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Deformations of Trianguline B-Pairs and

Zariski Density of Two Dimensional

Crystalline Representations

By Kentaro Nakamura

Abstract. The aims of this article are to study the deforma-
tion theory of trianguline B-pairs and to construct a p-adic family of
two dimensional trianguline representations for any p-adic field. The
deformation theory is the generalization of Belläiche-Chenevier’s and
Chenevier’s works in the Qp-case, where they used (ϕ,Γ)-modules over
the Robba ring instead of using B-pairs. Generalizing and modifying
Kisin’s theory of Xfs for any p-adic field, we construct a p-adic family
of two dimensional trianguline representations. As an application of
these theories, we prove a theorem concerning the Zariski density of
two dimensional crystalline representations for any p-adic field, which
is a generalization of Colmez’s and Kisin’s theorem for the Qp-case.
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1. Introduction

1.1. Background

Let p be a prime number and let K be a p-adic field, i.e. finite exten-

sion of Qp. The theory of trianguline representations which form a class

of p-adic representations of GK := Gal(K/K), in particular the theory

of their p-adic families turns out to be very important for the study of

the families of p-adic Galois representations over the eigenvarieties which

parametrize some p-adic automorphic representations. Inspired by Kisin’s

p-adic Hodge theoretic study of Coleman-Mazur eigencurve [Ki03], Colmez

[Co08] defined the notion of trianguline representations by using Fontaine’s

and Kedlaya’s theory of (ϕ,Γ)-modules over the Robba ring in the study

of p-adic Langlands correspondence for GL2(Qp). Based on their works,

Belläiche-Chenevier [Bel-Ch09] and Chenevier [Ch09b] studied deformation

theory of trianguline representations and p-adic families of trianguline rep-

resentations. These theories are the fundamental tools for their applications

of the eigenvarieties to some number theoretic problems, e.g. a construction

of non trivial elements in some Selmer groups. Because all their studies are

limited to the case K = Qp, we didn’t have any results concerning the p-adic

Hodge theoretic properties of eigenvarieties over a number field F except

when F is Q or more generally is a number field in which p splits completely.

On the other hands, in [Na09], the author of this article generalized

many results of [Co08] for any p-adic field K. The author proved some

fundamental properties of trianguline representations and then classified

two dimensional trianguline representations for any p-adic field, where we

studied trianguline representations by using B-pairs, which were defined by

Berger in [Be09], instead of using (ϕ,Γ)-modules over the Robba ring.

The aim of this article is to generalize Kisin’s, Belläiche-Chenevier’s

and Chenevier’s works for any p-adic field K, more precisely, to develop

deformation theory of trianguline representations and to construct a p-adic
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family of two dimensional trianguline representations for any p-adic field

K. The author expects that these generalizations are also fundamental

for applications to p-adic Hodge theoretic study of eigenvarieties for more

general number fields.

As an application of these theories, we prove some theorems (see Theo-

rem 1.6 and Theorem 1.7 in Introduction) concerning the Zariski density of

two dimensional crystalline representations for any p-adic field. These re-

sults are the generalizations of a theorem of Colmez and Kisin for K = Qp,

which played some crucial roles in the proof of p-adic Langlands correspon-

dence for GL2(Qp) ([Co10], [Ki10], [Pa10]).

In the next article [Na11] which is based on the results of this article,

we construct a p-adic family of d-dimensional trianguline representations for

any d ∈ Z� 1 and for any K and prove some theorems concerning the Zariski

density of d-dimensional crystalline representations for any d and K.

1.2. Overview

Here, we explain the contents of each section of this article.

In § 2, we study the deformation theory of trianguline B-pairs, which is

the generalization of the studies of [Bel-Ch09], [Ch09b] for any p-adic field.

In § 2.1, we recall the definition of B-pairs and some fundamental prop-

erties of trianguline B-pairs proved in [Na09] and then we extend these

notions to those over Artin local rings. Let E be a suitable finite extension

of Qp which is sufficiently large as in Notation below. We recall the defini-

tion of E-B-pairs of GK , which is the E-coefficient version of B-pairs. Set

Be := Bϕ=1
cris . An E-B-pair is a pair W = (We,W

+
dR) where We is a finite

free Be ⊗Qp E-module with a continuous semi-linear GK-action such that

W+
dR ⊆WdR := BdR⊗Be We is a GK-stable B+

dR⊗Qp E-lattice of WdR. The

category of E-representations of GK is embedded in the category of E-B-

pairs by V �→ W (V ) := (Be ⊗Qp V,B+
dR ⊗Qp V ). We say that an E-B-pair

is split trianguline if W is a successive extension of rank one E-B-pairs,

i.e. W has a filtration 0 = W0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Wn−1 ⊆ Wn = W

such that Wi is a saturated sub E-B-pair of W and Wi/Wi−1 is a rank one

E-B-pair for any 1 � i � n. We say that W is trianguline if W ⊗E E′

is a E′-split trianguline E′-B-pair for a finite extension E′ of E. We say

that an E-representation V is split trianguline (resp. trianguline) if W (V )

is split trianguline (resp. trianguline). By these definitions, to study trian-

guline E-B-pairs, we first need to classify rank one E-B-pairs and then we
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need to calculate extensions between them, which were studied in [Co08]

for K = Qp and in [Na09] for general K. In § 2.1, we recall these results

which we need to study the deformation theory of trianguline E-B-pairs.

We define the Artin local ring coefficient version of B-pairs. Let CE be

the category of Artin local E-algebras with the residue fields isomorphic

to E. For A ∈ CE , we say that W := (We,W
+
dR) is an A-B-pair if We

is a finite free Be ⊗Qp A-module with a continuous semi-linear GK-action

and W+
dR ⊆ WdR := BdR ⊗Be We is a GK-stable B+

dR ⊗Qp A-lattice. We

generalize some results of [Na09] for A-B-pairs.

In § 2, we study two types of deformations of split trianguline E-B-

pairs. In § 2.2, first we study the usual deformation for all E-B-pairs,

which is the generalization of Mazur’s deformation theory of p-adic Galois

representations. Let W be an E-B-pair and A ∈ CE . We say that (WA, ι) is

a deformation of W over A if WA is an A-B-pair and ι : WA⊗AE
∼→W is an

isomorphism. We define the deformation functor of W , DW : CE → (Sets)

by DW (A) := {equivalent classes of deformations (WA, ι) of W over A }.
We prove the following proposition concerning the pro-representability and

the formal smoothness and the dimension formula of DW .

Proposition 1.1 (Corollary 2.31). Let W be an E-B-pair of rank n.

If W satisfies the following conditions,

(1) EndGK
(W ) = E,

(2) H2(GK , ad(W )) = 0,

then the functor DW is pro-representable by a pro-object RW of CE such

that

RW
∼→ E[[T1, · · · , Td]] for d := [K : Qp]n

2 + 1.

In § 2.3, we study the other more important type of deformations, i.e.

the trianguline deformations. Let W be a split trianguline E-B-pair of

rank n and T : 0 ⊆ W1 ⊆ W2 ⊆ · · · ⊆ Wn−1 ⊆ Wn = W be a fixed

triangulation of W . For A ∈ CE , we say that (WA, ι, TA) is a trianguline

deformation of (W, T ) over A if (WA, ι) is a deformation of W over A and

TA : 0 ⊆ W1,A ⊆ · · · ⊆ Wn−1,A ⊆ Wn,A = WA is an A-triangulation of WA

(i.e. Wi,A is a saturated sub A-B-pair of WA such that Wi,A/Wi−1,A is a
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rank one A-B-pair for any i) such that ι(Wi,A ⊗A E) = Wi for any i. We

define the trianguline deformation functor DW,T : CE → (Sets) of (W, T )

by DW,T (A) := {equivalent classes of trianguline deformations (WA, ι, TA)

of (W, T ) over A}. We prove the following proposition concerning the pro-

representability and the formal smoothness and the dimension formula of

this functor, which is the generalization of Proposition 3.6 of [Ch09b] for

any p-adic field. For the notations, see the main body of the article.

Proposition 1.2 (Proposition 2.41). Let W be a split trianguline E-

B-pair of rank n with a triangulation T : 0 ⊆W1 ⊆ · · · ⊆Wn−1 ⊆Wn = W .

We assume that (W, T ) satisfies the following conditions,

(0) EndGK
(W ) = E,

(1) For any 1 � i < j � n, δj/δi �=
∏

σ∈P σkσ for any {kσ}σ∈P ∈∏
σ∈P Z� 0

(2) For any 1 � i < j � n, δi/δj �= |NK/Qp
|
∏

σ∈P σkσ for any {kσ}σ∈P ∈∏
σ∈P Z� 1,

then DW,T is pro-representable by a quotient ring RW,T of RW such that

RW,T
∼→ E[[T1, · · · , Tdn ]] for dn :=

n(n + 1)

2
[K : Qp] + 1.

In § 2.4, we define the notion of benign E-B-pairs, which forms a special

good class of split trianguline and potentially crystalline E-B-pairs, and

prove a theorem concerning the tangent spaces of the deformation rings of

this class. In § 2.4.1, we define the notion of benign E-B-pairs, in [Ch09b]

this class is called generic, in this article we follow the terminology of [Ki10].

Let W be a potentially crystalline E-B-pair of rank n such that W |GL
is

crystalline for a finite totally ramified abelian extension L of K, which we

call a crystabelline representation. We assume that DL
cris(W ) := (Bcris ⊗Be

We)
GL = K0⊗Qp Ee1⊕· · ·⊕K0⊗Qp Een such that K0⊗Qp Eei are preserved

by (ϕ,Gal(L/K))-action and that ϕf (ei) = αiei for some αi ∈ E×, here

f := [K0 : Qp] and K0 is the maximal unramified extension of Qp in K. We

denote by {k1,σ.k2,σ, · · · , kn,σ}σ:K↪→K the Hodge-Tate weights of W such

that k1,σ � k2,σ � · · · � kn,σ for any σ : K ↪→ K. In this paper, we define
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the Hodge-Tate weight of Qp(1) by 1. Let Sn be the n-th permutation

group. For any τ ∈ Sn, we can define a filtration on DL
cris(W ) by 0 ⊆

K0 ⊗Qp Eeτ(1) ⊆ K0 ⊗Qp Eeτ(1) ⊕K0 ⊗Qp Eeτ(2) ⊆ · · · ⊆ K0 ⊗Qp Eeτ(1) ⊕
· · ·⊕K0⊗Qp Eeτ(n−1) ⊆ DL

cris(W ) by sub E-filtered (ϕ,GK)-modules, where

the filtration of K0 ⊗Qp Eeτ(1) ⊕ · · · ⊕ K0 ⊗Qp Eeτ(i) is the one induced

from that of DL
dR(W ) = L ⊗K0 DL

cris(W ). By the equivalence between

the category of potentially crystalline B-pairs and the category of filtered

(ϕ,GK)-modules, for any τ ∈ Sn, we obtain the triangulation Tτ : 0 ⊆
Wτ,1 ⊆Wτ,2 ⊆ · · · ⊆Wτ,n = W such that Wτ,i is potentially crystalline and

DL
cris(Wτ,i)

∼→ K0 ⊗Qp Eeτ(1) ⊕ · · · ⊕K0 ⊗Qp Eeτ(i) for any 1 � i � n.

Under this situation, we define the notion of benign E-B-pairs as

follows.

Definition 1.3. Let W be a potentially crystalline E-B-pair of rank

n as above. Then we say that W is benign if W satisfies the following;

(1) For any i �= j, we have αi/αj �= 1, pf , p−f ,

(2) For any σ : K ↪→ K, we have k1,σ > k2,σ > · · · > kn−1,σ > kn,σ,

(3) For any τ ∈ Sn and 1 � i � n, the Hodge-Tate weights of Wτ,i are

{k1,σ, k2,σ, · · · , ki,σ}σ:K↪→K .

In § 2.4.2, we prove the main theorem of § 2. Let W be a benign E-

B-pair of rank n as above. For any τ ∈ Sn, we can define the trianguline

deformation functor DW,Tτ as above. Let RW be the universal deformation

ring of DW , and let RW,Tτ be the universal deformation ring of DW,Tτ for

each τ ∈ Sn. Let denote by t(RW ) and t(RW,Tτ ) the tangent spaces of

RW and RW,Tτ respectively. For each τ ∈ Sn, t(RW,Tτ ) is a sub E-vector

space of t(RW ). The main theorem of § 2 is the following, which is the

generalization of Theorem 3.19 of [Ch09b] for any p-adic field.

Theorem 1.4 (Theorem 2.62). Let W be a benign E-B-pair of rank

n, then we have an equality∑
τ∈Sn

t(RW,Tτ ) = t(RW ).
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This theorem is a crucial local result for the applications to some Zariski

density theorems of local or global p-adic Galois representations. In fact, us-

ing this theorem for K = Qp, Chenevier [Ch09b] proved a theorem concern-

ing the Zariski density of the unitary automorphic p-adic Galois represen-

tations in the universal deformation spaces of three dimensional conjugate-

selfdual p-adic representations of GF for any CM field F in which p splits

completely. Moreover, this theorem is also a crucial result for the proof

of Zariski density of crystalline representations in the universal deforma-

tion spaces of p-adic Galois representations of p-adic fields. In the rest of

this paper § 3 and §4, we apply this theorem only for the two dimensional

case. Using this theorem for K = Qp, Chenevier [Ch10] recently proved

the Zariski density of crystalline representations for higher dimensional and

K = Qp case. In the next paper [Na11], the author uses this theorem for

proving the Zariski density of crystalline representations for higher dimen-

sional and any p-adic field case.

In § 3, we construct some p-adic families of two dimensional trianguline

representations for any p-adic field. To construct these, we generalize Kisin’s

theory of finite slope subspace Xfs in [Ki03] for any p-adic field. As in the

case of Qp ([Ki03], [Ki10]), this family is essential for the proof of the Zariski

density of two dimensional crystalline representations in §4 and for the study

of the p-adic Hodge theoretic properties of Hilbert modular eigenvarieties.

In § 3.1, we prove some propositions concerning Banach GK-modules

which we need for the construction of p-adic families of trianguline repre-

sentations. In particular, we show that these Banach GK-modules can be

obtained naturally from some almost Cp-representations [Fo03]. For us, one

of the important properties of these Banach GK-modules is orthonormaliz-

ability as Banach modules over some Banach algebras. All these properties

follow from some general facts of almost Cp-representations.

In § 3.2, for any separated rigid analytic space X over E and for any

finite free OX -module M with a continuous GK-action and for any invertible

function Y on X, we construct a Zariski closed subspace Xfs of X, which

is “roughly” defined as the subspace of X consisting of the points x ∈ X

such that D+
cris(M(x))ϕ

f=Y (x) �= 0, where M(x) is the fiber of M at x. For

the precise characterization of Xfs, see Theorem 3.9. This construction is

the generalization of Kisin’s Xfs in §5 of [Ki03] for any p-adic field. After

obtaining the results in § 3.1, the construction and the proof is almost all
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the same as that of [Ki03], but a difference is that we need to consider all

the embeddings τ : K ↪→ K, which makes the situation more complicated.

For convenience of the readers or the author, we choose to re-prove this

construction in full detail.

In § 3.3, we apply this construction to the rigid analytic space associated

to the universal deformation ring of a two dimensional mod p-representation

of GK . Let ρ̄ : GK → GL2(F) be a two dimensional mod p representation

of GK , where F is the residue field of E. For simplicity, in this paper, we

assume that EndF[GK ](ρ̄) = F, then there exists the universal deformation

ring Rρ̄ of ρ̄, which is a complete noetherian local O-algebra, where O is the

integer ring of E. Let X(ρ̄) be the rigid analytic space over E associated to

Rρ̄. The universal deformation V univ of ρ̄ over Rρ̄ defines a rank two free

OX(ρ̄)-module Ṽ univ with a continuous OX(ρ̄)-linear GK-action. The space

X(ρ̄) parametrizes p-adic representations V of GK whose reductions are

isomorphic to ρ̄ for some GK-stable lattices of V . LetW be the rigid analytic

space over E which represents the functor DW : { rigid analytic spaces over

E} → (Sets) defined by DW(X) := {δ : O×
K → Γ(X,O×

X) : continuous

group homomorphisms } for each rigid analytic space X over E. Let δuniv :

O×
K → Γ(W,O×

W) be the universal homomorphism. If we fix a uniformizer

πK ∈ K, there exists a unique character δ̃univ : Gab
K → Γ(W,O×

W) such that

δ̃univ ◦ recK |O×
K

= δuniv and δ̃univ ◦ recK(πK) = 1, where recK : K ↪→ Gab
K

is the reciprocity map of the local class field theory. We denote by X(ρ̄) :=

X(ρ̄) ×E W ×E Gan
m,E and denote by p1 : X(ρ̄) → X(ρ̄), p2 : X(ρ̄) → W

and p3 : X(ρ̄) → Gan
m,E the canonical projections. For x ∈ X(ρ̄), we denote

by E(x) the residue field at x which is a finite extension of E. Let x =

[V ] ∈ X(ρ̄) be a point which corresponds to a two dimensional trianguline

representation V with a triangulation T : 0 ⊆ W (δ1) ⊆ W (V ⊗E(x) E′)
for some E′, then we define a point x(V,T ) := ([V ], δ1|×OK

, δ1(πK)) ∈ X(ρ̄).

We define M := p∗1(Ṽ
univ)((p∗2δ̃

univ)−1) a rank two OX(ρ̄)-module with a

continuousOX(ρ̄)-linear GK-action. Let Y := p∗3(T ) ∈ O×
X(ρ̄) be the pullback

of the canonical coordinate T of Gan
m,E . If we apply the construction of Xfs to

the triple (X(ρ̄),M, Y ), we obtain a Zariski closed subspace X(ρ̄)fs of X(ρ̄),

which we denote by E(ρ̄) := X(ρ̄)fs. The main result of § 3 is the following

theorem (see Theorem 3.17 and Theorem 3.22 for more precise statements),

which is a generalization of Proposition 10.4 and 10.6 of [Ki03].
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Theorem 1.5. E(ρ̄) satisfies the following properties.

(1) For any point x := ([Vx], δx, λx) ∈ E(ρ̄), Vx is a trianguline represen-

tation.

(2) Conversely, if x = [Vx] ∈ X(ρ̄) is a point such that Vx is a split

trianguline E(x)-representation with a triangulation T : 0 ⊆W (δ1) ⊆
W (Vx) satisfying all the conditions in Proposition 1.2, then the point

x(Vx,T ) ∈ X(ρ̄) defined as above is contained in E(ρ̄).

(3) For each point x(Vx,T ) as in (2), there exists an isomorphism

ÔE(ρ̄),x(Vx,T )

∼→ RVx,T , in particular E(ρ̄) is smooth of its dimension

3[K : Qp] + 1 at such points.

In the next paper [Na11], the author will generalize all these results for

higher dimensional case.

In the final section § 4, as an application of § 2 (in the two dimen-

sional case) and of § 3, we prove the following theorems concerning the

Zariski density of two dimensional crystalline representations. We denote

by X(ρ̄)reg−cris := {x = [Vx] ∈ X(ρ̄)|Vx is crystalline with the Hodge-Tate

weights {k1,σ, k2,σ}σ:K↪→K such that k1,σ �= k2,σ for any σ}, X(ρ̄)b := {x ∈
X(ρ̄)|Vx is crystalline and benign }. We denote by X(ρ̄)b the Zariski closure

of X(ρ̄)b in X(ρ̄).

Theorem 1.6 (Theorem 4.13). If X(ρ̄)reg−cris is non empty, then

X(ρ̄)b is also non empty and the closure X(ρ̄)b is a union of irreducible

components of X(ρ̄).

Moreover, under the following assumptions, we prove the following

stronger results concerning the Zariski density.

Theorem 1.7 (Theorem 4.15, Theorem 4.16). Assume the following

conditions,

(0) EndGK
(ρ̄) = F,

(1) X(ρ̄)reg−cris is not empty.

Moreover, assume one of the following two conditions (2), (3),
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(2) ζp �∈ K (ζp is a primitive root of unity) and ρ̄ satisfies one of the

following conditions (i), (ii),

(i) If ρ̄ is absolutely reducible, then ρ̄ ⊗F F �∼
(

1 ∗
0 ω

)
⊗ χ for any

χ : GK → F
×
, where ω is the mod p cyclotomic character,

(ii) If ρ̄ is absolutely irreducible, then [K(ζp) : K] �= 2 or ρ̄|IK ⊗FF �∼(
χi

2 0

0 χipf

2

)
such that χ

i(pf−1)
2 = ω|IK , where χ2 : IK → F

×
is a

fundamental character of the second kind,

(3) ζp ∈ K and p �= 2,

then we have an equality X(ρ̄)b = X(ρ̄).

This theorem generalizes the results of Colmez [Co08] and Kisin [Ki10]

for K = Qp to the case of any p-adic field. As is stated in the above

paragraph, Chenevier recently proved similar results for higher dimensional

and for K = Qp, and the author will prove these theorems in full generality

(i.e. for higher dimensional and for any p-adic field) in the next paper.

Notation. Let p be a prime number. Let K be a finite extension of Qp,

K be a fixed algebraic closure of K, K0 be the maximal unramified extension

of Qp in K, Knor be the Galois closure of K in K. Let GK := Gal(K/K)

be the absolute Galois group of K. Let OK be the ring of integers of K,

πK ∈ OK be a uniformizer of K, k := OK/πKOK be the residue field of

K, q = pf := .k be the order of k. Denote by χp : GK → Z×
p the p-adic

cyclotomic character (i.e. g(ζpn) = ζ
χ(g)
pn for any pn-th roots of unity and

for any g ∈ GK). Let Cp := K̂ be the p-adic completion of K, which

is an algebraically closed p-adically completed field, and OCp be its ring of

integers. We denote by vp the normalized valuation on C×
p such that vp(p) =

1. We denote by | − |p : Cp → R� 0 the absolute value such that |p|p = 1
p .

Let E be a finite extension of Qp in K such that Knor ⊆ E. In this paper,

we use the notation E as a coefficient field of representations. We denote by

P := {σ : K ↪→ K} = {σ : K ↪→ E} the set of Qp-algebra homomorphisms

from K to K (or E). Let χLT : GK → O×
K be the Lubin-Tate character

associated with the fixed uniformizer πK . Let recK : K× → Gab
K be the
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reciprocity map of local class field theory normalized such that recK(πK)

is a lifting of the inverse of q-th power Frobenius on k. We remark that

χLT ◦ recK : K× → O×
K satisfies χLT ◦ recK(πK) = 1 and χLT ◦ recK |O×

K
=

idO×
K

.
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2. Deformation Theory of Trianguline B-Pairs

2.1. Review of B-pairs

2.1.1 E-B-pairs

We start by recalling the definition of E-B-pairs ([Be09], [Na09]) and

then recall some fundamental properties of them established in [Na09].

First, we recall some rings of p-adic periods [Fo94] which we need for defining

B-pairs. Let Ẽ+ := lim←− nOCp

∼→ lim←− nOCp/pOCp , where the limits are taken

with respect to the p-th power map. It is known that Ẽ+ is a complete val-

uation ring of characteristic p whose valuation is defined by v(x) := vp(x
(0))

for x = (x(n))n� 0 ∈ lim←− nOCp . We fix a system of pn-th roots of unity

{ε(n)}n� 0 such that ε(0) = 1, (ε(n+1))p = ε(n) for any n, ε(1) �= 1. Then

ε := (ε(n))n� 0 is an element of Ẽ+ satisfying v(ε − 1) = p/(p − 1). The

topological group GK acts on this ring continuously in natural way. We

put Ã+ := W (Ẽ+), where we denote by W (R) the ring of Witt vectors

in R for any perfect ring R. We put B̃+ := Ã+[1p ]. These rings are

equipped with the weak topology and also have a natural continuous GK-

action and have a Frobenius action ϕ. We have a GK-equivariant surjection
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θ : Ã+ → OCp :
∑∞

k=0 p
k[xk] �→

∑∞
k=0 p

kx
(0)
k , where [ ] : Ẽ+ → Ã+ is

the Teichmüller lift. Inverting p, we obtain a surjection B̃+ → Cp. We

put B+
dR := lim←− nB̃

+/(Ker(θ))n, which is a complete discrete valuation ring

with the residue field Cp and is equipped with the projective limit topol-

ogy of the Qp-Banach spaces B̃+/(Ker(θ))n (n � 1) whose Zp-lattice is the

image of the natural map Ã+ → B̃+/(Ker(θ))n. Let Amax be the p-adic

completion of Ã+[ [p̃]]p ], where p̃ := (p(n)) is an element in Ẽ+ such that

p(0) = p, (p(n+1))p = p(n) for any n. We put B+
max := Amax[

1
p ]. Amax

and B+
max have a continuous GK-action and a Frobenius actions ϕ. We

have a natural GK-equivariant embedding K ⊗K0 B+
max ↪→ B+

dR. If we

put t := log([ε]) =
∑∞

n=1(−1)n−1 ([ε]−1)n

n , then we can see that t ∈ Amax,

ϕ(t) = pt, g(t) = χp(g)t for any g ∈ GK and Ker(θ) = tB+
dR ⊂ B+

dR is the

maximal ideal. If we put Bmax := B+
max[

1
t ],BdR := B+

dR[1t ], we have a natu-

ral embedding K⊗K0 Bmax ↪→ BdR. We put Be := Bϕ=1
max which is equipped

with the locally convex inductive limit topology of Be = ∪n( 1
tnB+

max)
ϕ=1,

where the topology on each ( 1
tnB+

max)
ϕ=1 = 1

tnB+,ϕ=pn
max is induced that of

B+
max. We put FiliBdR := tiB+

dR for any i ∈ Z. On BdR, we also equipped

with the locally convex inductive limit topology of BdR = lim−→ n
1
tnB+

dR.

In this paper, we fix a coefficient field of p-adic representations or B-

pairs. Hence we start by recalling the definition of E-coefficient versions of

p-adic representations and B-pairs.

Definition 2.1. An E-representation of GK is a finite dimensional

E-vector space V with a continuous E-linear action of GK . We call E-

representation for simplicity when there is no risk of confusion about K.

Definition 2.2. A pair W := (We,W
+
dR) is an E-B-pair if

(1) We is a finite Be⊗QpE-module which is free over Be with a continuous

semi-linear GK-action.

(2) W+
dR is a GK-stable finite B+

dR⊗Qp E-submodule of BdR⊗Be We which

generates BdR ⊗Be We as a BdR-module.

We have an exact fully faithful functor W (−) from the category of E-

representations to the category of E-B-pairs defined by

W (V ) := (Be ⊗Qp V,B+
dR ⊗Qp V )
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for any E-representation V , where the fully faithfulness follows from the

Bloch-Kato’s fundamental short exact sequence,

0 → Qp → Be ⊕B+
dR → BdR → 0.

We remark that We is a free Be⊗Qp E-module and W+
dR is a free B+

dR⊗Qp E-

module by Lemma 1.7, 1.8 of [Na09]. We define the rank of W by

rank(W ) := rankBe⊗QpE
(We).

For E-B-pairs W1 := (W1,e,W
+
1,dR) and W2 := (W2,e,W

+
2,dR), we define the

tensor product of W1 and W2 by

W1 ⊗W2 := (W1,e ⊗Be⊗QpE
W2,e,W

+
1,dR ⊗B+

dR⊗QpE
W+

2,dR)

and define the dual of W1 by

W∨
1 := (HomBe⊗QpE

(W1,e, Be ⊗Qp E),W+,∨
1,dR)

where we define

W+,∨
1,dR := {f ∈ HomBdR⊗QpE

(BdR ⊗Be W1,e,BdR ⊗Qp E)|f(W+
1,dR)

⊆ B+
dR ⊗Qp E})

(remark: there is a mistake in the definition 1.9 of [Na09]). The category of

E-B-pairs is not an abelian category. In particular, an inclusion W1 ↪→W2

does not have a quotient in the category of E-B-pairs in general. However

we can always take the saturation

W sat
1 := (W sat

1.e ,W
+,sat
1,dR )

such that W sat
1 sits in W1 ↪→W sat

1 ↪→W2 and W1,e = W sat
1,e and W2/W

sat
1 is

an E-B-pair (see Lemma 1.14 of [Na09]). We say that an inclusion W1 ↪→
W2 is saturated if W2/W1 is an E-B-pair, i.e. W1 = W sat

1 .

Next, we recall the p-adic Hodge theory for B-pairs. Let W = (We,W
+
dR)

be an E-B-pair. We define

Dcris(W ) := (Bmax ⊗Be We)
GK , DL

cris(W ) := (Bmax ⊗Be We)
GL
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for any finite extension L of K and define

DdR(W ) := (BdR ⊗Be We)
GK , DHT(W ) := (BHT ⊗Cp (W+

dR/tW+
dR))GK ,

here BHT := Cp[T, T−1] on which GK acts by g(aT i) := χp(g)
ig(a)T i for

any g ∈ GK , a ∈ Cp, i ∈ Z.

Definition 2.3. We say that W is crystalline (resp. de Rham, resp.

Hodge-Tate) if dimK∗D∗(W ) = [E : Qp]rank(W ) for ∗ = cris (resp. ∗ =

dR, resp. ∗ = HT), where K∗ = K0 when ∗ = cris and K∗ = K when

∗ = dR,HT. We say that W is potentially crystalline if dimL0(D
L
cris(W )) =

[E : Qp]rank(W ) for a finite extension L of K, where L0 is the maximal

unramified extension of Qp in L.

Definition 2.4. Let L be a finite Galois extension of K. Set GL/K :=

Gal(L/K). We say that D is an E-filtered (ϕ,GL/K)-module over K if

(1) D is a finite free L0 ⊗Qp E-module with a ϕ-semi-linear action ϕD :

D
∼→ D and a semi-linear action of GL/K such that ϕD and the action

of GL/K commute, where (ϕ-)semi-linear means that ϕD(a⊗ b · x) =

ϕ(a)⊗ b ·ϕD(x), g(a⊗ b ·x) = g(a)⊗ b · g(x) for any a ∈ L0, b ∈ E, x ∈
D, g ∈ GL/K ,

(2) DL := L⊗L0 D has a separated and exhausted decreasing GL/K-stable

filtration {FiliDL}i∈Z by L⊗Qp E-submodules.

Let W be a potentially crystalline E-B-pair such that W |GL
is crystalline

for a finite Galois extension L of K, then we define an E-filtered (ϕ,GL/K)-

module’s structure on DL
cris(W ) as follows. First, DL

cris(W ) has a Frobenius

action induced from that on Bmax and has a GL/K-action induced from those

on Bmax and We. We define a filtration on L⊗L0 DL
cris(W ) = L⊗K DdR(W )

by

Fili(L⊗L0 DL
cris(W )) := (L⊗K DdR(W )) ∩ tiW+

dR

for any i ∈ Z.

Let D := L0e be a rank one Qp-filtered (ϕ,GL/K)-module with a base

e, then we define tN (D) := vp(α) where ϕD(e) = α · e and define tH(D) :=

i such that FiliDL/Fili+1DL �= 0. For general D of rank d, we define

tN (D) := tN (∧dD), tH(D) := tH(∧dD). We say that D is weakly admissible
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if tN (D) = tH(D) and tN (D′) � tH(D′) for any sub Qp-filtered (ϕ,GL/K)-

module D′ of D.

Theorem 2.5. Let L be a finite Galois extension of K, then we have

the following results.

(1) The functor W �→ DL
cris(W ) gives an equivalence of categories between

the category of potentially crystalline E-B-pairs which are crystalline

if restricted to GL and the category of E-filtered (ϕ,GL/K)-modules

over K.

(2) Restricting the above functor to E-representations, the functor V �→
DL

cris(V ) gives an equivalence of categories between the category of

potentially crystalline E-representations which are crystalline if re-

stricted to GL and the category of weakly admissible E-filtered

(ϕ,GL/K)-modules over K.

Proof. See Proposition 2.3.4 and Theorem 2.3.5 of [Be09] or Theorem

1.18 of [Na09]. �

Next, we recall the definition of trianguline E-B-pairs, whose deforma-

tion theory we study in detail in this chapter.

Definition 2.6. Let W be an E-B-pair of rank n, then we say that

W is split trianguline if there exists a filtration

T : 0 ⊆W1 ⊆W2 ⊆ · · · ⊆Wn = W

by sub E-B-pairs such that Wi is saturated in Wi+1 and Wi+1/Wi is a

rank one E-B-pair for any 0 � i � n − 1. We say that W is trianguline if

W ⊗E E′, the base change of W to E′, is a split trianguline E′-B-pair for a

finite extension E′ of E.

