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Regularity and Asymptotic Behavior for
the Keller-Segel System of Degenerate Type

with Critical Nonlinearity

By Masashi Mi1zuNO* and Takayoshi OGAWA

Abstract. We discuss the large time behavior of a weak solution
of the Keller-Segel system of degenerate type:

Ou — Au® + div(uVy) =0, t>0, xR,
—AY+Y=u, t>0,z€eR",
u(0,z) = up(z) >0, r € R,

where o > 1. It is known when the exponent o = 2 — %, then the
problem shows the critical situation. In this case, we show that the
small data global solution decays and its asymptotic profile converges
to the Barenblatt-Pattle solution U(t) = (1 + )~/ (4 — [=|?/(1 +

t)l/")i_/(oﬁl) in L! such as
Ju(t) = U@ <C(A+1)7",

where v > 0 is depending on n and the regularity of the solution.
To show this, we employ the forward self-similar transform and use
the entropy dissipation term to derive the asymptotic profile due to
Carrillo-Toscani [12] and Ogawa [47]. The Hoélder continuity of the
weak solution for the forward self-similar equation plays a crucial role.
We derive the uniform Hélder continuity by using the rescaled alter-
native selection originated by DiBenedetto-Friedman [18, 19].
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1. Introduction

We consider a large time behavior of the global solution of the degenerate
parabolic elliptic system:

Ou — Au® +div(uVy) =0, t>0,ze€R",
(1.1) — Ay 4+ =, t>0,xeR",
u(0,x) = up(x) > 0, x € R",

where o > 1. This system describes the dynamics of the chemical attracted
mold. The system originally consists of two reaction diffusion equations. By
taking the zero relaxation time limit, one can obtain the above form as the
result. For the case of a = 1, it is a semi-linear problem and the system (1.1)
is analyzed by many authors. For o > 1, the problem (1.1) is a degenerated
parabolic elliptic system and there are some work on it ([1], [2], [7], [8], [14],
[15], [34], [47] ,[48], [54], [55]). On the other hand, the system has a strong
relation with the variational structure and the large time behavior of the
solution is really depending on the variational functional reduced from the
entropy-energy inequality.

WH() = = lu(olla =5 [ u(®ut)de < Wi,

Then it appears that there exists a critical exponent oo = 2—% that the global
behavior of the solution is changed. This exponent is considered a threshold
exponent to separate the global asymptotic behavior of the weak solution.
Roughly speaking, the small solution with small initial data decays as t —
oo. Then the main concern for this case is its asymptotic profile. By the self-
similar rescaling, one may find that there appears some particular profile in
its rescaled form. On the other hand, the equation is degenerated and it has
some hyperbolic like feature in its weak solution when the solution meets 0.
In this case, the regularity breaks down and the behavior is governed by the
hyperbolic like structure. The best possible regularity for the weak solution
is generally known as the Holder continuity. Indeed, to show the asymptotic
profile of the decaying solution, the regularity of the weak solution plays an
important role.

In this paper, we consider the regularity problem of the system (1.1) and
apply it for the large time asymptotic behavior of the decaying solution in
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the critical case and show its convergence rate for the asymptotic profile if
it is rescaled in the self-similar way. Since the equation is degenerated, the
smoothness of the solution is not generally guaranteed and we necessarily
consider the weak solution.

DEFINITION. For a nonnegative initial data ug € L'(R") N L*(R™), we
call (u, 1) a weak solution of the system (1.1) if there exists 7' > 0 such
that

1. u(t,z) > 0 for almost all (¢,z) € [0,T) x R™,
2. we L™(0,T; L'(R™) N L*(R™)) with Vu® € L2((0,T) x R"), and

3. w satisfies the first equation of (1.1) in the sense of distribution, namely
for any ¢ € C*°([0,T];C5°), we have

[ wttotydo = [ uno(0)do
(1.2) / dT/n{ )0 (T u®(7r) - Vo(r)

u(F) V(T - v¢<r>} dx

for almost all 0 < ¢ < T, where 1 = (—A + 1)"'u is given by the
Bessel potential.

We may obtain the time local weak solution of (1.1) by some approximat-
ing procedure. Then the existence of time global weak solution is classified
by a threshold exponent a = 2 — 2. We summarize the known results for
the existence and non-existence of tlme global weak solutions.

ProrositioN 1.1 ([1], [2], [7], [8], [47], [48], [54], [55]). Let n > 3,
a > 1 and we assume that ug € L' (R™) N L*(R™). Then there exists a weak
solution (u, ) of (1.1) that satisfies for 0 <t < T,

[u()l| 21 ®e) = lluollr ey
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t 2
W(t)+/0 /nu(t)‘v _woml vl dtde < W(0),

a—1
where
1

« 1 —
W(t) = ——7 lullfoms) — 5 lIA ()12 ey

with A = (—A + 1)% In addition:

(1)

(2)

(3)

(4)

ifa>2— %, then, for any initial data ug the solution exists globally
i time and the solution is uniformly bounded.

Ifl<a<2- % and the initial data satisfying W(0) > 0 with

y—a+1

(1.4) ool ey W (0) 5 < O

then the weak solution exists globally in time, where C' > 0 is some
constant depending only on n,a and Cyrs s a best possible constant
of the Hardy-Littlewood-Sobolev inequality on R™.

In particular, if « = 2 — % the above condition (1.4) is given by

2 2n 4
(1.5) HUOHLl(Rn) < n _ 9 ~HLS

If1 < a<2—2 and the initial data ugp € L*(R™) N LY(R") with
|z|?up € LY (R™) satisfies W(0) < 0, then the weak solution blows up
i a finite time T in the following sense:

limsup [|u(t)|| ey = 00 for all a < g < oo.

t—

By Proposition 1.1, the weak solution to (1.1) exists globally in time
whenn >3, 1<a<2-— % and the initial data is sufficiently small. When
we consider the small data problem, then the system can be regarded as the
perturbed problem from the porous medium equation:

(1.6)

ow—Aw*=0, t>0,zecR"
w(0,z) = wo(x), x€R™
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For the porous medium equation, there exists an explicit solution called the
Barenblatt-Pattle solution.

DEFINITION (the Barenblatt-Pattle solution). For a > 1, we set 0 =
n(a — 1) + 2. For some A > 0, the function U(t) defined by

(1.7) Uit z) = (1+ot) "= <A_ a2_al (1 fl;t)%)ﬁ

is called as the Barenblatt-Pattle solution, where (f)+ = max{f,0}.

It is well known that the Barenblatt-Pattle solution (1
the porous medium equation (1.6) with the initial data wq(x)

“)1/041

.7) solves

(4-

In the case a < 2 — % and the initial data wug is small, then we may
regard the nonlinear term div(uV) in (1.1) as a small perturbation and we
speculate that the solution of (1.1) asymptotically converges to the solution
of the porous medium equation. In fact, Luckhaus-Sugiyama [34] showed the
asymptotic convergence of the solution in L? spaces for 1 < a < 2—— n>3
and 1 < p < co. Ogawa [48] showed that if 1 < o < 2 — =, then we obtaln
the algebraic convergence rate of the solution in L' space via the argument
due to Carrillo-Toscani [12] and the critical Sobolev type inequality [49].
Namely, for 1 < a < 2— 2 and W(0) > 0 with (1.4) then there exist
constants v > 0 and C' > 0 such that

(1.8) u®) —UD| 1wy <CA+E)7", t>0,

where U is the Barenblatt-Pattle solution with ||U||1 = ||uo]|1-
In this paper, we show the same asymptotic convergence in L'(R") for
the critical case a = 2 — % Our main theorem is the following:

THEOREM 1.2. Leta=2— % and n > 3. Assume that ug € L'(R™) N
Le(R™) satisfying W(0) > 0, (1.4), |luoli < 2 and |z|%g € LY(R") for
some a > n. Then, there exist C > 0 and v > 0 such that the corresponding
global weak solution u of (1.1) satisfies

(1.9) () = U 1@y < CA+E, >0,
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where U is the Barenblatt-Pattle solution with |[U(0)| 11 ®ny = [[uoll L1 (®e)-

To show the asymptotic behavior of the decaying solution, we necessar-
ily consider the regularity of the solution. Indeed, the weak solution to the
degenerate problem (1.1) has a hyperbolic feature in it when the solution
meets zero. In this case, the equation loses the parabolic behavior and the
solution behaves as if it is a solution of the hyperbolic equation. In [48], the
Holder regularity is used essential way to show the asymptotic convergence
rate. To see this, we firstly introduce the forward self-similar transform,
which plays an important role in studying the large time asymptotic behav-
ior. We introduce the forward self-similar scaling (¢', z) as

t = llog(l +ot), 2= Ll,
o (1+ot)e

where 0 = n(a — 1) + 2 and the forward self-similar transform (v(¢,z'),
o(t',2')) as
v(t' ) = 1 +ot)ault,x), ¢t )= (1+0t)sp(t).

