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Regularity and Asymptotic Behavior for

the Keller-Segel System of Degenerate Type

with Critical Nonlinearity

By Masashi Mizuno∗ and Takayoshi Ogawa†

Abstract. We discuss the large time behavior of a weak solution
of the Keller-Segel system of degenerate type:


∂tu− ∆uα + div(u∇ψ) = 0, t > 0 , x ∈ R

n,

− ∆ψ + ψ = u, t > 0 , x ∈ R
n,

u(0, x) = u0(x) ≥ 0, x ∈ R
n,

where α > 1. It is known when the exponent α = 2 − 2
n , then the

problem shows the critical situation. In this case, we show that the
small data global solution decays and its asymptotic profile converges
to the Barenblatt-Pattle solution U(t) = (1 + t)−n/σ

(
A − |x|2/(1 +

t)1/σ
)1/(α−1)

+
in L1 such as

‖u(t) − U(t)‖1 ≤ C(1 + t)−ν ,

where ν > 0 is depending on n and the regularity of the solution.
To show this, we employ the forward self-similar transform and use
the entropy dissipation term to derive the asymptotic profile due to
Carrillo-Toscani [12] and Ogawa [47]. The Hölder continuity of the
weak solution for the forward self-similar equation plays a crucial role.
We derive the uniform Hölder continuity by using the rescaled alter-
native selection originated by DiBenedetto-Friedman [18, 19].
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1. Introduction

We consider a large time behavior of the global solution of the degenerate

parabolic elliptic system:


∂tu− ∆uα + div(u∇ψ) = 0, t > 0 , x ∈ R
n,

− ∆ψ + ψ = u, t > 0 , x ∈ R
n,

u(0, x) = u0(x) ≥ 0, x ∈ R
n,

(1.1)

where α > 1. This system describes the dynamics of the chemical attracted

mold. The system originally consists of two reaction diffusion equations. By

taking the zero relaxation time limit, one can obtain the above form as the

result. For the case of α = 1, it is a semi-linear problem and the system (1.1)

is analyzed by many authors. For α > 1, the problem (1.1) is a degenerated

parabolic elliptic system and there are some work on it ([1], [2], [7], [8], [14],

[15], [34], [47] ,[48], [54], [55]). On the other hand, the system has a strong

relation with the variational structure and the large time behavior of the

solution is really depending on the variational functional reduced from the

entropy-energy inequality.

W [u](t) :=
1

α− 1
‖u(t)‖αα −

1

2

∫
Rn

u(t)ψ(t) dx ≤ W [u0].

Then it appears that there exists a critical exponent α = 2− 2
n that the global

behavior of the solution is changed. This exponent is considered a threshold

exponent to separate the global asymptotic behavior of the weak solution.

Roughly speaking, the small solution with small initial data decays as t →
∞. Then the main concern for this case is its asymptotic profile. By the self-

similar rescaling, one may find that there appears some particular profile in

its rescaled form. On the other hand, the equation is degenerated and it has

some hyperbolic like feature in its weak solution when the solution meets 0.

In this case, the regularity breaks down and the behavior is governed by the

hyperbolic like structure. The best possible regularity for the weak solution

is generally known as the Hölder continuity. Indeed, to show the asymptotic

profile of the decaying solution, the regularity of the weak solution plays an

important role.

In this paper, we consider the regularity problem of the system (1.1) and

apply it for the large time asymptotic behavior of the decaying solution in
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the critical case and show its convergence rate for the asymptotic profile if

it is rescaled in the self-similar way. Since the equation is degenerated, the

smoothness of the solution is not generally guaranteed and we necessarily

consider the weak solution.

Definition. For a nonnegative initial data u0 ∈ L1(Rn)∩Lα(Rn), we

call (u , ψ) a weak solution of the system (1.1) if there exists T > 0 such

that

1. u(t, x) ≥ 0 for almost all (t, x) ∈ [0, T ) × R
n,

2. u ∈ L∞(0, T ; L1(Rn) ∩ Lα(Rn)) with ∇uα ∈ L2((0, T ) × R
n), and

3. u satisfies the first equation of (1.1) in the sense of distribution, namely

for any φ ∈ C∞([0, T ] ;C∞
0 ), we have

∫
Rn

u(t)φ(t) dx−
∫
Rn

u0φ(0) dx

=

∫ t

0
dτ

∫
Rn

{
u(τ)∂tφ(τ) −∇uα(τ) · ∇φ(τ)

+ u(τ)∇ψ(τ) · ∇φ(τ)

}
dx

(1.2)

for almost all 0 < t < T , where ψ = (−∆ + 1)−1u is given by the

Bessel potential.

We may obtain the time local weak solution of (1.1) by some approximat-

ing procedure. Then the existence of time global weak solution is classified

by a threshold exponent α = 2 − 2
n . We summarize the known results for

the existence and non-existence of time global weak solutions.