By this definition, to study split trianguline E-B-pairs, it is important

to classify rank one E-B-pairs and calculate extension classes of rank one

E-B pairs, which were studied in [Na09]. We recall some results concerning

these.
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Theorem 2.7. There exists a canonical one to one correspondence

δ �→ W (δ) between the set of continuous homomorphisms δ : K× → E×

and the set of isomorphism classes of rank one E-B-pairs.

Proof. See Proposition 3.1 of [Co08] for K = Qp and Theorem 1.45

of [Na09] for general K. For the construction of W (δ), see §1.4 of [Na09]. �

This correspondence is compatible with the local class field theory, i.e.

for any unitary homomorphism δ : K× → O×
E , if we take the character

δ̃ : Gab
K → O×

E satisfying δ̃◦recK = δ, then we have a canonical isomorphism

W (δ)
∼→W (E(δ̃)).

This correspondence is also compatible with tensor products and with duals,

i.e for continuous homomorphisms δ1, δ2 : K× → E×, we have canonical

isomorphisms

W (δ1)⊗W (δ2)
∼→W (δ1δ2) and W (δ1)

∨ ∼→W (δ−1
1 ).

There are some important examples of rank one E-B-pairs which we

recall now. For any {kσ}σ∈P ∈
∏

σ∈P Z, we define a homomorphism∏
σ∈P

σkσ : K× → E× : y �→
∏
σ∈P

σ(y)kσ ,

then we have an isomorphism

W (
∏
σ∈P

σkσ)
∼→ (Be ⊗Qp E,⊕σ∈PtkσB+

dR ⊗K,σ E)

(see Lemma 2.12 of [Na09]). Let NK/Qp
: K× → Q×

p be the norm and

| − | : Q×
p → Q× ↪→ E× be the p-adic absolute value such that |p| = 1

p , and

we define |NK/Qp
| : K× → E× the composite of NK/Qp

and | − |, then we

have an isomorphism

W (|NK/Qp
|
∏
σ∈P

σ)
∼→W (E(χp)),

which is the E-B-pair associated to the p-adic cyclotomic character χp.

Next, we recall the definition and some properties of Galois cohomology of
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E-B-pairs. For an E-B-pair W := (We,W
+
dR), we put WdR := BdR⊗Be We.

We have natural inclusions We ↪→ WdR and W+
dR ↪→ WdR. We define the

Galois cohomology Hi(GK ,W ) of W as the cohomology of the continuous

cochains of GK with values in the complex

We ⊕W+
dR →WdR : (x, y) �→ x− y,

see the appendix of this article or §2.1 of [Na09] for the precise definition.

As in the case of usual p-adic representations, we have the following isomor-

phisms of E-vector spaces

H0(GK ,W )
∼→ HomGK

(BE ,W ), H1(GK ,W )
∼→ Ext1(BE ,W ),

where BE := (Be⊗Qp E,B+
dR⊗Qp E) is the trivial E-B-pair and HomGK

(−,

−) is the group of homomorphisms of E-B-pairs and Ext1(−,−) is the ex-

tension class group in the category of E-B-pairs. If V is an E-representation

of GK , we have a canonical isomorphism

Hi(GK , V )
∼→ Hi(GK ,W (V )),

which follows from the Bloch-Kato’s fundamental short exact sequence.

Moreover, we have the following theorem, the Euler-Poincaré characteristic

formula and the Tate duality for B-pairs.

Theorem 2.8. Let W be an E-B-pair.

(1) For i = 0, 1, 2, Hi(GK ,W ) is finite dimensional over E and Hi(GK ,

W ) = 0 for i �= 0, 1, 2.

(2)
∑2

i=0(−1)i−1dimEHi(GK ,W ) = [K : Qp]rank(W ).

(3) For any i = 0, 1, 2, there is a natural perfect pairing defined by cup

product,

Hi(GK ,W )×H2−i(GK ,W∨(χp))→ H2(GK ,W ⊗W∨(χp))

→ H2(GK ,W (E(χp))
∼→ E,

where the last isomorphism is the Tate’s trace map.
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Proof. See Theorem 5.9 and Theorem 5.10 in the appendix. �

Remark 2.9. In [Li08], Liu proved all these results for the cohomol-

ogy of (ϕ,Γ)-modules over the Robba ring. In the appendix of this arti-

cle, we first prove the finiteness and the Euler-Poincaré formula (Theorem

5.9) for the Galois cohomology of B-pairs using the theory of almost Cp-

representations. Then, we prove the Tate duality (Theorem 5.10) for the

Galois cohomology of B-pairs using the Liu’s argument. After establishing

these properties, we prove the comparison results (Theorem 5.11) between

the cohomology of (ϕ,Γ)-modules with that of the corresponding B-pairs.

Using these formulae, we obtain the following dimension formulae of

Galois cohomologies of rank one E-B-pairs.

Proposition 2.10. Let δ : K× → E× be a continuous homomorphism,

then we have:

(1) H0(GK ,W (δ))
∼→ E if δ =

∏
σ∈P σkσ such that {kσ}σ∈P ∈

∏
σ∈P Z� 0,

and H0(GK ,W (δ)) = 0 otherwise.

(2) H2(GK ,W (δ))
∼→ E if δ = |NK/Qp

|
∏

σ∈P σkσ such that {kσ}σ∈P ∈∏
σ∈P Z� 1, and H2(GK ,W (δ)) = 0 otherwise.

(3) dimEH1(GK ,W (δ)) = [K : Qp] + 1 if δ =
∏

σ∈P σkσ such that

{kσ}σ∈P ∈
∏

σ∈P Z� 0 or δ = |NK/Qp
|
∏

σ∈P σkσ such that {kσ}σ∈P ∈∏
σ∈P Z� 1, and dimEH1(GK ,W (δ)) = [K : Qp] otherwise.

Proof. See Theorem 2.9 and Theorem 2.22 of [Co08] for K = Qp.

For general K, the results can be proved by using Proposition 2.14 and

Proposition 2.15 of [Na09] and Tate duality for B-pairs. �

2.1.2 B-pairs over Artin local rings

Here, we define B-pairs over Artin local rings, which we need to de-

fine the notion of deformations of E-B-pairs. Let CE be the category of

Artin local E-algebra A with the residue field E. The morphisms in CE are

given by local E-algebra homomorphisms. For A ∈ CE , we denote by mA the

maximal ideal of A. We define the A-coefficient version of B-pairs as follows.

Definition 2.11. We call a pair W := (We,W
+
dR) an A-B-pair of GK

if
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(1) We is a finite Be ⊗Qp A-module which is flat over A and is free over

Be, with a continuous semi-linear GK-action.

(2) W+
dR is a finite generated B+

dR⊗Qp A-submodule of BdR⊗Be We which

is stable by the GK-action and which generates BdR ⊗Be We as a

BdR ⊗Qp A-module such that W+
dR/tW+

dR is flat over A.

For an A-B-pair W := (We,W
+
dR), we put WdR := BdR ⊗Be We.

We simply call an A-B-pair if there is no risk of confusing about K.

Lemma 2.12. Let W := (We,W
+
dR) be an A-B-pair. Then We is a

finite free Be ⊗Qp A-module, W+
dR is a finite free B+

dR ⊗Qp A-module and

W+
dR/tW+

dR is a finite free Cp ⊗Qp A-module.

Proof. First, we prove the assertion for We. Because the submodule

mAWe ⊆ We is a GK-stable finite generated torsion free Be-module and

because Be is a Bézout domain by Proposition 1.1.9 of [Be08], mAWe is a

finite free Be-module by Lemma 2.4 of [Ke04]. By Lemma 2.1.4 of [Be08],

the cokernel We⊗AE is also a finite free Be-module (with an E-action). By

Lemma 1.7 of [Na09], We⊗AE is a finite free Be⊗QpE-module of some rank

n. We take a Be ⊗Qp A-linear morphism f : (Be ⊗Qp A)n → We which is a

lift of a Be⊗Qp E-linear isomorphism (Be⊗Qp E)n
∼→We⊗A E. Because A

is Artinian, f is surjective. Because We is A-flat, we have Ker(f)⊗AE = 0,

hence Ker(f) = 0. Hence We is a free Be ⊗Qp A-module.

Next, we prove that W+
dR is a free B+

dR ⊗Qp A-module. Because We is a

free Be⊗Qp A-module, WdR is a free BdR⊗Qp A-module, in particular this is

flat over A. Because W+
dR/tW+

dR is a flat A-module, WdR/W+
dR is also a flat

A-module. Hence W+
dR is also flat over A. By the A-flatness of WdR/W+

dR,

we have an inclusion W+
dR ⊗A E ↪→WdR ⊗A E, hence W+

dR ⊗A E is a finite

generated torsion free B+
dR-module, hence is a free B+

dR-module. By Lemma

1.8 of [Na09], we can show that W+
dR is a free B+

dR⊗QpA-module in the same

way as in the case of We. The freeness over Cp⊗Qp A of W+
dR/tW+

dR follows

from the B+
dR ⊗Qp A-freeness of W+

dR. �

Definition 2.13. Let W = (We,W
+
dR) be an A-B-pair. We define the

rank of W by rank(W ) := rankBe⊗QpA
(We).
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Definition 2.14. Let f : A→ A′ be a morphism in CE , and let W =

(We,WdR) be an A-B-pair. We define the base change of W to A′ by

W ⊗A A′ := (We ⊗A A′,W+
dR ⊗A A′).

By Lemma 2.12, we can easily see that this is an A′-B-pair.

Definition 2.15. Let W1 = (We,1,W
+
dR,1), W2 = (We,2,W

+
dR,2) be A-

B-pairs. We define the tensor product of W1 and W2 by W1 ⊗ W2 :=

(We,1 ⊗Be⊗QpA
We,2,W

+
dR,1 ⊗B+

dR⊗QpA
W+

dR,2) , and define the dual of W1

by W∨
1 := (HomBe⊗QpA

(We,1,Be ⊗Qp A),W+,∨
dR,1). Here, W+,∨

dR,1 := {f ∈
HomBdR⊗QpA

(WdR,1,BdR⊗Qp A)|f(W+
dR,1) ⊆ B+

dR⊗Qp A}. By Lemma 2.12,

we can easily see that these are A-B-pairs.

Next, we classify rank one A-B-pairs. Let δ : K× → A× be a continuous

homomorphism, then we define a rank one A-B-pair W (δ) as follows. Let

ū ∈ E× be the image of u := δ(πK) ∈ A× by the canonical projection

A → A/mA = E. We define a homomorphism δ0 : K× → A× such that

δ0|O×
K

= δ|O×
K

, δ0(πK) = u/ū. Because u/ū ∈ 1 + mA , (u/ū)p
n

(n → ∞)

converges to 1 ∈ A×. If we fix an isomorphism K× ∼→ O×
K × Z : vπn

K �→
(v, n) (v ∈ O×

K), then δ0 uniquely extends to a continuous homomorphism

δ′0 : O×
K × Ẑ → O×

K × Zp → A×, where the first map is induced by the

natural projection Ẑ → Zp. By the local class field theory, then there

exists a unique character δ̃0 : Gab
K → A× such that δ0 = δ̃0 ◦ recK , where

recK : K× → Gab
K is the reciprocity map which is normalized as in Notation.

Using δ̃0, we define an étale rank one A-B-pair W (A(δ̃0)), which is the A-

B-pair associated to the rank one A-representation A(δ̃0). Next, we define a

non-étale rank one A-B-pair by using ū ∈ E×. For this, we first define a rank

one E-filtered ϕ-module Dū := K0 ⊗Qp Eeū such that ϕf (eū) := ūeū and

Fil0(K ⊗K0 Dū) := K ⊗K0 Dū, Fil1(K ⊗K0 Dū) := 0. From this, we obtain

the rank one crystalline E-B-pair W (Dū) such that Dcris(W (Dū))
∼→ Dū

which is pure of slope
vp(ū)
f . By tensoring these, we define a rank one A-B-

pair W (δ) by W (δ) := (W (Dū) ⊗E A) ⊗W (A(δ̃0)), which is pure of slope
vp(ū)
f .

The following proposition is the A-coefficient version of Theorem 1.45

of [Na09].
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Proposition 2.16. This construction δ �→ W (δ) does not depend on

the choice of uniformizer πK , and gives a bijection between the set of con-

tinuous homomorphisms δ : K× → A× and the set of isomorphism classes

of rank one A-B-pairs.

Proof. The independence of the choice of uniformizer and the injec-

tion can be proved in the same way as in the proof of Theorem 1.45 of

[Na09]. We prove the surjection. Let W be a rank one A-B-pair. As an

E-B-pair, W is a successive extension of the rank one E-B-pair W ⊗A E.

By Lemma 1.42 of [Na09], W ⊗A E is pure of slope n
feE

for some n ∈ Z.

Then, W is also pure of slope n
feE

by Theorem 1.6.6 of [Ke08]. We define a

rank one E-filtered ϕ-module Dπn
E

:= K0 ⊗Qp Eeπn
E

in the same way as for

Dū, where πE is a uniformizer of E. Then, W ⊗ (W (Dπn
E
)⊗E A)∨ is pure of

slope zero by Lemma 1.34 of [Na09]. Hence, there exists δ̃′ : Gab
K → A× such

that W ⊗(W (Dπn
E
)⊗E A)∨

∼→W (A(δ̃′)). We put δ′ := δ̃′ ◦recK : K× → A×

and define δ : K× → A× such that δ|O×
K

:= δ′|O×
K

and δ(πK) := δ′(πK)πn
E .

Then, we have an isomorphism W
∼→ W (δ), which can be easily seen from

the construction of W (δ). �

By the local class field theory, we have a canonical bijection δ �→ A(δ̃)

from the set of unitary continuous homomorphisms from K× to A× (here,

“unitary” means that the image of the composition of δ with the projection

A× → E× is contained in O×
E) to the set of isomorphism class of rank one

A-representations of GK , where δ̃ : Gab
K → A× is the continuous homomor-

phism such that δ = δ̃ ◦ recK . By the definition of W (δ) and by the above

proof, it is easy to see that there exists an isomorphism W (δ)
∼→ W (A(δ̃))

for any unitary homomorphism δ : K× → A×. Moreover, it is easy to

see that, for any continuous homomorphisms δ1, δ2 : K× → A×, we have

isomorphisms W (δ1)⊗W (δ2)
∼→W (δ1δ2) and W (δ1)

∨ ∼→W (δ−1
1 ).

Next, we generalize the functor Dcris to potentially crystalline A-B-pairs.

First, we define the A-coefficient version of filtered (ϕ,GK)-modules. Let L

be a finite Galois extension of K, we denote by GL/K := Gal(L/K).

Definition 2.17. Let A be an object of CE . We say that D is an

A-filtered (ϕ,GL/K)-module of K if D satisfies the following conditions.

(1) D is a finite L0 ⊗Qp A-module which is free as an A-module with a

ϕ-semi-linear action ϕ : D
∼→ D.
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(2) DL := L⊗L0 D has a decreasing filtration FiliDL by L⊗Qp A-submod-

ules such that FilkDL = 0 and Fil−kDL = DL for sufficiently large k

and that FilkDL/Filk+1DL are free A-modules for any k.

(3) GL/K acts on D by L0 ⊗Qp A-semi-linear automorphism which com-

mutes with the action of ϕ and preserves the filtration.

Remark 2.18. Using the ϕ-structure on D, we can easily see that D

is a free L0 ⊗Qp A-module.

Let WA := (WA,e,W
+
A,dR) be an A-B-pair such that WA|GL

is crystalline

as an E-B-pair for a finite Galois extension L of K. As in the case of E-

B-pairs, we define DL
cris(WA) := (Bmax⊗Be We)

GL with a ϕ-action induced

from that on Bmax, then the natural map L⊗L0 DL
cris(WA)→ DL

dR(WA) :=

(BdR ⊗Be We)
GL is isomorphism. We define FilkDL

dR(WA) := DL
dR(WA) ∩

tkW+
dR for any k ∈ Z. These are naturally equipped with a GL/K-action.

Lemma 2.19. In the above situation, DL
cris(WA) is an A-filtered

(ϕ,GL/K)-module of K.

Proof. It suffices only to show the A-freeness of DL
cris(WA),

FilkDL
dR(WA), FilkDL

dR(WA)/Filk+1DL
dR(WA). Here, we only prove the A-

freeness of DL
cris(WA), other cases can be proved in a similar way. By the

exactness of DL
cris for E-B-pairs which are crystalline when restricted to GL,

we have a natural isomorphism DL
cris(WA)⊗AN

∼→ DL
cris(WA⊗AN) for any

finite A-module N . From this, for any A-linear injection N1 ↪→ N2 of finite

A-modules, we have an inclusion DL
cris(WA) ⊗A N1 = DL

cris(WA ⊗A N1) ↪→
DL

cris(WA ⊗A N2) = DL
cris(WA) ⊗A N2 because WA,e is A-flat. Hence,

DL
cris(WA) is A-flat. �

Conversely, let D be an A-filtered (ϕ,GL/K)-module of K, then we de-

fine We(D) := (Bcris ⊗L0 D)ϕ=1. We have a natural isomorphism BdR ⊗Be

We(D)
∼→ BdR ⊗L DL. We define W+

dR(D) := Fil0(BdR ⊗L DL) ⊆ BdR ⊗Be

We(D). We write W (D) := (We(D),W+
dR(D)) which is a potentially crys-

talline E-B-pair with an A-action.

Lemma 2.20. In the above situation, W (D) is a potentially crystalline

A-B-pair.
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Proof. It suffices to show the A-flatness of We(D) and W+
dR(D)/

tW+
dR(D). We can prove these in the same way as in Lemma 2.19 by

using the exactness of the functor W (D) and the A-flatness of D and

FilkDL/Filk+1DL for any k. �

Corollary 2.21. For any A ∈ CE, the functor DL
cris gives an equiv-

alence of categories between the category of potentially crystalline A-B-

pairs which are crystalline if restricted to GL and the category of A-filtered

(ϕ,GL/K)-modules of K.

Proof. This follows from Lemma 2.19 and Lemma 2.20 and Theorem

2.5. �

Next, we prove some lemmas which will be used in later sections.

Let WA be an A-B-pair which is not potentially crystalline in general

and L be a finite Galois extension of K, then we can define DL
cris(WA) in

the same way as in the case where WA is potentially crystalline. This is an

E-filtered (ϕ,GL/K)-module, but this may not be an A-filtered (ϕ,GL/K)-

module in general.

Lemma 2.22. Let W be an E-B-pair. Let D ⊆ Dcris(W ) be a rank one

sub E-filtered ϕ-module whose filtration is induced from that of Dcris(W ),

then there exists a natural saturated inclusion W (D) ↪→W .

Proof. Twisting W by a suitable crystalline character of the form∏
σ∈P σ(χLT)kσ , we may assume that Fil0(DK) = DK and Fil1(DK) = 0,

where we put DK := K ⊗K0 D. We have natural inclusions W (D)e =

(Bmax ⊗K0 D)ϕ=1 ⊆ (Bmax ⊗K0 Dcris(W ))ϕ=1 ⊆ (Bmax ⊗Be We)
ϕ=1 = We

and, under the above assumption, W+
dR(D) = Fil0(BdR⊗K DK) = B+

dR⊗K

DK ⊆ Fil0(BdR ⊗K DdR(W )) ⊆ W+
dR, which define an inclusion W (D) ↪→

W . Hence, it suffices to show that this inclusion is saturated, i.e. suffices

to show that we have B+
dR ⊗K DK = (BdR ⊗K DK) ∩W+

dR. We can write

(BdR ⊗K DK) ∩W+
dR = ⊕σ∈P

1
tkσ

B+
dR ⊗K,σ DK,σ for some kσ ∈ Z� 0, where

we decompose DK by DK
∼→ ⊕σ∈PDK ⊗K⊗QpE,σ⊗idE E =: ⊕σ∈PDK,σ. If

kσ � 1 for some σ ∈ P, then DK,σ ⊆ tkσW+
dR. Because the filtration

on D is induced from Dcris(W ), this implies that FilkσDK,σ = DK,σ, this

contradicts to Fil1DK,σ = 0. Hence kσ = 0 for any σ ∈ P, which implies

that B+
dR ⊗K DK = (BdR ⊗K DK) ∩W+

dR. �
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Lemma 2.23. Let WA be an A-B-pair. Let D ⊆ Dcris(WA) be a sub

E-filtered ϕ-module which is an A-filtered ϕ-module of rank one, where the

filtration on D is the one induced from that of Dcris(WA). We assume that

the natural map D⊗AE → Dcris(WA⊗AE) remains an injection. Then, we

have a natural injection of A-B-pairs W (D) ↪→ WA such that the cokernel

WA/W (D) is also an A-B-pair.

Proof. In the same way as in the above proof, we have a natural

injection W (D) ↪→WA. Because the natural map D⊗AE → Dcris(WA⊗AE)

is an injection, we obtain an injection W (D)⊗AE
∼→W (D⊗AE) ↪→WA⊗A

E and this injection is saturated by the above lemma. Hence, it suffices to

show that if W1 ↪→ W2 is an inclusion of A-B-pairs such that W1 ⊗A E →
W2 ⊗A E remains to be injective and saturated, then the cokernel W2/W1

exists and is an A-B-pair. We put W3,e, W+
3,dR the cokernels of W1,e ↪→

W2,e, W
+
1,dR ↪→W+

2,dR respectively. By Lemma 2.2.3 (i) of [Bel-Ch09], these

are A-flat. Hence, it suffices to show that these are free over Be, B+
dR

respectively. We can prove this claim in the same way as in Lemma 2.2.3

(iii) of [Bel-Ch09]. �

2.2. Deformations of B-pairs

In this subsection, we develop the deformation theory of B-pairs, which

is a natural generalization of Mazur’s deformation theory of p-adic Galois

representations.

Definition 2.24. Let A be an object in CE , and let W be an E-B-pair.

We say that a pair (WA, ι) is a deformation of W over A if WA is an A-B-

pair and ι : WA ⊗A E
∼→ W is an isomorphism of E-B-pairs. Let (WA, ι),

(W ′
A, ι

′) be two deformations of W over A. Then, we say that (WA, ι) and

(W ′
A, ι

′) are equivalent if there exists an isomorphism f : WA
∼→ W ′

A of

A-B-pairs which satisfies ι = ι′ ◦ f̄ , where f̄ : WA ⊗A E
∼→W ′

A ⊗A E is the

isomorphism naturally induced by f .

Definition 2.25. Let W be an E-B-pair, then we define the deforma-

tion functor DW from the category CE to the category of sets by

DW (A) := { equivalent classes (WA, ι) of deformations of W over A}

for A ∈ CE .
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We simply denote by WA if there is no risk of confusing about ι.

Next, we prove the pro-representability of the functor DW under suit-

able conditions. For this, we recall Schlessinger’s criterion for pro-repre-

sentability of functors from CE to the category of sets. We call a mor-

phism f : A′ → A in CE a small extension if it is surjective and the

kernel Ker(f) = (t) is generated by a nonzero single element t ∈ A′ and

Ker(f) ·mA′ = 0. E[ε] is the ring defined by E[ε] := E[X]/(X2) : ε �→ X.

Theorem 2.26. Let F be a functor from CE to the category of sets such

that F (E) consists of a single element. For morphisms A′ → A, A” → A

in CE, consider the natural map

(1) F (A′ ×A A”)→ F (A′)×F (A) F (A”),

then F is pro-representable if and only if F satisfies properties (H1), (H2),

(H3), (H4) below:

(H1) (1) is surjective if A” → A is surjective.

(H2) (1) is bijective when A = E and A” = E[ε].

(H3) dimE(tF ) <∞ ( where tF := F (E[ε]) and, under the condition (H2),

it is known that tF naturally has a structure of an E-vector space).

(H4) (1) is bijective if A′ = A” and A′ → A is a small extension.

Proof. See [Schl68] or §18 of [Ma97]. �

Using this criterion, we prove the pro-representability of DW .

Proposition 2.27. Let W be an E-B-pair. If EndGK
(W ) = E, then

DW is pro-representable by a complete noetherian local E-algebra RW with

the residue field E.

To prove this proposition, we first prove some lemmas.

Lemma 2.28. Let ad(W ) := Hom(W,W )(
∼→ W ⊗W∨) be the internal

endomorphism of W , then there exists an isomorphism of E-vector spaces

DW (E[ε])
∼→ H1(GK , ad(W )).
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Proof. Let WE[ε] := (WE[ε],e,W
+
E[ε],dR) be a deformation of W over

E[ε]. From this, we define an element in H1(GK , ad(W )) as follows. Because

we have natural isomorphisms εWE[ε],e
∼→ We and WE[ε],e/εWE[ε],e

∼→ We

(here we put W := (We,W
+
dR)), we have a natural exact sequence of Be⊗Qp

E[GK ]-modules

0 →We →WE[ε],e →We → 0.

We fix an isomorphism of Be ⊗Qp E-modules WE[ε],e
∼→ Wee1 ⊕Wee2 such

that first factor Wee1is equal to εWE[ε] as Be ⊗Qp E[GK ]-module and that

the above natural projection maps the second factor Wee2 to We by xe2 �→ x

for any x ∈We. We define a continuous one cocycle by

ce : GK → HomBe⊗QpE
(We,We) by g(ye2) := ce(g)(gy)e1 + gye2

for any g ∈ GK and y ∈ We. For W+
dR, we fix an isomorphism

W+
E[ε],dR

∼→ W+
dRe1 ⊕ W+

dRe′2 as in the case of We, then we define a one

cocycle by

cdR : GK → HomB+
dR⊗QpE

(W+
dR,W+

dR) by g(ye′2) := cdR(g)(gy)e1 + gye′2

for any g ∈ GK and y ∈W+
dR. Next, we define c ∈ HomBdR⊗QpE

(WdR,WdR)

as follows. Tensoring WE[ε],e and W+
E[ε],dR with BdR over Be or B+

dR, we

have an isomorphism f : WdRe1 ⊕WdRe2
∼→WE[ε],dR

∼→WdRe1 ⊕WdRe′2 of

BdR ⊗Qp E-modules. We define

c : WdR →WdR by f(ye2) := c(y)e1 + ye′2

for any y ∈WdR. By the definition, the triple (ce, cdR, c) satisfies

ce(g)− cdR(g) = gc− c in HomBdR⊗QpE
(WdR,WdR)

for any g ∈ GK , i.e. the triple (ce, cdR, c) defines an element of H1(GK ,

ad(W )) by the definition of Galois cohomology of B-pairs (§ 2.1 of [Na09]),

then it is standard to check that this definition is independent of the choice

of a fixed isomorphism WE[ε],e
∼→Wee1 ⊕Wee2, etc, and it is easy to check

that this map defines an isomorphism DW (E[ε])
∼→ H1(GK , ad(W )). �
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Lemma 2.29. Let WA be a deformation of W over A. If EndGK
(W ) =

E, then EndGK
(WA) = A.

Proof. We prove this lemma by induction on the length of A. When

A = E, this is trivial. We assume that the lemma is proved for the rings of

length n and assume that A is of length n + 1. We take a small extension

f : A→ A′. Because we have EndGK
(W ) = H0(GK ,W∨⊗W ), we have the

following short exact sequence

0→ Ker(f)⊗E EndGK
(W )→ EndGK

(WA)→ EndGK
(WA ⊗A A′).

From this and the induction hypothesis, we have

length(EndGK
(WA)) � length(EndGK

(WA ⊗A A′))

+ length(Ker(f)⊗E EndGK
(W ))

= length(A′) + 1 = length(A).

On the other hand, we have a natural inclusion A ⊆ EndGK
(WA). Compar-

ing the length, we obtain an equality A = EndGK
(WA). �

Proof of Proposition 2.27. Let W be an E-B-pair of rank n sat-

isfying that EndGK
(W ) = E. For this W , we check the conditions (Hi)

(i = 1 ∼ 4) of Schlessinger’s criterion. First, by Lemma 2.28, we have

dimE(DW (E[ε])) = dimE(H1(GK , ad(W ))) <∞,

hence (H3) is satisfied. Next we check the condition (H1). Let f : A′ →
A, g : A” → A be morphisms in CE such that g is a surjection. Let

([WA′ ], [WA”]) be an element in DW (A′) ×DW (A) DW (A”). We take defor-

mations WA′ := (WA′,e,W
+
A′,dR), WA” := (WA”,e,W

+
A”,dR) over A′ and A”

which are representatives of equivalent classes [WA′ ] and [WA”] respectively,

then we have an isomorphism h : WA′ ⊗A′ A
∼→ WA” ⊗A” A =: WA :=

(WA,e,W
+
A,dR) which defines an equivalent class in DW (A). We fix a basis

e1, · · · , en of WA′,e as a Be⊗QpA
′ -module and denote by e1, · · · , en the basis

of WA′,e ⊗A′ A induced from e1, · · · , en. By the surjectivity of g : A” → A

and by the A”-flatness of WA”,e, we can take a basis ẽ1, · · · , ẽn of WA”,e such

that the basis ¯̃e1, · · · , ¯̃en of WA”,e ⊗A” A induced from ẽ1, · · · , ẽn satisfies

h(ei) = ¯̃ei for any i. If we define W
′”
e by

W
′”
e := WA′,e ×WA,e

WA”,e := {(x, y) ∈WA′,e ×WA”,e|h(x̄) = ȳ},
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then W
′”
e is a free Be ⊗Qp (A′ ×A A”)-module with a basis (e1, ẽ1), · · · ,

(en, ẽn). In the same way, we define W
′”+
dR by W

′”+
dR := W+

A′,dR ×W+
A,dR

W+
A”,dR, which is a free B+

dR ⊗Qp (A′ ×A A”)-module. If we put WA′ ×WA

WA” := (W
′”
e ,W

′”+
dR ), then this is a (A′ ×A A”)-B-pair which is a deforma-

tion of W over A′ ×A A” such that the equivalent class [WA′ ×WA
WA”] ∈

DW (A′×A A”) maps ([WA′ ], [WA”]) ∈ DW (A′)×DW (A) DW (A”). Hence, we

have checked the condition (H1).

Finally, we prove that if g : A” → A is a surjectition, then the natural

map DW (A′ ×A A”) → DW (A′)×DW (A) DW (A”) is bijective, which proves

the conditions (H2) and (H4), hence proves the pro-representability of DW .

Let W
′”
1 , W

′”
2 be deformations of W over A′×A A” such that [W

′”
1 ⊗A′×AA”

A′] = [W
′”
2 ⊗A′×AA”A

′] in DW (A′) and [W
′”
1 ⊗A′×AA”A”] = [W

′”
2 ⊗A′×AA”A”]

in DW (A”). Under this situation, we want to show that [W
′”
1 ] = [W

′”
2 ] in

DW (A′×AA”). We put W1A′ := W
′”
1 ⊗A′×AA”A

′, W1A” := W
′”
1 ⊗A′×AA”A”,

W1A := W
′”
1 ⊗A′×AA” A, and similarly for W2A′ , W2A”, W2A, then we have

natural isomorphisms W
′”
1

∼→W1A′×W1A
W1A” and W

′”
2

∼→W2A′×W2A
W2A”

defined as in the previous paragraph. Because we have [W1A′ ] = [W2A′ ]

and [W1A”] = [W2A”], we have isomorphisms h′ : W1A′
∼→ W2A′ and h” :

W1A”
∼→ W2A”. By the base change to A, we obtain an automorphism

h̄′ ◦ h̄”−1 : W2A
∼→ W1A

∼→ W2A. By Lemma 2.29 and by the surjectivity of

g : A”× → A×, we can find an automorphism h̃ : W2A”
∼→ W2A” such that

¯̃
h = h̄′ ◦ h̄”−1. If we define a morphism

h
′” : W1A′ ×W1A

W1A” →W2A” ×W2A
W2A′ : (x, y) �→ (h1(x), h̃ ◦ h2(y)),

then we can see that this is well-defined and is isomorphism. Hence, we

finish to prove the proposition. �

Proposition 2.30. Let W := (We,W
+
dR) be an E-B-pair of rank n. If

H2(GK , ad(W )) = 0, then the functor DW is formally smooth.

Proof. Let A′ → A be a small extension in CE , we denote the kernel

by I ⊆ A′. Let WA := (We,A,W
+
dR,A) be a deformation of W over A, then it

suffices to show that there exists an A′-B-pair WA′ such that WA′ ⊗A′ A
∼→

WA. We fix a basis of We,A as a Be ⊗Qp A-module. Using this basis and

the GK-action on We,A, we obtain a continuous one cocycle

ρe : GK → GLn(Be ⊗Qp A).
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In the same way, if we fix a basis of W+
dR,A as a B+

dR ⊗Qp A-module, we

obtain a continuous one cocycle

ρdR : GK → GLn(B+
dR ⊗Qp A).