Then, the forward self-similar transform (v, ¢) satisfies the following degen-
erate parabolic elliptic system:

Opv — divy (Vyv® + 2'v — e_“t/vvm/qb) =0, t'>0,2 €¢R",
(1.10) —e A+ ¢ =, t'>0,2 eR",

v(0,2") = up(z") > 0, ' € R",
where k =n+2 — 0 = n(2 — ). The weak solution of the system (1.10) is

similarly defined as in the case for (1.1).
For 1 < p < 0o, we obtain

(1.11) (1+0t)7 70 lu(t) = U(®)p = o) = V]I,

where

1

-1 a1 n
V(z') = <A — O;—a]m'\2> =(1+4ot)cU(t,x)
_|_
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is a self-similar profile of the Barenblatt-Pattle solution. If p = 1, then
equation (1.11) is rewritten by

lu(t) = U@l = [lv@) = V]

For the sake of obtaining the convergence rate of the solution in L', we
should show the convergence rate of the forward self-similar transform in
L' space. Ogawa [48] showed that if the self-similar transformed solution v
is uniformly Hoélder continuous, then we obtain the exponential convergence
rate of the self-similar transform v. More precisely,

PROPOSITION 1.3 ([48]). Let1 < a <2— 2. Assume that the initial
data ug satisfies W(0) > 0 and (1.4). If the corresponding forward self-
stmilar transform v is uniformly Holder continuous, then there exist v > 0

and C > 0 such that
(1.12) [o(t') = Vi gey < Ce™, >0

where V' is the self-similar profile of the Barenblatt-Pattle solution with
VI = lluolls-

Our main concern is to obtain the algebraic convergence rate of the solu-
tion in L' space for the case of critical exponent ov = 2 — % The reason why
the critical case is excluded in [48] is because the uniform Holder continuity
of the rescaled weak solution v(s, y) is required for proving algebraic asymp-
totic convergence. The Holder continuity was obtained in [48] for v(s, y) via
the rescaled weak solution u(¢, z) and hence it was not the uniform estimate
for (s,y). By this argument, the critical case has to be necessarily excluded

#=2)t disappears in the crucial estimates. In this

since the decaying factor e~
case, however, the nonlinear diffusion is dominant over the nonlocal trans-
port for large time asymptotic behavior and we expect that the asymptotic
profile is analogous to the sub-critical cases @ < 2— % This is because of the
effect from the lower order linear term on the equation of ¢ (cf. [34]). To
cover the critical case, we necessarily derive the uniform Holder regularity
for the weak solution of the rescaled solution v(s,y) directly by assuming
that the moment of the solution is uniformly bounded in time. To this end,

we show the following regularity result:
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THEOREM 1.4. Let (v,¢) be a weak solution of the scaled Keller-Segel
system (1.10) in (u, @) € L>(0,T; L' N L®) x L>(0,T; W) with |z|%ug €
L' for some a > n. Then v(t, ) is uniformly Holder continuous. Namely,
there exists a constant C = C'(n,«, ||v||1qpe~) and 0 < v < 1 such that for
any (t,z) and (s,y) € [0,T] x R",

[o(t,2) —v(s,y)| < C(It = s]"? + |z —y[").

From the regularity result Theorem 1.4, when the small initial data
has a compact support especially, we may obtain the explicit asymptotic
convergence rate to the solution of the porous medium equation. That is
to say, the nonlinear diffusion is more effective than the nonlocal transport
for the asymptotic behavior of generic solutions. We emphasize that for
fine large time asymptotic estimates in the critical situation, we need some
uniform regularity estimates for rescaled solution v.

The main argument to obtain the uniform Holder continuity is along the
argument due to DiBenedetto-Friedman [18], [19] (see also [17]). In partic-
ular, we employ the maximum depending parabolic cylinder to consider the
Holder regularity. Since we have the external term in the equation (1.10), we
need to treat it from the very first step of the alternative selection lemma.
In fact, we show the Holder continuity of the weak solution involving the
external term div F' := div (yv — e "*vV¢). Unfortunately, the alternative
method in [18] does not work directly well for this case, we reconstruct the
alternative selection lemma (Lemma 3.2 and Lemma 3.3 in the section 3
below) for proving the oscillation estimate of the weak solution. This part
gives a large contrast to the classical argument found in [18], [19]. Thanks
to the uniform moment bound for the weak solution, this is possible and we
many derive the asymptotic convergence in the algebraic decay order.

This paper is organized as follows. In the next section, we introduce
the forward self-similar transform and its properties. We show the Holder
continuity of the self-similar transform in section 3. In section 4, we give
the relationship between the asymptotic stability of the solution of (1.1)
and the Holder continuity of the self-similar transform.

We introduce some notation. We denote a positive part of a by a :=
max{a,0} and a negative part of a by a_ := max{—a,0}. We write the
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oscillation of a function f in a set A as

ose f i=sup f(z) — inf f(z).
For p > 0, we denote by B,(zg) the open ball centered at o with the radius
p > 0. We simply write B, = B,(0).

For Lebesgue measurable set A C R"™, we denote by |A| the Lebesgue
measure of A. For f € LP(R"), let || f||, denote the norm of f in LP(R").
LE = LE(R™) denotes the weighted Lebesgue space defined by {f € LP(R"),
|z|* f(x) € LP(R™)}. For an open interval I C R, a domain Q@ C R™ and
1 <p,q < oo, we denote LP(I; LI(2)) by LP(L9)(I x Q).

2. Forward Self-Similar Transform

In this section, we show the time decay of the global weak solution of the
degenerated Keller-Segel system. This is originally shown in [54] however,
we present the method of rescaling which is shown in [47].

2.1. Rescaled equation
We introduce the new scaled variables (', ) as

1
t' = —log(1 + ot),
o
(2.1) L7
= -

(1+ot)
where 0 = n(a — 1) 4+ 2 and introduce the new scaled unknown functions

o(t' 2", (', ") by

u(t,z) = (1+0t) v (1 log(1 + ot), L) ,
o (1+ot)

Q=

b(t,x) = (1+0t) 56 (l log(1 + ot), L) .
o (1+ot)

Q=

Or one may write as

/ 1 / !
v (t/,SC/) = ent U (_(eot o 1),$/€t) ,
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(2

10) (t',a:’) = e”t/w (l(e"t/ — 1),$/€t/>

and the resulting scaling equation of (v, ¢) follows by setting kK = n+2—0 =
n(2 — a),

Opv — div o (Vo™ + 2'v — e_“t/vvx/qb) =0, t'> 0,2/ € R",
(2.2) —e ¥ App+ ¢ =v, t'> 0,2 € R",
v(0,2") = ug('), ' € R™.

In this case, the vanishing exponent as before can be found as a = 2 by
0O=0c—-n—-2=n(a—2)

and thus the sub-critical case is corresponding to a < 2. Hereafter we
analyze the above rescaled equation (2.2) to see the asymptotic behavior of
the solution. We slightly change the outlook of the solution as follows:

The existence of the weak solution of (2.2) may be proven by a simi-
lar way to the original equation. Indeed, the scaling does not change any
analytical feature of the original weak solution so that the solution can be
obtained from the weak solution of (1.1) except the weighted restriction
such as v € C((0,T); LN LL(R™)) for a > 2. Similar to the original system,
we consider the approximated system by the parabolic regularization:

Opv —div (Ve (v+e)*+2'v

/ t'>0,2 e R"
—efnt ’Uvm/¢) _ 07 > 711: E ?
2.3 /
(23) —e 2 Apd+ o=, t'>0,2 € R",
v(0,2") = up(2'), ' € R™.

Namely we again consider the nonnegative weak solution v(t', ') as before.
Note that for the construction of the weak solution, we need to use the diag-
onal argument obtaining the weak solutions (u, 1) and (v, ¢) simultaneously,
since we do not know the uniqueness of the weak solution.

2.2. Rescaled uniform bounds
The following estimate is a direct consequence of the above a priori
bound of the rescaled solution.
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PROPOSITION 2.1. Let 1 < a < 2— 2 and (v(t'), ¢(t')) be a weak
solution of (2.2) for the initial data ug € L3(R™) N L®(R™). Assume that

2.4 wl[FW(0) AT < ey
1 HLS
forl < a < 2-— % and v+ 1 = %"T_Z, where By, is the fundamental
solution to —A + 1 in R™. Then
(1) we have
lo@)llg < C

for all 1 < q < o0.

(2) for all %5 <1 < oo,
Vo)l < Ce'.

Once we obtain the above uniform bound for the rescaled solution, we
can immediately obtain the time decay estimate for the solution of the
original equation.

/Uq(t’,a:')daz’:/ ™DV y4 (¢ 2)dw

= (1+0t)§(q1)/ ul(t, z)dx

n

(2.5)

in the original variables (¢, ). Hence we obtain the following decay estimate
for the original solution as a corollary of Proposition 2.1.

PROPOSITION 2.2 ([47], [54]). Let ugp € L3N L>® and (u(t),(t)) be a
weak solution of (1.1). If 1 < a < 2 — 2 with small initial data (2.4), we
have

Hu(t)Hq < C(l + Ut)_%(l_%)

for all 1 < g < o00.
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2.3. The moment bounds
The last part of this section, we show the second moment of the weak
solution remains bounded for ¢ € [0,7].

PROPOSITION 2.3. Let ug € L' N L® with |z|?uo(z) € L'(R™). Then
the weak solution (v, ) of (2.2) satisfies

/ 2(n — 2
(2.6) / o Po(t)da! < et / |x’]2uodx’+¥ws(0),
) Rn

n

where

W) = — / va(t')dac’—i—% / \x’|2v(t’)dw’—%e‘“t/v(t')qﬁ(t’)dx'.
Rn n

a—1

Namely, |2'|?v(t") € LY(R™) for almost all t'. In addition if we assume that
ug € LL(R?) with a > 2, then we have

(2.7) & |"o(t') da < et / 2! " da + C.
R2 R2

PROOF OF PROPOSITION 2.3. We only give the formal proof. It can
be justified some appropriate cut off and approximation procedure. To show
(2.6) we test |2|? to the equation and we see

d

— [ 2" Po() dz’ = 2n|lu(t)| ~ 2/ |’ Po(t') da’

(2.8)
+ e / ) (x’u(t/) : v¢(t’)) da’.

