is proved in Proposition 2.2
of [Na09]. O
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