Proposition 1.1 ([1], [2], [7], [8], [47], [48], [54], [55]). Let n ≥ 3,

α > 1 and we assume that u0 ∈ L1(Rn)∩Lα(Rn). Then there exists a weak

solution (u, ψ) of (1.1) that satisfies for 0 < t < T ,

‖u(t)‖L1(Rn) = ‖u0‖L1(Rn),



378 Masashi Mizuno and Takayoshi Ogawa

W (t)+

∫ t

0

∫
Rn

u(t)

∣∣∣∣∇ α

α− 1
uα−1 −∇ψ

∣∣∣∣
2

dtdx ≤ W (0),

where

W (t) =
1

α− 1
‖u‖αLα(Rn) −

1

2
‖Λ−1u(t)‖2

L2(Rn)

(1.3)

with Λ = (−∆ + 1)
1
2 . In addition:

(1) if α > 2 − 2
n , then, for any initial data u0 the solution exists globally

in time and the solution is uniformly bounded.

(2) If 1 < α ≤ 2 − 2
n and the initial data satisfying W (0) > 0 with

‖u0‖1−γ
L1(Rn)

W (0)
γ−α+1

α < CC−1
HLS,(1.4)

then the weak solution exists globally in time, where C > 0 is some

constant depending only on n, α and CHLS is a best possible constant

of the Hardy-Littlewood-Sobolev inequality on R
n.

(3) In particular, if α = 2 − 2
n the above condition (1.4) is given by

‖u0‖
2
n

L1(Rn)
<

2n

n− 2
C−1

HLS.(1.5)

(4) If 1 < α ≤ 2 − 2
n and the initial data u0 ∈ L1(Rn) ∩ Lα(Rn) with

|x|2u0 ∈ L1(Rn) satisfies W (0) < 0, then the weak solution blows up

in a finite time T in the following sense:

lim sup
t→T

‖u(t)‖Lq(Rn) = ∞ for all α ≤ q ≤ ∞.

By Proposition 1.1, the weak solution to (1.1) exists globally in time

when n ≥ 3, 1 < α ≤ 2 − 2
n and the initial data is sufficiently small. When

we consider the small data problem, then the system can be regarded as the

perturbed problem from the porous medium equation:{
∂tw − ∆wα = 0, t > 0 , x ∈ R

n,

w(0, x) = w0(x), x ∈ R
n.

(1.6)
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For the porous medium equation, there exists an explicit solution called the

Barenblatt-Pattle solution.

Definition (the Barenblatt-Pattle solution). For α > 1, we set σ =

n(α− 1) + 2. For some A > 0, the function U(t) defined by

U(t, x) = (1 + σt)−
n
σ

(
A− α− 1

2α

|x|2

(1 + σt)
2
σ

) 1
α−1

+

(1.7)

is called as the Barenblatt-Pattle solution, where (f)+ = max{f, 0}.

It is well known that the Barenblatt-Pattle solution (1.7) solves

the porous medium equation (1.6) with the initial data w0(x) =
(
A −

α−2
2α |x|2

)1/(α−1)

+
.

In the case α ≤ 2 − 2
n and the initial data u0 is small, then we may

regard the nonlinear term div(u∇ψ) in (1.1) as a small perturbation and we

speculate that the solution of (1.1) asymptotically converges to the solution

of the porous medium equation. In fact, Luckhaus-Sugiyama [34] showed the

asymptotic convergence of the solution in Lp spaces for 1 < α ≤ 2− 2
n , n ≥ 3

and 1 ≤ p ≤ ∞. Ogawa [48] showed that if 1 < α < 2 − 2
n , then we obtain

the algebraic convergence rate of the solution in L1 space via the argument

due to Carrillo-Toscani [12] and the critical Sobolev type inequality [49].

Namely, for 1 < α < 2 − 2
n and W (0) > 0 with (1.4) then there exist

constants ν > 0 and C > 0 such that

‖u(t) − U(t)‖L1(Rn) ≤ C(1 + t)−ν , t > 0,(1.8)

where U is the Barenblatt-Pattle solution with ‖U‖1 = ‖u0‖1.

In this paper, we show the same asymptotic convergence in L1(Rn) for

the critical case α = 2 − 2
n . Our main theorem is the following:

Theorem 1.2. Let α = 2 − 2
n and n ≥ 3. Assume that u0 ∈ L1(Rn) ∩

Lα(Rn) satisfying W (0) > 0, (1.4), ‖u0‖1 < 2 and |x|au0 ∈ L1(Rn) for

some a > n. Then, there exist C > 0 and ν > 0 such that the corresponding

global weak solution u of (1.1) satisfies

‖u(t) − U(t)‖L1(Rn) ≤ C(1 + t)−ν , t > 0,(1.9)
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where U is the Barenblatt-Pattle solution with ‖U(0)‖L1(Rn) = ‖u0‖L1(Rn).