We invoke the Pohozaev identity for the second equation. We multiply
the elliptic part of the system by the generator of the dilation 2’ - V¢ and
integrate it by parts. Then it follows

/ 2 V() = (1-7) /R DGR
(2.9) -5 | tet)Pa’

n

- (-9 /R o(t)(t)da’ — [l6(t) 3
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Combining (2.8) and (2.9), we obtain

L Pty d +n / |2 |2o(t)da’
dt’ R Rn
= 2n[lo()[|g + (n - 2)/ |2/ [Po(t")da’
Rn
(2.10) +(2—n)e ™ / o()o(t)da’ — 2e7 [|9(t")]13
Rn

= 2(n — 2)W,(t)

o — 2 + 2 /
+2n (7”) lo()l& = 2e™ [l (t)]15.

a—1

Thus under the condition a < 2 — %, we see that

2)

/ 2(n — ’
/ o Po(t')da' < et / |x’]2uodw'+(nTWs(0)(1—e_"t).

For further weighted estimate, we modify (2.8) to have

d
—/ |x’|av(t’)dx’+a/ & |"o(t') da’
dt" Jre R2

(2.11) =a(n—2+a) /]1%2 |2/|% 20 () da’
+ ae™ /]1%2 |2'|*72 (2" - V) v(t') da’.
It follows that
% {eat/ /]R? |2’ | (") d:v'}
(2.12) =a(n— 2+ a)e™ vt /Rn |2'|° 20 (t) da’
+ ae= = [Vl /R o)

By the uniform boundedness for ||v(t')||o0, € || V@00 (Proposition 2.1) and
the lower moment bounds implies that

(2.13) / |2’ %0 () dx’ < eatl/ |2’ |%ug dz’ + C. O
n R
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This uniform bound for the second moment of v(¢) naturally yields the
bound for the second moment of u(t) such as

/ || 2u(t)da S/ |z 2uoda + WWS(O)G—FUUWU.
n Rr

3. The Holder Continuity

In this section, we consider the Holder estimate of the perturbed degen-
erate parabolic equation:

Op(u) —Au=div F, t>0,z€R",
(3.1) 1
u(0,y) = ug () > 0,
where v = wu(t,z) is the unknown function and we put ¢(u) := ua (t,x)

and F' = F(t,z) is a given function. The solution of the above problem is
connected to our rescaled problem (2.2) by letting v(¢,z) = ¢(u)(t,z) and

F = ap(u) — e " o(u)Ve,

where ¢ = (—e 2! A +1)"tp(u). To state the Holder estimate, we introduce
the uniformly local LP spaces.

DEFINITION. For 1 < p < 0o, we define the uniformly local LP spaces

Lﬁloc(R”) as
p ny .__ p ny . R
Lioc(R™) := {f € LipeR™) : [fllzr, ey = TSIS}LIDERH Ifll (B, (a)) < OO}-

Now, we state the Holder estimate of the weak solution of (3.1).

THEOREM 3.1. Let u be a bounded nonnegative weak solution of (3.1).
For p > n, we assume F' € L>(0,00; LF, (R™)). Then for all e > 0, there

uloc

exist some constants C = C(n,a,p,e) and 0 < v =~vy(n,a,p) < 1 such that

(3.2) |u(t,z) — u(s,y)|
< C(lJull Lo ((0,00)xRe) + [1Fll oo (0,00 17, (R7)))
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18 7
X (”UHLoo((opo)XRn)’t — 5|2 + |z —y|7)

for all (t,z), (s,y) € (¢,00) x R", where 3 =1— 1.

«

To show the Holder regularity of the perturbed degenerate parabolic
equation, we employ the alternative argument originally due to
DiBenedetto-Friedman [18] (see also [17]). The argument is a substituted
to the standard Harnack property for the degenerate case.

3.1. Alternative Lemmas

For a fixed set of the nonnegative parameters (p, M, 60y) and space-time
point (tg, z9) € R™"!, we introduce usual parabolic cylinders Qp, on and
modified parabolic cylinders Q, s, Qf)?M.

DEFINITION. Let g =1-— é We denote the time intervals by

2

I, m(to) = (to — %JO)? ot = Ipar(0),
o 00 PQ 60 _ 760
L% (to) = (to — EW’tO)’ Lo = 1,7,(0)

and we introduce the parabolic cylinders given by

Qp,m = 1,01 (to) X By(xo),

0, 0,
Qp(,)M = Ip,OM(tO) X Bp(xo)-
We abbreviate @), = Q,,1 and ng = QZ?l for simplicity.

In what follows, we arbitrary choose the centered point (g, xg) and fix
it. We frequently omit to denote it. We set p, > 1 as
1 1
(3.3) — = -
Px n o p
Then we assume that two important parameters M > 0 and w > 0 are
chosen so that

(3.4) sup u < M < 4 sup u

Qp, M Qp, M
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and

3
(3.5) —w< osc u<w.

4 Qp,M
Namely the parameters M and w are approximately the oscillation and the
maximum of the weak solution u(t,z) for (3.1) over @, r respectively:

w >~ 0SC U,
Qp,M

M ~ maxu.
Qp,M

(3.6)

We then have the following alternative lemma.

LEMMA 3.2 (1st alternative). Assume (3.4) and (3.5). For anyp >n
we set py by (3.3) and let p > 0 satisfy

~2 2 1|12 <6
w “pr+ || ||L°°(LP)(QP,M) =

for some 61 > 0. Then there exists a constant 0 < 6y < 1 depending only
on n,a,p, 61 such that if

67 |Quun{te) ulte) < inf wt 2 < 00lQpul,
Qp,M 2
we obtain
w
3.8 t,x) > inf u+ —
(3.8) u(t, z) dnf ut

Jor all (t,x) € Qe p-

LEMMA 3.3 (2nd alternative). Assume (3.4) and (3.5). For anyp >n
we set p, by (3.3). Then for 0 < 0y < 1, there exist 63 > 0 and gy > 0
depending only on n,a,p and 0y such that if

W pre | F Lo (£oy(@, 0p) < 02

and

’Qp,M N {(t,x‘) cu(t,z) < inf w4+ Lﬁ}‘ > 00| Qp,n1)
Qp,M 2
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we obtain

w

u(t,x) < sup u — 02

Qp,M
for all (t,z) € Q%O’M.

For simplicity, we set for a weak solution w;

+

p = sup u,
(3.9) ot
po = inf u
Qp,M
so that we may write osc u = pu* — pu~.

psM

3.2. Proof of Theorem 3.1
We show Theorem 3.1 by temporary admitting the alternative lemmas,
Lemma 3.2 and Lemma 3.3. We recall the parameters play in the roles in

(3.6).

LEMMA 3.4 (oscillation lemma). Let M and w satisfy the assumptions
(3.4) and (3.5). For any p > n let p. be defined in (3.3). Then there exist
0 < #6y,6,n < 1 depending only on n,a and p such that for

o2 ,
prw HFHLOO(LP)(Q,J’M) < 6, it holds that
osc u < nw.

0,
Q 50, M

Proor or LeEmMMA 3.4. By Lemma 3.2, for p > 0 with
2n
W_ZPP_*HFH%oo(Lp)(Qp’M) < 1, there exists 0 < 6y < 1 depending only on
n, a, p such that if

_ w
Qi { () sutta) <+ 5 | < Qo
we have

(3.10) u(t,z) > p~ + %
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for (t,x) € Q%M and by Lemma 3.3, there exist qg, 62 > 0 depending only
on n,a, p such that if

2n

pr= 2
2 Lo o)y an) < 02

and

‘QP,M N {(t,x) Cult,z) < pm + g}‘ > 00Qp.n1l,
then
(3.11) u(t,z) < pt — ﬁ

for (t,x) € QGBOM. Letting
27

6= min{1,5g}, n:i= 1-— W,

we obtain from (3.10) and (3.11) that
< w o _
gsc u < (bt = 1) = gz =W
QP

provided

2n

pre 2
FHF”L‘X’(LZ))(Q/J,M) <o 0

REMARK. We can further assume n > %.

PRrOOF OF THEOREM 3.1.  We put Q = (0,00) x R" and My = supg u,
wo = My. Let 6y, 6 and n be as in Lemma 3.4. We choose py > 0 satisfying

pir < 6HFHZ°20(O,OO;LPI (Rn))wg. We denote Qo = Qpo. My » Hg = supg, u
and p, = infg, u. Then we find

supu < supu < My,
Qo Q

oscu < wy,
0

n

2
* 2 —2
po" = 01 F N e 0,00, 12, (Rn):
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We now fix every parameters as follows:

. { = 171
Cp ‘= Imin nn,§<§)

and we take sequences as

B
2

(3)'}

WE = nka, Pk ‘= Clgpo,
(3.12) My = max{uﬁp wpts Qr = Qpy My
u; 1= supu, py, = infu
Qk Qk

for k € N. In the following, we claim for all £ € N that

supu < sup u < My,

Qk Qr-1
oscu < wg,
(3.13) peu S Wy

2n

* 2 -2
P < 5wkHF||L°°(0,oo;Lﬁloc(R"))

by the inductive argument. Indeed, either if oscg, v < %wo, then by

M,  w 3 . = (3\5
My = My T Co—mm{” ) (4)

we have @1 C Qo and hence (3.13) holds for k = 1. If otherwise, 3wy <
0SCoH0) U < Wo and since My = wy < %uar, we can apply Lemma 3.4 to
obtain

osc U < nwg.
o
5 .m

Since ¢y < min{n' , %(%)%(%)g}, we have Q1 c Q% M © Qo and (3.13)
2 ’

also holds for the case k = 1. We then assume (3.13) for 1,2,--- , k and we

will show the case of k + 1. If we consider the case of u,_; < % ,u,j_l, then

1
iy S Wkt g
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and it follows ,u;:_l < %wk,l = %wk. In the other case, we have

Py < Bty < B < 3
Hence we obtain

+ 3 +
(3.14) Hy_, < max 2wk RTRIRS
n

Using (3.14), we show (3.13) for k + 1.