From the canonical isomorphism We,A ⊗Be BdR
∼→ W+

dR,A ⊗B+
dR

BdR, we

obtain a matrix P ∈ GLn(BdR ⊗Qp A) which satisfies

Pρe(g)g(P )−1 = ρdR(g) for any g ∈ GK .

We fix an E-linear section s : A → A′ of A′ → A and fix a lifting P̃ ∈
GLn(BdR ⊗Qp A′) of P . Using this section, we obtain continuous liftings

ρ̃e := s ◦ ρe : GK → GLn(Be ⊗Qp A′)

of ρe and

ρ̃dR := s ◦ ρdR : GK → GLn(B+
dR ⊗Qp A′)

of ρdR. Using these liftings, we define

ce : GK ×GK → I ⊗E HomBe⊗QpE
(We,We)

by

ρ̃e(g1g2)g1(ρ̃e(g2))
−1ρ̃e(g1)

−1 = In + ce(g1, g2) ∈ In + I ⊗A′ Mn(Be ⊗Qp A′)

= In + I ⊗E HomBe⊗QpE
(We,We)

for any g1, g2 ∈ GK , where In is the identity matrix. In the same way, we

define

cdR : GK ×GK → I ⊗E HomB+
dR⊗QpE

(W+
dR,W+

dR)

by

ρ̃dR(g1g2)g1(ρ̃dR(g2))
−1ρ̃dR(g1)

−1 = In + cdR(g1, g2).

We define

c : GK → I ⊗E HomBdR⊗QpE
(WdR,WdR)

by

P̃ ρ̃e(g)g(P̃ )−1ρ̃dR(g)−1 = In + c(g) ∈ In + I ⊗E HomBdR⊗QpE
(WdR,WdR).



490 Kentaro Nakamura

These ce and cdR are continuous two cocycles, i.e. these satisfy

g1c∗(g2, g3)− c∗(g1g2, g3) + c∗(g1, g2g3)− c∗(g1, g2) = 0

for any g1, g2, g3 ∈ GK (∗ = e,dR). Moreover, we can check that ce and cdR

and c satisfy

ce(g1, g2)− cdR(g1, g2) = g1(c(g2))− c(g1g2) + c(g1)

for any g1, g2, g3 ∈ GK , here we note that the isomorphism HomBe⊗QpE
(We,

We)⊗BeBdR
∼→ HomB+

dR⊗QpE
(W+

dR,W+
dR)⊗B+

dR
BdR is given by c �→ P̄−1cP̄ ,

where P̄ ∈ GLn(BdR ⊗Qp E) is the reduction of P ∈ GLn(BdR ⊗Qp A). By

the definition of Galois cohomology of B-pairs, these mean that the triple

(ce, cdR, c) defines an element [(ce, cdR, c)] in I ⊗E H2(GK , ad(W )) . We

can show that [(ce, cdR, c)] doesn’t depend on the choice of s or P̃ , i.e.

it depends only on WA. Under the assumption that H2(GK , ad(W )) = 0,

there exists a triple (fe, fdR, f), where fe : GK → I⊗E HomBe⊗QpE
(We,We)

and fdR : GK → I ⊗E HomB+
dR⊗QpE

(W+
dR,W+

dR) are continuous maps and

f ∈ I ⊗E HomBdR⊗QpE
(WdR,WdR), satisfying that

ce(g1, g2) = g1fe(g2)− fe(g1g2) + fe(g1)

and

cdR(g1, g2) = g1fdR(g2)− fdR(g1g2) + fdR(g1)

and

c(g1) = fdR(g1)− P̄−1fe(g1)P̄ + (g1f − f)

for any g1, g2 ∈ GK . Using these, we define new liftings ρ′e : GK →
GLn(Be ⊗Qp A′) by

ρ′e(g) := (1 + fe(g))ρ̃e(g),

and ρ′dR(g) : GK → GLn(B+
dR ⊗Qp A′) by

ρ′dR(g) := (1 + fdR(g))ρ̃dR(g),

and define a matrix

P ′ := (1 + f)P̃ ∈ GLn(BdR ⊗Qp A′).
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Then, we can check that these satisfy the equalities

ρ′e(g1g2) = ρ′e(g1)g1(ρ
′
e(g2)) and ρ′dR(g1g2) = ρ′dR(g1)g1(ρ

′
dR(g2))

and

P ′ρ′e(g1)g1(P
′)−1 = ρ′dR(g1)

for any g1, g2 ∈ GK . By the definition of A′-B-pair, these equalities mean

that the triple (ρ′e, ρ
′
dR, P ′) defines an A′-B-pair which is a lift of WA, which

proves the proposition. �

Corollary 2.31. Let W be an E-B-pair of rank n. If EndGK
(W ) =

E and H2(GK , ad(W )) = 0, then the functor DW is pro-representable by

RW such that

RW
∼→ E[[T1, · · · , Td]] for d := [K : Qp]n

2 + 1.

Proof. The existence and the formal smoothness of RW follow from

Proposition 2.27 and Proposition 2.30. For its dimension, we have

dimEDW (E[ε]) = dimEH1(GK , ad(W ))

= [K : Qp]n
2 + dimEH0(GK , ad(W ))

+ dimEH2(GK , ad(W )) = [K : Qp]n
2 + 1

by Theorem 2.8 and Lemma 2.28. �

2.3. Trianguline deformations of trianguline B-pairs

In this subsection, we define the trianguline deformation functor for

split trianguline E-B-pairs and prove the pro-representability and the for-

mal smoothness under some conditions, and calculate the dimension of the

universal deformation ring of this functor. These are the generalizations of

Belläiche-Chenevier’s works in the Qp-case. In § 2 of [Bel-Ch09], Belläiche-

Chenevier proved all these results in the Qp-case by using (ϕ,Γ)-modules

over the Robba ring and Colmez’s theory of trianguline representations

[Co08]. We generalize their results by using B-pairs and the theory of

trianguline representations for any p-adic field ([Na09] or § 2.1).

We first define the notion of split trianguline A-B-pairs as follows.
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Definition 2.32. Let W be an A-B-pairs of rank n. We say that W

is a split trianguline A-B-pair if there exists a sequence of sub A-B-pairs

T : 0 = W0 ⊆W1 ⊆W2 ⊆ · · · ⊆Wn−1 ⊆Wn = W

such that Wi is saturated in Wi+1 and the quotient Wi+1/Wi is a rank one

A-B-pair for any 0 � i � n− 1.

By Proposition 2.16, there exists a continuous homomorphisms δi :

K× → A× such that Wi/Wi−1
∼→ W (δi) for each 1 � i � n. We say

that the ordered set {δi}ni=1 is the parameter of the triangulation T .

Next, we define the trianguline deformation functor. Let W be a split

trianguline E-B-pair of rank n. We fix a triangulation

T : 0 ⊆W1 ⊆ · · · ⊆Wn−1 ⊆Wn = W

of W. Under this situation, we define the trianguline deformation as follows.

Definition 2.33. Let A be an object in CE . We say that (WA, ι, TA)

is a trianguline deformation of (W, T ) over A if (WA, ι) is a deformation of

W over A and WA is a split trianguline A-B-pair with a triangulation

TA : 0 ⊆W1,A ⊆ · · · ⊆Wn,A = WA

such that ι(Wi,A ⊗A E) = Wi for any 1 � i � n. Let (WA, ι, TA) and

(W ′
A, ι

′, T ′
A) be two trianguline deformations of (W, T ) over A. We say that

(WA, ι, TA) and (W ′
A, ι

′, T ′
A) are equivalent if there exists an isomorphism of

A-B-pairs f : WA
∼→ W ′

A satisfying that ι = ι′ ◦ f̄ and f(Wi,A) = W ′
i,A for

any 1 � i � n.

Definition 2.34. Let W be a split trianguline E-B-pair with a trian-

gulation T . We define the trianguline deformation functor DW,T from the

category CE to the category of sets by

DW,T (A) := {equivalent classes (WA, ι, TA) of

trianguline deformations of (W, T ) over A}.

for A ∈ CE .
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By definition, we have a natural map of functors from DW,T to DW by

forgetting the triangulations, i.e. defined by

DW,T (A)→ DW (A) : [(WA, ι, TA)] �→ [(WA, ι)].

In general, DW,T is not a subfunctor of DW by this map, i.e. a deformation

WA can have many liftings of the triangulation T . Here, we give a sufficient

condition for DW,T to be a subfunctor of DW . Let {δi}ni=1 be the parameter

of triangulation T .

Lemma 2.35. Assume that δj/δi �=
∏

σ∈P σkσ for any 1 � i < j � n

and {kσ}σ∈P ∈
∏

σ∈P Z� 0, then the functor DW,T is a subfunctor of DW .

Proof. Let WA be a deformation of W over A, let 0 ⊆ WA,1 ⊆ · · · ⊆
WA,n−1 ⊆ WA and 0 ⊆ W ′

A,1 ⊆ · · · ⊆ W ′
A,n−1 ⊆ WA be two triangulations

which are lifts of T . It suffices to show the equalities WA,i = W ′
A,i for all i.

By induction, it suffices to show the equality WA,1 = W ′
A,1. To prove this,

we first consider HomGK
(W1,A,WA). This is equal to H0(GK ,W∨

1,A ⊗WA).

Because H0(GK ,−) is left exact and because H0(GK ,W (δ)) = 0 for any

δ : K× → E× such that δ �=
∏

σ∈P σkσ for any {kσ}σ∈P ∈
∏

σ∈P Z� 0 by

Proposition 2.10, we have

H0(GK ,W∨
1,A ⊗ (Wi+1,A/Wi,A)) = H0(GK ,W∨

1,A ⊗ (W ′
i+1,A/W

′
i,A)) = 0

for any i � 1. Hence, we obtain equalities

HomGK
(W1,A,W1,A) = HomGK

(W1,A,WA) = HomGK
(W1,A,W

′
1,A).

This means that the given inclusion W1,A ↪→ WA factors through W ′
1,A ↪→

WA. By the same reason, the inclusion W ′
1,A ↪→ WA also factors through

W1,A ↪→WA. Hence, we obtain an equality W1,A = W ′
1,A′ . �

Next, we prove relative representability of DW,T . Before doing this, we

need to define the following functor which is the B-pair version of Lemma

2.3.8 of [Bel-Ch09]. Let W = (We,W
+
dR) be an E-B-pair. Then we define a

functor by

F (W ) := {x ∈We ∩W+
dR|∃n ∈ Z� 1, (σ1 − 1)(σ2 − 1) · · · (σn − 1)x = 0,

∀σ1, · · · , σn ∈ GK}
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which is an E-vector space with a GK-action, hence F is a left exact functor

form the category of E-B-pairs to that of E[GK ]-modules. By this defini-

tion, we obtain the following lemma, which is the B-pair version of Lemma

2.3.8 of [Bel-Ch09].

Lemma 2.36. Let δ : K× → E× be a continuous homomorphism, then

F (W (δ)) �= 0 if and only if H0(GK ,W (δ)) �= 0.

Proof. The proof is essentially the same as that of Lemma 2.3.8 of

[Bel-Ch09], so we omit it. �

Using this lemma, we prove the relative representability of DW,T .

Proposition 2.37. Let W be a trianguline representations with a tri-

angulation T such that the parameter {δi}nı=1 satisfies δj/δi �=
∏

σ∈P σkσ for

any 1 � i < j � n and {kσ}σ∈P ∈
∏

σ∈P Z� 0, then the natural map of

functors DW,T → DW is relatively representable.

Proof. By §23 of [Ma97], it suffices to check that the map DW,T →
DW satisfies the fallowing three conditions (1), (2), (3).

(1) For any map A→ A′ in CE and WA ∈ DW,T (A), we have WA⊗A A′ ∈
DW,T (A′).

(2) For any maps A′ → A, A” → A in CE and W
′” ∈ DW (A′ ×A A”), if

W
′” ⊗A′×AA” A′ ∈ DW,T (A′) and W

′” ⊗A′×AA” A” ∈ DW,T (A”), then

we also have W
′” ∈ DW,T (A′ ×A A”).

(3) For any inclusion A ↪→ A′ in CE and WA ∈ DW (A), if WA ⊗A A′ ∈
DW,T (A′), then we have WA ∈ DW,T (A).

The condition (1) is trivial. For (2), let W
′” ∈ DW (A′ ×A A”) be a

deformation such that WA′ := W
′” ⊗A′×AA” A′ ∈ DW,T (A′) and WA” :=

W
′”⊗A′×AA” A” ∈ DW,T (A”). We put WA := W

′”⊗A′×AA” A. In the same

way as in the proof of Proposition 2.27, we have an isomorphism W
′” ∼→

WA′ ×WA
WA”. By Lemma 2.35, the triangulations of WA induced from

WA′ and WA” coincide, hence these triangulations induce a triangulation of

W
′” ∼→WA′ ×WA

WA”, i.e. W
′” ∈ DW,T (A′ ×A A”).
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Finally, we check the condition (3). The proof is essentially the same

as that of Proposition 2.3.9 of [Bel-Ch09], but here we give the proof for

convenience of readers. Let W ∈ DW (A) and A ↪→ A′ be an inclusion such

that WA⊗AA′ ∈ DW,T (A′). Let 0 ⊆W1,A′ ⊆ · · · ⊆Wn−1,A′ ⊆WA⊗AA′ be

a triangulation which is a lifting of T . By induction on the rank of W , it

suffices to show that there exists a rank one sub A-B-pair W1,A ⊆WA such

that W1,A⊗AA′ = W1,A′ and that WA/W1,A is an A-B-pair. By Proposition

2.16, there exists a continuous homomorphism δ1,A′ : K× → A
′× such that

W1,A′
∼→W (δ1,A′). Twisting W by δ−1

1 , we may assume that δ1,A′ ≡ 1 (mod

mA′). Under this assumption, we apply the functor F (−). Because δ1,A′

is unitary, there exists a continuous character δ̃1,A′ : Gab
K → A

′× such that

W (δ1,A′)
∼→W (A′(δ̃1,A′)) = (Be⊗Qp A′(δ̃1,A′),B+

dR⊗Qp A′(δ̃1,A′)), hence we

have W1,A′,e ∩W+
1,A′,dR = A′(δ̃1,A′). Moreover, because the image of δ1,A′

is in 1 + mA′ , we also have F (W1,A′) = A′(δ̃1,A′). Next, because (WA ⊗A

A′)/W1,A′ is a successive extension of W (δiδ
−1
1 ) (i � 2) as an E-B-pair,

the left exactness of F implies that F ((WA ⊗A A′)/W1,A′) = 0 by Lemma

2.36. Applying F to the short exact sequence 0 → W1,A′ → WA ⊗A A′ →
(WA⊗AA′)/W1,A′ → 0, we obtain A′(δ̃1,A′)

∼→ F (W1,A′) = F (WA⊗AA′). In

the same way, we obtain E = F (W1) = F (W ). Then, by the left exactness

and by considering the length, we can show that F (WA) is a free A-module

of rank one and that the natural map F (WA) → F (W ) induced by the

natural quotient map WA → W is a surjection and that the natural map

F (WA) ⊗A A′ → F (WA ⊗A A′) is isomorphism. If we define the character

δ̃1,A : Gab
K → A× such that F (WA)

∼→ A(δ̃1,A) and define W1,A as the image

of the natural map (Be ⊗Qp F (WA),B+
dR ⊗Qp F (WA))→WA induced form

F (W ) ↪→ WA,e, F (W ) ↪→ W+
A,dR, then we can check that W1,A is a rank

one A-B-pair and that the quotient WA/W1,A is also an A-B-pair and that

W1,A ⊗A A′ ∼→ W1,A′ , which proves the condition (3), hence we finish to

prove the proposition. �

Corollary 2.38. Let W be a trianguline E-B-pair with a triangula-

tion T . Assume that EndGK
(W ) = E and that the parameter {δi}ni=1 of T

satisfies δj/δi �=
∏

σ∈P σkσ for any 1 � i < j � n and {kσ}σ∈P ∈
∏

σ∈P Z� 0,

then the functor DW,T is pro-representable by a quotient RW,T of RW .

Proof. This follows from Proposition 2.27 and Proposition 2.37. �
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Next, we prove the formal smoothness of the functor DW,T .

Proposition 2.39. Let W be a trianguline E-B-pair of rank n with a

triangulation T . Assume that the parameter {δi}ni=1 of T satisfies δi/δj �=
|NK/Qp

|
∏

σ∈P σkσ for any 1 � i < j � n and {kσ}σ∈P ∈
∏

σ∈P Z� 1, then

the functor DW,T is formally smooth.

Proof. We prove this proposition by induction of the rank of W .

When W is of rank one, then we have DW,T = DW and ad(W ) is the trivial

E-B-pair. Hence H2(GK , ad(W )) = 0 by Proposition 2.10, and DW,T is

formally smooth by Proposition 2.30. Let’s assume that the proposition

is proved for all trianguline E-B-pairs of rank less or equal n − 1. Let

W be an E-B-pair of rank n with a triangulation T : 0 ⊆ W1 ⊆ · · · ⊆
Wn−1 ⊆ Wn = W whose parameter {δi}ni=1 satisfies the condition in the

proposition. Let A′ → A be a small extension in CE , and let WA be a

trianguline deformation of (W, T ) with a triangulation TA : 0 ⊆ W1,A ⊆
· · · ⊆ Wn−1,A ⊆ Wn,A = WA which is a lift of T . Then, it suffices to show

that there exists a split trianguline A′-B-pair WA′ with a triangulation

0 ⊆ W1,A′ ⊆ · · · ⊆ Wn−1.A′ ⊆ Wn,A′ = WA′ which is a lift of WA and

TA. We take such a lift as follows. Applying the induction hypothesis to

Wn−1, there exists a trianguline A′-B-pair Wn−1,A′ with a triangulation

0 ⊆ W1,A′ ⊆ · · · ⊆ Wn−2,A′ ⊆ Wn−1,A′ which is a lift of Wn−1,A and 0 ⊆
W1,A ⊆ · · · ⊆Wn−1,A. We put grnWA := WA/Wn−1,A. By the rank one case

and by Proposition 2.16, there exists a continuous homomorphism δn,A′ :

K× → A
′× such that the rank one A′-B-pair W (δn,A′) satisfies W (δn,A′)⊗A′

A = W (δn,A)
∼→ grnWA, where δn,A : K× → A× is the composition of

δn,A′ with A′ → A. We see the isomorphism class [WA] as an element in

Ext1(W (δn,A),Wn−1,A)
∼→ H1(GK ,Wn−1,A(δ−1

n,A)). If we take the long exact

sequence associated to

0 → I ⊗E Wn−1(δ
−1
n )→Wn−1,A′(δ−1

n,A′)→Wn−1,A(δ−1
n,A)→ 0,

where I ⊆ A′ is the kernel of A′ → A, then we obtain a long exact sequence

· · · → H1(GK ,Wn−1,A′(δ−1
n,A′))→ H1(GK ,Wn−1,A(δ−1

n,A))

→ I ⊗E H2(GK ,Wn−1(δ
−1
n ))→ · · ·

By the assumption on {δi}ni=1 and by Proposition 2.10, we have

H2(GK ,Wn−1(δ
−1
n )) = 0. Hence, we can take a lift [WA′ ] ∈ Ext1(W (δn,A′),
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Wn−1,A′)
∼→ H1(GK ,Wn−1,A′(δ−1

n,A′)) of [WA], which proves the proposi-

tion. �

Next, we calculate the dimension of DW,T . For this, we interpret the

tangent space DW,T (E[ε]) in terms of Galois cohomology of B-pair as in

Lemma 2.28. Let W be a trianguline E-B-pair with a triangulation T : 0 ⊆
W1 ⊆ · · · ⊆Wn−1 ⊆Wn = W , then we define an E-B-pair adT (W ) by

adT (W ) := {f ∈ ad(W )|f(Wi) ⊆Wi for any 1 � i � n}.

Lemma 2.40. Let W be a trianguline E-B-pair, then there exists a

canonical bijection of sets

DW,T (E[ε])
∼→ H1(GK , adT (W )).

In particular, if DW,T has a canonical structure of E-vector space (see the

condition (2) in Schlessinger’s criterion 2.26), then this bijection is an E-

linear isomorphism.

Proof. The construction of the map DW,T (E[ε])→ H1(GK , adT (W ))

is the same as in the proof of Lemma 2.28. We put adT (W ) := (adT (We),

adT (W+
dR)). Let WE[ε] := (We,E[ε],W

+
dR,E[ε]) be a trianguline deformation

of (W, T ) over E[ε] with a lifted triangulation TE[ε] : 0 ⊆ W1,E[ε],⊆ · · · ⊆
Wn−1,E[ε] ⊆Wn,E[ε] = WE[ε]. Then, we can take a splitting We,E[ε] = Wee1⊕
Wee2 as a filtered Be⊗Qp E-module such that Wee1 = εWe,E[ε] and that the

natural map Wee2 ↪→ We,E[ε] → We,E[ε]/εWe,E[ε]
∼→ We sends ye2 to y for

any y ∈ We. If we define ce : GK → HomBe⊗QpE
(We,We) in the same way

as in the proof of Lemma 2.28, we can check that the image of ce is contained

in adT (We). In the same way, we can define cdR : GK → adT (W+
dR) from

a filtered splitting W+
dR,E[ε] = W+

dRe1 ⊕ W+
dRe′2. Moreover, we can define

c ∈ adT (WdR) by ye2 = c(y)e1 + ye′2 for y ∈WdR. Then, the map

DW,T (E[ε])→ H1(GK , adT (W )) : [(WE[ε], TE[ε])] �→ [(ce, cdR, c)]

defines a bijection, and this is an E-linear isomorphism when DW,T (E[ε])

has a canonical structure of an E-vector space. �

We calculate the dimension of RW,T .
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Proposition 2.41. Let W be a split trianguline E-B-pair of rank n

with a triangulation T : 0 ⊆ W1 ⊆ · · · ⊆ Wn−1 ⊆ Wn = W . We assume

that (W, T ) satisfies the following conditions,

(0) EndGK
(W ) = E,

(1) δj/δi �=
∏

σ∈P σkσ for any 1 � i < j � n and {kσ}σ∈P ∈
∏

σ∈P Z� 0,

(2) δi/δj �= |NK/Qp
|
∏

σ∈P σkσ for any 1 � i < j � n and {kσ}σ∈P ∈∏
σ∈P Z� 1,

then the universal trianguline deformation ring RW,T is a quotient ring of

RW such that

RW,T
∼→ E[[T1, · · · , Tdn ]] for dn :=

n(n + 1)

2
[K : Qp] + 1.

Proof. By Proposition 2.37 and Proposition 2.39 and Lemma 2.40,

it suffices to show that dimEH1(GK , adT (W )) = dn. We prove this by

induction on the rank n of W . When n = 1, then adT (W ) = ad(W ) is the

trivial E-B-pair, hence the proposition follows from Proposition 2.10. Let

(W, T ) be a split trianguline E-B-pair of rank n satisfying all the conditions

in the propositionas. Put Tn−1 : 0 ⊆ W1 ⊆ · · · ⊆ Wn−2 ⊆ Wn−1 the

triangulation of Wn−1(⊆ W ) which is induced from T . Then, for any f ∈
adT (W ), the restriction of f to Wn−1 is an element of adTn−1(Wn−1) and

this defines a short exact sequence of E-B-pair

0 → Hom(W (δn),W )→ adT (W )→ adTn−1(Wn−1)→ 0.

From this, we obtain

rank(adT (W )) = rank(adTn−1(Wn−1)) + n = 1 + 2 + · · ·+ n =
n(n + 1)

2

by induction. By Theorem 2.8, it suffices to show that H0(GK , adT (W )) =

E and H2(GK , adT (W )) = 0. For H0, this follows from the following natural

inclusions

E ⊆ H0(GK , adT (W )) ⊆ H0(GK , ad(W )) = E.
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We prove H2(GK , adT (W )) = 0 by induction of the rank of W . When

n = 1, this follows from Proposition 2.10. When W is of rank n, from the

above short exact sequence, we obtain the following long exact sequence

· · · → H2(GK ,Hom(W (δn),W ))→ H2(GK , adT (W ))

→ H2(GK , adTn−1(Wn−1))→ 0.

Because we have H2(GK ,Hom(W (δn),W )) = 0 by Proposition 2.10 and by

the assumption on {δi}ni=1, we obtain the equality H2(GK , adT (W )) = 0 by

induction, which proves the proposition. �

2.4. Deformations of benign B-pairs

In this final subsection, we study benign representations or more gener-

ally benign B-pairs which is a class of potentially crystalline and trianguline

B-pairs and have some very good properties for trianguline deformations

and play a crucial role in the problem of the Zariski density of modular

Galois (or crystalline) representations in some deformation spaces of global

(or local) p-adic Galois representations. This class was defined by Kisin in

the case where K = Qp and the rank is 2 in [Ki03] and [Ki10]. He stud-

ied some deformation theoretic properties of this class in [Ki03] and used

these in a crucial way in his proof of Zariski density of two dimensional

crystalline representations of GQp . For higher dimensional and the Qp-case,

Belläiche-Chenevier [Bel-Ch09] and Chenevier [Ch09b] were the first ones

who noticed the importance of benign representations in the study of p-adic

families of trianguline representations. In particular, Chenevier [Ch09b]

(where he calls “generic” instead of benign) discovered and proved a crucial

theorem concerning the tangent spaces of the universal deformation rings of

benign representations. In fact, by using this theorem, Chenevier [Ch09b]

proved some theorems concerning the Zariski density of modular Galois

representations in some deformation spaces of global p-adic representations.

The aim of this subsection is to generalize the definition of benign rep-

resentations and the Chenevier’s theorem for any K.

2.4.1 Benign B-pairs

Let P (X) ∈ OK [X] be a polynomial such that P (X) ≡ πKX (mod X2)

and P (X) ≡ Xq (mod πK), where q := pf and f := [K0 : Qp]. We take the

Lubin-Tate formal group law F over OK such that [πK ] = P (X), where [−] :

OK
∼→ End(F). We denote by Kn the abelian extension of K generated by
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[πn
K ]-torsion points of F(K) for any n, then we have a canonical isomorphism

χLT,n : Gal(Kn/K)
∼→ (O×

K/πnOK)×. We put KLT := ∪∞
n=1Kn and Gn :=

Gal(Kn/K).

In [Ki10], [Bel-Ch09] or [Ch09b] etc, benign representation is defined

as a special class of crystalline representations. But, as we show in the

sequel, we can easily generalize the main theorem to some potentially crys-

talline representations. Hence, before defining benign representations, we

first define the following class of potentially crystalline representations.

Definition 2.42. Let W be an E-Bpair. We say that W is crysta-

belline if W |GL
is a crystalline E-B-pair of GL for a finite abelian extension

L of K.

Remark 2.43. Because a finite abelian extension L of K is contained

in KmL′ for some m � 0 and for a finite unramified extension L′ of K, by

using Hilbert 90, we can easily show that W is crystabelline if and only if

W |GKm
is crystalline for some m � 1.

Let W be a crystabelline E-B-pair of rank n such that W |GKm
is crys-

talline for some m. Because Km is totally ramified over K, DKm
cris (W ) :=

(Bmax⊗Qp W )GKm is a free K0⊗Qp E-module of rank n. We take an embed-

ding σ : K0 ↪→ E. This defines a map σ : K0 ⊗Qp E → E : x⊗ y → σ(x)y.

Using this map, we define the σ-component

DKm
cris (W )σ := DKm

cris (W )⊗K0⊗QpE,σ E,

this has a E-linear ϕf -action and a E-linear Gm-action. Let {α1, · · · , αn}
be the solution in E (with multiplicities) of the characteristic polynomial

detE(T · id − ϕf |
DKm

cris (W )σ
) ∈ E[T ]. Because the actions of ϕf and Gm

commute, each generalized ϕf -eigenvector subspace of DKm
cris (W )σ is pre-

served by the action of Gm. Hence we can take a E-basis {e1,σ, · · · , en,σ} of

DKm
cris (W )σ such that ei,σ is a generalized eigenvector of ϕf for the eigenvalue

αi ∈ E
×

and Gm acts on ei,σ by a character δ̃i : Gm → E
×

for any i. We

change the numbering of {α1, · · · , αn} so that the basis e1,σ, e2,σ, · · · , en,σ
gives a ϕf -Jordan decomposition of DKm

cris (W )σ by this order. Because we

have {σ, ϕ−1σ, · · · , ϕ−(f−1)σ} = HomQp(K0, E) and

ϕi : DKm
cris (W )σ

∼→ DKm
cris (W )ϕ−iσ : x⊗ y �→ ϕi(x)⊗ y
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(x ∈ DKm
cris (W ) and y ∈ E) is a E[ϕf , Gm]-isomorphism, the set {α1, · · · , αn}

doesn’t depend on the choice of σ : K0 ↪→ E. If we put

ei := ei,σ + ϕ(ei,σ) + · · ·+ ϕf−1(ei,σ) ∈ DKm
cris (W )⊗E E,

we have

DKm
cris (W )⊗E E = K0 ⊗Qp Ee1 ⊕ · · · ⊕K0 ⊗Qp Een

such that the subspace K0⊗Qp Ee1⊕· · ·⊕K0⊗Qp Eei is preserved by ϕ and

the action of Gm for any i. Moreover, if we take a sufficiently large finite

extension E′ of E, then we have ei ∈ DKm
cris (W )⊗E E′ and

DKm
cris (W )⊗E E′ = K0 ⊗Qp E′e1 ⊕ · · · ⊕K0 ⊗Qp E′en

and αi ∈ E′ and δ̃i : Gm → E
′× for any i.

Using these arguments, we first study a relation between crystabelline

E-B-pairs and trianguline E-B-pairs.

Lemma 2.44. Let W be an E-B-pair of rank n. The following condi-

tions are equivalent,

(1) W is crystabelline,

(2) W is trianguline (i.e. W ⊗E E′ is a split trianguline E′-B-pair for a

finite extension E′ of E) and potentially crystalline.

Proof. First we assume that W is crystabelline. By the above argu-

ment, for a sufficiently large finite extension E′ of E, we have DKm
cris (W )⊗E

E′ = K0 ⊗Qp E′e1 ⊕ · · · ⊕K0 ⊗Qp E′en as above and K0 ⊗Qp E′e1 ⊕ · · · ⊕
K0⊗Qp E

′ei is a sub E′-filtered (ϕ,Gm)-module of DKm
cris (W⊗EE′) for any i.

Hence W ⊗E E′ is split trianguline and potentially crystalline by Theorem

2.5.

Next we assume that W is trianguline and potentially crystalline. By ex-

tending the coefficient, we may assume that W is split trianguline. We take a

triangulation 0 ⊆ W1 ⊆ · · · ⊆ Wn = W of W . Because the sub or quotient

B-pairs of crystalline B-pairs are again crystalline, Wi and Wi/Wi−1 are

all potentially crystalline. Because Wi/Wi−1 is of rank one, Wi/Wi−1|Gm is

crystalline for any i and for any sufficiently large m. We claim that W |Gm is
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also crystalline. We prove this claim by induction on the rank n of W . When

n = 1, this is trivial. We assume that the claim is proved for the rank n− 1

case, hence Wn−1|Gm is crystalline. If we put W/Wn−1
∼→ W (δn), we have

[W ] ∈ H1(GK ,Wn−1(δ
−1
n )). By the assumption, there exists a finite Galois

extension L of Km such that [W ] is contained in Ker(H1(GK ,Wn−1(δ
−1
n ))→

H1(GL,Bmax⊗Be (Wn−1(δ
−1
n ))e)). Hence, it suffices to show that the natural

map H1(GKm ,Bmax⊗Be (Wn−1(δ
−1
n ))e)→ H1(GL,Bmax⊗Be (Wn−1(δ

−1
n ))e)

is an injection. By the inflation restriction sequence, the kernel of this map

is H1(Gal(L/Km),DL
cris(Wn−1(δ

−1
n ))) = 0. Hence W |Gm is crystalline, i.e.

W is crystabelline. �

From now on, we consider a crystabelline E-B-pair W of rank n satisfy-

ing that DKm
cris (W ) = K0⊗Qp Ee1⊕· · ·⊕K0⊗Qp Een such that K0⊗Qp Eei is

preserved by (ϕ,Gm) and ϕf (ei) = αiei for some αi ∈ E× such that αi �= αj

for any i �= j. Let Sn be the n-th permutation group. For any τ ∈ Sn, we

define a filtration on DKm
cris (W ) by E-filtered (ϕ,Gm)-modules as follows,

Fτ : 0 ⊆ Fτ,1 ⊆ · · · ⊆ Fτ,n−1 ⊆ Fτ,n = DKm
cris (W )

such that

Fτ,i := K0 ⊗Qp Eeτ(1) ⊕ · · · ⊕K0 ⊗Qp Eeτ(i)

for any 1 � i � n, where the filtration on Fτ,i is induced from that on

DKm
cris (W ). We put grτ,iD

Km
cris (W ) := Fτ,i/Fτ,i−1 for any 1 � i � n. By

Theorem 2.5, there exists a filtration

Tτ : 0 ⊆Wτ,1 ⊆ · · · ⊆Wτ,n−1 ⊆Wτ,n = W

such that Wτ,i|Gm is crystalline and

DKm
cris (Wτ,i) = Fτ,i.