CasE 1. We assume oscg, u < 3wy. By the definition in (3.12), either
M. = wy, or My, = ,LLzll holds. If M} = wy, then

Mi+r _ Myy1  nwk

> =nz=
M, W W

e~ w

Since ¢y < (%)g, we obtain Q41 C Q. On the other hand, if My = pﬁ_l,

then by (3.14), we have

2 if > 3u;
M1 My 3 ! %wk— Hig »

1 e 3
g if %(.Uk S 3#:,

>

Wl

8 .
2, it follows Qr4+1 C Q. Hence we have

: 1
Since ¢y < (3)
sup v < supu < My,
Qk+1 Qk

2n

osc u <w and p?* . < §||F| 2 w2, .
QkJrl B s pk+1 - ” HLOO(O’OO;Lﬁloc(Rn)) k+1

CAsgE 2. We assume %wk < oscg, u < wy. Since wy < %,u;:, we obtain

3 2
“;:71 < max{%wk, 3,ug} < max{;,u;, 3;&2} < 3@2
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and hence
M, < 1+ 3l < g
r < max g“k y B ¢ < 3y -

Applying Lemma 3.4, we obtain

osc u < Nwy.

ka

0
oMy,
Since

N s 1
%Zu—ﬁ:landcogl(l)Q(@>2’
M;, 1y 3 2\ 3 2

we have Qp+1 C erl M, and hence
2 I

2n

P -2 2
sup u <supu < Mgy,  0sc u <wgyp and ppy < 5”FHLoo(Lp)(Q)Wk+1-
Qr+1 Qk Qr+1

Remarking that My > My for k € N, we have

osc u < oscu < W.
Qpy,, My Qk

Choosing 0 < v < 1 such that ¢ = 7, we see

Y
osc u < nkwo = w0<&) .
Qpy,. 0 PO

We then obtain the intermediate case p # pi for all k € N. When p < pg,
there exists k € NU {0} such that pr < p < pr_1 and

v 8!
(3.15) osc u < wp <@> < w0057<£> :

Qp, My Po Po

2n

Taking pl* = 6HFHZEO( wi, we find from (3.15) that

0700 ) Lgloc (R’n))

Crapwn " IF " v
osc u < wy " "
Qpmy n,o,p¥( H HLOO(O’OO;LﬁIOC(R"))p
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1—-Lxy Bey v
SC”JLPMO ||F”L°°(0,oo;Lﬁloc(R”))p .

On the other hand, if p > pg, we immediately have

P v 1,10_*,y Zﬁ,y
osc u < Mo < M0<—> < CrapMy ™ |Fl /e

p n p’y
QP7M0 ,00 O’OO ; Luloc (R ))

In the both cases, we obtain by the Young inequality

(3.16) os¢ u < Cpap(Mo + HFHLOO(O,oo;Lp (Rn)))fﬂ-

Qp,ny uloc
This concludes the Holder continuity for the weak solution around the fix
point (to,xo). Since the center point (tg,zo) is chosen arbitrary and from
the right hand side of the estimate (3.16), we obtain the uniform estimate.
This completes the proof of Theorem 3.1. [J

3.3. Proof of the first alternative lemma

Without loss of generality, we assume tg = 0 by using the parallel trans-
lation. And we omit the center of ball zo. For an open interval (a,b) € R
and an open ball B,(zg) C R", we call n = n(t,x) a cut-off function in
Q = (a,b) x By(xo) if n € C*(Q) satisfies

om(t,z) >0, a<t<b, x€ By(xo)
n(t,z) =0, a<t<b, x€dBy(xo)

and

n(a,z) =0, x € By(xo).

LEMMA 3.5 (the Caccioppoli estimates for sublevel sets). For p > n,
we set p, as in (3.3). Let n = n(t,z) be a cut-off function in Q,n =

I v x By, For A< pu™ + %w, there exists Co, > 0 such that

sup/ (w—N2n?de+ ¢ (uh) ! // IV (u— \)_|*n? dtda
Bp Qp,M

Ipm

< Ca{w// (u— A)—ndm dzdt
Qp,M
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A Rl ) B CEP VLI
Qp, M

+ SO/(N+)_1”FH%OO(LP)(QP,M)

re O\ 7 A5
« </ prm{u(t)<A}q7dt) }
Iy m

where r, = 2(1 + p%) and g, = (1 — %)_1.

REMARK. The exponent r,, g, satisfies the condition for the smooth
class of the weak solution (so called the Serrin class in the Navier-Stokes
system), namely

PROOF OF LEMMA 3.5. Testing the function —(u— \)_n? to the equa-
tion (3.1), we have

(u—XA)—
sup [ ( [ o £)£d£> 2 da
I, v /B, 0
+ // IV (u— N\)_|*n* dadt
Qp, M

- / / Qi < /O(H) ¢’ (=€) d§> Oy dudt

(3.17)
— // (V(uw—N)_-Vn?)(u— N _ dzdt
Qp, M
- // F-V(u—\)_n*drdt
Qp, M
—// F-Vn?*(u— \)_ dxdt.
Qp,IW
Since

1
ASM_+%§M+—ZWSM+

and ¢'(§) = éf a1 is monotone decreasing, we have for the first term of

left hand side of (3.17) that
YA 2N = ("), €20



398 Masashi M1zuNoO and Takayoshi OGAWA

and hence

sup/ (w — N2 n? dx + go // )_|*n? dadt

Ip,M Bp Qp M

u—>\)—
_ / / ( / SO — ) d§> Oy dudt
(3.18) Qo.M
+ 3¢/ (1 // (u — N2 |Vn|? dedt
Qp, M

+ 2/ (™)1 // |F|*n? dxdt.
prj\/jﬂ{u<)\}

For the last term of the right hand side of (3.18), we use the Holder
inequality to have

/ / |F|?n? dzdt
Qp,IM ﬂ{u</\}

< [ WEPI g B0 utt) < 2}
Iy

(3.19) 2
I [ 1Bo 0 ) < A

p, M

p,M

2 2
w1t5)
< ||F”%oo(Lp)(prM) (/I |Bp N {u(t) < A} @ dt) .

To estimate the first term of the right hand side in (3.18), we note that

e ‘(A dé < A R A—&)d
| oot —w-n- [ oo
= (u=A)-[p(A) = oA = (u=A)-)],

/ / o ( /O(M)_ (A~ ) d§> O dedt
<Jf. [l +%) o)t aa

hence we have

(3.20)
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Either if = < 1u*, then pt < 2w and since ¢(¢) = €Y/, it follows by
¢ ()p(€) = o that

and hence

I < C(a)w // (u — \)_0m? dadt.
Qo.M

Otherwise, if y= > %/ﬁ', then

o (ut) ™ [@(u + %) - cp(u)] — () E /01 ¢’ (;f + %s) ds

2
w
<P 5 W)
1
< (1Y /(_ +)
<o) e (gH
< Cuw.
In both cases, we obtain
(3.21) I < Cyw // (u — \)_0m? dadt.
Qp, M

Substituting (3.20) and (3.21) for (3.20), we obtain (3.17). O
Proor or LEMMA 3.2. We consider the scale transform

s = MP(t —ty), Qp = Qp1, I, = 1,1,
(s, r) = u(t,x), (s, z) = n(t, z), F(s,z) = F(t,z).

and rewrite the Caccioppoli estimate (3.17) as follows:
(3.22) sup/ (@ — N\ 27 dx +£ Mﬁ // )_|*7? dxds

p
< a{w// U — N)_07 d:L‘ds—i— // ]Vn\deds
Qp
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&'(1r) | 2 e\ =)
+ W ||F||LOO(LP)(QP,M) (/Ip |Bp N {U(S) < )\} g d5> .

We then resize the localization with the scaling for the solution by the
parametrized sequence: For k € NU {0}, we set

_ 1
A = 19t o Pk = 5P T o551l

1@ N < A

Y. :
* Q7
(3.23) 2 e \ &
2= 5 ([ 1B ntae) < afEas)
’Qp| Ip,
k 2k
Vil < 2 §82, 8sﬁk§222 sz
Pk — Pk+1 p Pk — Pyt 3p

and we show that Y, — 0 as k — oo. Then, by using p™ < M < 4u™ and

(@ — Ag)— < %, we rewrite (3.22) as

1 = M)~k e (12 @, 22 (1) @)

< Ca{w// (@t — \g) 05132 dds
Qpy,
+// (@ — )2 |V |? dods
Qpy,
Tx P_*

2 - 2 (1+2)
+ || F]]7 0 (/ B, N{u(s) <A q_*d8>
(3.24) IE o0 (r) (@00 kal 0 N {i(s) < A}l

22kw2 9
< Cy 7 {u < At + 1 Lo (o) @)

(/.

w2 % 142

e Z(1+:2)
By 0 (i) < M| s

p
By the Ladyzenskaja inequality and the Holder inequality, we have

(@ = Ae)—7ikllZ2 g, )
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<@ =)=l 0 Ixqaergy [ Fnse
= L2 (Qpy) {a<neHlLn+2(Q,, )

2
2 _ Q P 142
sca,nw2|Qp\Y;“{22’fYk+HFM%m(WQp,M)w 2(—‘ P’) PA }

pe
and
_ -2
(% — M) =7k ]| 7, (L9)(Qpy.)
P1Q! [ ) L (1Q\
< o S48, 1 |y 7 (1) 277 .
Since
_ -2 _ 2
16 = M)l = 1= M)y, ngacsneny
> (A = Meg1) 2 1@y N {E < Apga }
2
= WIQpIYk+1
and
(@ — )\k)fﬁkH%T*(Lq*)(Q%)
_ 9
> |[(@ — M)l (L9)(Qppe 4y HE <Ak 1})
> 0w ([ B 0009 < A )
Topiq
w? ’Qp|
= 64 - 22k 7Zk+17
we obtain
2
Yk+1 < Ca,n{24kyk1+n+2
|Q ‘ 2 2 14 2
- Pey nte P
(3.25) +22k||FH%°°(LP)(QP7M)w 2<p—2p> Ytz },

2
o 1Qp] \ P+ 1+
Zp41 < Ca,n{24kyk + 22kHFH%°°(LP)(QP,M)w ’ <|p—2p| Zy "
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Since Z—: <land § = %—i-q%,we have

2

2 T
Zo= L / 1B, N {ii(s) < o}|F ds
|Qp‘ Iy,

2
2 *

q - 2
<10, / 1B, {a(s) < Mo ds | p7 (75 < O Yy
|Qp‘ 1,

2n
. pP*
Therefore, by the assumption FHFH%w(Lp)(QmM) < 6; and Lemma A.1

there exists 0 < 6y = Op(n, a,p,61) < 1 such that if Yy < 6y, then Y — 0
as k — oo. This concludes

_ _w
u(s,x) > p + —
4
for almost all (s, x) € Qz. O

3.4. Proof of the second alternative lemma
We next show Lemma 3.3.

LEMMA 3.6. Let 0 < 6y < 1. If assumption (3.7) fails i.e.
. w
(3.26) ‘QP’MQ{@,ZE) cu(t,x) < p +§H > 6o|Qp, M),

then for all 0 < 0 < 6y, there exists —](Z,—QB <7< —6’]\’/’[—25 such that

1-0
‘Bpﬁ {x:u(T,x) >/f+g}‘ < fO|Bp].

PrROOF OF LEMMA 3.6. By the change of variable ¢t = A’j[—i;s, (s, x) =
u(t, x), and the inequality (3.26), we obtain

0
/ ‘Bpﬂ{x € B, :u(s,x) >M_+g}‘ ds
-1

M8 o w
=2 |2 0 {u> 1+ 3]
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< ([ (v 3}

MP
< p—( 90)’@pM| (1_90)|BP|'

If |B, N {a(s) > p~ + £} > 1% for all -1 < s < —0, then

0
/ ‘Bpﬂ{xeBp:fc(s,x)>,u_+g}‘ds
. 2

—6 w

2/ Bpﬁ{fL‘GBp:&(s,x)>,u7+§Hds
-1

2 (1 - QO)I‘BPL

which is contradiction. [J

LEMMA 3.7. There exists rg = ro(n,a,00) > 0 and 6, = 61(n,a,
2n

p,00) > 0 such that for any pp*

HFHLoo (LP)(Qpor) < 61, we have

w 0\’
Bpﬂ{a::u(t,x) >,u+—270}‘ < (1— <5> >|Bp|
2

fOT’—5W<t<O

PrROOF OF LEMMA 3.7. We take the cut-off function n = n(x) as

2
n=1on B(l —o)p > ’v77| S —

op
where ¢ > 0 be chosen later. We rewrite the equation (3.1) by
o — (@)1 Au = () div F.

Let)‘ziu__‘_%:sz%ovH:MJr_)\:OSCQp’MU—%and

g(f) = 10g+<H_(£fI>\)++C>7 w:g(u)

where the parameter r9 > 2 will be chosen later.
(9) (u)n? over (1,t) x B, to the equation and using

Testing the function

V() )7 = — " (@) g P Vu+ ()N g?) ' Vu
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+ (")),

%/ wn da: / / 2 |\Vul*n? dedt
// 92" |\Vul*n? dxdt
// YV - Vn? dxdt
By
(3:27) / / 9*)n*F - Vudzdt
B,
// V' F - Vu dxdt
By
// VF - Vn? dxdt
By

=L+ Ir+ I3+ I4.

we obtain

By the Young inequality, we have

t t
L §/ / () w|Vw|*n? dmdt+4/ / ()" tw|Vn|? dzdt
B, T JB,
I < __/ / 2)|Vul*n? dzdt
B,
—/ / | F|*n? dedt
By
I4§2/ / (") tw|Vn)? dwdt—|—2/ / g)2w|F|*n? dxdt.
T JB),
Remarking that ¢” = (¢')%, (¢%)” = 2(¢")*(1 + g), we also have
I3 < / / g2)"|Vul*n? d;r;dt+/ / )" |F*n? dadt
B, B,
_2/ / ) Vw|*n? dadt 4 - / / “Lw|Vw|*n? dedt
B,
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/ / )" |F|?n? dzdt.

Combining of those estimates, we have

%/ w?(t)n :p——/ / 2 |Vul*n? dzdt

/ / ) Vw|?n? dedt
By

/ / ) w|Vw*n? dedt
B,

(3.28) < —/ 2(7) dx+6/ / ~L|Vn|? dzdt
——/ / W\ F*n? dzdt

By

- 2/ / 2(1 4 2w)|F)*n? dzdt
B,

=I5+ I+ I7 + Is.
For the simplicity, we put A = u* —c = p* — 5% Since ' > A, we have

L / W2 (R (t) do > / w2(1) dz
2 /B, B1_ gy, {u(t)>N}
H

> log? < > dx
/B(l_(,)pﬂ{u(t)>)\/} H—(N-X+c

> C(TQ — 3)2{B(l—a)p N {u( > /\,}‘

(3.29)

For I5, we suppose that 7 as in Lemma 3.6 with 6 = % Then

H L,
=1 1 2 = -1
v °g+<H— CESYN +c> °g<2mw) Clro—1)

and hence

1
I < —/ w?(7) dx
2 JB,n{u(r)>A}
-0

1
< C(ro —1)?|B, N {u(r) > A}| < C oo (ro — 1)2|B,).
T2

(3.30)
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-1

Since (¢')~! = au!~& and put < M, we have

(3.31)  Is < 6a(u™)P(t — 7)(ro — 1)1og2<03p>2\3 | < C( )|B,,y

Next, we estimate I7. Since

1 2m 2 H orot+l
g<-="— ()< log—<C (ro—1)
C w C C w
and
_1
u_é S)\_é < <§> for u > A\
we have

27’0+1 t 1
I; < log2< >(r0 - 1)/ / u” | F(s)|? dads
w B,yn{u(s)>A}

C’ (ro — Dw / / F(s)|* dxds
B,n{u(s >)\}

270 _2
< Cargro— 1) / HE@PI g g 1Bl ds
2n

—2 prx 70
< ColBi| 7 o2 ||F||L°°(LP NQ, M)2 o(ro — 1)M5’B |
2n

_2 pP*
< Cal B 2 P oy 2 (10— DIBy

where we have used that %w <o0scQ, U < ut < M. As the estimate of I7,
we obtain for Ig that

2n

_2 pp*
(3.32)  Is < 2a|B] pFHFH%OO(LP)(QP,MQQTOO +2(ro — 1) log 2)| By|.

Combining of those estimate (3.29)—(3.32), we have

1—00/ro—1\> Cila) r9—1
‘B(l_a)pﬂ{$:u(t,$)>)\/}’S{l_e_(?< 0 > + 1() 0
2

7"0—3 0'2 (7’0—3)2
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2n

pp_* 270 (TO - 1)
+ Ca(n,0,0) 5 | Pl (19) (@ 00)

(ro —3)?

2n
PP o 2270 (1 + 2(rg — 1) log 2)
+ C3(n, Oéap)FHFHLoo(Lp)(QP,M) (ro — 3)2 ’BP"

Remarking that

|B, N {x s u(t,z) > N} = [(B, \ Ba—oy,) N{z : u(t,z) > X'}
+ ’B(l—a)p N {J" : u(ta ZL‘) > /\,Ha

we have

’B(lfa')p N {[E : u(t,x) > )\/}|

1—06y (ro—1\> Ci(a) r9—1
S{ eg<r2—3> " ;(2)(T00_3)2+(1_(1_0>n)

2
2n
pp*
+ max{Cy, 03}7\FH%oo(Lp)(Qp,M)C(""O)}|BP|’

where

C(ro) = max{ 270 (rg — 1) 2270(1 + 2(rg — 1) log 2) }

(ro—3)%" (ro —3)?