For any i, Wτ,i/Wτ,i−1 is a rank one crystabelline E-B-pair such that

DKm
cris (Wτ,i/Wτ,i−1)

∼→ grτ,iD
Km
cris (W ). By Lemma 4.1 of [Na09] and by

its proof, there exists a set of integers {k(τ,i),σ}σ∈P and a homomorphism

δ̃i : K× → E× satisfying δ̃i|1+πm
KOK

= 1 and δ̃i(πK) = 1, such that

Wτ,i/Wτ,i−1
∼→W (δατ(i)

δ̃τ(i)

∏
σ∈P

σk(τ,i),σ)
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for any 1 � i � n, where δαi : K× → E× is the homomorphism such that

δαi |O×
K

= 1 and δαi(πK) = αi. For any σ ∈ P, the set {k(τ,1),σ, k(τ,2),σ, · · · ,
k(τ,n),σ} is independent of τ ∈ Sn because these numbers are the σ-com-

ponents of the Hodge-Tate weights of W . We denote this set (with multi-

plicities) by {k1,σ, k2,σ, · · · , kn,σ} such that k1,σ � k2,σ � · · · � kn,σ for any

σ ∈ P. Under these notations, we define the notion of benign E-B-pair as

follows.

Definition 2.45. Let W be a rank n crystabelline E-B-pair as above.

We say that W is a benign E-B-pair if the following conditions hold:

(1) For any i �= j, we have αi/αj �= 1, pf , p−f .

(2) For any σ ∈ P, we have k1,σ > k2,σ > · · · > kn−1,σ > kn,σ.

(3) For any τ ∈ Sn and σ ∈ P, we have k(τ,i),σ = ki,σ for any 1 � i � n.

Remark 2.46. By definition, if W is a benign, then we have

Wτ,i/Wτ,i−1
∼→W (δατ(i)

δ̃τ(i)

∏
σ∈P

σki,σ)

for any τ ∈ Sn and 1 � i � n.

Lemma 2.47. Let W be a benign E-B-pair. If W1 is a saturated sub

E-B-pair of W , then W1 and W/W1 are also benign E-B-pairs.

Proof. This follows from the definition and the fact that all the sub

or quotient E-B-pairs of crystabelline E-B-pairs are crystabelline E-B-

pairs. �

2.4.2 Deformations of benign B-pairs

Lemma 2.48. Let W be a potentially crystalline E-B-pair satisfying

the condition (1) of Definition 2.45, then we have H2(GK , ad(W )) = 0

and (W, Tτ ) satisfies the conditions in Proposition 2.41 except the condi-

tion EndGK
(W ) = E for any τ ∈ Sn.

Proof. That H2(GK , ad(W )) = 0 follows from the condition (1) of

Definition 2.45 and from (2) of Proposition 2.10 because ad(W ) is split
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trianguline whose graded components are of the forms (Wτ,i/Wτ,i−1) ⊗
(Wτ,j/Wτ,j−1)

∨ for any fixed τ ∈ Sn. Other statements follow from the

condition (1) of Definition 2.45. �

Lemma 2.49. Let W be a benign E-B-pair of rank n, then

EndGK
(W ) = E.

Proof. We prove this by induction on n, the rank of W . If n = 1,

EndGK
(W ) = H0(GK , (Be,B

+
dR)) = E. We assume that the lemma is

proved for n − 1. Let W be a benign E-B-pair of rank n. We take

an element τ ∈ Sn and consider the filtration Tτ : 0 ⊆ Wτ,1 ⊆ · · · ⊆
Wτ,n−1 ⊆ Wτ,n = W . By Lemma 2.47, Wτ,n−1 is benign of rank n − 1,

hence we have EndGK
(Wτ,n−1) = E by induction. Let f : W → W

be a non-zero morphism of E-B-pairs. By (1) of Definition 2.45 and by

Proposition 2.10, we have HomGK
(Wτ,n−1,W/Wτ,n−1) = 0. Hence we have

f(Wτ,n−1) ⊆ Wτ,n−1. Because we have EndGK
(Wτ,n−1) = E, then we have

f |Wτ,n−1 = a · idWτ,n−1 for some a ∈ E. If a = 0, then f : W → W

factors through a non-zero morphism f ′ : W/Wτ,n−1 → W . Because

HomGK
(W/Wτ,n−1,Wτ,n−1) = 0 by (1) of Definition 2.45 and by Proposi-

tion 2.10, the natural map HomGK
(W/Wτ,n−1,W ) ↪→ HomGK

(W/Wτ,n−1,

W/Wτ,n−1) = E is injective, hence the composition of f ′ with the nat-

ural projection W → W/Wτ,n−1 induces an isomorphism W/Wτ,n−1
∼→

W/Wτ,n−1. This implies that the short exact sequence 0 → Wτ,n−1 →
W → W/Wτ,n−1 → 0 splits. If we take a section s : W/Wτ,n−1 ↪→ W ,

then we can choose τ ′ ∈ Sn such that Wτ ′,1 = s(W/Wτ,n−1), then this τ ′

doesn’t satisfy the condition (3) in the definition of benign B-pairs. It’s

contradiction. Hence the above a must not be zero. If a �= 0, consider the

map f − a · idW ∈ EndGK
(W ), then the same argument as above implies

that f = a · idW . Hence we obtain the equality EndGK
(W ) = E. �

Corollary 2.50. Let W be a benign E-B-pair of rank n. The functor

DW is pro-representable by RW which is formally smooth of its dimension

n2[K : Qp]+1. For any τ ∈ Sn, the functor DW,Tτ is pro-representable by a

quotient RW,Tτ of RW which is formally smooth of its dimension n(n+1)
2 [K :

Qp] + 1.

Proof. This follows from Proposition 2.41. �
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Next, we want to consider the relation between RW and RW,Tτ for all

τ ∈ Sn. In particular, we want to compare the tangent space of RW and

the sum of tangent spaces of RW,Tτ for all τ ∈ Sn. For this, we first need

to recall the potentially crystalline deformation functor.

Definition 2.51. Let W be a potentially crystalline E-B-pair. We

define the potentially crystalline deformation functor Dcris
W which is a sub-

functor of DW defined by

Dcris
W (A) := {[WA] ∈ DW (A)|WA is potentially crystalline }

for A ∈ CE .

Lemma 2.52. Let W be a potentially crystalline E-B-pair. If

EndGK
(W ) = E, then Dcris

W is pro-representable by a quotient Rcris
W of RW

which is formally smooth of its dimension equal to

dimE(DdR(ad(W ))/Fil0DdR(ad(W ))) + dimE(H0(GK , ad(W ))).

Proof. For the pro-representability, by Proposition 2.30, it suffices to

relatively representability of Dcris
W ↪→ DW as in the proof of Proposition 2.37.

In this case, the conditions (1) and (2) are trivial and (3) follows from the

fact that any sub E-B-pair of a potentially crystalline E-B-pair is again po-

tentially crystalline. The formal smoothness follows from Proposition 3.1.2

and Lemma 3.2.1 of [Ki08] by using the deformations of filtered (ϕ,GK)-

modules. For the dimension, we take a finite Galois extension L of K such

that W |GL
is crystalline. By the same argument as in the proof of Lemma

2.44, any WA ∈ Dcris
W (A) is crystalline when restricted to GL. It’s easy to

check that the map DW (E[ε])
∼→ H1(GK , ad(W )) induces an isomorphism

Dcris
W (E[ε])

∼→ Ker(H1(GK , ad(W )) → H1(GL,Bmax ⊗Be ad(W )e)). In the

same way as in the proof of Lemma 2.44, the natural map H1(GK ,Bmax⊗Be

ad(W )e)→ H1(GL,Bmax ⊗Be ad(W )e) is an injection. Hence we obtain an

isomorphism

Dcris
W (E[ε])

∼→ Ker(H1(GK , ad(W ))→ H1(GK ,Bmax ⊗Be ad(W )e)).

We can calculate the dimension of this group in the same way as in the

proof of Proposition 2.7 [Na09]. �
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Corollary 2.53. Let W be a benign E-B-pair of rank n, then Rcris
W

is formally smooth of its dimension (n−1)n
2 [K : Qp] + 1.

Proof. This follows from Lemma 2.49 and the equality

dimE(DdR(ad(W ))/Fil0DdR(ad(W ))) =
(n− 1)n

2
[K : Qp],

which follows from the condition (2) in Definition 2.45. �

Definition 2.54. Let W be a benign E-B-pair of rank n such that

W |GKm
is crystalline. For any τ ∈ Sn, we define a rank one saturated

crystabelline E-B-pair W ′
τ ⊆ W such that DKm

cris (W ′
τ ) = K0 ⊗Qp Eeτ(n) ⊆

DKm
cris (W ) and define a subfunctor Dcris

W,τ of DW by

Dcris
W,τ (A) := {[WA] ∈ DW (A)| there exists a rank one crystabelline

saturated sub A-B-pair W ′
A ⊆WA such that W ′

A ⊗A E = W ′
τ}.

Lemma 2.55. Under the above condition. The functor Dcris
W,τ is pro-

representable by a quotient Rcris
W,τ of RW which is formally smooth and of its

dimension n(n− 1)[K : Qp] + 1.

Proof. The relatively representability of Dcris
W,τ ↪→ DW and the formal

smoothness easily follows from the combination of proofs of Proposition 2.37

and Proposition 2.39 and Lemma 2.52. Here, we only prove the dimension

formula. Let adτ (W ) := {f ∈ ad(W )|f(W ′
τ ) ⊆ W ′

τ}, then we have the

following short exact sequence

0 → Hom(W/W ′
τ ,W )→ adτ (W )→ ad(W ′

τ )→ 0.

Taking the long exact sequence, we obtain the following short exact sequence

0 → H1(GK ,Hom(W/W ′
τ ,W ))→ H1(GK , adτ (W ))

→ H1(GK , ad(W ′
τ ))→ 0
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by Proposition 2.10. We define a subspace H1
f,τ (GK , adτ (W )) of H1(GK ,

adτ (W )) as the inverse image of H1
f (GK , ad(W ′

τ ))(⊆ H1(GK , ad(W ′
τ ))).

Hence we obtain a short exact sequence

0 → H1(GK ,Hom(W/W ′
τ ,W ))→ H1

f,τ (GK , adτ (W ))

→ H1
f (GK , ad(W ′

τ ))→ 0.

In the same way as in Lemma 2.52, we can show that the natural isomor-

phism DW (E[ε])
∼→ H1(GK , ad(W )) induces an isomorphism

Dcris
W,τ (E[ε])

∼→ H1
f,τ (GK , adτ (W )).

By Theorem 2.8 and Proposition 2.10, we obtain the equality

dimEH1(GK ,Hom(W/W ′
τ ,W )) = n(n− 1)[K : Qp].

Because ad(W ′
τ ) is the trivial E-B-pair, we have dimEH1

f (GK , ad(W ′
τ )) = 1

by Proposition 2.7 of [Na09]. Hence we obtain the equality

dimEH1
f,τ (GK , adτ (W )) = n(n− 1)[K : Qp] + 1.

This proves that the dimension of Rcris
W,τ is n(n− 1)[K : Qp] + 1. �

Lemma 2.56. Let W be a benign E-B-pair of rank n. Let WA be a

deformation of W over A which is potentially crystalline, then [WA] ∈
DW,Tτ (A) and [WA] ∈ Dcris

W,τ (A) for any τ ∈ Sn.

Proof. Let WA be as above. If W |GKm
is crystalline, then WA|GKm

is crystalline by the proof of Lemma 2.52. Hence it suffices to show that

DKm
cris (WA) is of the form DKm

cris (WA) = K0⊗QpAe1⊕K0⊗QpAe2⊕· · ·⊕K0⊗Qp

Aen such that K0 ⊗Qp Aei is preserved by (ϕ,Gm) and ϕf (ei) = α̃iei for a

lift α̃i ∈ A× of αi ∈ E× for any 1 � i � n. To prove this claim, we first note

that DKm
cris (WA) is a free K0⊗Qp A-module of rank n and DKm

cris (WA)⊗AE
∼→

DKm
cris (W ) by Proposition 1.3.4 and Proposition 1.3.5 [Ki09]. Then, for any

σ : K0 ↪→ E, DKm
cris (WA)σ is of the form DKm

cris (WA)σ = Ae1,σ ⊕ · · · ⊕ Aen,σ
such that ϕf (ei,σ) ≡ αiei,σ (mod mA) for any 1 � i � n. By an easy linear

algebra, we can take an A-basis e′1,σ, e
′
2,σ, · · · , e′n,σ of DKm

cris (WA)σ such that

ϕf (e′i,σ) = α̃ie
′
i,σ for a lift α̃i ∈ A× of αi for any i. Because the actions of
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ϕ and Gm commute and we have αi �= αj , Ae′i,σ is stable by Gm. If we

take ei := e′i,σ + ϕ(e′i,σ) + · · ·ϕf−1(e′i,σ) ∈ DKm
cris (WA), then DKm

cris (WA) can

be written by DKm
cris (WA) = K0 ⊗Qp Ae1 ⊕ · · · ⊕K0 ⊗Qp Aen satisfying the

property of the claim. �

Lemma 2.57. Let W be a benign E-B-pair of rank n such that W |GKm

is crystalline, and let τ ∈ Sn. Let [WA] ∈ DW,Tτ (A) be a trianguline

deformation over A with a lifting 0 ⊆ W1,A ⊆ W2,A ⊆ · · ·Wn,A = WA of

the triangulation Tτ . If Wi,A/Wi−1,A is Hodge-Tate for any 1 � i � n, then

WA|GKm
is crystalline.

Proof. First, we prove that (Wi,A/Wi−1,A)|GKm
is crystalline with

the Hodge-Tate weights {ki,σ}σ∈P . Because Wi,A/Wi−1,A is written as

a successive extension of Wτ,i/Wτ,i−1, Wi,A/Wi−1,A has the Hodge-Tate

weights {ki,σ}σ∈P with multiplicity. Twisting WA by the crystalline char-

acter δ−1
ατ(i)

∏
σ∈P σ−ki,σ : K× → A×, we may assume that Wi,A/Wi−1,A is

an étale Hodge-Tate A-B-pair of rank one with the Hodge-Tate weight zero

and is a deformation of an étale potentially unramified E-B-pair W (δ̃τ(i)).

By Sen’s theorem ([Se73] or Proposition 5.24 of [Be02]), Wi,A/Wi−1,A is

potentially unramified, hence there exists a unitary homomorphism δ :

K× → A× such that δ|O×
K

has a finite image and Wi,A/Wi−1,A
∼→ W (δ)

and δ is a lift of δ̃τ(i). Because (1 + mA) ∩ A×
torsion = {1}, then we have

δ|O×
K

= δ̃τ(i)|O×
K

: O×
K → A×, hence Wi,A/Wi−1,A|GKm

is crystalline. Next,

we prove that WA|GKm
is crystalline by induction on the rank of W . When

n = 1, we just have proved this. Assume that the lemma is proved for

n − 1, then Wn−1,A|GKm
is crystalline. If we put WA/Wn−1,A

∼→ W (δA,n),

then we have [WA] ∈ H1(GK ,Wn−1,A(δ−1
A,n)). By considering the Hodge-

Tate weights of WA and the condition (3) of Definition 2.45, we have

Fil0DdR(Wn−1,A(δ−1
A,n)) = 0. Comparing the dimensions, we obtain the

equality H1
f (GK ,WA,n−1(δ

−1
A,n)) = H1(GK ,WA,n−1(δ

−1
A,n)) by Proposition 2.7

of [Na09]. In particular, WA|GKm
is crystalline. �

Lemma 2.58. Let W be a benign E-B-pair of rank n, and let W1 be a

rank one crystabelline sub E-B-pair of W . Then, the saturation W sat
1 :=

(W sat
1,e ,W

+,sat
1,dR ) of W1 in W is crystabelline and the natural map

HomGK
(W sat

1 ,W ) → HomGK
(W1,W ) induced by the natural inclusion

W1 ↪→W sat
1 is isomorphism between one dimensional E-vector spaces.



Density of Two Dimensional Crystalline Representations 509

Proof. Because we have W1,e = W sat
1,e by Lemma 1.14 of [Na09], so

W sat
1 is crystabelline. By the definition of benign E-B-pairs, the Hodge-

Tate weights of W sat
1 are {k1,σ}σ∈P . Consider the following short exact

sequence of complexes of GK-modules defined in p.890 of [Na09]

0 → C•(W ⊗ (W sat
1 )∨)→ C•(W ⊗W∨

1 )

→ ((W ⊗W∨
1 )+dR/(W ⊗ (W sat

1 )∨)+dR)[0]→ 0,

where, for an E-B-pair W , we denote by C•(W ) the complex

C0(W ) := We ⊕W+
dR

(x,y) �→x−y−−−−−−−→WdR =: C1(W ).

From this, we obtain an exact sequence

0 → H0(GK ,W ⊗ (W sat
1 )∨)→ H0(GK ,W ⊗W∨

1 )

→ H0(GK , (W ⊗W∨
1 )+dR/(W ⊗ (W sat

1 )∨)+dR)→ · · ·

By the condition (3) in Definition 2.45, we have

dimEH0(GK , (W ⊗ (W sat
1 )∨)+dR) = dimEH0(GK , (W ⊗W∨

1 )+dR) = n[K : Qp].

Hence, by a standard argument of the theory of B+
dR-representations, we

obtain the equality H0(GK , (W ⊗W∨
1 )+dR/(W ⊗ (W sat

1 )∨)+dR) = 0. Hence

the map H0(GK ,W ⊗ (W sat
1 )∨))

∼→ H0(GK ,W ⊗ (W1)
∨) is isomorphism.

Finally, for the dimension, we have dimEH0(GK ,W ⊗ (W sat
1 )∨) = 1 by the

condition (1) in Definition 2.45 and by Proposition 2.10 of [Na09]. �

Lemma 2.59. Let W be a benign E-B-pair, and let WA be a deforma-

tion of W over A. If there exists a crystabelline sub A-B-pair W1,A ⊆ WA

of rank one such that the base change W1 := W1,A ⊗A E ↪→ WA ⊗A E

remains to be injective, then the saturation W sat
1,A of W1,A in WA as an

E-B-pair is a crystabelline A-B-pair and WA/W
sat
1,A is an A-B-pair and

W sat
1,A ⊗A E

∼→W sat
1 (⊆W ).

Proof. First, by Proposition 2.14 of [Na09], there exists {lσ}σ∈P ∈∏
σ∈P Z� 0 such that W sat

1
∼→W1⊗W (

∏
σ∈P σlσ). We claim that the inclu-

sion

HomGK
(W1,A ⊗WA(

∏
σ∈P

σlσ),WA)→ HomGK
(W1,A,WA)
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induced by the natural inclusion W1,A ↪→ W1,A ⊗ WA(
∏

σ∈P σlσ) is iso-

morphism and that these groups are rank one free A-modules. By the same

argument as in Lemma 2.58, the cokernel of HomGK
(W1,A⊗WA(

∏
σ∈P σlσ),

WA) → HomGK
(W1,A,WA) is contained in H0(GK , (WA ⊗W∨

1,A)+dR/(WA ⊗
W∨

1,A ⊗ WA(
∏

σ∈P σ−lσ))+dR), which is zero by the proof of Lemma 2.58.

Hence the natural inclusion

HomGK
(W1,A ⊗WA(

∏
σ∈P

σlσ),WA)
∼→ HomGK

(W1,A,WA)

is isomorphism. Next, we prove that HomGK
(W1,A,WA) is a free A-module

of rank one by induction on the length of A. When A = E, this claim is

proved in Lemma 2.58. Assume that A is of length n and assume that the

claim is proved for WA′ := W ⊗A A′ for a small extension A → A′. We

denote by I the kernel of A → A′, W1,A′ := W1,A ⊗A A′. From the exact

sequence

0 → I ⊗E HomGK
(W1,W )→ HomGK

(W1,A,WA)→ HomGK
(W1,A′ ,WA′)

and the induction hypothesis, we have lengthHomGK
(W1,A,WA) � lengthA.

On the other hand, the fact that the given inclusion ι : W1,A ↪→WA remains

to be injective after tensoring E and the fact that dimEHomGK
(W1,W ) = 1

and the induction hypothesis imply that the map A→ HomGK
(W1,A,WA) :

a �→ a · ι is an injection. Hence we obtain the equality length(A) =

lengthHomGK
(W1,A,WA). These facts prove the claim for A. From this

claim, the given inclusion ι : W1,A ↪→WA factors through a map

ι̃ : W ′
1,A := W1,A ⊗WA(

∏
σ

σlσ)→WA.

Because the injectiveness of morphisms of B-pairs is determined only by

the We-part of B-pairs and we have W1,A,e = (W1,A⊗WA(
∏

σ∈P σlσ))e, the

map ι̃ is also an injection. Under this situation, we claim that the map ι̃

gives an isomorphism W sat
1,A

∼→ W ′
1,A and satisfies all the properties in this

lemma. By induction on the length of A, we may assume that this claim

is proved for A′. First, we prove that WA/W
′
1,A is an E-B-pair. To prove

this, by Lemma 2.1.4 of [Be08], it suffices to show that W+
A,dR/W

′+
1,A,dR is a

free B+
dR-module. By the snake lemma, we have the following short exact
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sequence

0 → I ⊗E W+
dR/W sat+

1,dR →W+
A,dR/W

′+
1,A,dR →W+

A′,dR/(W
′+
1,A,dR ⊗A A′)→ 0.

From this and the induction hypothesis, W+
A,dR/W

′+
1,A,dR is a free B+

dR-

module. Finally, we prove the A-flatness of WA/W
′
1,A. This follows from

the fact that the map ι̃⊗ idE : W
′
1,A ⊗A E ↪→WA ⊗A E is saturated, which

can be seen from the proof of the above first claim. Hence WA/W
′
1,A is an

A-B-pair. We finish the proof of the lemma. �

Lemma 2.60. Let W be a benign E-B-pair of rank n. For any τ ∈ Sn,

we have

DW,Tτ (E[ε]) + Dcris
W,τ (E[ε]) = DW (E[ε]).

Proof. By Corollary 2.50 and Lemma 2.52 and Lemma 2.55, we ob-

tain an equality

dimEDW (E[ε]) + dimEDcris
W (E[ε]) = dimEDW,Tτ (E[ε]) + dimEDcris

W,τ (E[ε]).

Hence, it suffices to show that we have an equality

DW,Tτ (A) ∩Dcris
W,τ (A) = Dcris

W (A)

for any A ∈ CE . We first note that the inclusion Dcris
W (A) ⊆ DW,Tτ (A) ∩

DW,τ (A) follows from Lemma 2.56.

We prove the opposite inclusion DW,Tτ (A) ∩ Dcris
W,τ (A) ⊆ Dcris

W (A) by

induction on the rank n of W . When n = 1, this is trivial. Let W be of

rank n and assume that the lemma is proved for n − 1. Take any [WA] ∈
DW,Tτ (A) ∩ Dcris

W,τ (A). By the definitions of DW,Tτ and Dcris
W,τ , then there

exist an A-triangulation 0 ⊆ W1,A ⊆ W2,A ⊆ · · · ⊆ Wn−1,A ⊆ Wn,A =

WA such that Wi,A ⊗A E
∼→ Wτ,i for any i and a saturated crystabelline

rank one A-B-pair W ′
1,A ⊆ WA such that W ′

1,A ⊗A E
∼→ W ′

τ . We first

claim that the composition of W ′
1,A ↪→ WA with WA → WA/W1,A is an

injection. Because Ker(W ′
1,A → WA/W1,A) is a sub E-B-pair of W1,A and

we have HomGK
(Ker(W ′

1,A → WA/W1,A),W1,A) = 0 by the condition (1)

of Definition 2.45 and Proposition 2.14 of [Na09], hence the composition

map W ′
1,A → WA/W1,A is an injection. Hence, the saturation (W ′

1,A)sat of
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W ′
1,A in WA/W1,A is a rank one crystabelline A-B-pair satisfying the similar

conditions as those of W ′
1,A ↪→ WA by Lemma 2.59. Hence, WA/W1,A is

crystabelline by induction, and the Hodge-Tate weights of WA/W1,A are

{k2,σ, k3,σ, · · · , kn,σ}σ∈P (with multiplicity [A : E]) by the condition (3)

of Definition 2.45. Moreover, W ′
1,A has the Hodge-Tate weights {k1,σ}σ∈P

(with multiplicity) by (3) of Definition 2.45. Because k1,σ �= ki,σ for any

i �= 1 and there is no extension between the objects with different Hodge-

Tate weights by a theorem of Tate, so WA is a Hodge-Tate E-B-pair. Hence,

WA is crystabelline by Lemma 2.57, and we have that [WA] ∈ Dcris
W (A). �

Definition 2.61. For R = RW or RW,Tτ , we denote by

t(R) := HomE(mR/m
2
R, E)

the tangent space of R. We have a natural inclusion t(RW,Tτ ) ↪→ t(RW ) for

each τ ∈ Sn.

The following theorem is the main theorem of § 2, which is crucial for the

applications to some problems on the Zariski density of crystalline points or

modular points. This theorem was first discovered by Chenevier (Theorem

3.19 of [Ch09b]) for K = Qp.

Theorem 2.62. Let W be a benign E-B-pair of rank n. We have an

equality ∑
τ∈Sn

t(RW,Tτ ) = t(RW ).

Proof. We prove this theorem by induction on n. When n = 1, then

the theorem is trivial. Assume that the theorem is true for the rank n− 1.

Let W be a benign E-B-pair of rank n. We take an element τ ∈ Sn. We

define a subfunctor DW,τ of DW by

DW,τ (A) := {[WA] ∈ DW (A)| there exists a rank one

sub A-B-pair W1,A ⊆WA such that the quotient

WA/W1,A is an A-B-pair and W1,A ⊗A E
∼→W ′

τ},

where W ′
τ is defined in Definition 2.54. Then, Dcris

W,τ is a subfunctor of DW,τ ,

and we can show in the same way that

DW,τ (E[ε])
∼→ H1(GK , adτ (W )),
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where we define

adτ (W ) := {f ∈ ad(W )|f(W ′
τ ) ⊆W ′

τ}.

By Lemma 2.60, we obtain an equality

H1(GK , adτ (W )) + H1(GK , adTτ (W )) = H1(GK , ad(W )).

Because we have a natural inclusion DW,Tτ ′ ⊆ DW,τ for any τ ′ ∈ Sτ,n :=

{τ ′ ∈ Sn|τ ′(1) = τ(n)}, we have a natural map H1(GK , adTτ ′ (W )) →
H1(GK , adτ (W )) for each such τ ′. Therefore, it suffices to prove that the

map

⊕τ ′∈Sτ,nH1(GK , adTτ ′ (W ))→ H1(GK , adτ (W ))

is a surjection. We prove this surjection as follows. By the definition, we

have the following short exact sequences of E-B-pairs for each τ ′ ∈ Sτ,n,

0→ Hom(W/W ′
τ ,W )→ adτ (W )→ ad(W ′

τ )→ 0,(1)

and

0 → {f ∈ adTτ ′ (W )|f(W ′
τ ) = 0} → adTτ ′ (W )→ ad(W ′

τ )→ 0.(2)

Moreover, we have

0 → Hom(W/W ′
τ ,W

′
τ )→ Hom(W/W ′

τ ,W )→ ad(W/W ′
τ )→ 0,(3)

and

(4) 0→ Hom(W/W ′
τ ,W

′
τ )→ {f ∈ adTτ ′ (W )|f(W ′

τ ) = 0}
→ adTτ̄ ′ (W/W ′

τ )→ 0,

where, for τ ′ ∈ Sτ,n, we denote by

Tτ̄ ′ : 0 ⊆Wτ ′,2/W
′
τ ⊆Wτ ′,3/W

′
τ ⊆ · · · ⊆Wτ ′,n−1/W

′
τ ⊆W/W ′

τ

the triangulation of W/W ′
τ induced from Tτ ′ . We have H2(GK ,Hom(W/W ′

τ ,

W ′
τ )) = 0 by the condition (1) of Definition 2.45 and Proposition 2.10,

and H2(GK , adTτ (W )) = 0 by the proof of Proposition 2.41. Hence, from

the short exact sequence (4) above, we obtain the equality H2(GK , {f ∈
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adτ ′(W )|f(W ′
τ ) = 0}) = 0. From this and from (1) and (2) above, it suffices

to show that the map

⊕τ ′∈Sτ,nH1(GK , {f ∈ adτ ′(W )|f(W ′
τ ) = 0})→ H1(GK ,Hom(W/W ′

τ ,W ))

is a surjection. By (3) and (4) above and the fact that H2(GK ,Hom(W/W ′
τ ,

W ′
τ )) = 0, this surjectivity follows from the surjectivity of the map

⊕τ ′∈Sτ,nH1(GK , adTτ̄ ′ (W/W ′
τ ))→ H1(GK , ad(W/W ′

τ )),

which is the induction hypothesis. Hence we have finished the proof of the

theorem. �

3. Construction of p-Adic Families of Two Dimensional Triangu-

line Representations

In this section, we generalize the Kisin’s theory of the finite slope sub-

space for any p-adic field, and then construct p-adic families of two dimen-

sional triangulline representations, which are crucial for the density of two

dimensional crystalline representations.

3.1. Almost Cp-representations

In the first subsection, we prove some propositions concerning Banach

GK-modules, which we need for the generalization of the Kisin’s theory of

the finite slope subspace.

We first recall some rings of Lubin-Tate’s p-adic periods defined by

Colmez [Co02] and the definition of almost Cp-representations defined by

Fontaine [Fo03].

Let πK be a fixed uniformizer of K. Let P (X) ∈ OK [X] be a monic

polynomial of degree q := pf such that P (X) ≡ πKX (mod X2) and P (X) ≡
Xq (mod πK). Let FπK be the Lubin-Tate formal group law over OK

on which the multiplication by πK is given by [πK ] = P (X). Let χLT :

GK → O×
K be the Lubin-Tate character associated to πK . Put Ainf,K :=

A+ ⊗OK0
OK , which is equipped with the weak topology on which GK

acts continuously. The ring Ainf,K also has a OK-linear continuous ϕK :=

ϕf -action. Any element of Ainf,K can be written uniquely of the form∑∞
k=0[xk]π

k
K (xk ∈ Ẽ+). Put Binf,K := Ainf,K [p−1]. By Lemma 8.3 of

[Co02], for each x ∈ Ẽ+, there exists a unique element {x} ∈ Ainf,K such
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that {x} is a lift of x and ϕK({x}) = [πK ]({x})(= P ({x})). We fix a set

{ωn}n� 0 such that ω1 ∈ mK is a primitive [πK ]-torsion point of FπK (K)

and [πK ](ωn+1) = ωn for any n � 0, then (ω̄n)n� 0 defines an element

in Ẽ+ ∼→ lim←− nOK/πKOK where the projective limit is given by the q-th

power Frobenius map. We define ωK := {(ω̄n)n� 0} ∈ Ainf,K . By the

definition of {−} and the uniqueness of {−}, the actions of GK and ϕK on

ωK are given by g(ωK) = [χLT(g)](ωK) for g ∈ GK (which converges for the

weak topology) and ϕK(ωK) = [πK ](ωK). Take a subset {πn}n� 0 ⊆ OK

such that π0 = πK and πq
n+1 = πn for any n, and put π̃K := (π̄n)n� 0 ∈

Ẽ+. Define Amax,K :=
̂

Ainf,K [ [π̃K ]
πK

] the p-adic completion of Ainf,K [ [π̃K ]
πK

].

Define B+
max,K = Amax,K [p−1], which is a K-Banach space with continuous

actions of GK and ϕK . By the definition, we have a canonical isomorphism

K ⊗K0 B+
max,Qp

∼→ B+
max,K (Remark 7.13 of [Co02]). By Lemma 8.8 and

Proposition 8.9 of [Co02], there exists a power series FK(X) ∈ K[[X]] which

is the Lubin-Tate’s logarithm such that FK(X) ◦ [a] = aFK(X) for any

a ∈ OK , and tK := FK(ω) converges in Amax,K such that ϕK(tK) = πKtK ,

g(tK) = χLT(g)tK for g ∈ GK . We define Bmax,K := B+
max,K [t−1

K ]. We define

B+
dR := lim←− nB

+
inf,K/(Ker(θ))n which is equipped with the projective limit

topology of K-Banach spaces {B+
inf,K/(Ker(θ))n}n� 1 whose OK-lattice is

defined as the image of Ainf,K → B+
inf,K/(Ker(θ))n. By Proposition 7.12 of

[Co02], this B+
dR is canonically topologically isomorphic to the usual B+

dR

defined in §2. We define BdR := B+
dR[t−1] = B+

dR[t−1
K ].

Using these preliminaries, we define a functor from the category of ϕK-

modules to the category of almost Cp-representations defined by Fontaine.

We can see this construction as a very special case of a generalization of

Berger’s results [Be09] to the case of Lubin-Tate period rings.

Definition 3.1. We say that D is a ϕK-module over K if D is a finite

dimensional K-vector space with a K-linear isomorphism ϕK : D
∼→ D.

Let D be a ϕK-module over K, we extend the action of ϕK to K̂ur⊗K D

by ϕK(a⊗ x) := ϕK(a)⊗ϕK(x), where K̂ur is the p-adic completion of the

maximal unramified extension Kur of K and ϕK ∈ Gal(K̂ur/K) is the lift

of q-th Frobenius in Gal(F/Fq). The Dieudonné-Manin theorem gives a

decomposition

K̂ur ⊗K D = ⊕s∈QDs,
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where for any s = a
h ∈ Q such that (a, h) ∈ Z × Z� 1 are co-prime, Ds is

zero or a finite direct sum of Da,h := K̂ure1 ⊕ K̂ure2 ⊕ · · · ⊕ K̂ureh such

that ϕK(e1) = e2, ϕK(e2) = e3, · · · , ϕK(eh−1) = eh, ϕK(eh) = πa
Ke1. We

define the set of slopes of D as the set of s ∈ Q such that Ds �= 0. We

define a K̂ur-semi-linear GK-action on K̂ur⊗K D by g(a⊗x) := g(a)⊗x for

g ∈ GK , a ∈ K̂ur, x ∈ D, then Ds is preserved by this GK-action for any

s ∈ Q because the actions of GK and ϕK commute each other. For s = a
h ,

if we define D′
s := {x ∈ Ds|ϕh

K(x) = πa
Kx}, then we have Ds = K̂ur⊗Kur

h
D′

s

and D′
s is preserved by GK and ϕK , where Kur

h is the unramified extension

of K of degree h.

The notion of almost Cp-representations was defined by Fontaine [Fo03].

Definition 3.2. Let U be a Qp-Banach space equipped with a contin-

uous Qp-linear GK-action. We say that U is an almost Cp-representation if

there exists Qp-representations V1, V2 and an integer d ∈ Z� 0 such that V1

is a sub GK-module of U and V2 is a sub GK-module of Cd
p and there exists

an isomorphism U/V1
∼→ Cd

p/V2 as Qp-Banach GK-modules.

Remark 3.3. By Theorem C of [Fo03], B+
dR/tkB+

dR is an almost Cp-

representation for any k � 0. By Theorem B of [Fo03], for any continuous

Qp-linear GK-morphism f : U1 → U2 between almost Cp-representations

U1, U2, it is known that Ker(f) and Coker(f) (as Qp[GK ]-modules) are

almost Cp-representations and Im(f) is also an almost Cp-representation

which is a closed subspace of U2.

Let D be a ϕK-module over K. We prove that X0(D) := (B+
max,K ⊗K

D)ϕK=1 is an almost Cp-representation.

Lemma 3.4. Let D be a ϕK-module over K.

(1) X0(D) is an almost Cp-representation.

(2) If any slope s of D satisfies s > 0, then X0(D) = 0.

Proof. The proof is similar to that of Proposition 2.2 of [Be09]. If we

denote by K̂ur ⊗K D = ⊕s∈QDs as above, then we have B+
max,K ⊗K D =
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⊕s∈QB+
max,K ⊗

K̂ur Ds as a ϕK-module. For s = a
h , B+

max,K ⊗
K̂ur Ds =

B+
max,K ⊗Kur

h
D′

s is preserved by the actions of GK and ϕK . Hence, it

suffices to show that, for any s = a
h , (B+

max,K ⊗Kur
h

D′
s)

ϕK=1 is an almost

Cp-representation and is zero if a > 0. By the definition of D′
s, we have a

canonical inclusion (B+
max,K ⊗Kur

h
D′

s)
ϕK=1 ⊆ B

+,ϕh
K=π−a

K
max,K ⊗Kur

h
D′

s. By 8.5

of [Co02], we have B
+,ϕh

K=π−a
K

max,K = 0 for a > 0, and a short exact sequence

0→ Kur
h t−a

Kur
h
→ B

+,ϕh
K=π−a

K
max,K → B+

dR/t−aB+
dR → 0

for a � 0, where tKur
h
∈ B+

max,K = B+
max,Kur

h
is defined from the triple

(Kur
h , πK , ϕh

K) in the same way as in the definition of tK defined from

(K,πK , ϕK). Moreover, because B+
dR/t−aB+

dR ⊗Kur
h

D′
s is a B+

dR-represen-

tation, so this is also an almost Cp-representation by Theorem 5.13 of [Fo03].

Hence, B
+,ϕh

K=π−a
K

max,K ⊗Kur
h

D′
s is also an almost Cp-representation. Because we

have an equality

(B+
max,K ⊗Kur

h
D′

s)
ϕK=1

= Ker(ϕK − 1 : B
+,ϕh

K=π−a
K

max,K ⊗Kur
h

D′
s → B

+,ϕh
K=π−a

K
max,K ⊗Kur

h
D′

s),

so (B+
max,K ⊗Kur

h
D′

s)
ϕK=1 is also an almost Cp-representation by Remark

3.3. �

As an application of this lemma, we obtain the following corollary. We

fix an embedding σ : K ↪→ E. For a K-vector space M and an E-vector

space N , we denote by M ⊗K,σ N the tensor product of M and N over K,

where we view N as a K-vector space by the map σ : K ↪→ E.

Corollary 3.5. Let α ∈ E× be a non-zero element, then

(B+
max,K ⊗K,σ E)ϕK=α is an almost Cp-representation. For any positive

integer k such that k > eKvp(α), where eK is the absolute ramified index of

K, the natural map

(B+
max,K ⊗K,σ E)ϕK=α → (B+

dR/tkB+
dR)⊗K,σ E

is an injection, Moreover, if we denote the cokernel of this inclusion by

Uk, we have the following short exact sequence of E-Banach almost Cp-
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representations,

0 → (B+
max,K ⊗K,σ E)ϕK=α → (B+

dR/tkB+
dR)⊗K,σ E → Uk → 0.

Proof. For α ∈ E×, we define a ϕK-module Dα over K by Dα := Ee

such that ϕK(ae) = α−1ae for any a ∈ E. Dα has a unique slope −eKvp(α)

and we have a natural isomorphism

X0(Dα)
∼→ (B+

max,K ⊗K,σ E)ϕK=α.

Hence, (B+
max,K⊗KE)ϕ=α is a non-zero almost Cp-representation by Lemma

3.4. Moreover, using Proposition 8.10 of [Co02], we can show that we have

an equality

(B+
max,K ⊗K,σ E)ϕK=α ∩ (tkB+

dR ⊗K,σ E) = (tkKB+
max,K ⊗K,σ E)ϕK=α

for any k � 0, which is isomorphic to X0(Dασ(πK)−k). Because, Dασ(πK)−k

has a unique slope (k − eKvp(α)), so we have X0(Dασ(πK)−k) = 0 when

k > eKvp(α) by Lemma 3.4. This implies that the natural map

(B+
max,K ⊗K,σ E)ϕK=α → (B+

dR/tkB+
dR)⊗K,σ E

is an injection. Because both of these are almost Cp-representations which

are also E-Banach spaces, hence the cokernel Uk is also an E-Banach almost

Cp-representation by Remark 3.3. �

For two K-Banach spaces M1 and M2, we denote by M1⊗̂KM2 the

complete tensor product of M1 and M2 over K. Let R be a complete

topological E-algebra. We say that R is an E-Banach algebra if there exists

a map | − |R : R→ R� 0 which satisfies the following,

(1) |1|R = 1, |x|R = 0 if and only if x = 0,

(2) |x + y|R � max{|x|R, |y|R},

(3) |xy|R � |x|R|y|R and |ax|R = |a|p|x|R
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for any x, y ∈ R, a ∈ E, and if the topology of R is defined by the metric

induced from | − |R.

Lemma 3.6. Let R be an E-Banach algebra, and let α ∈ R be an

element of R such that α − 1 is topologically nilpotent, then there exists

u ∈ (K̂ur⊗̂K,σR)× such that ϕK(u) = αu.

Proof. The proof is the same as that of Lemma 3.6 of [Ki03]. �

Here, we recall some terminologies concerning Banach modules from §2
of [Bu07]. Let R be an E-Banach algebra and let M be a topological R-

module. We say that M is a Banach R-module if M is a complete topological

R-module with a map | − | : M → R� 0 which satisfies the following,

(1) |m| = 0 if and only if m = 0,

(2) |m + n| � max{|m|, |n|},

(3) |am| � |a|R|m| (| − |R is a fixed E-Banach norm on R as above)

for any m,n ∈ M , a ∈ R, and if the topology on M is defined by the

metric induced from | − |. Let M be a Banach R-module. We say that M

is orthonormalizable if there exist a map | − | : M → R� 0 as above and a

subset {ei}i∈I of M such that, for any m ∈M ,

(1) there exists a unique {ai}i∈I (ai ∈ R) such that ai → 0 (i→∞) and

m =
∑

i∈I aiei,

(2) we have |m| = maxi∈I{|ai|R}.

We say that a Banach R-module M has the property (Pr) if there exists a

Banach R-module N such that M ⊕N is orthonormalizable.

The following proposition is also a generalization of Corollary 3.7 of

[Ki03] which will play a crucial role in the next subsection.

Proposition 3.7. Let R be an E-Banach algebra and let Y ∈ R× be

a unit of R. Assume that there exists a finite Galois extension E′ of E and

λ ∈ (R ⊗E E′)× such that E′[λ] ⊆ R ⊗E E′ is an étale E′-algebra and that

Y λ−1 − 1 is topologically nilpotent in R ⊗E E′. Then, for any sufficiently

large k ∈ Z>0, there exists a Banach R-module Uk with the property (Pr)
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which is equipped with a continuous R-linear GK-action such that there

exists a GK-equivariant short exact sequence of Banach R-modules with the

property (Pr)

0→ (B+
max,K⊗̂K,σR)ϕK=Y → B+

dR/tkB+
dR⊗̂K,σR→ Uk → 0

which is compatible with any base change, i.e. for any continuous homo-

morphism f : R→ R′ of E-affinoid algebras, the complete tensor product of

the above exact sequence with R′ is equal to

0→ (B+
max,K⊗̂K,σR

′)ϕK=f(Y ) → B+
dR/tkB+

dR⊗̂K,σR
′ → Uk⊗̂RR

′ → 0.

Proof. Decompose E′[λ] =
∏

i∈I Ei ⊆ R ⊗E E′ such that each Ei is

a finite extension of E′, and denote by λi ∈ Ei the image of λ in Ei, then

we obtain a decomposition R⊗E E′ =
∏

i∈I Ri such that Ei ⊆ Ri for any i.

By Corollary 3.5, we have a short exact sequence of Ei-Banach spaces

0 → (B+
max,K ⊗K,σ Ei)

ϕK=λi → B+
dR/tkB+

dR ⊗K,σ Ei → Uk,i → 0.

for any k ∈ Z>0 such that k > eKvp(λi) for any i. Hence, if we take the

complete tensor product over Ei of this sequence with Ri, we obtain a short

exact sequence of orthonormalizable Ri-Banach spaces

0→ (B+
max,K⊗̂K,σRi)

ϕK=λi → B+
dR/tkB+

dR⊗̂K,σRi → Uk,i⊗̂EiRi → 0.

By the assumption, the element Y λ−1
i − 1 is topologically nilpotent in Ri,

hence we have an element ui ∈ (K̂ur⊗̂K,σRi)
× such that ϕK(ui) = Y λ−1

i ui

by Lemma 3.6. Multiplying ui to the above short exact sequence, we obtain

a short exact sequence

0→ (B+
max,K⊗̂K,σRi)

ϕK=Y → B+
dR/tkB+

dR⊗̂K,σRi → (Uk,i⊗̂EiRi)→ 0.

Summing up for all i ∈ I, we obtain

0 → (B+
max,K⊗̂K,σ(R⊗E E′))ϕK=Y → B+

dR/tkB+
dR⊗̂K,σ(R⊗E E′)

→ ⊕i∈L(Uk,i⊗̂EiRi)→ 0,
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which we can see as an exact sequence of R-Banach modules with the prop-

erty (Pr). Taking the Gal(E′/E)-fixed part, we obtain a short exact se-

quence

0→ (B+
max,K⊗̂K,σR)ϕK=Y → B+

dR/tkB+
dR⊗̂K,σR→ Uk → 0

satisfying all the conditions in the proposition, where Uk :=

(⊕i∈I(Uk,i⊗̂EiRi))
Gal(E′/E). Finally, the base change property of this ex-

act sequence is clear from the proof. �

Let V be an E-representation, then we define

D+
cris(V ) := (B+

max ⊗Qp V )GK , Fil0Dcris(V ) := Dcris(V ) ∩ Fil0DdR(V ),

where we recall that B+
max = B+

max,Qp
. Then, we have a natural inclusion

D+
cris(V ) ⊆ Fil0Dcris(V ), which is not an equality in general.

Lemma 3.8. Let α ∈ E× be a non zero element. If a ϕ-submodule D

of Dcris(V )ϕ
f=α is contained in Fil0DdR(V ), then D is also contained in

D+
cris(V )ϕ

f=α.

Proof. It suffices to show that if an element x ∈ (Bmax ⊗Qp E)ϕ
f=α

satisfies that ϕi(x) ∈ B+
dR ⊗Qp E for any i ∈ Z� 0, then x ∈ (B+

max ⊗Qp

E)ϕ
f=α. If we write x = a

tn for some a ∈ (B+
max ⊗Qp E)ϕ

f=αpfn and n � 0,

then we have ϕi(a)
pnitn

= ϕi(x) ∈ B+
dR ⊗Qp E for any 0 � i � f − 1. Hence, we

have

ϕi(a) ∈ (B+
max ⊗Qp E)ϕ

f=αpnf ∩ tnB+
dR ⊗Qp E = (tnK0

B+
max ⊗Qp E)ϕ

f=αpnf
,

where the last equality follows from Proposition 8.10 of [Co02]. Hence, we

can write a = ϕ−i(tnK0
)ai for some ai ∈ B+

max ⊗Qp E for any 1 � i � f − 1.

Then we can write by a = (
∏f−1

i=0 ϕ−i(tnK0
))a′ for some a′ ∈ B+

max ⊗Qp E by

Lemma 8.18 of [Co02]. Because
∏f−1

i=0 ϕ−i(tK0) ∈ K×
0 t by Lemma 8.17 of

[Co02], we have x = a
tn ∈ B+

max ⊗Qp E. �

3.2. Construction of the finite slope subspace for general p-adic

field

In this subsection, we generalize the theory of the finite slope subspace

Xfs for any p-adic field. Using Proposition 3.7, the construction and the
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proof is essentially the same as those for K = Qp, but there is a difference

that we need to consider all the embeddings σ : K ↪→ E, which makes

the theory more complicated. Hence, for convenience of readers (and the

author), here we reprove the Kisin’s theory in detail in our generalized

setting.

Let X be a separated rigid analytic space (in the sense of Tate) over

E. Let M be a free OX -module of rank d for some d � 1 equipped with a

continuous OX -linear GK-action, where “continuous” means that, for any

admissible open affinoid U = Spm(R) of X, the action of GK on Γ(U,M)

is continuous on which the topology is naturally induced by that of R. We

denote by M∨ := HomOX
(M,OX) the OX -dual of M . For x ∈ X, we

denote by OX,x the local ring at x, mx the maximal ideal at x, E(x) the

residue field at x which is a finite extension of E. We denote by M(x) the

fiber of M at x, which is a d-dimensional E(x)-representation of GK .

Under this situation, we briefly recall Sen’s theory [Se88] of the ana-

lytic variations of Hodge-Tate weights following [Be-Co08] and [Ch09a]. By

Lemma 3.18 of [Ch09a], we can take an affinoid covering {Ui}i∈I of X such

that Mi := Γ(Ui,M) is a free Ri := Γ(Ui,OX)-module with a GK-stable

finite free R0
i -module M0

i such that Mi = M0
i [p−1] for a model R0

i ⊆ Ri

for any i ∈ I. Here, for an affinoid A, a model is defined as a topologically

finite generated complete OE-subalgebra of A which generates A after in-

verting p. Then, we can apply the results of [Be-Co08] to Mi (and M0
i ) for

any i ∈ I. By Proposition 4.1.2 of [Be-Co08], there exists a unique monic

polynomial PMi(T ) ∈ K ⊗Qp Ri[T ] of dimension d, which is defined as the

characteristic polynomial of Sen’s operator on DL
Sen(Mi) for a sufficiently

large finite extension L of K, such that the specialization of PMi(T ) at x

gives the Sen’s polynomial PM(x)(T ) ∈ K ⊗Qp E(x)[T ] of M(x) for any

x ∈ Spm(Ri). By the uniqueness of DL
Sen(Mi), {PMi(T )}i∈I glue together

to a monic polynomial PM (T ) ∈ K ⊗Qp OX [T ]. By the canonical decompo-

sition K ⊗Qp E = ⊕σ∈PE : a ⊗ b �→ (σ(a)b)σ, PM (T ) decomposes into the

σ-components PM (T ) = (PM (T )σ)σ∈P ∈ ⊕σ∈POX [T ].

From now on, we assume that the constant term of PM (T )σ is zero for

any σ ∈ P. We denote by PM (T )σ = TQσ(T ) for Qσ(T ) ∈ OX [T ].

Before stating the theorem, we recall some terminologies of rigid geome-

try from § 5 of [Ki03] which we need to characterize the finite slope subspace

Xfs.
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Let X = Spm(R) be an affinoid over E, and let U be an admissible

open in X. We say that U is scheme theoretically dense in X if there

exists a Zariski open V ⊆ Spec(R) which is dense in Spec(R) for the Zariski

topology and U = V an, where V an is the associated rigid space of V . For

any rigid analytic space X over E, an admissible open U of X is said to

be scheme theoretically dense in X if there exists an admissible affinoid

covering {Ui}i∈I of X such that U ∩ Ui is scheme theoretically dense in Ui

for any i ∈ I. The typical example is the following. For any f ∈ Γ(X,OX),

we set Xf := {x ∈ X|f(x) �= 0} which is an admissible open in X. If f is a

non-zero divisor, then Xf is scheme theoretically dense in X.

Next, let Y ∈ Γ(X,O×
X) be an invertible function on X, and let R be

an affinoid algebra over E. We say that a morphism f : Spm(R) → X is

Y -small if there exist a finite extension E′ of E and λ ∈ (R ⊗E E′)× such

that E′[λ] ⊆ R⊗E E′ is a finite étale E′-algebra and Y λ−1− 1 ∈ R⊗E E′ is

topologically nilpotent. A typical example of Y -small morphism is following.

For any x ∈ X and n ∈ Z� 1, the natural map Spm(OX,x/m
n
x) → X is Y -

small for any Y ∈ Γ(X,OX)×.

The following theorem is the generalization of Proposition 5.4 of [Ki03]

for general K, which states the existence and the characterization of the

finite slope subspace Xfs. This theorem is the most important for the

construction of p-adic families of trianguline representations in the next

subsection. For an E-affinoid algebra R, we set B+
dR⊗̂QpR := lim←− kB

+
dR/

tkB+
dR⊗̂QpR which is equipped with the projective limit topology.

Theorem 3.9. Let X be a separated rigid analytic space over E, and

let M be a free OX-module of rank d with a continuous OX-linear GK-

action. Let Y ∈ Γ(X,O×
X) be an invertible function. We assume that the

constant term of PM (T )σ is zero for any σ ∈ P. Then, there exists a unique

Zariski closed subspace Xfs of X satisfying the following conditions,

(1) Xfs,Qσ(i) is scheme theoretically dense in Xfs for any σ ∈ P and

i ∈ Z� 0,

(2) for any Y -small map f : Spm(R) → X which factors through XQσ(i)

for any σ ∈ P and i ∈ Z� 0, the following two conditions are equiva-

lent,

(i) f : Spm(R)→ X factors through Xfs,
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(ii) any R-linear GK-equivariant map h : M∨ ⊗OX
R → B+

dR⊗̂QpR

factors through h′ : M∨ ⊗OX
R→ K ⊗K0 (B+

max⊗̂QpR)ϕ
f=Y .

As in [Ki03], we prove this theorem by several steps. We first prove the

following lemma.

Lemma 3.10. Let X, M be as above. Let X ′ be a separated rigid an-

alytic space over E, and let f : X ′ → X be a flat E-morphism. If there

exists a Zariski closed subspace Xfs ⊆ X which satisfies (1) and (2) of the

above theorem, then X ′
fs := Xfs ×X X ′ ⊆ X ′ also satisfies (1) and (2) for

X ′, M ′ := f∗M and Y ′ := f∗(Y ) ∈ Γ(X ′,O×
X′).

Proof. The condition (1) is satisfied for X ′
fs because the notion of

scheme theoretically dense is preserved by flat base changes and we have

f∗(PM (T )) = Pf∗M (T ). That X ′
fs satisfies (2) is trivial. �

We next prove the uniqueness of Xfs.

Lemma 3.11. If two Zariski closed subspaces X1 and X2 of X satisfy

the conditions (1) and (2), then X1 = X2.

Proof. For any admissible open U ⊆ X and i = 1, 2, Xi ∩ U ⊆ U

satisfies (1) and (2) for U by Lemma 3.10 because the inclusion U ↪→ X is

flat. Hence, it suffices to prove that X1 ∩ Ui = X2 ∩ Ui for any i ∈ I for an

admissible covering {Ui}i∈I of X. Hence we may assume that X = Spm(R)

is an affinoid. We denote by X1 = Spm(R/I1), X2 = Spm(R/I2) for some

ideals I1, I2 ⊆ R. Set X3 := Spm(R/I1 ∩ I2), then we claim that X3 also

satisfies the conditions (1) and (2) . For (1), we have inclusions R/Ij ↪→
R/Ij [

1
Qσ(i) ] for any j = 1, 2, σ ∈ P and i ∈ Z� 0 by the assumption, hence we

also have an inclusion R/I1 ∩ I2 ↪→ R/I1 ∩ I2[
1

Qσ(i) ] for any σ ∈ P, i ∈ Z� 0,

which proves that X3 satisfies (1). To prove that X3 satisfies (2), we take a

Y -small morphism f : Spm(R′) → X which factors f : Spm(R′) → XQσ(i)

for any σ ∈ P, i ∈ Z� 0. Set Y ′ := f∗(Y ) ∈ R
′×. If f satisfies (ii) of (2),

then f factors through X1 and X2 by definition, hence also factors through

X3 because we have X1, X2 ⊆ X3. Next we assume that f satisfies (i) of
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(2). We have the following canonical decompositions

K ⊗K0 (B+
max⊗̂QpR

′)ϕ
f=Y ′

= ((K ⊗K0 B+
max)⊗̂QpR

′)ϕ
f=Y ′

= (B+
max,K⊗̂QpR

′)ϕ
f=Y ′

= ⊕σ∈P(B+
max,K⊗̂K,σR

′)ϕK=Y ′

and

B+
dR⊗̂QpR

′ = ⊕σ∈PB+
dR⊗̂K,σR

′.

Hence, it suffices to show that any GK-equivariant R′-linear map

h : M∨ ⊗OX
R′ → B+

dR⊗̂K,σR
′ factors through M∨ ⊗OX

R′ →
(B+

max,K⊗̂K,σR
′)ϕK=Y ′

for any σ ∈ P. Because Qσ(i) is invertible in R′

for any σ ∈ P and i ∈ Z� 0 by the assumption, the natural map

(B+
dR⊗̂K,σM ⊗OX

R′)GK
∼→ (B+

dR/tkB+
dR⊗̂K,σM ⊗OX

R′)GK

is isomorphism for any σ ∈ P and k ∈ Z� 1 by Proposition 2.5 of [Ki03].

Hence, it suffices to show that, for some k ∈ Z� 1, any GK-equivariant map

h : M∨ ⊗OX
R′ → (B+

dR/tkB+
dR⊗̂K,σR

′) factors through M∨ ⊗OX
R′ →

(B+
max,K⊗̂K,σR

′)ϕK=Y ′
. We choose k ∈ Z� 1 sufficiently large such that

there exists a short exact sequence

0 → (B+
max,K⊗̂K,σR

′)ϕK=Y ′ → B+
dR/tkB+

dR⊗̂K,σR
′ → Uk,σ → 0(5)

of Banach R′-modules compatible with any base change as in Proposition

3.7. If we set Spm(R′
i) := f−1(Xi) ⊆ Spm(R′) for i = 1, 2, then we have

an inclusion R′ ↪→ R′
1 ⊕ R′

2 because f factors through X3. From these

arguments, the above short exact sequence (5) can be embedded in the

following short exact sequence

0 → ⊕2
i=1(B

+
max,K⊗̂K,σR

′
i)
ϕK=Y ′ → ⊕2

i=1B
+
dR/tkB+

dR⊗̂K,σR
′
i

→ ⊕2
i=1Uk,σ⊗̂R′R′

i → 0.

Then, the composition of h with B+
dR/tkB+

dR⊗̂K,σR
′ ↪→ ⊕2

i=1B
+
dR/

tkB+
dR⊗̂K,σR

′
i factors through M∨ ⊗OX

R′ ↪→ ⊕2
i=1(B

+
max,K⊗̂K,σR

′
i)
ϕK=Y ′

by the definition of Xi. Hence, h also factors through M∨ ⊗OX
R′ →

(B+
max,K⊗̂K,σR

′
i)
ϕK=Y ′

by a diagram chase. Hence, X3 also satisfies (1) and

(2).

Therefore, to prove the lemma, we may assume that X1 ⊆ X2. We

put W ⊆ X2 the support of I1/I2 with the reduced structure. If x ∈ X2
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satisfies Qσ(i)(x) �= 0 for any σ ∈ P and i ∈ Z� 0, then the natural map

Spm(OX2,x/m
n
x)→ X2 which is Y -small factors through Spm(OX2,x/m

n
x)→

X1 for any n � 1 by the definition on X1 and X2. This implies that there ex-

ists a map OX1,x → ÔX2,x such that the composition of this with the natural

map OX2,x → OX1,x is the natural map OX2,x → ÔX2,x. This implies that

the natural quotient map OX2,x → OX1,x is isomorphism, hence we have

x �∈W . Hence, we obtain an inclusion W ⊆ ∪σ∈P,i∈Z� 0
{x ∈ X2|Qσ(i)(x) =

0}. By Lemma 5.7 [Ki03], then there exists a Q ∈ Γ(X2,OX2) which is a

finite product of Qσ(i) such that X2,Q ⊆ X2 \W = X1 \W ⊆ X1 ⊆ X2.

Then, the condition (1) for X2 implies that X1 = X2. We finish to prove

the lemma. �

Assume that there exists an admissible affinoid covering {Ui}i∈I of X

such that the subspace Ui,fs ⊆ Ui exists for any i ∈ I. By the uniqueness of

Xfs, {Ui,fs}i∈I glue to a Zariski closed subspace X ′
fs ⊆ X satisfying that

X ′
fs ∩ Ui = Ui,fs for any i ∈ I.

Lemma 3.12. In the above situation, X ′
fs ⊆ X satisfies the conditions

(1) and (2) in the theorem, i.e. we have X ′
fs = Xfs.

Proof. That X ′
fs satisfies (1) is trivial. We show that X ′

fs satisfies

(2). Let f : Spm(R) → X be a Y -small map which factors through XQσ(i)

for any σ ∈ P and i ∈ Z� 0. Because X is separated, f−1(Ui) is an affinoid

for any i ∈ I. Set Spm(Ri) := f−1(Ui). First, we show that (i) implies (ii).

We assume that f factors through X ′
fs. Let h : M∨ ⊗OX

R → B+
dR⊗̂K,σR

be a R-linear GK-equivariant map. By Proposition 2.5 of [Ki03], it suffices

to show that h : M∨ ⊗OX
R → B+

dR⊗̂K,σR → B+
dR/tkB+

dR⊗̂K,σR factors

through M∨ ⊗OX
R→ (B+

max,K⊗̂K,σR)ϕK=Y for some k ∈ Z� 1. We choose

k ∈ Z� 1 such that there exists a short exact sequence

0 → (B+
max,K⊗̂K,σR)ϕK=Y → B+

dR/tkB+
dR⊗̂K,σR→ Uk,σ → 0

of Banach R-modules as in Proposition 3.7. By the base change property,

this short exact sequence can be embedded into the following exact sequence

0 →
∏
i∈I

(B+
max,K⊗̂K,σRi)

ϕK=Y →
∏
i∈I

B+
dR/tkB+

dR⊗̂K,σRi

→
∏
i∈I

Uk,σ⊗̂RRi → 0.
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By the assumption, the map M∨ ⊗OX
R

h−→ B+
dR/tkB+

dR⊗̂K,σR →
B+

dR/tkB+
dR⊗̂K,σRi factors through M∨ ⊗OX

R → (B+
max,K⊗̂K,σRi)

ϕK=Y

for any i ∈ I. Hence, h : M∨ ⊗OX
R → B+

dR/tkB+
dR⊗̂K,σR also factors

through M∨ ⊗OX
R → (B+

max,K⊗̂K,σR)ϕK=Y by a diagram chase of the

above two exact sequences.

Next, we assume that, for any σ ∈ P, any R-linear GK-equivariant

map h : M∨ ⊗OX
R → B+

dR⊗̂K,σR factors through M∨ ⊗OX
R →

(B+
max,K⊗̂K,σR)ϕK=Y . Because we have Qσ(j) ∈ R× for any σ ∈ P and

j ∈ Z� 0, the natural map

(B+
dR/tkB+

dR⊗̂K,σM ⊗OX
R)GK ⊗R Ri

∼→ (B+
dR/tkB+

dR⊗̂K,σM ⊗OX
Ri)

GK

is isomorphism for any k � 1 and i ∈ I by Corollary 2.6 of [Ki03]. Hence,

any Ri-linear GK-equivariant map hi : M∨ ⊗OX
R → B+

dR/tkB+
dR⊗̂K,σRi

factors through M∨ ⊗OX
R → (B+

max,K⊗̂K,σRi)
ϕK=Y for any i ∈ I. This

implies that f |Spm(Ri) : Spm(Ri) → Ui factors through Ui,fs for any i ∈ I.

Hence, f also factors through X ′
fs. �

By this lemma, it suffices to construct Xfs when X = Spm(R) is affinoid.

Moreover, in the same way as in (5.9) of [Ki03], we may assume that |Y |
satisfies |Y ||Y −1| < 1

|πK |p for a norm | − | : R → R� 0 which defines the

topology of R as in §3.2. Then, we construct Xfs ⊆ Spm(R) as follows. We

first construct an ideal of R which defines Xfs. Let λ ∈ E be an element

such that |Y −1|−1 � |λ|p � |Y |, and let E′ be a finite Galois extension of E

which contains λ. By Corollary 3.5, we can take a sufficiently large k ∈ Z� 1

such that there exists a short exact sequence of E′-Banach spaces

0 → (B+
max,K⊗̂K,σE

′)ϕK=σ(πK)λ → B+
dR/tkB+

dR⊗̂K,σE
′ → Uk,σ,λ → 0

for any λ, E′ as above and σ ∈ P. Fix such a k � 1 until the end of the

proof of this theorem. For any x ∈ Ẽ+ such that v(x) > 0, we define an

element

P (x,
Y

σ(πK)λ
) :=

∑
n∈Z

ϕn
K([x])(

Y

σ(πK)λ
)n

∈ (B+
max,K⊗̂K,σR⊗E E′)ϕK=

σ(πK )λ

Y .
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This element converges because we have

|σ(πK)λ

Y
| � |σ(πK)|p|λ|p|Y −1| < |σ(πK)|p|λ|p|Y |−1|πK |−1

p � 1

and ϕn
K([x])( Y

σ(πK)λ)n → 0 (n→ +∞) (see Corollary 4.4 of [Ki03]). For any

σ ∈ P and any R-linear GK-equivariant map h : M∨ → B+
dR/tkB+

dR⊗̂K,σR,

we consider the composition of this map with the maps

B+
dR/tkB+

dR⊗̂K,σR→ B+
dR/tkB+

dR⊗̂K,σR⊗E E′ : v �→ P (x,
Y

σ(πK)λ
)v

and B+
dR/tkB+

dR⊗̂K,σR⊗EE′ → Uk,σ,λ⊗̂E′(R⊗EE′) which is the base change

of the surjection B+
dR/tkB+

dR⊗̂K,σE
′ → Uk,σ,λ in the above short exact se-

quence. We denote this composition by

hx,λ : M∨ → Uk,σ,λ⊗̂E′(R⊗E E′).