Now, we fix the parameters g, 0 and oy in the following way: Let o =
o(n,By) satisfying 1 — (1 — o))" < %03 and then we choose g = ro(n, a, 6p)
satisfying

2
o — 1 0o Ci(a) rg—1 1,
<[1——=|(1+86 d < =05,
<T0—3> _( 2)( o) an o2 (rg—3)2~ 8"

Finally, we choose 61 = 61(n, a, p,0y) > 0 sufficiently small such that

max{Cy, C3}C(ro) < 61 < =63,

|~

2n
Then, if pp_*w72HFH%OO(LP)(QpJM) S 617 we have

B, N {z:ult,z) > N}| < (1 (92—°>2>|Bp|. 0
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LEMMA 3.8 (the Caccioppoli estimates for super level sets). Let
Ig?M = (—970%,0) and let n = n(t,z) be a cut-off function in Qﬁ?M. For
A>pt —%, we have

54/ (M) sup /B (wlt) = N2 e

teI@O

// Vo I*0? dacdt
1
<~ (=ut
(3.33) < 5® <4u )//QGO (u—X)30m” dadt
p,M

+ 3// (u— \)2|Vn|? dodt
QY

p M

. Z(1+2)
FIFI gy ( fy 1500000 > 20 )
o,

Proor or LEMMA 3.8. The estimate is similarly obtained by Lemma
3.5. We take a test function (u — A);n? to (3.1) and integrate by parts, we

obtain
oy /B (/ T e d&) 2 do
/ / — )4 [*n? dadt
// ", < / o ’<A+f)£d§>am2 dzdt
(3.34) _ / / o V(u— Ny VP — A), drdt

+// F-V(u—\)yn?dedt
QY

+// F-Vn*(u— N dedt
QP

P
=0 + Is + I3 + 1.
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By the Young inequality, we have

1
By ([ V=N o
2 Q‘90

p,M

+2// b (U N2 V2 dadt,
Qp,lbl

)
1
I3 < —// , |V(u—>\)+]2n2dacdt+// , |F|*n? dadt,
4 QP?M Qp?Mﬂ{u>)\}

I, < // , (u— N2 |vn|? dxdt+// , |F|20? dadt.
Qpim Q2 M{u>A}

Since ¢’ is monotone decreasing,

(3.35

PN+ =@ (u) > (") > ' (M) for0<€< (u— Ny,

and we have
(u=A)+ 1
(3.36) | e oeds 2 onw- »2.
0

Finally, we estimate of . Since 2w < 0scq,  u < pt, we have

£ <o (o =) <o (i)

and hence

(3.37) I < // , (u — \)3 0 dadt.
0

Combining of those estimates (3.35), (3.36), (3.37), we obtain

1 1
590'(M) swp [ ult) = NioPdo g [[ 1900 NP dade
teIgO By Q0

1
5 // (u— A Om dxdt+3// |V77\ dxdt

- 2// |F|>0? dadt.
QZ?MQ{“>)\}
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As the same argument of proof of Lemma 3.5, we have
// , |F|?n? dedt
Qp?Mﬂ{u>>\}
<|IFII?

Lo (LP)(Q10) </I,fOM 1B, N {u(t) > A} dt)

Substituting this estimate, we obtain (3.33). O

LEMMA 3.9 (the hole filling argument). Let py = %p. For 0 <
v < 1, there exzists qo = qo(n,a,p,00,v) > 0 such that for

pi—ﬁw 2\F HiOO(LP)(Q 5 < min{f,1272% &}, we have
+ w
on M (t,.]?) : U(t,%) > P = 2q0+1} |Qp0 M|

where ry, 61 > 0 is as in Lemma 3.7.

PROOF OF LEMMA 3.9. We fix t € 1%, = (— % £5.0) and set

w

/.t
A=t = o

v
A= wo = 2_k’
where k > ro. By the Poincaré type inequality (Lemma A.2), we have

W|BPO N{z:u(t,z) > N}

Cupy ™

< Vu(t)| dx.
B 11 (2 0l 2) < M s, nrcupery

Since A > it — 5% and Lemma 3.7, we have

7]
Bay (1 {2 2 u(t, ) < A} = | Byo| — [ B 1 { - u(t, x>>A}|><°) B

and hence

Chnpo

(3.38) /
03 JB,ynircun<xy

| Bpy N {z :u(t,x) > N} < Vu(t)| de.

2k+
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Integrating (3.38) over Ig?M, we obtain

2k+1|QpOMﬂ{u > )\’}|

””0 / / Vu(t)| dadt
1%, J Bpynir<u(t)<iy

Cnp 1
< IV = Vil g |Qa A <u < VY2,
0

411

Let n € C§°(I x R™) be a smooth cut off function satisfying n = 1 on on M-

By the Caccioppoli estimate (Lemma 3.8), we have

_ 2
IV =N

<[V (- A)mH;(Qeo )

(3.39) < Ca {// ", (V) + ¢ (ph)om?) dadt

_2
FIFIE g / B, 0 {u(t) > A} dt}
p,M 0o

P M

=1+ I

Since we can further assume

8
Vn(t,x)| <-,
[Vn(t, z)| P

10MP
ot <7
tn( 7$) — 00p2 )

we proceed to estimate I; by using M < 4u,,

1 M
1= Cul =3 (5 + e ) ) 10l
(3.40)

2 2
w 1 M w
S Ca<2_k> 0 p < > ’QPO, ‘ S Ca<2_k> Q‘me ‘
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On the other hand, since

/9 B, N {z: u(t,z) > \}'7F dt
[0

p,M

< CulB, \_5|QPOM!

_2n (2K 1
e (5) w)ain () e

we obtain

2n k 1 w
(3.41) I gcw,p(n [ o 292 90)W<_> QY M-

Combining of those estimates (3.39), (3.40) and (3.41), we obtain

\V4 —
V=N

902k L (w
< Cuap (14 1EIE g g 57 2200) s () 102

and hence

<2k+1> Q% N {(t,2)  u(t,z) > X}

Crop (@ ? 2 —262k
<5 (U I gy, 7 2270) 1255

Q% A <u < N}

(3.42)
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Summing over k =19+ 1,...,qp, we have

2

(90 = 70)

4 w
PO a > = 9q0+1
q0

<2

k=ro+1

0 w
Qo "1 {w > 0t - W}'

q0

: 902k
p|on, ‘ Z (1 + ||F||iC>o o (QiOM)pp*w 292 90)
k=ro+1 ’

(3.43)

x @pz,Mﬂ{u - <usut -5y

’ﬂ@m wl (1 IFI2

6
Lo (LP)(Q %)
3 e
k: ro+1

2n
,p|Qp0 M‘2< +||FHL°°(LP)(Q90 ),OP*LU 222(]000).

pf’_:w_222q°90>

;W n w
o.M { TR SUSH _2k+1}‘

Choosing gg > 0 enough large such that

7071’&’10 <?
05(q0 —r0) —
we have by the assumption
2n
&H HQOO (Lr)(@0 )<m1n{9 19=20 61

and (3.43) that

2

+ w 2 2
‘QPOM u>’u’ _2q0+1} |QP0M’ .

Proor oF LEMMA 3.3. Let 0 < p < 1 be chosen later. We take 61 > 0
as in Lemma 3.7 and ¢y as in Lemma 3.9. We put 6y := 111111{2_2‘1000_1 , 01}
Introduce the scale transform

s = MP(t —t), QP = QP I =104
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(s, ) = u(t, v), (s, x) =n(t,x),  (s,x) = o(t,x).

Then we rewrite the Caccioppoli estimate (3.33) as follows:

o' (M) sup/ (@ — N2 dr + —— // )+ |27 dads
100 By
1

<C, {// (a— {go (H)0sm* + —|Vﬁ]2} dxds

0o MB

(3.44)
L 2
7] lF e ooty

For k E N U {0}, we take p = pg, A = A, 7 = 1, satisfying 7, = 1 on
Qﬂk+1

1 1
I _
Ak = o0 T SR Pk = 5P+ S5z P
Y, = |ka N {ZNL > )‘k}‘
k -— 3
|Qpo|
02 0 e \ =
7z, = 0 (/ 1B, N {ii(s) > M5 ds> ,
|Q/J0| —p?
3 2 122k 4 1 48 - 22k
Pk = Pr+1 Po 9 — P Bop

Multiplying ¢'(M)~1 by (3.44), we have
sup /
—%pi<t<0 By,
~ P11 2
< C, // u—)\kQ{ — 4+ dxds
{ oo TN G0 8 T 0N

! ’ e\ )
+ a0 e ([%L%ﬁWU>MWwQ

_pk

< Caygy 2220w Q’Q ‘Y il 1+72 G

1 _ -
(1 — )37k dm—i—W//ng |V (@ — N )4 |22 dds
Pk
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since (4 — M)+ < 707 and M < 4p". Remarking that

2 —2 ‘ng| P <C 2 -2 :if
H HLOO (LP)(Q f;(,)M)w 7 > n,p,@oH HLOO LP)(Q M)w Po

)
< Cn,pﬁoé? < Cn,PﬁOQ 0,
we obtain

1@ = M)+l (L2)(Q20)nL2(H1)(Q%)

< Cn,oc7p7002 2q0 2 ’on‘ {QQkY + Z p* }
Po

By the Ladyzenskaja inequality and the Holder inequality, we have

~ ~ 12 ~ -2 2
I8 A0l gy < = Ml g P

2 2|Q ’H 735 [ 02k 1
< Crropy2 200200 Y”+2{2 Y+ Z,
Po
and
)2 <C 9—2a0 2|Qgg| 92ky Z1+p%
1@ = M)+l (pay(qly) = Crapt2 0w p—%{ K+ 2, }
Since
_ <2
168 = Ml g 2 0= M+l
> (M1 — Ae)21Q% N {i > Ay}
w 6
= (W) Qo Vi1
and
- A > -
= M)l gty 2 I8 = M0 gt asneany

w |Qp0|

415

2

+p—*}
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we obtain

2

a1 | o2k e
Yk+1 < Cn,a,p,ao 2 Yk + 2 Yk Zk
and

1+2
Z1 < Cn,a,p,eo{24kyk +2% 7, }

Since Z—: <land § = %—i-q%,we have

2
T
‘1*
2
q*

o [ [° Ao o
= QP / [Bpy N{uls) < Aojlds | pr a" < Chpon Yo' -

By Lemma A.1, there exists 0 < v = v(n, a,p,0y) < 1 such that if Yy < v,
then Y, — 0 as k — oo, i.e.

2

0
%=1 (/ By (1 {ils) > Ao}

. w 0
a(s,x) < pt — Sz & (s,x) € ng

4. The Asymptotic Profile

In this section, we show the asymptotic convergence of the weak solution
u(t, x) of (1.1) to the Barenblatt-Pattle solution by using the uniform Hélder
estimate.

THEOREM 4.1. Letl<a<2-— % Then for any positive initial data
ug € LL(R™) N L*®(R™) with a > n, the corresponding global weak solution
u(t, x) satisfies the following asymptotic behavior: For M = ||ug||1, with the
condition (1.5), there exists a constant C > 0 such that

lu(t) =U@)[1 < C(L+at)™"
fort >0, where c =n(a—1)4+2 and 0 < v < 2 with |U(t)|y = M.