Fix an orthonormalizable E′-base {ei}i∈I of Uk,σ,λ. For any m ∈M∨, then

we can write uniquely by

hx,λ(m) =
∑
i∈I

ax,λ,i(m)ei for {ax,λ,i(m)}i∈I ⊆ R⊗E E′.

We define an ideal

I(h, x, λ,m) ⊆ R⊗E E′

which is generated by ax,λ,i(m) for all i ∈ I. Because we have τ(I(h, x,

λ,m)) = I(h, x, τ(λ),m) ⊆ R⊗E E′ for any τ ∈ Gal(E′/E), the ideal∑
τ∈Gal(E′/E)

I(h, x, τ(λ),m) ⊆ R⊗E E′

descends to an ideal I ′(h, x, λ,m) ⊆ R and this ideal is independent of the

choice of E′. We define an ideal I of R by

I :=
∑

h,x,λ,m

I ′(h, x, λ,m) ⊆ R,

where the sum runs through all h, x, λ,m and σ ∈ P as above.

Next, we denote by J(n,{σl}nl=0,{il}nl=0)(⊇ I) the kernel of the natural map

R → R/I[ 1∏ n
l=1 Qσl

(il)
] for any triple (n, {σl}nl=0, {il}nl=0) such that n � 1,
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σl ∈ P, il ∈ Z� 0. Denote by J(⊇ I) the sum (in fact a finite union) of

the ideals J(n,{σl}nl=0,{il}nl=0) for all the triples (n, {σl}nl=0, {il}nl=0) as above.

Then, Spm(R/J) is the largest Zariski closed subspace of Spm(R/I) such

that Spm(R/J)Qσ(i) is scheme theoretically dense in Spm(R/J) for any

σ ∈ P, i � 0.

Finally, we prove the following lemma which claims that Xfs =

Spm(R/J), hence proves the theorem.

Lemma 3.13. The closed subspace Spm(R/J) ⊆ Spm(R) satisfies the

conditions (1) and (2) in the theorem.

Proof. Because the map R/J → R/J [ 1
Qσ(i) ] is injective for any σ ∈ P

and i ∈ Z� 0 by the definition of J , Spm(R/J) satisfies the condition (1).

We show that Spm(R/J) satisfies (2). Let f : Spm(R′) → Spm(R) be a

Y -small map which factors through Spm(R′)→ Spm(R)Qσ(i) for any σ ∈ P
and i ∈ Z� 0. In this situation, we first prove that (ii) implies (i). We assume

that any GK-equivariant map h : M∨ → B+
dR⊗̂K,σR

′ factors through M∨ →
(B+

max,K⊗̂K,σR
′)ϕK=Y for any σ ∈ P. Then, for any h : M∨ → B+

dR⊗̂K,σR,

λ ∈ E′ and x ∈ Ẽ+ as in the construction of the ideal I ⊆ R, the map

P (x,
Y

σ(πK)λ
)h⊗R idR′ : M∨ → Uk,σ,λ⊗̂E′(R′ ⊗E E′)

is zero because the multiplication by P (x, Y
σ(πK)λ) sends (B+

max,K⊗̂K,σR)ϕ=Y

to (B+
max,K⊗̂K,σR⊗EE′)ϕK=σ(πK)λ. Hence, the map R→ R′ factors through

R/I → R′ by the definition of I. Because Qσ(i) ∈ R
′× for any σ ∈ P,

i ∈ Z� 0, the map R/I → R′ factors through R/J → R′ by the definition of

J .

We next prove that (i) implies (ii). Assume that f : Spm(R′) →
Spm(R) factors through Spm(R′) → Spm(R/J) → Spm(R). Let h : M∨ →
B+

dR⊗̂K,σR
′ be a R′-linear GK-equivariant map. We want to show that the

map h factors through M∨ → (B+
max,K⊗̂K,σR

′)ϕK=Y . By Galois descent, it

suffices to show that the map h factors through M∨ → (B+
max,K⊗̂K,σR

′ ⊗E

E′)ϕK=Y for a sufficiently large finite Galois extension E′ of E. Hence, by

the definition of Y -smallness, we may assume that there exists λ ∈ E′ such

that Y λ−1−1 is topologically nilpotent in R′⊗E E′. Moreover, because the

definitions of I and J are compatible with any base change R �→ R ⊗E E′,
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we may assume that E = E′ and λ ∈ E. Under these assumptions, we

have |Y −1|−1 � |f∗(Y )−1|−1
R′ = |λ|p = |f∗(Y )|R′ � |Y | (| − |R′ is a norm

on R′), hence λ satisfies the condition in the construction of I ⊆ R. By

the definition of I, for any m ∈ M∨, P (x, Y
σ(πK)λ)h(m) is an element in

(B+
max,K⊗̂K,σR

′)ϕK=σ(πK)λ for any x ∈ Ẽ+ such that v(x) > 0. Take an

element u ∈ (K̂ur⊗̂K,σR
′)×,ϕK= λ

Y as in Lemma 3.6. Then we have

tKuh(m) ∈ (B+
max,K⊗̂K,σR

′)ϕK=σ(πK)λ

because we have tKu ∈ (B+
max,K⊗̂K,σR

′)ϕK=
σ(πK )λ

Y , and because the R′-

module generated by the sets {P (x, Y
σ(πK)λ)}

x∈Ẽ+,v(x)>0
is dense in

(B+
max,K⊗̂K,σR

′)ϕK=
σ(πK )λ

Y , which can be proved in the same way as in

Corollary 4.6 of [Ki03] by using Lemma 4.3.1 of [Ke05], and because

(B+
max,K⊗̂K,σR

′)ϕK=σ(πK)λ is closed in B+
dR/tkB+

dR⊗̂K,σR
′ by Proposition

3.7. Hence, we obtain

uh(m) ∈ 1

tK
(B+

max,K⊗̂K,σR
′)ϕK=σ(πK)λ ∩B+

dR/tkB+
dR⊗̂K,σR

′

= (B+
max,K⊗̂K,σR

′)ϕK=σ(πK)λ,

where the last equality follows from Proposition 8.10 of [Co02]. Hence,

we obtain h(m) ∈ (B+
max,K⊗̂K,σR

′)ϕK=Y , which proves the lemma, hence

finishes to prove the theorem. �

We next prove some important general properties of Xfs, which is a

generalization of Corollary 5.16 of [Ki03] for general K.

Let Spm(R) ⊆ Xfs be an affinoid open of Xfs. We assume that this

inclusion is Y -small. By Proposition 3.7, there exists k > 0 such that, for

any σ ∈ P, there exists a short exact sequence of Banach R-modules with

the property (Pr)

0 → (B+
max,K⊗̂K,σR)ϕK=Y → B+

dR/tkB+
dR⊗̂K,σR→ Uk,σ → 0.

We denote by MR the restriction of M to Spm(R).

Proposition 3.14. Fix k � 1 as above. For any σ ∈ P, let Hσ ⊆ R

be the smallest ideal of R such that any R-linear GK-equivariant morphism

M∨
R → B+

dR/tkB+
dR⊗̂K,σR factors through M∨

R → B+
dR/tkB+

dR⊗̂K,σHσ →
B+

dR/tkB+
dR⊗̂K,σR. Set H :=

∏
σ∈P Hσ ⊆ R. Then the following hold:
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(1) For any σ ∈ P, the natural map

((B+
max,K⊗̂K,σMR)ϕK=Y )GK → (B+

dR/tkB+
dR⊗̂K,σMR)GK

is isomorphism, i.e. the natural map

K ⊗K0 D+
cris(MR)ϕK=Y → (B+

dR/tkB+
dR⊗̂QpMR)GK

is isomorphism.

(2) Spm(R) \ V (H) and Spm(R) \ V (Hσ) (for any σ ∈ P) are scheme

theoretically dense in Spm(R), where V (H∗) := Spm(R/H∗).

(3) For any x ∈ Spm(R), M(x) is a split trianguline E(x)-representation.

More precisely, there exists a short exact sequence of E(x)-B-pairs

0→W (δY (x)

∏
σ∈P

σ−kσ)→W (M(x))

→W (det(M(x))δ−1
Y (x)

∏
σ∈P

σkσ)→ 0

for some {kσ}σ∈P ∈
∏

σ∈P Z� 0, where, for any λ ∈ E(x)×, we define

a homomorphism δλ : K× → E(x)× such that δλ(πK) = λ and δλ|O×
K

is trivial.

Proof. We first prove (1). Take a point x ∈ Spm(R) such that

x ∈ Spm(R)Qσ(i) for any σ ∈ P and i ∈ Z� 0. By the characterization

of Xfs, any GK-map M∨
R → B+

dR/tkB+
dR ⊗K,σ OX,x/m

n
x factor through

M∨
R → (B+

max,K ⊗K,σ OX,x/m
n
x)ϕK=Y for any n � 1 and σ ∈ P. We de-

note by V ⊆ Spm(R) the set of points satisfying the above condition. By

the same argument as in Lemma 3.12, it suffices to show that the natural

map R →
∏

x∈V,n� 1OX,x/m
n
x is an injection. Let f ∈ R be an element in

the kernel of this map. Let W ⊆ Spm(R) be the support of f with the re-

duced structure. Then we have W ⊆ ∪σ∈P,i� 0V (Qσ(i)), hence there exists

Q ∈ R a finite product of Qσ(i) such that W ⊆ V (Q) by Lemma 5.7 of

[Ki03]. Hence we have XQ ⊆ X \W ⊆ X. This implies that f = 0 ∈ R[ 1
Q ],

and f = 0 in R by the condition (1) of Theorem 3.9. Hence, the map

R→
∏

x∈V,n� 1OX,x/m
n
x is an injection.
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We next prove (2). Let x ∈ Spm(R) such that x ∈ Spm(R)Qσ(i) for any

σ ∈ P and i ∈ Z� 0. For any affinoid algebra R′ which is a quotient of OX,x,

then we have an isomorphism

(B+
dR/tkB+

dR⊗̂K,σMR)GK ⊗R R′ ∼→ (B+
dR/tkB+

dR ⊗K,σ (MR ⊗R R′))GK

and this is a free R′-module of rank one by Corollary 2.6 of [Ki03] for any

σ ∈ P. Hence we obtain an equality HσOX,x = OX,x for any σ because

we have (B+
dR/tkB+

dR⊗̂K,σMR)GK ⊗ROX,x/HσOX,x = 0 by the definition of

Hσ, and then we also obtain an equality HOX,x = OX,x. This implies that

we have an inclusion V (H) ⊆ ∪σ∈P,i� 0V (Qσ(i)). Hence, there exists Q ∈ R

a finite product of Qσ(i) such that Spm(R)Q ⊆ Spm(R) \ V (H) ⊆ Spm(R)

by Lemma 5.7 of [Ki03]. Because Spm(R)Q is scheme theoretically dense,

so Spm(R) \ V (H) is also scheme theoretically dense. Because we have

V (Hσ) ⊆ V (H), Spm(R) \V (Hσ) is also scheme theoretically dense for any

σ ∈ P.

Finally we prove (3). Let x be any point of Spm(R). By (2), for any

σ ∈ P, there exists nσ � 0 such that Hσ ⊆ mnσ
x and Hσ �⊆ mnσ+1

x . By the

definition of Hσ, there exists a GK-map h : M∨
R → (B+

max,K⊗̂K,σHσ)ϕK=Y

which, by composing with B+
max,K⊗̂K,σHσ → B+

max,K ⊗K,σ mnσ
x /mnσ+1

x ,

induces a nonzero map M∨
R → (B+

max,K ⊗K,σ mnσ
x /mnσ+1

x )ϕK=Y (x). Hence,

by taking a suitable E(x)-linear projection mnσ
x /mnσ+1

x → E(x), we

obtain a non zero GK-map M∨
R → (B+

max,K ⊗K,σ E(x))ϕK=Y (x). This

implies that (B+
max,K ⊗K,σ M(x))ϕK=Y (x) �= 0, and also implies that

D+
cris(M(x))ϕK=Y (x) �= 0, then M(x) is a split trianguline E(x)-representa-

tion as in the statement of (3). �

3.3. Construction of p-adic families of two dimensional triangu-

line representations

In this subsection, we will apply our theory of Xfs in the previous sub-

section to the rigid analytic space associated with a universal deformation

ring of mod p Galois representation of GK , which is a slightly modified

generalization of the results of §10 of [Ki03] for general K.

Let CO be the category of local Artin O-algebras with the residue field

F. Let ρ̄ : GK → GL2(F) be a continuous homomorphism, we denote by

V a two dimensional F-representation defined by ρ̄. As in the case of E-
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representations, we define a functor Dρ̄ : CO → Sets by

Dρ̄(A) := { equivalent classes of deformations of V over A}

for A ∈ CO. In this paper, for simplicity, we assume that V satisfies that

H0(GK , ad(V )) = F.

Then, Dρ̄ is pro-representable by a complete noetherian local O-algebra Rρ̄

with the residue field F. When V does not satisfy H0(GK , ad(V )) = F, we

can prove the same theorems below in almost the same way if we consider

the framed deformations of Kisin. Let V univ be the universal deformation

over Rρ̄, which is a free Rρ̄-module of rank two with a Rρ̄-linear continuous

GK-action. Let X(ρ̄) be the rigid analytic space over E associated to Rρ̄.

Let Ṽ univ be a free OX(ρ̄)-module associated to V univ, which is naturally

equipped with an OX(ρ̄)-linear continuous GK-action induced from that on

V univ, where “continuous” means that GK acts continuously on Γ(U, Ṽ univ)

for any affinoid opens U = Spm(R) ⊆ X(ρ̄).

Remark 3.15. For a point x ∈ X(ρ̄), the fiber Vx of Ṽ univ at x is

a two dimensional E(x)-representation such that the reduction of a GK-

stable OE(x)-lattice of Vx is isomorphic to V ⊗FOE(x)/mE(x). Because we

assume that EndF[GK ](ρ̄) = F, we also have EndE(x)[GK ](Vx) = E(x) for any

x ∈ X(ρ̄).

Let WE be the rigid analytic space over E which represents the functor

DWE
from the category of rigid analytic spaces over E to the category of

groups, which is defined by

DWE
(Y ) := {δ : O×

K → Γ(Y,O×
Y ) continuous homomorphisms }

for any rigid analytic space Y over E, where “continuous” is the same

meaning as in the definition of Ṽ univ. It is known that WE is the rigid

analytic space associated to the Iwasawa algebra O[[O×
K ]], which is non-

canonically isomorphic to a finite (this number is equal to the number of

torsion points in O×
K) union of [K : Qp]-dimensional open unit disc over E.

We denote by

δuniv
0 : O×

K → Γ(WE ,O×
WE

)
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the universal continuous homomorphism, which is the composition of

the map O×
K → O[[O×

K ]]× : a �→ [a] with the natural map O[[O×
K ]]× →

Γ(WE ,O×
WE

). Using a fixed πK , we extend δuniv
0 to K× by

δuniv : K× → Γ(WE ,O×
WE

) such that δuniv(πK) = 1, δuniv|O×
K

= δuniv
0 .

By local class field theory, we can uniquely extend δuniv to a character

δ̃univ : Gab
K → Γ(WE ,O×

WE
) such that δuniv = δ̃univ ◦ recK .

Set

X(ρ̄) := X(ρ̄)×E WE ×E Gan
m,E .

Let Y be the canonical parameter of Gan
m,E . We denote the projections by

p1 : X(ρ̄)→ X(ρ̄), p2 : X(ρ̄)→WE , p3 : X(ρ̄)→ Gan
m,E

respectively. We denote by N := p∗1Ṽ
univ and M := N(p∗2(δ̃

univ)−1), which

is the twist of M by the cahacter p∗2(δ̃
univ)−1 : Gab

K → Γ(X(ρ̄),OX(ρ̄))
×.

These are rank two free OX(ρ̄)-modules with OX(ρ̄)-linear continuous GK-

actions.

Remark 3.16. In §10 of [Ki03], Kisin applied his theory of Xfs (for

K = Qp) to the family q∗1Ṽ
univ on the space Y (ρ̄) := X(ρ̄) ×E Gan

m,E ,

where q1 : Y (ρ̄) → X(ρ̄) is the natural projection. This is because he

applied the results to a study of the family of p-adic representations asso-

ciated to Coleman-Mazur eigencurve, one of whose Hodge-Tate weights is

always zero. On the other hands, in this article, we want to study all the

two dimensional trianguline representations without any conditions on the

Hodge-Tate weights. Hence, we use the space X(ρ̄) and the representation

M := N(p∗2(δ̃
univ)−1) instead of Y (ρ̄) and q∗1Ṽ

univ.

A point x of X(ρ̄) can be written as a triple x = ([Vx], δx, λx), where Vx

is an E(x)-representation such that the reduction of a suitable GK-stable

OE(x)-lattice of Vx is isomorphic to V̄ ⊗OE(x)
OE(x)/mE(x), and δx : O×

K →
E(x)× is a continuous homomorphism, and λx ∈ E(x)×. We denote by

PM (T ) = (PM (T )σ)σ∈P = (T 2 − a1,σT + a0,σ)σ∈P ∈ K ⊗Qp OX(ρ̄)[T ]

=
∏
σ∈P

OX(ρ̄)[T ]



Density of Two Dimensional Crystalline Representations 535

the Sen’s polynomial of M . Let X0(ρ̄) ⊆ X(ρ̄) be the Zariski closed subspace

defined by the ideal generated by a0,σ for all σ ∈ P. Let M0 := M |X0(ρ̄) be

the restriction of M to X0(ρ̄), then we have

PM0(T ) = (T (T − a1,σ))σ∈P ∈
∏
σ∈P

OX0(ρ̄)[T ].

We denote by Qσ(T ) := T − a1,σ ∈ OX0(ρ̄)[T ] for each σ ∈ P. Under this

situation, we apply Theorem 3.9 to X0(ρ̄) and M0 and Y := (p∗3Y )|X0(ρ̄),

then we obtain a Zariski closed subspace

E(ρ̄) := X0(ρ̄)fs ⊆ X0(ρ̄).

For the properties of E(ρ̄), we have a following theorem, which is a modified

generalization of Proposition 10.4 of [Ki03] for general K. For any λ ∈ E
×
,

we define a unramified continuous homomorphism δλ : K× → E
×

such

that δλ(πK) := λ and δλ|O×
K

is trivial. For a point δ ∈ WE(E), i.e. for

a continuous homomorphism δ : O×
K → E

×
, we denote by the same letter

δ : K× → E
×

the homomorphism such that δ(πK) = 1 and δ|O×
K

= δ.

Theorem 3.17.

(1) For any point x := ([Vx], δx, λx) ∈ E(ρ̄), there exist {kσ}σ∈P ∈∏
σ∈P Z� 0 and a short exact sequence of E(x)-B-pairs

0→W (δ1)→W (Vx)→W (det(Vx)δ
−1
1 )→ 0

for δ1 := δxδλx

∏
σ∈P σ−kσ .

(2) Conversely, if a point x := ([Vx], δx, λx) ∈ X(ρ̄) satisfies the following

conditions (i) and (ii),

(i) Vx is a split trianguline E(x)-representation with a triangulation

Tx : 0 ⊆W (δxδλx) ⊆W (Vx),

(ii) (Vx, Tx) satisfies all the assumptions in Proposition 2.41,

then we have x ∈ E(ρ̄).
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Proof. The property (1) follows from (3) of Proposition 3.14.

We prove (2). Extending the scalars from E to E(x), we may assume

that E(x) = E. Let x := ([Vx], δx, λx) ∈ X(ρ̄) be an E-rational point

satisfying the conditions (i), (ii) in (2). Then, the trianguline deformation

functor DVx,Tx is representable by a formally smooth quotient RVx,Tx of the

universal deformation ring RVx of Vx by Proposition 2.41. Moreover, we

have a canonical isomorphism RVx

∼→ ÔX(ρ̄),p1(x), and V univ
x := Ṽ univ⊗OX(ρ̄)

ÔX(ρ̄),p1(x) is the universal deformation of Vx by Proposition 9.5 of [Ki03].

Taking a quotient, we obtain a map

ÔX(ρ̄),x
∼→ ÔX(ρ̄),p1(x)⊗̂EÔWE ,p2(x)⊗̂EÔGan

m,E ,p3(x)

→ RVx,Tx⊗̂EÔWE ,p2(x)⊗̂EÔGan
m,E ,p3(x).

By the definition of RVx,Tx , there exists a continuous homomorphism δTx :

K× → R×
Vx,Tx which gives the universal triangulation, i.e. we have the

following compatible triangulation

Tuniv,n : 0 ⊆W (δTx,n) ⊆W (V univ
x ⊗RVx

RVx,Tx/m
n)

of V univ
x ⊗RVx

RVx,Tx/m
n for each n � 1, where m is the maximal ideal of

RVx,Tx and δTx,n is the composition of δTx with the natural quotient map

RVx,Tx → RVx,Tx/m
n. Set λTx := δTx(πK) ∈ R×

Vx,Tx . Denote by δuniv
p2(x) :

O×
K → Ô×

WE ,p2(x) the composition of the universal homomorphism δuniv
0 :

O×
K → Γ(WE ,OWE

)× with the natural map Γ(WE ,OWE
)× → Ô×

WE ,p2(x).

Then, the E-algebra ÔWE ,p2(x) is topologically generated by {δuniv
p2(x)(a) −

δx(a)|a ∈ O×
K}. Denote by R a quotient of RVx,Tx⊗̂EÔWE ,p2(x)⊗̂E

ÔGan
m,E ,p3(x) by the ideal generated by δTx(a)⊗ 1⊗ 1− 1⊗ δuniv

p2(x)(a)⊗ 1 (any

a ∈ O×
K) and λTx⊗1⊗1−1⊗1⊗Y . Then, we can see that the composition

of the map RVx,Tx → RVx,Tx⊗̂E(x)ÔWE ,p2(x)⊗̂ÔGan
m,E ,E(x) : z �→ z ⊗ 1 ⊗ 1

with the natural quotient map RVx,Tx⊗̂E(x)ÔWE ,p2(x)⊗̂E(x)ÔGan
m,E ,p3(x) → R

is an isomorphism RVx,Tx
∼→ R, and, if we denote by δ : O×

K → R
×

and

Y ∈ R
×

the reduction of 1⊗ δuniv
p2(x)⊗ 1 and 1⊗ 1⊗Y , then the universal tri-

angulation Tuniv := {Tuniv,n}n� 1 on RVx,Tx is transformed to the following

triangulation

T : 0 ⊆W (δδY ) ⊆W ((p∗1Ṽ
univ)⊗OX(ρ̄)

R)
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(here we drop the notation n ∈ Z� 1 to simplify the notation).

Put VR := (p∗1Ṽ
univ)⊗OX(ρ̄)

R, and put Rn := R/mn and VRn
:= VR ⊗R

Rn for each n � 1. Denote by the same notation δ : Gab
K → R

×
the character

such that δ|O×
K

= δ and δ(recK(πK)) = 1. Under this situation, we first

claim that the natural map Spm(Rn) → X(ρ̄) factors through X0(ρ̄) for

any n � 1. This immediately follows from the facts that W (VRn
(δ

−1
)) has

a triangulation 0 ⊆W (δY n
) ⊆W (VRn

(δ
−1

)) and that W (δY n
) is crystalline

with the Hodge-Tate weight zero, where Y n ∈ Rn is the reduction of Y .

This fact also implies that Dcris(W (δY n
)) which is equal to

Dcris(W (δY n
))ϕK=Y n∩Fil0DdR(W (δY n

)) is a ϕ-stable K0⊗QpRn-submodule

of Dcris(VRn
(δ

−1
))ϕK=Y n of rank one contained in Fil0DdR(VRn

(δ
−1

)). By

Lemma 3.8, then we have a natural inclusion

Dcris(W (δY n
)) ⊆ D+

cris(VRn
(δ

−1
))ϕK=Y n .(6)

Next, we take an affinoid open Spm(R) ⊆ X0(ρ̄) which contains x and

satisfies the condition in the construction of Xfs (see the paragraph after

the proof of Lemma 3.12). Let J be the ideal of R which defines Spm(R)fs.

We claim that the natural map R → R factors through R/J → R, which

proves that x ∈ E(ρ̄)(E) because x is the point corresponding to the kernel

of the map R → R → R/m. By construction of J , it suffices to show the

following lemma. �

Lemma 3.18. In the above situation, the following hold:

(i) For any k � 1 and σ ∈ P, the natural map

lim←−
n

(B+
max,K ⊗K,σ VRn

(δ
−1

))ϕK=Y ,GK

→ lim←−
n

(B+
dR/tkB+

dR ⊗K,σ VRn
(δ

−1
))GK

is a surjection.

(ii) For any σ ∈ P and i ∈ Z� 0, Qσ(i) is nonzero in R.

Proof. Because R
∼→ RVx,Tx is domain, (i) follows from (ii) and from

the above inclusion (6) by the same argument as in the proof of Proposition
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2.8 of [Ki03]. We prove (ii). On R, we have Qσ(T ) = T − ā1,σ, where

ā1,σ ∈ R is the image of a1,σ ∈ OX(ρ̄) by the natural map R → R. Hence,

ā1,σ ∈ R is the σ-part of the Hodge-Tate weights of det(VR)(δ
−2

) for any

σ ∈ P. Set δ0 := det(Vx)|O×
K
· δ−2

x : O×
K → E×. By Lemma 3.19 below, then

ā1,σ ∈ R is the image of the σ-part of the Hodge-Tate weight auniv
σ ∈ Rδ0

of the universal deformation δuniv
δ0

: O×
K → R×

δ0
by the injection Rδ0 ↪→

RVx,Tx
∼→ R induced by a morphism f : DVx,Tx → Dδ0 defined below, where

the injectiveness follows from Lemma 3.19 below. Hence, for any i ∈ Z� 0,

we have Qσ(i) = (i− ā1,σ) �= 0 ∈ R by Lemma 3.20 below. �

Let δ0 : O×
K → E× be a continuous homomorphism. We define a functor

Dδ0 : CE → Sets by

Dδ0(A) := {δA : O×
K → A× : continuous homomorphisms

δA (mod mA) = δ0}

for A ∈ CE . It is easy to show that this functor is pro-representable by

a ring Rδ0 which is isomorphic to E[[T1, T2, · · · , Td]] for d := [K : Qp].

Let W be a split trianguline E-B-pair of rank two with a triangulation

T : 0 ⊆ W (δ1) ⊆ W such that W/W (δ1)
∼→ W (δ2) for some continuous

homomorphisms δ1, δ2 : K× → E×. We put δ0 := (δ2/δ1)|O×
K

. We define a

morphism of functors f : DW,T → Dδ0 as follows. Let [(WA, TA)] ∈ DW,T (A)

be an equivalent class of trianguline deformation of (W, T ) over A with a

triangulation TA : 0 ⊆ W (δ1,A) ⊆ WA such that WA/W (δ1,A)
∼→ W (δ2,A)

for some δ1,A, δ2,A : K× → A×, then we define f by

f([(WA, TA)]) := (δ2,A/δ1,A)|O×
K
∈ Dδ0(A).

Lemma 3.19. Let W be a two dimensional split trianguline E-B-pair

with a triangulation T : 0 ⊆ W (δ1) ⊆ W such that W/W (δ1)
∼→ W (δ2).

Assume that H2(GK ,W (δ1/δ2)) = 0, then the morphism of functors f :

DW,T → Dδ0 defined above is formally smooth.

Proof. Let A ∈ CE and I be an ideal of A such that ImA = 0. Take

any [(WA/I , TA/I)] ∈ DW,T (A/I) and δA ∈ Dδ0(A) such that f([(WA/I ,

TA/I)]) = δA⊗ idA/I ∈ Dδ0(A/I). Then, it suffices to show that there exists
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a lift [(WA, TA)] ∈ DW,T (A) of [(WA/I , TA/I)] such that f([(WA, TA)]) = δA.

Denote TA/I : 0 ⊆ W (δ1,A/I) ⊆ WA/I and WA/I/W (δ1,A/I)
∼→ W (δ2,A/I).

Because Dδ0 is formally smooth, there exists δ1,A : K× → A× such that

δ1,A ⊗A A/I = δ1,A/I . We take a lift λ ∈ A× of δ2,A/I(πK) ∈ (A/I)×, and

define δ2,A : K× → A× by δ2,A(πK) = λ and δ2,A|O×
K

= δAδ1,A|O×
K

, then we

have the following short exact sequence

0→W (δ1/δ2)⊗E I →W (δ1,A/δ2,A)→W (δ1,A/I/δ2,A/I)→ 0.

This sequence implies that the natural map

H1(GK ,W (δ1,A/δ2,A))→ H1(GK ,W (δ1,A/I/δ2,A/I))

is a surjection because we have H2(GK ,W (δ1/δ2)) = 0 by the assump-

tion. Hence, there exists a lift [(WA, TA)] ∈ DW,T (A) of [(WA/I , TA/I)] ∈
DW,T (A/I) satisfying that f([WA, TA]) = (δ2,A/δ1,A)|O×

K
= δA. We finish

the proof of the lemma. �

Let A ∈ CE , and let δ : O×
K → A× be a continuous homomorphism, then

it is known that this is locally Qp-analytic by Proposition 8.3 of [Bu07].

Then, for any σ ∈ P, we define the σ-component of Hodge-Tate weights of

δ by ∂δ(x)
∂σ(x) |x=1 ∈ A, which is equal to the σ-part of Hodge-Tate weights of

A(δ̃) where δ̃ : Gab
K → A× is any character such that δ̃ ◦ recK |O×

K
= δ (see

Proposition 3.3 of [Na11]).

Lemma 3.20. Let δ0 : O×
K → E× be a continuous homomorphism. Let

Rδ0 be the universal deformation ring of Dδ0. Let δuniv
0 : O×

K → R×
δ0

be the

universal deformation of δ0. For any σ ∈ P, define by auniv
σ := (aσ,n) ∈

Rδ0 = lim←− nRδ0/m
n the σ-part of Hodge-Tate weights of δuniv

0 , where we

denote by aσ,n the σ-part of Hodge-Tate weights of δuniv
0 ⊗ idRδ0

/mn for each

n � 1. Then, auniv
σ is not constant, i.e. not contained in E, for any σ ∈ P.

Proof. Let a := {aσ}σ∈P ∈
∏

σ∈P E be any element, then we define

a deformation of δ0 over E[ε] by

δa : O×
K → E[ε]× : δa(x) := δ0(x)(1 + (

∑
σ∈P

aσlog(σ(x)))ε).
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The σ-part of Hodge-Tate weights of δa is ∂δ0(x)
∂σ(x) |x=1 + aσε. The lemma

follows from this. �

Corollary 3.21. Let x = [Vx] ∈ X(ρ̄) be a point such that Vx is a

crystabelline E(x)-trianguline representation satisfying the conditions (1)

of Definition 2.45. Then, the point xτ := ([Vx], δτ,1|O×
K
, δτ,1(πK)) ∈ X(ρ̄) is

contained in E(ρ̄) for any τ ∈ S2, where we denote the triangulation Tτ by

0 ⊆W (δτ,1) ⊆W (Vx).

Proof. This follows from (2) of Theorem 3.17 and from Lemma

2.48. �

Next, we describe the local structure of E(ρ̄) at the points satisfying

the conditions (i), (ii) in (2) of Theorem 3.17 by the universal trianguline

deformation rings. We prove the following theorem, which is a generalization

of Proposition 10.6 of [Ki03].

Theorem 3.22. Let x := ([Vx], δx, λx) ∈ E(ρ̄) be a point such that the

conditions (i), (ii) in (2) of Theorem 3.17 hold. Then, we have a canonical

E(x)-algebra isomorphism

ÔE(ρ̄),x
∼→ RVx,Tx .

In particular, E(ρ̄) is smooth of its dimension 3[K : Qp] + 1 at x.

Proof. We may assume that E = E(x).

In the proof of Theorem 3.17,we have already showed that the natural

map ÔX(ρ̄),x → R
∼→ RVx,Tx factors through ÔE(ρ̄),x → R

∼→ RVx,Tx .

We prove the existence of the inverse map RVx,Tx
∼→ R → ÔE(ρ̄),x. Be-

cause x is an E-rational point, we can take a Y -small affinoid neighborhood

Spm(R) of x in E(ρ̄). By Proposition 3.7 and Proposition 3.14, for any suffi-

ciently large k > 0, there exists a short exact sequence of Banach R-modules

with the property (Pr)

0 → (B+
max,K⊗̂K,σR)ϕK=Y → B+

dR/tkB+
dR⊗̂K,σR→ Uk,σ → 0

for any σ ∈ P, and we have a natural isomorphism

K ⊗K0 D+
cris(VR(δ̃univ−1))ϕ

f=Y ∼→ (B+
dR/tkB+

dR⊗̂QpVR(δ̃univ−1))GK .
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Fix such a k > 0, then we defined an ideal Hσ ⊆ R for each σ ∈ P in

Proposition 3.14 such that Spm(R) \V (H) (H :=
∏

σ∈P Hσ) and Spm(R) \
V (Hσ) are scheme theoretically dense in Spm(R).

Under this situation, we prove the existence of the inverse RVx,Tx
∼→ R→

ÔE(ρ̄),x. First, we claim that D+
cris(Vx(δ̃

−1
x ))ϕ

f=λx is a free K0⊗Qp E-module

of rank one. By the definition and by Lemma 3.8, this module contains a

submodule Dcris(W (δλx)) = Dcris(W (δλx))
ϕf=λx ∩ Fil0DdR(W (δλx)) which

is of rank one. Hence D+
cris(Vx(δ̃

−1
x ))ϕ

f=λx is of rank one or two. If this

is of rank two, then Vx(δ̃
−1
x ) is crystalline with the Hodge-Tate weights

{0, kσ}σ∈P such that kσ ∈ Z� 0 for any σ ∈ P with a unique ϕK-eigenvalue

λx. These conditions imply that δ2/δ1 =
∏

σ∈P σkσ , which contradicts the

assumption on (Vx, Tx). Hence D+
cris(Vx(δ̃

−1
x ))ϕ

f=λx is of rank one and the

inclusion Dcris(W (δλx)) ↪→ D+
cris(Vx(δ̃

−1
x ))ϕ

f=λx is isomorphism.

In the same way as in the proof of Proposition 10.6 of [Ki03], we take

the blow up T̃ of Spm(R) along H. By the definition of blow up, for any

point x̃ ∈ T̃ above x ∈ Spm(R) and for any σ ∈ P, there exists fσ ∈ Hσ

such that fσ is a non zero divisor of Ô
T̃ ,x̃

and that HσÔT̃ ,x̃
= fσÔT̃ ,x̃

. By

the definition of Hσ, for any σ ∈ P and for any x̃ ∈ T̃ above x, there exists

a GK-equivariant map VR(δ̃univ−1)∨ → (B+
max,K⊗̂K,σR)ϕK=Y such that the

composite with the map

(B+
max,K⊗̂K,σR)ϕK=Y → (B+

max,K⊗̂K,σfσÔT̃ ,x̃
)ϕK=Y

∼→ (B+
max,K⊗̂K,σÔT̃ ,x̃

)ϕK=Y → (B+
max,K ⊗K,σ E(x̃))ϕK=Y (x̃)

is non zero, where the isomorphism

(B+
max,K⊗̂K,σfσÔT̃ ,x̃

)ϕK=Y ∼→ (B+
max,K⊗̂K,σÔT̃ ,x̃

)ϕK=Y

is given by a �→ a
fσ

. Using this map and using the fact that

D+
cris(Vx(δ̃

−1
x ))ϕ

f=λx is rank one, we can see by induction on n that

D+
cris(VR(δ̃univ−1) ⊗R ÔT̃ ,x̃

/mn
x̃)ϕ

f=Y is a free K0 ⊗Qp ÔT̃ ,x̃
/mn

x̃-module of

rank one and that the natural base change map

D+
cris(VR(δ̃univ−1)⊗R ÔT̃ ,x̃

/mn
x̃)ϕ

f=Y ⊗O
T̃ ,x̃

/mn
x̃
E(x̃)

∼→ D+
cris(Vx(δ̃

−1
x )⊗E E(x̃))ϕ

f=Y (x)
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is isomorphism for any n � 1. Because we have an equality

Fil1(K ⊗K0 D+
cris(Vx(δ̃

−1
x ))ϕ

f=Y (x)) = Fil1DdR(W (δλx)) = 0,

then D+
cris(VR(δ̃univ−1)⊗R ÔT̃ ,x̃

/mn
x̃)ϕ

f=Y is a (Ô
T̃ ,x̃

/mn
x̃)-filtered ϕ-module

of rank one such that Fil0 = K ⊗K0 D+
cris(VR(δuniv−1) ⊗R ÔT̃ ,x̃

/mn
x̃)ϕ

f=Y

and Fil1 = 0. By Lemma 2.23, this shows that VR⊗R ÔT̃ ,x̃
is the projective

limit of split trianguline (O
T̃ ,x̃

/mn
x̃)-representations with triangulations 0 ⊆

W (δ̄univ
n δY n

) ⊆ W (VR ⊗R ÔT̃ ,x̃
/mn

x̃) which are trianguline deformations of

(Vx, Tx) ⊗E E(x̃) (for n ∈ Z� 1), hence the natural map RVx → ÔE(ρ̄),x →
Ô

T̃ ,x̃
factors through RVx → RVx,Tx for any x̃ ∈ T̃ above x. Moreover,

because the natural map

ÔE(ρ̄),x ↪→
∏

x̃∈T̃ ,p(x̃)=x

Ô
T̃ ,x̃

is an injection by Lemma 10.7 of [Ki03] and by (2) of Proposition 3.14

(where p : T̃ → Spm(R) is the projection), the map RVx → ÔE(ρ̄),x also

factors through RVx,Tx → ÔE(ρ̄),x. By this natural construction, we can

easily check that this is the inverse of the map giving the above. We finish

to prove the existence of the isomorphism ÔE(ρ̄),x
∼→ RVx,Tx for such points.

Because this isomorphism is preserved by the base change from E to any

finite extension E′ by Lemma 3.10, the smoothness around these points

follows from this isomorphism and from Lemma 2.8 of [BLR95]. �

4. Zariski Density of Two Dimensional Crystalline Representa-

tions

In this final section, as an application of Theorem 2.62 (in the two di-

mensional case) and of Theorem 3.22, we prove the Zariski density of two

dimensional crystalline representations for any p-adic field.

We define a map π : E(ρ̄) → WE ×E WE by ([Vx], δx, λx) �→ (δx,

det(Vx)|O×
K
· δ−1

x ).

Proposition 4.1. For any point x ∈ E(ρ̄) which satisfies all the con-

ditions of Theorem 3.22, the map π : E(ρ̄) → WE ×E WE is smooth at x.
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Proof. Let x := ([Vx], δx, λx) ∈ E(ρ̄) be such a point. Set δ′x :=

det(Vx)|O×
K
· δ−1

x . By the same argument as in Proposition 9.5 of [Ki03], we

have a natural isomorphism isomorphism

ÔWE×EWE ,(δx,δ′x)
∼→ ÔWE ,δx⊗̂E(x)ÔWE ,δ′x

∼→ Rδx⊗̂E(x)Rδ′x .

Hence, by Theorem 3.22, the completion of π at x is the morphism

π : Spf(ÔE(ρ̄),x)→ Spf(ÔWE×EWE ,(δx,δ′x))

induced by the morphism of functors

πx : DVx,Tx → Dδx ×Dδ′x : [(WA, TA)] �→ (δ1,A|O×
K
, δ2,A|O×

K
),

where TA : 0 ⊆ W (δ1,A) ⊆ WA and WA/W (δ1,A)
∼→ W (δ2,A) for A ∈ CE(x).

Then, we can prove the formal smoothness of this morphism of functor in

the same way as in the proof of Lemma 3.19. Hence, π is smooth at x by

Proposition 2.41 and by Proposition 2.9 of [BLR95]. �

Let x := ([Vx], δx, λx) ∈ E(ρ̄) be an E-rational point such that Vx is a

crystalline split trianguline E-representation with a triangulation Tx : 0 ⊆
W (δxδλx) ⊆W (Vx) satisfying the condition (1) of Definition 2.45 (see Corol-

lary 3.21). By Proposition 3.14, for any Y -small affinoid open neighborhood

U = Spm(R) of x in E(ρ̄), there exits k > 0 and there exists a short exact

sequence of Banach R-modules with the property (Pr)

0 → K ⊗K0 (B+
max⊗̂QpR)ϕ

f=Y → B+
dR/tkB+

dR⊗̂QpR→ Uk → 0

and we have a natural isomorphism

K ⊗K0 D+
cris(VR(δ̃−1

R ))ϕ
f=Y ∼→ (B+

dR/tkB+
dR⊗̂QpVR(δ̃−1

R ))GK

and, for any σ ∈ P, there exists the smallest ideal Hσ ⊆ R satisfying that

(B+
dR/tkB+

dR⊗̂K,σHσVR(δ̃−1
R ))GK

∼→ (B+
dR/tkB+

dR⊗̂K,σVR(δ̃−1
R ))GK ,

where we put VR := Γ(U, p∗1(Ṽ
univ)) and δR : O×

K → R× is the restriction

of p∗2(δ
univ) to U . Moreover, if we put Q :=

∏
σ∈P,0� i� k Qσ(−i) ∈ R, then

we have inclusions Spm(R)Q ⊆ Spm(R) \ V (Hσ) ⊆ Spm(R) by the proof
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of Proposition 3.14. Moreover, shrinking U suitably, we may assume that

vp(λy) = vp(λx) for any y = (Vy, δy, λy) ∈ U and that π|U is smooth by

Proposition 4.1.

Under this situation, we study the map π|U : U → WE ×E WE around

x in detail. Because Vx is crystalline, we can write

π(x) = (
∏
σ∈P

σk1,σ ,
∏
σ∈P

σk2,σ) ∈ WE ×E WE

for some integers {k1,σ, k2,σ}σ∈P . Define a subset

(WE ×E WE)cl,x := {(
∏
σ∈P

σnσ ,
∏
σ∈P

σnσ−mσ) ∈ WE ×E WE |nσ ∈ Z,

mσ ∈ Z� k+1 for any σ ∈ P and
∑
σ∈P

mσ � 2eKvp(λx) + [K : Qp] + 1},

where eK is the absolute ramified index of K. Then, for any admissible

open neighborhood V of π(x) in WE ×E WE , there exists an affinoid open

V ′ ⊆ V which contains π(x) such that V ′
cl,x := (WE ×E WE)cl,x ∩ V ′ is

Zariski dense in V ′. Under this situation, we prove the following lemma.

Lemma 4.2. Let y := (
∏

σ∈P σnσ ,
∏

σ∈P σnσ−mσ) be an element in

(WE ×EWE)cl,x and let z := ([Vz], δz, λz) be a point in U ∩ π−1(y), then Vz

is crystalline and split trianguline E(z)-representation with a triangulation

Tz : 0 ⊆ W (δzδλz) ⊆ W (Vz) which satisfies the conditions (1) and (2) of

Definition 2.45.

Proof. Let z be such a point. By Corollary 2.6 of [Ki03], we have a

natural isomorphism

(B+
dR/tkB+

dR⊗̂QpVR(δ̃−1
R ))GK ⊗R E(z)

∼→ (B+
dR/tkB+

dR ⊗Qp Vz(δ̃
−1
z ))GK

and this is a free K ⊗Qp E(z)-module of rank one. Because we have an

isomorphism

K ⊗K0 D+
cris(VR(δ̃−1

R ))ϕ
f=Y ∼→ (B+

dR/tkB+
dR⊗̂QpVR(δ̃−1

R ))GK

and an injection

K ⊗K0 D+
cris(Vz(δ̃

−1
z ))ϕ

f=λz ↪→ (B+
dR/tkB+

dR ⊗Qp Vz(δ̃
−1
z ))GK
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induced from the injection K⊗K0 (B+
cris⊗Qp E(z))ϕ

f=λz ↪→ B+
dR/tkB+

dR⊗Qp

E(z), we obtain an isomorphism

K ⊗K0 D+
cris(Vz(δ̃

−1
z ))ϕ

f=λz ∼→ (B+
dR/tkB+

dR ⊗Qp Vz(δ̃
−1
z ))GK .

On the other hand, because the Hodge-Tate weights of Vz(δ̃
−1
z ) are

{0,−mσ}σ∈P and mσ � k + 1 � 1, (tk+1B+
dR ⊗Qp Vz(δ̃

−1
z ))GK is also a

free K ⊗Qp E(z)-module of rank one. These implies that DdR(Vz(δ̃
−1
z )) is a

free of rank two K ⊗Qp E(z)-module, i.e. Vz(δ̃
−1
z ) is potentially semi-stable

and split trianguline with a triangulation T ′
z : 0 ⊆ W (δλz) ↪→ W (Vz(δ̃

−1
z )).

Moreover, if we set δ2 := det(Vz) · δ−2
z δ−1

λz
: K× → E(z)×, then we have

W (Vz(δ̃
−1
z ))/W (δλz)

∼→ W (δ2) such that δ2|O×
K

=
∏

σ∈P σ−mσ because

z ∈ π−1(y), which implies that Vz(δ̃
−1
z ) is semi-stable. Finally, we claim that

Vz(δ̃
−1
z ) is crystalline. If we assume that Vz(δ̃

−1
z ) is semi-stable but not crys-

talline, then the ϕf -eigenvalue of W (δ2) is λzp
f or λzp

−f . By the weakly ad-

missibility of Dst(Vz(δ̃
−1
z )), we have an equality tN (Vz(δ̃

−1
z )) = tH(Vz(δ̃

−1
z )).

On the other hand, because we have an isomorphism W (det(Vz(δ̃
−1
z )))

∼→
W (δλzδ2), we obtain the equalities

tN (Vz(δ̃
−1
z )) =

2

f
vp(λz)± 1 =

2

f
vp(λx)± 1,

and tH(Vz(δ̃
−1
z )) =

1

[K : Qp]
(
∑
σ∈P

mσ),

hence we obtain tN (Vz(δ̃
−1
z )) < tH(Vz(δ̃

−1
z )) because y ∈ (W ×E WE)cl,x,

which is a contradiction. Hence, Vz(δ̃
−1
z ) is crystalline, and Vz is also crys-

talline because δ̃z is crystalline. Finally, twisting T ′
z by δz, we obtain a

triangulation Tz : 0 ⊆ W (δzδλz) ⊆ W (Vz) which satisfies (1) and (2) of

Definition 2.45. �

Lemma 4.3. Let z = ([Vz], δz, λz) be a point in U ∩ π−1(y) as in the

above lemma. Then we have a natural isomorphism Ôπ−1(y),z
∼→ Rcris

Vz
.

Proof. First, by Lemma 2.48 and Theorem 3.22 and Lemma 4.2, we

have a triangulation Tz : 0 ⊆ W (δzδλz) ⊆ W (Vz), and the functor DVz ,Tz
is representable by RVz ,Tz , and we have an isomorphism ÔE(ρ̄),z

∼→ RVz ,Tz .
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Then, the completion at z and π(z) of the morphism π : E(ρ̄)→WE×EWE

is the morphism

πz : Spf(RVz ,Tz)→ Spf(Rδz⊗̂E(z)Rδ′z)

induced by

DVz ,Tz → Dδz ×Dδ′z : [(VA, TA)] �→ (δ1,A|O×
K
, δ2,A|O×

K
),

where we set δ′z := det(Vz)|O×
K
· δ−1

z . Under this interpretation, we have

an equality Spf(Ôπ−1(y),z) = π−1
z ((δz, δ

′
z)), and this corresponds to the sub-

functor D′ of DVz ,Tz defined by

D′(A) := {[(VA, TA)] ∈ DVz ,Tz(A)|δ1,A|O×
K

= δz ⊗E(z) idA,

δ2,A|O×
K

= δ′z ⊗E(z) idA}

for A ∈ CE(z). Because Vz is crystalline, this is equivalent to that VA is

crystalline by Lemma 2.57. Therefore we have D′ = Dcris
Vz

, hence we obtain

an isomorphism Rcris
Vz

∼→ Ôπ−1(y),z. �

In the situation of Lemma 4.3, for any y := (
∏

σ∈P σnσ ,
∏

σ∈P σnσ−mσ) ∈
(WE ×E WE)cl,x, we set Uy := π−1(y) ∩ U , which is smooth over E(y) by

the assumption on U , and define a subset

Uy,b := {z = ([Vz], δz, λz) ∈ Uy|Vz is benign}.

Proposition 4.4. In the above situation, if Uy is not empty, then Uy,b

is an admissible open which is scheme theoretically dense in Uy, in particular

Uy,b is non-empty.

Proof. Set Uy := Spm(R′). By Lemma 4.2, any point z ∈ Uy satisfies

the condition (1) and (2) of Definition 2.45 and Vz is crystalline with the

Hodge-Tate weights {nσ, nσ −mσ}σ∈P . Because Uy is smooth, so in partic-

ular Uy is reduced. Hence, by Corollary 6.3.3 of [Be-Co08] and Corollary

3.19 of [Ch09a],

Dcris(VR′(δ̃−1
R′ )) := lim−→

n

(
1

tn
B+

max⊗̂QpVR′(δ̃−1
R′ ))GK
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is a locally free K0⊗Qp R
′-module of rank two, and we have natural isomor-

phisms

Dcris(VR′(δ̃−1
R′ ))⊗R′ E(z)

∼→ Dcris(Vz(δ̃
−1
z )) for any z ∈ Uy

and

K ⊗K0 Dcris(VR′(δ̃−1
R′ ))

∼→ (BdR⊗̂QpVR′(δ̃−1
R′ ))GK = (B+

dR⊗̂QpVR′(δ̃−1
R′ ))GK ,

where the last equality follows from the assumption on the Hodge-Tate

weights of Vz for any z ∈ Uy. Because Uy ⊆ UQ, we have an isomorphism

(B+
dR/tkB+

dR⊗̂QpVR(δ̃−1
R ))GK ⊗R R′ ∼→ (B+

dR/tkB+
dR⊗̂QpVR′(δ̃−1

R′ ))GK ,

which is a locally free K⊗QpR
′-module of rank one by Corollary 2.6 of [Ki03].

Because the natural map K⊗K0 (B+
max⊗̂QpR

′)ϕ
f=Y ↪→ B+

dR/tkB+
dR⊗̂QpR

′ is

an injection, hence we obtain an isomorphism

K ⊗K0 D+
cris(VR′(δ̃−1

R′ ))ϕ
f=Y ∼→ (B+

dR/tkB+
dR⊗̂QpVR′(δ̃−1

R′ ))GK .

From these facts, we can see that the natural map

(B+
dR⊗̂QpVR′(δ̃−1

R′ ))GK → (B+
dR/tkB+

dR⊗̂QpVR′(δ̃−1
R′ ))GK

is a surjection. Hence, we obtain a short exact sequence

0 → FilkDdR(VR′(δ̃−1
R′ ))→ D+

dR(VR′(δ̃−1
R′ ))

→ (B+
dR/tkB+

dR⊗̂QpVR′(δ̃−1
R′ ))GK → 0,

where we define FilkDdR(VR′(δ̃−1
R′ )) := (tkB+

dR⊗̂QpVR′(δ̃−1
R′ ))GK which is a

locally free K ⊗Qp R′-module of rank one. If we set

D2 := Dcris(VR′(δ̃−1
R′ ))/D+

cris(VR′(δ̃−1
R′ ))ϕ

f=Y ,

then the above facts imply that D2 is also a locally free K0 ⊗Qp R′-module

of rank one. By taking a sufficiently fine affinoid covering of Spm(R′), we

may assume that all these modules are free over K0 ⊗Qp R′ or K ⊗Qp R′. If

we decompose Dcris(VR′(δ̃−1
R′ )) = ⊕τ :K0→K0Dτ etc, then we obtain a short

exact sequence

0→ D+,ϕf=Y
τ → Dτ → D2,τ → 0
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of free R′-modules with an R′-linear ϕf -action for any τ . Define Y1 ∈ R
′×

by ϕf (e) = Y1e for a R′-base e of D2,τ . Because Y1 is a lift of the other

Frobenius eigenvalue of Dcris(Vz(δ̃
−1
z )) (one is λz) for any z ∈ Uy = Spm(R′)

and because Dcris(Vz(δ̃
−1
z )) is weakly admissible, the condition

∑
σ∈P mσ �

2eKvp(λz) + [K : Qp] + 1 for any z ∈ Uy implies that

Y − Y1( and Y − p±fY1) ∈ R
′×.

Then, an easy linear algebra implies that there exists a decomposition Dτ =

R′e′1 ⊕ R′e′2 such that R′e′1 = Dϕf=Y
τ = D+,ϕf=Y

τ and R′e′2 = Dϕf=Y1
τ .

Twisting these by ϕi for any 0 � i � f − 1, we obtain a decomposition

Dcris(VR′(δ̃−1
R′ )) = D+

cris(VR′(δ̃−1
R′ ))ϕ

f=Y ⊕Dcris(VR′(δ̃−1
R′ ))ϕ

f=Y1 .

We denote by e1 (resp. e2) a K0⊗Qp R′-basis of D+
cris(VR′(δ̃−1

R′ ))ϕ
f=Y (resp.

Dcris(VR′(δ̃−1
R′ ))ϕ

f=Y1). For any σ ∈ P, we denote by e1,σ, e2,σ the R′-

basis of the σ-component of D+
dR(VR′(δ̃−1

R′ ))
∼→ K ⊗K0 Dcris(VR′(δ̃−1

R′ )) nat-

urally induced from e1, e2. Under this situation, we write the σ-component

FilkDdR(VR′(δ̃−1
R′ ))σ by using the basis e1,σ, e2,σ as follows. Because the

natural map D+
cris(VR′(δ̃−1

R′ ))ϕ
f=Y ∼→ (B+

dR/tkB+
dR⊗̂QpVR′(δ̃−1

R′ ))GK is iso-

morphism, the natural map

FilkDdR(VR′(δ̃−1
R′ ))→ K ⊗K0 D2,

which is the composition of the natural inclusion

FilkDdR(VR′(δ̃−1
R′ ))→ DdR(VR′(δ̃−1

R′ )) = K ⊗K0 Dcris(VR′(δ̃−1
R′ ))

with the natural projection K ⊗K0 Dcris(VR′(δ̃−1
R′ )) → K ⊗K0 D2, is an

isomorphism. Hence, for any σ ∈ P, we can take a R′-basis of

FilkDdR(VR′(δ̃−1
R′ ))σ of the form e2,σ + aσe1,σ for some aσ ∈ R′. Then,

by the definition of benign representations, for any z ∈ Uy, Vz is benign

if and only if
∏

σ∈P aσ(z) �= 0 ∈ E(z) because we have isomorphisms

DdR(VR′(δ̃−1
R′ ))⊗R′ E(z)

∼→ DdR(Vz(δ̃
−1
z )) and Dcris(VR′(δ−1

R′ ))⊗R′ E(z)
∼→

Dcris(Vz(δ̃
−1
z )) etc. Hence, to finish the proof of the proposition, it is enough

to show that
∏

σ∈P aσ is a non-zero divisor in R′. To prove this claim, it

is enough to show that aσ ∈ ÔUy ,z
∼→ Rcris

Vz
is non-zero for any σ ∈ P and
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z ∈ Uy because Rcris
Vz

is domain. To prove this claim, we first note that we

have isomorphisms

Dcris(VR′(δ̃−1
R′ ))⊗R′ Rcris

Vz

∼→ Dcris(VRcris
Vz

(δ̃−1
Rcris

Vz

))

:= lim←−
n� 1

Dcris(VRcris
Vz

/mn(δ̃−1
Rcris

Vz
,n

))

and

DdR(VR′(δ̃−1
R′ ))⊗R′ Rcris

Vz

∼→ DdR(VRcris
Vz

(δ̃−1
Rcris

Vz

))

:= lim←−
n� 1

DdR(VRcris
Vz

/mn(δ̃−1
Rcris

Vz
,n

))

by construction and by Corollary 6.3.3 of [Be-Co08], where we denote by

m the maximal ideal of Rcris
Vz

and denote by δRcris
Vz

: O×
K → (Rcris

Vz
)× the

homomorphism induced from δR′ and denote by δRcris
Vz

,n : O×
K → (Rcris

Vz
/mn)×

the reduction of δRcris
Vz

for n � 1. Hence, the claim follows from the following

lemma. �

Lemma 4.5. Let V be a crystalline E-representation with Hodge-Tate

weights {0,−kσ}σ∈P such that kσ ∈ Z� 1 for any σ ∈ P. Assume that

Dcris(VRcris
V

) = K0 ⊗Qp Rcris
V e1 ⊕ K0 ⊗Qp Rcris

V e2 such that ϕf (e1) = λ′
1e1,

ϕf (e2) = λ′
2e2 for some λ′

1, λ
′
2 ∈ (Rcris

V )× and that FilkσDdR(VRcris
V

)σ is

generated by e2,σ + aσe1,σ for any σ ∈ P. Then, we have aσ �= 0 ∈ Rcris
V for

any σ ∈ P.

Proof. Denote by λi := λ′
i ∈ E× and āσ ∈ E, the images of λ′

i and aσ
by the natural quotient map Rcris

V → E. Then we have Dcris(V ) = K0 ⊗Qp

Eē1 ⊕K0 ⊗Qp Eē2 such that ϕf (ēi) = λiēi and FilkσDdR(V )σ = E(ē2,σ +

āσ ē1,σ). For any b := {bσ}σ∈P ∈
∏

σ∈P E, we construct a deformation

D(b) of Dcris(V ) over E[ε] by D(b) := Dcris(V )⊗E E[ε] as a ϕ-module and

Fil0(K ⊗K0 D(b)) = K ⊗K0 D(b) and

Fil1(K ⊗K0 D(b))σ = Filkσ(K ⊗K0 D(b))σ := E[ε](ē2,σ + (āσ + bσε)ē1,σ),

Filkσ+1(K ⊗K0 D(b))σ = 0. For any b as above, D(b) is a deformation of

Dcris(V ) over E[ε]. Here, we remark that D(b) is automatically weakly
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admissible because, as an E-filtered ϕ-module, D(b) is an extension of

Dcrys(V ) by Dcrys(V ) and because the weakly admissibility is closed un-

der extensions. The existence of such deformations implies that aσ �= 0 for

any σ ∈ P. �

Next, we will prove a proposition concerning the Zariski density of be-

nign points in E(ρ̄). Before proving this proposition, we first prove some

lemmas concerning general (maybe well-known easy) facts about rigid ge-

ometry.

Lemma 4.6. Let Tn be the n-dimensional closed unit disc defined over

E. Then, for any admissible open U of Tn which contains the origin 0 :=

(0, · · · , 0) ∈ Tn, there exists m >> 0 such that {(x1, · · · , xn) ∈ Tn||xi| �
1/pm for any 1 � i � n} ⊆ U .

Proof. Because U is admissibly covered by rational subdomains, we

may assume that U is itself a rational subdomain, namely, we may assume

that there exist f1, · · · , fd, g ∈ E{{T1, · · · , Tn}} such that (f1, · · · , fd, g) =

E{{T1, · · · , Tn}} and U = {x = (x1, · · · , xn) ∈ Tn||fi(x)| � |g(x)| for any

1 � i � d}. Then, the condition 0 ∈ U means that |fi,0| � |g0| for any

i, where fi,0, g0 ∈ E are the constant terms of fi and g. If g0 = 0, then

fi,0 = 0 for any i, and this implies that (f1, · · · , fd, g) ⊆ (T1, T2 · · · , Tn),

which is a contradiction. Hence we have g0 �= 0 and then, because the

norms of coefficients of fi and g are bounded, there exits m >> 0 large

enough such that |fi(x)| � max{|fi,0|, |g0|} = |g0| and |g(x)| = |g0| for any

x = (x1, · · · , xn) ∈ Tn such that |xi| � 1/pm for any i, i.e. {x ∈ Tn||xi| �
1/pm for any i} ⊆ U . �

Lemma 4.7. Let x := ([Vx], δx, λx) ∈ E(ρ̄) be an E-rational point such

that Vx is crystalline trianguline as in Lemma 4.2, and let U ⊆ E(ρ̄) be an

admissible open neighborhood of x. Then, there exists an admissible open

neighborhood U ′ ⊆ U of x such that U ′
cl,x := U ′ ∩ π−1((WE ×E WE)cl,x) is

Zariski dense in U ′.

Proof. Re-taking smaller U , we may assume that U satisfies the prop-

erties as in before Lemma 4.2 and that the morphism π|U : U →WE×EWE

is smooth and U is irreducible smooth of its dimension 3[K : Qp] + 1

by Theorem 3.22 and Lemma 4.1. In particular, we may assume that
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π(U) ⊆ WE ×E WE is an admissible open by Corollary 5.11 of [BL93].

By definition of WE ×E WE and (WE ×E WE)cl,x and by Lemma 4.6, if

we re-take U smaller, then we may assume that there exists an admissi-

ble open neighborhood V of y := π(x) which is isomorphic to Tn
∼→ V

where n := 2[K : Qp] such that y corresponds to the origin 0 ∈ Tn

and that, for any m � 1, the set Vcl,m := {x ∈ Tn||xi| � 1/pm for any

1 � i � n} ∩ (WE ×EWE)cl,x is Zariski dense in V and that π(U) ⊆ V and

that π|U : U → V factors through an étale morphism π′ : U → V ×E Tn′

satisfying π′(x) = (y, 0) for n′ := [K : Qp]+1. Because Vcl,m is Zariski dense

in V for any m, the set (V ×E Tn′)cl,m := {(y′, z) ∈ Vcl,m×E Tn′ ||zi| � 1/pm

for any 1 � i � n′} is also Zariski dense in V ×E Tn′ . Because π′(U) is an

admissible open neighborhood of (y, 0) ∈ V ×E Tn′ , there exists m >> 0

such that (V ×ETn′)cl,m is contained in π′(U) by Lemma 4.6. Then, we have

π
′−1((V ×E Tn′)cl,m) ⊆ π−1(Vcl,m) ⊆ Ucl,x, then the lemma follows from the

following lemma. �

Lemma 4.8. Let f : U := Spm(B) → V := Spm(E{{T1, · · · , Tn}}) be

an étale morphism between E-affinoids for some n. We assume that U is

irreducible and reduced. If Vcl ⊆ V is a Zariski dense subset of V such that

Vcl ⊆ f(U), then f−1(Vcl) is also Zariski dense in U .

Proof. By the assumption, the natural map A := E{{T1, · · · , Tn}} →∏
x∈Vcl

E(x) is an injection. To prove the lemma, it suffices to show that

the kernel of the natural map B →
∏

y∈f−1(Vcl)
E(y) is zero. If I is the

kernel of this map, then the map A → B/I ↪→
∏

y∈f−1(Vcl)
E(y) is equal

to the map A ↪→
∏

x∈Vcl
E(x) →

∏
y∈f−1(Vcl)

E(y). Because we have Vcl ⊆
f(U) by the assumption, the map

∏
x∈Vcl

E(x) →
∏

y∈f−1(Vcl)
E(y) is an

injection. Therefore, the map A ↪→ B/I is also an injection. Then, we have

dim(A) � dim(B/I)(� dim(B)) by Lemma 4.9 below. From this, we have

dim(B/I) = dim(B) because B is étale over A. Because U is irreducible

and reduced, we obtain the equality I = 0. �

Lemma 4.9. Let f : Z := Spm(B′) → Spm(E{{T1, · · · , Tn}}) be a

morphism of affinoids over E. We assume that the induced map A :=

E{{T1, · · · , Tn}} → B′ is an injection. Then, we have dim(A) � dim(B′).

Proof. Because A ↪→ B′ is an injection, the base change Frac(A) ↪→
Frac(A) ⊗A B′ is also an injection, in particular, the generic fiber of the
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morphism of schemes f0 : Spec(B′) → Spec(A) induced from the injection

A ↪→ B′ is not empty. We denote by x the generic point of Spec(A) and

take a point y ∈ f−1
0 (x). By Proposition 2.1.1 of [Berk93], if we denote

by κ(x) and κ(y) the residue fields (in the sense of scheme) at x and y,

then the natural inclusion κ(x) ↪→ κ(y) is an inclusion of valuation fields

which induces an inclusion κ̃(x) ↪→ κ̃(y), where κ̃(−) is the residue field of

the valuation field κ(−). Form this inclusion, we obtain (dim(A) = n =

)s(κ̃(x)/E) � s(κ̃(y)/E), where s(κ̃(−)/E) is the transcendence degree of

κ̃(−) over E. By Lemma 2.5.2 of [Berk93], then we also have s(κ̃(y)/E) �
dim(B′), hence we obtain dim(A) � dim(B′). �

Set

E(ρ̄)b := {x ∈ E(ρ̄)|Vx is benign and crystalline }.