To show the asymptotic convergence, we consider as we mentioned in
the introduction that the self-similar transform of the system and consider
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the weak solution of the rescaled system:

Opv — divy (Vo™ + 2'v — e_”tlvvx/¢) =0, t>0,2 €¢R",
(4.1) —e ¥ App+ ¢ =v, t'>0,2 eR",
v(0,2") = up(2") > 0, ¥ e R",

where k =n+2—0=n(2 — a).
In what follows, we only treat the scaled system (2.2) and hence we use
a simpler notations as t' — t and 2’ — =z if it does not cause any confusion.
Applying the method of the transport equation or the Fokker-Planck
equation due to Carrillo-Toscani [12], we compute the time derivative of the
free energy functional: For a weak solution v and ¢ of (2.2) , we let for
k=n(2—a),

H(v(t)) :== ! /nva(t)da:+%/n|x|20(t)dx,

a—1
o« a1y Y[
V(a—lv (t) + 2)

wo) = [ oo]v (S5 2+ B o)

a—1

T(o(t)) = / o(®) da,

2

The key idea to show the asymptotic convergence is to consider the decay
of the dissipative flux term I(v) in . We firstly observe that the entropy
functional has a certain relation:

PROPOSITION 4.2. For a weak solution v and ¢ of (2.2) , we have
1 t
)+ 5T+ O [ st
< Ho(s)) + e~ (e V() + [6()])
v [l [ VoI - 51001 dr
X

/t e / o(T)|Vé(T)|*dxdr,
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where k = n(2—a). In particular, for 1 < a < 2— 2, we have that H(v(t))
is uniformly bounded in t under the smallness condition (2.4)

H(v(t)) < H(uo) — %
(4.3) ]fn )
+ Csup |7 Ju(r)ol| V()

»(0)v(0) dx

for any t > 0.

PROOF OF PROPOSITION 4.2. Decomposing Wi (t) into H (t) and terms
with ¢, we see formally that

L [H@O) + 5613 + e IV6DID)] + T (1)
2—K

(4.4) ) 9 2 2 K 2
—e2nt /an(t)w(m dx+e*“[Te* NIVe)lz - §II¢(t)II2]-

Integrate (4.4) over [s, t] we obtain (4.2). Under the condition 1 < o < 2—2,
we have £ > 2 and by Proposition 2.1 |[v(t)]|ec < C and e7t||Vo(t)|2 < C.
Therefore it follows

H(v(t))+/0 J(v(T))dr

< H@(0) + 5 [IV6(0) 13 + 160} 3]
+ Csup (e u(t) V(1) 3)
t>0

1

<HEO) -5 [ v(006(0)dz + Csup (X (o)l Vo))

for all ¢t > 0. O
For a solution v and ¢ of (2.2), we let
10) = [ ot.0) K@ 0(0). 6(0) da.

where K (z,v,¢) = x4+ 25 Vo* 1 (t,2) —e " V¢(t,z) and k = n(2 — a). It
is not so difficult to see that the asymptotic profile is given by J(v(t)) — 0
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from the above inequality. However to obtain the convergence rate for a
weak solution in the weighted class L}(R™)N L (R™), we derive that I(v(t))
is exponentially decaying. To this end, we observe the time derivative of
the functional I(v(t)). We assume that £ > 0 namely o < 2.

Following [12], we formally have

L o)) = —2 /R oK (2, v, 62 da

dt
—Z(a—l)/nvo‘

2/ v VK (2,0, )| dx

2
div K(a:,v,d))’ dx

(4.5)
+2e“t/ vKi(z,v,0)Kj(z,v,¢) (D};¢) dz

+ 26’“/ div (vK(z,v,¢))0ip dx

—2R€_Ht/ vK(z,v,9)Vodr.

Since the weak solution does not have enough regularity, the above identity
is not necessarily valid and the actual estimate should be obtained in the
form of the integral inequality. This is justified by an appropriate approxi-
mation: Let (v, ) be a solution of the regularized system:

v —div ((v + &) Ke(z,v, 9))
= —e(e_(“_2)t(v —¢) + n), t>0,xeR",
—e 2Ap+ ¢ =, t>0,xeR",
v(0, z) = up(x), xz € R",

(4.6)

where
K.(z,v,¢) = %V(v + &)t x) + o — e VG(t, x).

Note that the above system (4.6) is equivalent to (2.3). The existence of
the smooth and sufficiently fast decaying solution at |z| — oo of (4.6) is
obtained in a similar manner in [54].

PROPOSITION 4.3. Let ( = ((x) be a smooth cut off function such that
¢ = 1 in Br and whose derivatives are supported in Bog\ Br. For a solution
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v and ¢ of (4.6) belonging to L', we let

L) = [ v(0) Koo o(0),00)

where k = n(2 — ). Then we have

d

GO <=2 [ (oK v 0P

~2a-1) [ (@eep
- 2/n(v +)° VK. (2, v, 6)[2Cda

2
div K (z,v, (b)‘ (dx

(4.7) 4 9e Kt / (v+e)Kei(z,v,0) K. j(x,v, ) (Di2j¢) Cdz

1 gem(n2) /]R K (2,0, 6)? Cda

— 2/@6’“/ vK (z,v,0) - Vo(dz
+ El($7 v, (ba £, VC)?

where Er(z,v, ¢,e, V() denotes the error term and it will be vanishing when
we take the limit R — oo and € — 0.

The derivation and rigorous treatment of (4.7) is given in appendix in
[48]. We proceed to the following.

PROPOSITION 4.4. Let (v, ¢) be a weak solution of (2.2). We set
10) = | o®K @ 0,0)Pds
Rn

with K(z,v,¢) = %va_l +x — e "V¢. Then under the condition 1 <
a < 2—2 and the solution v has uniform estimate supy ||v(t)||lso < Cs for

some constant, there exist Ty, v > 0 such that for any Ty < t,

t

(4.8) I(w(t) +v / I(w(r)) dr < I(u(Tp)).

To
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In particular, we have
I(w(t)) < Ce ™™, t>Tp

where the constant C is depending on the initial data ug and Tp.

To obtain the above proposition, we need the following two ingredients.
First one is the Sobolev type inequality in the critical type originally due
to Brezis-Gallouet [9]. This is the generalized version obtained in Ogawa-
Taniuchi [49].

ProposiTION 4.5 ([9], [29], [49]). There exists a constant C' depending
only on n such that for f € L*(R")NCY(R™), the following inequality holds:

(4.9) [flloo <C L+ [IfllBrolog (e + [ fll2 + I fllcv)) -

PROOF OF PROPOSITION 4.4. To avoid the complexity of the nota-
tion, we treat the estimate only for the essential parts in rather formal way,
namely dropping the parameter € and cut off function ¢ without integration
in t variable. The actual estimate are done for the approximated solution.
The rigorous procedure requires that all those estimates are proceeded be-
fore passing to the limit R — oo and € — 0 and the rigorous treatment can
be found in [48]. Observing the estimate (4.7), we need to estimate the last
four terms in the right-hand side. The fourth error term Ej(x,v, ¢, e, V()
is handled in [48, Appendix A] since it does not give any effect for the esti-
mation of the other terms. Firstly, the sixth term of the right hand side of
(4.7) can be estimated as follows.

—2/@6_’“/ vK(x,v,9)Vodr

1/2 1/2
—kt 2
< e V(L) oo </R vdx) </R oK (2,0, 0)| dx)

§2m6_16_2”t\\v¢(t)Hgo/ Ud$+§/ oK (z,v, ¢)[*dx
Rn 2 Rn

77
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where € > 0 is a small parameter. Hence from Proposition 4.3, we obtain
that

CI0(1) < (2 )I(u(0) ~ 2o - 1)/ wldiv K (2,0, 0)| dz

n

- 2/ v |VK (z,0, )] da
R

(4.10) +2e(“)f/ 02 |K (z,v,0)| da
Rn

+2e“t/ vKi(z,v,0)K (xv¢)( )d:z:
+ Ce e 25D () |1 sup(e 2|V (1)[|2,),
t

where K(z,v,¢) = z + =2,V ! (t,z) — e *V¢(t,z). We now turn into
how to treat the followmg term

/an (z,v,0)Kj(z,v,0)D; <Z>dx.

Applying the logarithmic interpolation inequality of Brezis-Gallouet type
(4.9), we see

1D%6(1) e < (1 + D60l maro los(e + [ D602 + [ID*6(1)cn) ).
By the Calderon-Zygmund inequality, we have
ID*¢ll2 < CllAdl2 < Ce*(|[vll2 + [Igll2) < Cev])2.
By the Schauder estimate, we obtain
ID?*¢llcr < Ce*([[v]ler + NIgllor) < Ce™.
Finally, by the Calderon-Zygmund inequality again, we have
(4.11) D¢ smo < CllAG|IBao < ClIA(=e > A + 1) 0| pumo-

We notice that the corresponding Fourier multiplier of the operator appear-
ing the right-hand side of (4.11) is given by

S |4
e P T g+ e

T
Ve

€T = e
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and the multiplier satisfies the condition so that the operator
e =2 V>~ (—e2*A + 1)1 is bounded in BMO. Therefore

1D%¢||prro < Ce® V"] Baso-

From the uniform Holder estimate Theorem 3.1 |||V|"v||papo is bounded
uniformly in ¢. This enable us to proceed the estimate as

Ze_ﬁt/ vEKi(z, v, ) Kj(w,v, $)0;0; d
(112) <2 D%(0) o [ ol (a0.6) do
Rn
< Ce—(n—2+'v’)t/ v|K(z,0,)* do
Rn

for some 7/ > 0. Combining (4.10) and (4.12), we obtain that if Kk = 2 i.e.

a=2— 2,
(4.13) %I(v(t)) < —(2=9)I(v(t)) + Csup|lu(t) oo (v(1)) + Cete™™

Note that at this stage, the inequality (4.13) does not include the higher
order terms so that it is possible to justify it for the weak solution. Since
2(k —2) =0 when o = 2 — %, we can choose v, > 0 such that for some

large Ty > 0, which depends on C, for any t > Ty,

(4.14) %(e”tl(v(t)) < Cem,

Immediately we obtain that

I(v(t)) <e ™ <I('U(T())) +C TOO e d7'>.

Since Ty is only depending on C' we may conclude that I(v(t)) < C(Tp) for
0 <t < T} and this concludes the desired estimate. [

The proof of the asymptotic profile in Theorem 1.2 completes after prov-
ing the convergence of the rescaled solution and rescaling.
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PROPOSITION 4.6. Let1 <a <2—2 and (v,¢) be a weak solution to
(2.2). If the initial data satisfies the condition (1.5), then we have for some
v >0 that

l(t) = VIl < Ce™™,

where

e
« \xﬂ
2c

V(z) = [A -

+
and the constant A is chosen as |V||1 = ||uol|1-

PROOF OF PROPOSITION 4.6. Due to the result from Proposition 4.4,
we immediately obtain that

(4.15) lim I(v(t)) = 0.

t—o00

On the other hand, since by Proposition 2.1,

J(v(t)) < 21(v(t)) + 2e~20t / o(t)| V() 2da
Rn
< 21(v(t)) + 2> |v () |ool [ VS() I3

< 2I(ug)e ™t + 2~ 2t C (v, ¢),

(4.16)

)
)

we conclude from (4.2) in Proposition 4.2 and Proposition 2.1 that for any
s <1,

[H(o(t) = H(u(s))]
<l e Vo) IE + I6@I) — e (e~ Va(s)I3 + o(s)3)

t _
+ / (“T%-Wwwqﬁ(r)u% + e lem) 3 + J(v(r))) dr

t
—2KT 2
(4.17) +/S € (/an(T)IW(T)\ dm) dr
< Clr)e™ sup(e 7| Vo(r)I3 + lé(r)]3)

+ 2]-(7)(”0))671/5 + 20(/@)672(’{71)8
4 e 2Ak)s sg}g(e—%Hv(T) loc[V()113)

<Ce ™™ —0, ass,t— o0
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and this shows that {H (v(t,))}r is the Cauchy sequence in ¢,, — co. More-
over since v € L' with Vo® € L' by

o2 1/2 L 1/2
o [ ) < (.
/Rn|Vv |0lav_(oé_1/2)2 (/Rnuodx> </n|VU 2|dw> <C

Besides the moment bound (2.7) in Proposition 2.3, |z|% € L' for some
a > 2. Therefore by the compactness Wit N LL(R") c LY(R"?) N Li(R"),
we have a subsequence v(ty) such that it converges strongly to V(z) €
L*(R™) N Li(R™). The similar argument found in [12, Theorem 3.1] works
for our case and we see that there exists a limit function V' in L(R") such
that

v(ty) =V, t, — o0

in L}(R™). Tt turns out that the limit function is also nonnegative and
bounded. While by (4.15), the moment bound Proposition 2.3 and the
natural regularity of the weak solution, we see that

2

@ dr =0

vverl 4g

J(v(t))—>J(V):/ %

n

o —

and we obtain either V = 0 or VVo 1 = —O‘T_lm almost everywhere. This
concludes by recalling M = ||ug||1,

1
_ a—1 o)1
Vi) = [4- 22|

where A is chosen such that the L' norm of V(z) is normalized as 1. Again
the estimate (4.2) in Proposition 4.2 and (4.17) gives

(4.18) \H(v(t)) — H(V)| < Ce™t

and the desired estimate follows from the argument in [12, Theorem 4.5].
Namely we see firstly that

/KV [v(t) - V|dz
< (Lt -m00) ([ vere)”

M

(4.19)
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by the special structure of the Barenblatt solution, where By; = supp B =
{Jz| < ZL:?} and xp,, is the characteristic function on Bj;. While by
M = ||V]|1 = |lv(t)|l1 and V > 0, we see

(4.20) />V () = Vde = /<V(v —o(t))da = / () — Vda.

o<V

We note that over B§,, V is vanishing and by [12, Lemma 4.4]

1 / 1 )
v(t)dx + - / (|x|* — D)v(t)dz
a—1Jpsc 2 Jig2>c

(4.21) < [H(v(t)) = H(V)],

D v(t)dr < Ce .
|z|2>C

Combining (4.19), (4.20) and (4.21) with (4.18) we conclude that
lo(t) = Vi < Ce,
for some v/ > 0. O

Appendix A. Some Fundamental Calculus

Their results are well-known, however we give proofs for self-contained-
ness.

LEmMMA A.1 (cf. Ladyzenskaja-Solonnikov-Ural’ceva [33, pp.96 Lemma
5.7]). Let C,e,6 >0, b>1 and let {Y,}22, {Zn}22, C (0,00) satisfy

Y1 < COMY I 4y 0 714e)

Al
(A1) Zny1 < CO™(Y, + Z119).

Set

d := min {5, %6} , A\ = min {(20)—%13—5—2 L (20) b—%} .

Then if Yo < X\ and Zy < )\ﬁ, we obtain

1

(A.2) Y, <A, Zy < (Abd)THE,
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PrROOF OF LEMMA A.1. Inequality (A.2) are valid for n = 0. We prove
(A.2) by induction. If (A.2) hold for n, then by (A.1), we have

Y1 < 20N (=50 7 < oo,
Since \ < (20)_%6_% and d < 6, we have

2CAH (T < Apmap (D) < g
Similarly, since A < (20)_761)_3, we obtain

n+1

20N (11 = 20 AT ATy a1 R < () ey (T e,

Since d < we find 1 —

Ties (1+€) < 0 and hence we have (A.2) for n+ 1. O

LemMA A.2 (cf. Ladyzenskaja-Solonnikov-Ural’ceva [33, p.91]). Let
w € WH(B,) and let | > k. Then there exists a constant C depending on
n only such that
Cpn—l-l

—_— Vw|dz
B, — 1A% Jar o,

(1= k)|AZ| <

where

A;;k ={x € By; w(z) > k}.

For the proof of Lemma A.2, we need the following weighted Poincaré
inequality:

LeMMA A.3 (cf. Ladyzenskaja-Solonnikov-Ural’ceva [33, p.89]). Let g
be a nonnegative function in Wh1(B,) and let Ny := {g = 0}. Then

Cnpn-i—l
[, s < S [ wainteds

P

Proor or LEMMA A.3. We only consider the case n > 2. For x €
B,, 2/ € Ny, we have

o/ —al o/ —al
@) = 9@) —g@) == [ Totrraar< [ Valatrwlar
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where w = ‘””j—‘ Integrating over « € B, and 2’ € Ny, we have

|2’ —a|
|No]/ x)dx </ dx/ dm// IVg(z +rw)|dr.
B, No 0

Let g(z) be zero on x € R" \ B,. Introducing the polar coordinate, we
obtain

|2~z
/ dx’/ |Vg(z + rw)|dr
No 0

|2 —z|
g/ d:c’/ |Vg(z + rw)|dr
B 0

2p(z

|2~
S/ / |Vg(x +rw)|dr
/

2p Tr =so+ux,
:/ s lds/ —\Vg :i_l_lrw)‘r”_l dr ( oes, )

0 Sn-t " 0<s<2p

2p
:/ s ld / |vg(y)11 dy (yICC—i-TJ)

0 By(x) [T —y"
<

n

(2/)”/ Vg(y)|
B

o=y
P

where S is the (n — 1)—dimensiona1 unit sphere. Therefore,

Vel

BP B, |z —

1
= np”/ Vgl(y dy/ —— dx.
B,J‘ )l B, |z —y["!
Since

1 1 2P -l
/ TS dr < / ISy dx < / dO'/ n—1 dr = Cnp7
B, |t =yl Bay(y) 12— Yl Sn1 0o T

we obtain

| No| g(x)
By

’nl

Nol [ ge) de < Cop ! / V()| dy. O
B, B,
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ProoOF OF LEMMA A.2. Let

g(z) == max{l —k, (w—k)4+} € WH(B,), No:={w < k}.

Then, by Lemma A.3, we have

Cn n+1
/ g(z) dz < P / V()| dz,
B, [Nol  JB,

hence

Cnpn—i-l /
l—KkH{w >} < ——— Vw(x)|dx. O
=Rl >0l < ol | vu)

LEMMA A.4 (scaled Bessel potential). Let f € LI(R™). Then for all
A>0andl <r <2 we have:

n—2’
(A.3) I=AT2A+ D) fllp < Ae L+ TG F g,
where G is the Bessel potential for (—A +1)~! and % = é +1-1.

PROOF OF LEMMA A.4. Let Gy(x) be the Bessel kernel for the Bessel
potential (—5zA + 1)~!. Then since

(“A2A 4+ 1)1 f =c, / et f(€)de

n IE/A?2+1

. 1 . "
e / N fOm
oy 1 ~
:A"cn/ne“g“?m'z+ T/ (m)dn
=ATGIA) * (AT (ATH)
=Gi(A) * (f(07 1))

where f(z) = A" f(A"'z). Hence

I=ATPA+ )7l =[[GiA) = (FATH)|
<G FA )
=27 (|G || £l
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where
1_1_ (1 _ l)
p q r
and r < n% Namely 1 — % < % and hence we obtain the result. [J
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