Proposition 4.10. Let x be an E-rational point in E(ρ̄) as in Lemma

4.7, and let U be an admissible open neighborhood of x. If we take an affinoid

neighborhood U ′ := Spm(R) of x as in Lemma 4.7. Then, U ′
b := E(ρ̄)b ∩U ′

is also Zariski dense in U ′.

Proof. Consider any element f ∈ R in the kernel of the natural map

R→
∏

z∈Ub
E(z). Then, for any y ∈ (WE ×E WE)cl,x ∩ π(U), f |π−1(y)∩U ∈

Oπ−1(y)∩U is equal to zero by Proposition 4.4 because Oπ−1(y)∩U is reduced.

Hence, we obtain f = 0 ∈ R by Lemma 4.7. �

Corollary 4.11. Let Y be the Zariski closure of E(ρ̄)b in E(ρ̄). Then,

Y is a union of irreducible components of E(ρ̄).

Proof. This follows from Proposition 4.10. �

Set

X(ρ̄)reg−cris := {x ∈ X(ρ̄)|Vx is crystalline and the Hodge-Tate weights

of Vx are {k1,σ, k2,σ}σ∈P such that k1,σ �= k2,σ for any σ ∈ P},

and

X(ρ̄)b := {x ∈ X(ρ̄)|Vx is benign and crystalline }.
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Lemma 4.12. If X(ρ̄)reg−cris is not empty, then X(ρ̄)b is also not empty.

Proof. If X(ρ̄)reg−cris is not empty, then it is easy to show that there

exists some x ∈ X(ρ̄)reg−cris which satisfies the condition (1) of Definition

2.45. Then, the lemma follows from Proposition 4.4. �

For a rigid analytic space Y over E and for a point y ∈ Y , we denote by

tY,y := HomE(y)(my/m
2
y, E(y))

the tangent space at y, where my is the maximal ideal of OY,y. The following

three theorems are the main theorems of this article concerning the Zariski

density of two dimensional crystalline representations.

We denote by X(ρ̄)b the Zariski closure of X(ρ̄)b in X(ρ̄). The following

is a generalization of Corollary 1.10 of [Ki10] for general K.

Theorem 4.13. If X(ρ̄)reg−cris is non empty, then X(ρ̄)b is non empty

and a union of irreducible components of X(ρ̄).

Proof. By Lemma 4.12, Z := X(ρ̄)b is non empty.

To show that Z is a union of irreducible components of X(ρ̄), we first

claim that the dimension of any irreducible component of X(ρ̄) is at most

4[K : Qp] + 1. Take any point x := [Vx] ∈ X(ρ̄). Under the assumption

that EndF(ρ̄) = F, we also have EndE(x)[GK ](Vx) = E(x) and we have a

canonical isomorphism RVx

∼→ ÔX(ρ),x by Proposition 9.5 of [Ki03]. Under

the condition EndE(x)[GK ](Vx) = E(x), it is easy to show that the dimension

of H2(GK , ad(Vx))
∼→ H0(GK , ad(Vx)(χp))

∨ is at most one. By deformation

theory, then the dimension of RVx is 4[K : Qp] + 1, from which the claim

follows.

By this claim, it suffices to show that the dimension of any irreducible

component of Z is at least 4[K : Qp]+1. Let Z ′ be an irreducible component

of Z. Because the singular locus Z ′
sing ⊆ Z ′ is a proper Zariski closed set

in Z ′, there exists a benign point x ∈ X(ρ̄)b ∩ Z ′ such that Z ′ is smooth at

x. By the definition of benign representation and by Theorem 3.17, there

exist the different two points

x1 := ([Vx], δx1 , λx1), x2 := ([Vx], δx2 , λx2) ∈ E(ρ̄)
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such that p1(xi) = x and satisfy the property (ii) in the Theorem 3.17. We

denote by Y ′
i an irreducible component of p−1

1 (Z) containing xi for i = 1, 2

respectively. These are also irreducible components of E(ρ̄) by Corollary

4.11, and Y ′
i is unique for each i = 1, 2 by Theorem 3.22. Because the

natural morphism p1|Y ′
i

: Y ′
i → X(ρ̄) factors through Z ′ for i = 1, 2, we

obtain a map

tE(ρ̄),xi
= tY ′

i ,xi
→ tZ′,x ↪→ tX(ρ̄),x

for i = 1, 2. Hence, we obtain a map⊕
i=1,2

tE(ρ̄),xi
→ tZ′,x ↪→ tX(ρ̄),x.

By Theorem 2.62 and Theorem 3.22, this map is surjective, hence we obtain

an equality

tZ′,x = tX(ρ̄),x.

Because x is smooth at Z ′, hence Z ′ has dimension 4[K : Qp] + 1, which

proves the theorem. �

Concerning the assumption that X(ρ̄)reg−cris is non empty, in this paper

we prove the following (maybe well-known) lemma.

Lemma 4.14. If ρ̄ ⊗F F̄ �∼
(
ω ∗
0 1

)
⊗ χ and ρ̄ ⊗F F̄ �∼

(
1 ∗
0 1

)
⊗ χ for

any character χ : GK → F̄×, where ω is the mod p cyclotomic character.

Then, X(ρ̄)reg−cris is non empty.

Proof. First, we prove the lemma for the absolutely reducible case.

Extending F, we may assume that ρ̄ is reducible. Because any character

χ : GK → F× has a crystalline lift, we may assume that ρ̄ =

(
η ∗
0 1

)
for

a character η : GK → F× such that η �= 1 and η �= ω. Using twists of

a Lubin-Tate character of K by σ ∈ P and a unramified character, we

can take a crystalline lift η̃ : GK → O× of η whose Hodge-Tate weights

are {kσ}σ∈P such that kσ � 1 for any σ ∈ P. Under the assumption

η �= 1, ω, H1(GK ,O(η̃)) is a free O-module of rank [K : Qp] and the natural

map H1(GK ,O(η̃)) → H1(GK ,F(η)) is a surjection. Because kσ � 1 for

any σ ∈ P, we have an equality H1
f (GK , E(η̃)) = H1(GK , E(η̃)). These



Density of Two Dimensional Crystalline Representations 555

imply that any extension class in H1(GK ,F(η)) lifts to an extension class in

H1(GK ,O(η̃)) which is crystalline.

Next, we prove the lemma for the absolutely irreducible case. Denote by

K2 the unramified extension of K of degree 2, and denote by χ2 : Gab
K2
→

F×
p2f the reduction of the Lubin-Tate character χ2,LT : Gab

K2
→ O×

K2
of K2

associated to the uniformizer πK2 := πK of K2. Then, it is known that there

exists an isomorphism ρ̄
∼→ (IndGK

GK2
χi

2)⊗χ (possibly, after extending scalars)

for a character χ : GK → F× and for some i ∈ Z such that i �≡ 0 (mod

pf + 1), where we also denote by the same letter χ2 : Gab
K2
→ F×

p2f ↪→ F×

for a fixed embedding F×
p2f ↪→ F×. Hence, it suffices to show that IndGK

GK2
χi

2

has a crystalline lift. Because χ2 is the reduction of χ2,LT, we can take a lift

of χi
2 of the form

∏
σ∈P σ̃(χ2,LT)kσ such that kσ � 1 for all σ ∈ P, where

σ̃ : K2 ↪→ E is an extension of σ. Then, IndGK
GK2

χi
2 has a crystalline lift

IndGK
GK2

(
∏

σ∈P σ̃(χ2,LT)kσ) whose Hodge-Tate weights are {0, kσ}σ∈P . �

Finally, we prove the following two theorems on the density of X(ρ̄)b in

X(ρ̄) under the following assumptions. In particular, we need to exclude the

case p = 2. Under these conditions, we will show below that X(ρ̄) is a finite

union of smooth irreducible components. Let ζp ∈ K be a primitive root

of unity. The difficulty of the proof to the theorems depends on whether

ζp ∈ K or not, which corresponds to whether X(ρ̄) is irreducible or not

respectively.

We first prove the density when ζp �∈ K,

Theorem 4.15. Assume that ζp �∈ K. Moreover, assume the following

conditions,

(0) EndGK
(ρ̄) = F,

(1) X(ρ̄)reg−cris is not empty,

(2) if ρ̄ is absolutely reducible, then ρ̄ ⊗F F �∼
(

1 ∗
0 ω

)
⊗ χ for any χ :

GK → F
×
,

(3) if ρ̄ is absolutely irreducible, then [K(ζp) : K] �= 2 or ρ̄|IK ⊗F F �∼(
χi

2 0

0 χipf

2

)
for any i such that χ

i(pf−1)
2 |IK = ω|IK ,
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then we have an equality X(ρ̄)b = X(ρ̄).

Proof. We claim that X(ρ̄) is isomorphic to (4[K : Qp] + 1)-dimen-

sional open unit disc under the above conditions, from which the theorem

follows by Theorem 4.13.

To show the claim, it suffices to show that H2(GK , ad(ρ̄)) = 0, hence

suffices to show that HomGK
(ρ̄, ρ̄ ⊗ ω) = 0 by the Tate duality. When ρ̄

is absolutely reducible, it is easy to see that the conditions (0), (2) imply

that HomGK
(ρ̄, ρ̄ ⊗ ω) = 0. When ρ̄ is absolutely irreducible, then ρ̄ is

of the form IndGK
GK2

(χi
2) ⊗ χ for some i and χ after extending scalars. If

HomGK
(ρ̄, ρ̄⊗ω) �= 0, then there exists an isomorphism ρ̄

∼→ ρ̄⊗ω by Schur’s

lemma. The latter implies that det(ρ̄) = det(ρ̄)ω2 and

(
χi

2|IK 0

0 χipf

2 |IK

)
∼→(

χi
2ω|IK 0

0 χipf

2 ω|IK

)
. Because we assume that ζp �∈ K, these imply that

[K(ζp) : K] = 2 and χ
i(pf−1)
2 |IK = ω|IK , which proves the claim, hence

proves the theorem. �

Finally, we prove the theorem on the density when ζp ∈ K and p �= 2

under the following assumptions.

Theorem 4.16. Assume that ζp ∈ K and p �= 2. Moreover, assume

the following conditions,

(0) EndGK
(ρ̄) = F,

(1) X(ρ̄)reg−cris is not empty,

then we have an equality X(ρ̄)b = X(ρ̄).

Proof. If ζp ∈ K, then X(ρ̄) never becomes irreducible. Hence, we

first need to know how to decompose X(ρ̄) into irreducible components under

the above assumptions.

Let P ⊂ O×
K be the subgroup of O×

K consisting of all the p-th power

roots of unity, and let pn be the order of P . Fix ζpn ∈ O×
K a generator of

P , i.e. a primitive pn-th root of unity. For each 0 � i � pn − 1, we define a

subfunctor Dρ̄,i of Dρ̄ by

Dρ̄,i(A) := {[VA] ∈ Dρ̄(A)|det(VA)(recK(ζpn)) = ιA(ζpn)i}
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for A ∈ CO, where ιA : O → A is the morphism which gives an O-algebra

structure to A. It is easy to see that the canonical inclusion Dρ̄,i ↪→ Dρ̄

is relatively representable, i.e. this satisfies the conditions (1) and (2) and

(3) in the proof of Proposition 2.37. For each i, let Rρ̄,i be the quotient

of Rρ̄ which represents Dρ̄,i, and let X(ρ̄)i ⊆ X(ρ̄) be the Zariski closed

rigid analytic space associated to Rρ̄,i. Then it is easy to see that, as rigid

analytic space, X(ρ̄) is the disjoint union of X(ρ̄)i for 0 � i � pn − 1,

X(ρ̄) =
∐

0� i� pn−1

X(ρ̄)i.

We claim that each X(ρ̄)i is isomorphic to the (4[K : Qp] + 1)-dimensional

open unit disc. To prove this claim, it suffices to show that the functor Dρ̄,i

is formally smooth.

We prove the formal smoothness of Dρ̄,i as follows. Let A be an object of

CO and I ⊆ A be a non zero ideal such that ImA = 0. Let [VA/I ] ∈ Dρ̄,i(A/I)

be a deformation of ρ̄ over A/I. Then, it suffices to show that [VA/I ] lifts

to Dρ̄,i(A). Fixing a A/I-basis of VA/I , we represent VA/I by a continu-

ous homomorphism ρA/I : GK → GL2(A/I). Because the obstruction of

the liftings of det(ρ̄) comes only from that of det(ρ̄)|recK(P ), we can take

a continuous character cA : Gab
K → A× which is a lift of det(ρA/I) and

cA(recK(ζpn)) = ιA(ζpn)i. We take a continuous lift ρ̃A : GK → GL2(A) of

ρA/I such that det(ρ̃A(g)) = cA(g) for any g ∈ GK and then we define a

2-cocycle f : GK ×GK → I ⊗F ad(ρ̄) by

ρ̃A(g1g2)ρ̃A(g2)
−1ρ̃A(g1)

−1 := 1+f(g1, g2) ∈ 1+I⊗AM2(A) = 1+I⊗Fad(ρ̄).

Because det(ρ̃A) = cA is a homomorphism, f(g1, g2) is contained in I ⊗F

ad0(ρ̄), where we denote by ad0(ρ̄) := {a ∈ ad(ρ̄)|trace(a) = 0}. Hence, we

obtain a class of 2-cocycle [f ] ∈ H2(GK , ad0(ρ̄)). Under the assumption (0)

and the assumption that ζp ∈ K and p �= 2, we have

H2(GK , ad0(ρ̄))
∼→ H0(GK , ad0(ρ̄)(ω))∨ = H0(GK , ad0(ρ̄))∨ = 0

(we remark that we have H0(GK , ad0(ρ̄)) = H0(GK , ad(ρ̄)) = F when p = 2).

Hence, twisting ρ̃A by using a suitable continuous one cochain d : GK →
I ⊗F ad0(ρ̄), we obtain a continuous homomorphism ρA : GK → GL2(A)

such that ρA is a lift of ρA/I and det(ρA) = cA, which proves the formally

smoothness of Dρ̄,i.
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By this claim and by Theorem 4.13, to prove the theorem, it suffices

to show that X(ρ̄)i ∩ X(ρ̄)b is non empty for any i under the assumption

(1). We prove this claim as follows. First, there exists some i such that

X(ρ̄)i ∩ X(ρ̄)b is non empty by the assumption (1). We take a point x =

[Vx] ∈ X(ρ̄)i ∩ X(ρ̄)b.

The twist Vx(χ
j(pf−1)
LT ) of Vx for any j ∈ Z is contained in X(ρ̄)b∩X(ρ̄)ij ,

where we define ij such that 0 � ij � pn − 1 and ij ≡ i + 2j(pf − 1) ( mod

pn). Because we assume p �= 2, ij runs through all 0 � i′ � pn − 1, hence

X(ρ̄)b ∩ X(ρ̄)i′ is non empty for any i′. Hence, X(ρ̄)b is Zariski dense in

X(ρ̄). �

Remark 4.17. We remark that, from § 3.3, we assume EndGK
(ρ̄) = F.

However, even if End(ρ̄) �= F, it may be possible to prove Theorem 3.17 and

Theorem 3.22 and Theorem 4.13 without any additional difficulties if we

use the universal framed deformations instead of usual deformations. But,

up to now, the author does not know whether the density is satisfied or not

when EndGK
(ρ̄) �= F.

5. Appendix: Continuous Cohomology of B-Pairs

In [Na09], we defined a cohomology Hi(GK ,W ) by using continuous

cochains of GK which we review below. On the other hand, Liu [Li08] de-

fined another cohomology which we write by Hi
Liu(GK ,W ) := Hi

ϕ,Γ(D(W ))

by using a complex defined from the (ϕ,Γ)-module D(W ) associated to W

(see 2.1 of [Li08] for the definition). Moreover, he proved that this coho-

mology satisfies the Euler-Poincaré formula and the Tate duality. In this

appendix, we first prove that Hi(GK ,W ) also satisfies the Euler-Poincaré

formula and the Tate duality, and finally prove that Hi(GK ,W ) is canoni-

cally isomorphic to Hi
Liu(GK ,W ).

We first recall the definition of Hi(GK ,W ). Let G be a topological

group. For a continuous G-module M and i ∈ Z� 0, we define the group of

i-th continuous cochains of G with values in M by

Ci(G,M) := {c : G×i →M |c is a continuous map }.

As usual, we define the boundary map

∂i : Ci(G,M)→ Ci+1(G,M)



Density of Two Dimensional Crystalline Representations 559

by

∂i(c)(g1, g2, · · · , gi+1) := g1c(g2, · · · , gi+1) + (−1)i+1c(g1, g2, · · · , gi)

+

i∑
s=1

(−1)ic(g1, · · · , gs−1, gsgs+1, gs+2, · · · , gi+1).

Let W = (We,W
+
dR) be a B-pair. Set WdR := We ⊗Be BdR. For W , we

define a complex C•(GK ,W ) of Qp-vector spaces as the mapping cone of

the map

C•(GK ,We)⊕ C•(GK ,W+
dR)→ C•(GK ,WdR) : (ce, cdR) �→ ce − cdR,

i.e. defined by

C0(GK ,W ) := C0(GK ,We)⊕ C0(GK ,W+
dR)

and

Ci(GK ,W ) := Ci(GK ,We)⊕ Ci(GK ,W+
dR)⊕ Ci−1(GK ,WdR)

for i � 1 and the differential

∂0 : C0(GK ,We)⊕ C0(GK ,W+
dR)

→ C1(GK ,We)⊕ C1(GK ,W+
dR)⊕ C0(GK ,WdR)

is defined by

∂0(ce, cdR) := (∂0(ce), ∂
0(cdR), ce − cdR)

and, for i � 1, the differential

∂i : Ci(GK ,We)⊕ Ci(GK ,W+
dR)⊕ Ci−1(GK ,WdR)

→ Ci+1(GK ,We)⊕ Ci+1(GK ,W+
dR)⊕ Ci(GK ,WdR)

is defined by

∂i(ce, cdR, c) = (∂i(ce), ∂
i(cdR), ce − cdR − ∂i−1(c)).

We define the cohomology of W by

Hi(GK ,W ) := Hi(C•(GK ,W )),
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and also define

Hi(GK ,We) := Hi(C•(GK ,We))

and

Hi(GK ,W+
dR) := Hi(C•(GK ,W+

dR)), Hi(GK ,WdR) := Hi(C•(GK ,WdR)).

By these definitions, we have the following long exact sequence,

· · · → Hi−1(GK ,WdR)→ Hi(GK ,W )→ Hi(GK ,We)⊕Hi(GK ,W+
dR)→ · · · .

Before proving the Euler-Poincaré formula, we recall some results of

[Be09] on the relationship between B-pairs and almost Cp-representations.

Let U be an almost Cp-representation. Let V1 and V2 be Qp-representations

of GK of dimension d1 and d2 respectively and d � 0 be an integer such

that we have V1 ⊆ U and V2 ⊆ C⊕d
p and U/V1

∼→ C⊕d
p /V2. Then, we define

the dimension of U by

dimC(GK)(U) := d

and the height of U by

ht(U) := d1 − d2,

which are independent of the choice of V1, V2 and are additive with respect

to exact sequences ([Fo03]). For a B-pair W := (We,W
+
dR), we define

X0(W ) := We ∩W+
dR and X1(W ) := WdR/(We + W+

dR).

Concerning X0(W ) and X1(W ), Berger [Be09] proved the following theorem.

Theorem 5.1. Let W be a B-pair of rank d, then

(1) X0(W ) and X1(W ) are almost Cp-representations,

(2) if W is pure of slope s � 0, then we have dimC(GK)(X0(W )) = −sd,

ht(X0(W )) = d and X1(W ) = 0,

(3) if W is pure of slope s > 0, then we have X0(W ) = 0 and

dimC(GK)(X1(W )) = sd, ht(X1(W )) = −d.
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Proof. See Theorem 3.1 of [Be09]. �

Lemma 5.2. Let U be an almost Cp-representation, then Hi(GK , U) is

finite dimensional over Qp for i = 0, 1, 2 and zero for i � 3.

Proof. This follows from the definition of almost Cp-representations

and the facts that Hi(GK , V ) = 0 for i � 3 for any Qp-representation V of

GK and that Hi(GK ,Cp) = 0 for i � 2 and that Hi(GK , V ) and Hi(GK ,Cp)

are finite dimensional over Qp. �

For an almost Cp-representation U , set χ(U) :=
∑2

i=0(−1)i ·
dimQpH

i(GK , U).

Lemma 5.3. χ(U) = −[K : Qp]ht(U).

Proof. This follows from the definition of almost Cp-representations

and the Euler-Poincaré formula for Qp-representations of GK and the fact

that χ(Cp) = 0. �

Lemma 5.4. Let W = (We,W
+
dR) be a B-pair, then the following equal-

ities hold,

(1) C•(We) = lim−→ nC•(We ∩ 1
tnW

+
dR),

(2) C•(WdR) = lim−→ nC•(GK , 1
tnW

+
dR).

Proof. For any n, 1
tnW

+
dR is closed in 1

tn+1W
+
dR and the topology on

1
tnW

+
dR is the topology induced from 1

tn+1W
+
dR. Hence, by Proposition 5.6

of [Schn01], we obtain the equality (2). For We, if we fix an isomorphism

We
∼→ B⊕d

e as Be-module, the topology on We is defined by the direct sum

topology of Be. Because we have an equality

tB+,ϕ=pn

max = ∩m� 0Ker(θ ◦ ϕm : B+,ϕ=pn+1

max → Cp)

by Proposition 8.10 (2) of [Co02], 1
tnB+,ϕ=pn

max is closed in 1
tn+1 B

+,ϕ=pn+1

max and

the topology on 1
tnB+,ϕ=pn

max is the topology induced from 1
tn+1 B

+,ϕ=pn+1

max .

Hence, by Proposition 5.6 of [Schn01], we have C•(GK ,We) = lim−→ nC•(GK ,

( 1
tnB+,ϕ=pn

max )⊕d) = lim−→ nC•(GK ,We ∩ 1
tnW

+
dR). �
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Lemma 5.5. Let W+
dR be a finite free B+

dR-module with a continuous

semi-linear GK-action. Then the canonical map Hi(GK ,W+
dR) →

lim←− nHi(GK ,W+
dR/tnW+

dR) is isomorphism.

Proof. Because we have C•(GK ,W+
dR)

∼→ lim←− nC•(GK ,W+
dR/tnW+

dR),

for any i � 0, we have the following short exact sequence

0 → R1 lim←−
n

Hi−1(GK ,W+
dR/tnW+

dR)→ Hi(GK ,W+
dR)

→ lim←−
n

Hi(GK ,W+
dR/tnW+

dR))→ 0.

Because Hi−1(GK ,W+
dR/tnW+

dR) is finite dimensional over Qp, Mittag-Leffler

condition implies that R1 lim←− nHi−1(GK ,W+
dR/tnW+

dR) = 0. The lemma

follows from this. �

Corollary 5.6. Let W+
dR be as above. Let {h1, h2, · · · , hd} be the

generalized Hodge-Tate weights of W+
dR/tW+

dR. Let k � 1 be any integer

such that k+hj � 0 for any hj ∈ Z. Then the natural map Hi(GK ,W+
dR)→

Hi(GK ,W+
dR/tkW+

dR) is isomorphism and Hi(GK , tk+1W+
dR) = 0 for any i.

Proof. By the assumption on k, we have Hi(GK , tlW+
dR/tl+1W+

dR) = 0

for any l � k + 1. Then the corollary follows from Lemma 5.5. �

Corollary 5.7. Let W+
dR be as above, then Hi(GK ,W+

dR) =

Hi(GK ,WdR) = 0 for i � 2 and Hi(GK ,W+
dR) and Hi(GK ,WdR) are finite

dimensional over Qp for i = 0, 1.

Proof. Because Hi(GK ,W+
dR/tnW+

dR) = 0 for i � 2 and

Hi(GK ,W+
dR/tnW+

dR) is finite dimensional for i = 0, 1, we obtain the corol-

lary for W+
dR by Lemma 5.6. We prove the corollary for WdR. Because we

have an isomorphism C•(GK ,WdR)
∼→ lim−→ nC•(GK , 1

tnW
+
dR) by Lemma 5.4

(2), we obtain an isomorphism Hi(GK ,WdR)
∼→ lim−→ nHi(GK , 1

tnW
+
dR). Then

we can show that for n large enough the natural map Hi(GK , 1
tn+j W

+
dR) →

Hi(GK , 1
tn+j+1W

+
dR) is isomorphism for any j � 0, then the natural map

Hi(GK , 1
tnW

+
dR)→ Hi(GK ,WdR) is isomorphism, the corollary for WdR fol-

lows from this. �
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Lemma 5.8. Let W = (We,W
+
dR) be a B-pair. Then we have

Hi(GK ,We) = 0 for i � 3.

Proof. Because we have C•(GK ,We) = lim−→ nC•(GK ,We ∩ 1
tnW

+
dR) by

Lemma 5.4 (1), we have an isomorphism Hi(GK ,We)
∼→ lim−→ nHi(GK ,We ∩

1
tnW

+
dR). For any n, because We ∩ 1

tnW
+
dR is an almost Cp-representation by

Theorem 5.1, we have Hi(GK ,We ∩ 1
tnW

+
dR) = 0 for i � 3 by Lemma 5.2.

The lemma follows from these facts. �

Theorem 5.9. Let W be a B-pair, then the following hold,

(1) Hi(GK ,W ) is zero for i � 3 and Hi(GK ,W ) is finite dimensional over

Qp for i = 0, 1, 2,

(2) (Euler-Poincaré characteristic formula)

2∑
i=0

dimQp(−1)iHi(GK ,W ) = −[K : Qp]rank(W ).

Proof. We first prove that Hi(GK ,W ) = 0 for i � 3. Because there

is an exact sequence

· · · → Hi−1(GK ,WdR)→ Hi(GK ,W )→ Hi(GK ,We)⊕Hi(GK ,W+
dR)→ · · · ,

the claim follows from Corollary 5.7 and Lemma 5.8. Next we prove that

Hi(GK ,W ) is finite dimensional over Qp. By slope filtration theorem, it

suffices to show this claim when W is pure. Let W be a B-pair pure of

slope s. When s � 0, we have the following short exact sequence,

0 →We ∩W+
dR →We ⊕W+

dR →WdR → 0

by Theorem 5.1 (2). Hence the natural map Hi(GK ,We ∩ W+
dR) →

Hi(GK ,W ) is isomorphism. Because We ∩W+
dR is an almost Cp-representa-

tion by Theorem 5.1, Hi(GK ,We∩W+
dR) is finite dimensional by Lemma 5.2,

which proves the claim for s � 0. When s > 0, then we have the following

short exact sequence

0→We ⊕W+
dR →WdR →WdR/(We + W+

dR)→ 0
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by Theorem 5.1 (3). Hence we obtain a natural isomorphism Hi(GK ,W )
∼→

Hi−1(GK ,WdR/(We + W+
dR)). Because WdR/(We + W+

dR) is an almost Cp-

representation by Theorem 5.1, Hi−1(GK ,WdR/(We + W+
dR)) is finite di-

mensional, the claim for s > 0 follows from this.

Next we prove (2). For W a B-pair or an almost Cp-representation, set

χ(W ) :=
∑2

i=0(−1)idimQpH
i(GK ,W ). It suffices to show (2) when W is

pure of slope s. When s � 0, then we have χ(W ) = χ(X0(W )) by the above

proof. By Lemma 5.3 and by Theorem 5.1 (2), we have equalities

χ(X0(W )) = −[K : Qp]ht(W ) = −[K : Qp]rank(W ).

When s > 0, then we have χ(W ) = −χ(X1(W )) by the above proof. By

Lemma 5.3 and by Theorem 5.1 (3), we have equalities

χ(X1(W )) = −[K; Qp]ht(X1(W )) = [K : Qp]rank(W ),

which proves (2). �

Next, we define the cup product pairing for B-pairs W := (We,W
+
dR)

and W ′ := (W ′
e,W

′+
dR) as follows. First, for two continuous cochains c ∈

Ci(GK ,W?) and c′ ∈ Cj(GK ,W ′
?) for W? = We,W

+
dR,WdR, we define a

continuous cochain

c ∪ c′ ∈ Ci+j(GK ,W? ⊗B?
W ′

?)

by

c ∪ c′(g1, · · · , gi+j) := c(g1, · · · , gi)⊗ g1g2 · · · gic′(gi+1, · · · , gi+j)

where B? = Be,B
+
dR,BdR when W? = We,W

+
dR,WdR respectively. Then,

c ∪ c′ satisfies

∂i+j(c ∪ c′) = ∂i(c) ∪ c′ + (−1)ic ∪ ∂j(c′).

For

c = (ce, c
+
dR, cdR) ∈ Ci(GK ,We)⊕ Ci(GK ,W+

dR)⊕ Ci−1(GK ,WdR)

and

c′ = (c′e, c
′+
dR, c′dR) ∈ Cj(GK ,W ′

e)⊕ Cj(GK ,W
′+
dR)⊕ Cj−1(GK ,W ′

dR),
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and for a parameter γ ∈ Qp, we define

c ∪γ c′ ∈ Ci+j(GK ,We ⊗Be W ′
e)⊕ Ci+j(GK ,W+

dR ⊗B+
dR

W
′+
dR)

⊕ Ci+j−1(GK ,WdR ⊗BdR
W ′

dR)

by

c ∪γ c′ := (ce ∪ c′e, c
+
dR ∪ c

′+
dR,

cdR ∪ (γc′e + (1− γ)c
′+
dR) + (−1)i((1− γ)ce + γc+dR) ∪ c′dR)).

Then, we can check that if ∂i(c) = ∂j(c′) = 0 then ∂i+j(c ∪γ c′) = 0,

and if ∂ic = 0 and c′ = ∂j−1(c′′) (or c = ∂i−1(c′′) and ∂j(c′) = 0) then

c ∪γ c′ ∈ Im(∂i+j−1). Therefore, this paring induces a Qp-bi-linear paring

∪γ : Hi(GK ,W )×Hj(GK ,W ′)→ Hi+j(GK ,W ⊗W ′).

Moreover, we can check that ∪γ doesn’t depend on the choice of a parameter

γ, so we just write ∪ instead of ∪γ .

We define the paring

∪ : Hi(GK ,W )×H2−i(GK ,W∨(χp))→ Qp

as the composition the following maps

Hi(GK ,W )×H2−i(GK ,W∨(χp))
∪−→ H2(GK ,W ⊗W∨(χp))

→ H2(GK ,W (Qp(χp)))
∼→ H2(GK ,Qp(χp))

∼→ Qp,

where the second map is induced from the evaluation map W ⊗W∨(χp)→
W (Qp(χp)) and the third isomorphism is the natural comparison isomor-

phism and the fourth isomorphism is Tate’s trace map. The Tate duality

theorem for B-pairs is following.

Theorem 5.10. For i = 0, 1, 2, the paring

∪ : Hi(GK ,W )×H2−i(GK ,W∨(χp))→ Qp

is a perfect paring.
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Proof. We can prove this theorem in the same way as in the proof of

Theorem 4.7 of [Li08] if we use the Euler-Poincaré formula Theorem 5.9 and

the facts that H0(GK ,W (
∏

σ∈P σ)) = 0 and H0(GK ,W (|
∏

σ∈P σ|)) = 0,

which are proved in Proposition 2.10. �

Finally, we prove that our continuous cohomology is canonically isomor-

phic to Liu’s cohomology. We first define an isomorphism between H0 by

the functoriality

H0
Liu(GK ,W )

∼→ Homϕ,Γ(R,D(W ))
∼→ Hom(W (Qp),W )

∼→ H0(GK ,W ),

where D(W ) is the (ϕ,Γ)-module associated to D and R is the trivial (ϕ,Γ)-

module, where the second isomorphism follows from the equivalence of cat-

egories between B-pairs and (ϕ,Γ)-modules.

Theorem 5.11. The above isomorphism H0
Liu(GK ,W )

∼→ H0(GK ,W )

extends uniquely to an isomorphism of δ-functors Hi
Liu(GK ,W )

∼→
Hi(GK ,W ).

Proof. This follows from weakly effaceabilities of functors

Hi
Liu(GK ,−) and Hi(GK ,−). For Hi

Liu, these facts are proved in the proof of

Theorem 8.1 of [Ke09]. For Hi(GK ,−), we can also prove in the same way as

in Theorem 8.1 of [Ke09] because we have already proved the Euler-Poincaré

formula and the Tate duality for Hi(GK ,−) and we have a natural isomor-

phism H1(GK ,W )
∼→ Ext1(W (Qp),W ) which is proved in Proposition 2.2

of [Na09]. �
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