To show the asymptotic behavior of the decaying solution, we necessar-

ily consider the regularity of the solution. Indeed, the weak solution to the

degenerate problem (1.1) has a hyperbolic feature in it when the solution

meets zero. In this case, the equation loses the parabolic behavior and the

solution behaves as if it is a solution of the hyperbolic equation. In [48], the

Hölder regularity is used essential way to show the asymptotic convergence

rate. To see this, we firstly introduce the forward self-similar transform,

which plays an important role in studying the large time asymptotic behav-

ior. We introduce the forward self-similar scaling (t′, x′) as

t′ =
1

σ
log(1 + σt) , x′ =

x

(1 + σt)
1
σ

,

where σ = n(α − 1) + 2 and the forward self-similar transform (v(t′, x′) ,
φ(t′, x′)) as

v(t′, x′) = (1 + σt)
n
σ u(t, x) , φ(t′, x′) = (1 + σt)

n
σψ(t, x).

Then, the forward self-similar transform (v, φ) satisfies the following degen-

erate parabolic elliptic system:




∂t′v − divx′(∇x′vα + x′v − e−κt
′
v∇x′φ) = 0, t′ > 0 , x′ ∈ R

n,

− e−2t′∆x′φ + φ = v, t′ > 0 , x′ ∈ R
n,

v(0, x′) = u0(x
′) ≥ 0, x′ ∈ R

n,

(1.10)

where κ = n + 2 − σ = n(2 − α). The weak solution of the system (1.10) is

similarly defined as in the case for (1.1).

For 1 ≤ p ≤ ∞, we obtain

(1 + σt)
n
σ

(1− 1
p
)‖u(t) − U(t)‖p = ‖v(t′) − V ‖p(1.11)

where

V (x′) :=

(
A− α− 1

2α
|x′|2

) 1
α−1

+

= (1 + σt)
n
σU(t, x)
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is a self-similar profile of the Barenblatt-Pattle solution. If p = 1, then

equation (1.11) is rewritten by

‖u(t) − U(t)‖1 = ‖v(t′) − V ‖1

For the sake of obtaining the convergence rate of the solution in L1, we

should show the convergence rate of the forward self-similar transform in

L1 space. Ogawa [48] showed that if the self-similar transformed solution v

is uniformly Hölder continuous, then we obtain the exponential convergence

rate of the self-similar transform v. More precisely,

Proposition 1.3 ([48]). Let 1 < α ≤ 2 − 2
n . Assume that the initial

data u0 satisfies W (0) > 0 and (1.4). If the corresponding forward self-

similar transform v is uniformly Hölder continuous, then there exist ν > 0

and C > 0 such that

‖v(t′) − V ‖L1(Rn) ≤ Ce−νt
′
, t′ > 0(1.12)

where V is the self-similar profile of the Barenblatt-Pattle solution with

‖V ‖1 = ‖u0‖1.

Our main concern is to obtain the algebraic convergence rate of the solu-

tion in L1 space for the case of critical exponent α = 2− 2
n . The reason why

the critical case is excluded in [48] is because the uniform Hölder continuity

of the rescaled weak solution v(s, y) is required for proving algebraic asymp-

totic convergence. The Hölder continuity was obtained in [48] for v(s, y) via

the rescaled weak solution u(t, x) and hence it was not the uniform estimate

for (s, y). By this argument, the critical case has to be necessarily excluded

since the decaying factor e−(κ−2)t disappears in the crucial estimates. In this

case, however, the nonlinear diffusion is dominant over the nonlocal trans-

port for large time asymptotic behavior and we expect that the asymptotic

profile is analogous to the sub-critical cases α < 2− 2
n . This is because of the

effect from the lower order linear term on the equation of ψ (cf. [34]). To

cover the critical case, we necessarily derive the uniform Hölder regularity

for the weak solution of the rescaled solution v(s, y) directly by assuming

that the moment of the solution is uniformly bounded in time. To this end,

we show the following regularity result:
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Theorem 1.4. Let (v, φ) be a weak solution of the scaled Keller-Segel

system (1.10) in (u, φ) ∈ L∞(0, T ;L1 ∩Lα)×L∞(0, T ;W 2,α) with |x|au0 ∈
L1 for some a > n. Then v(t, x) is uniformly Hölder continuous. Namely,

there exists a constant C = C(n, α, ‖v‖L1∩L∞) and 0 < γ < 1 such that for

any (t, x) and (s, y) ∈ [0, T ] × R
n,

|v(t, x) − v(s, y)| ≤ C
(
|t− s|γ/2 + |x− y|γ

)
.

From the regularity result Theorem 1.4, when the small initial data

has a compact support especially, we may obtain the explicit asymptotic

convergence rate to the solution of the porous medium equation. That is

to say, the nonlinear diffusion is more effective than the nonlocal transport

for the asymptotic behavior of generic solutions. We emphasize that for

fine large time asymptotic estimates in the critical situation, we need some

uniform regularity estimates for rescaled solution v.

The main argument to obtain the uniform Hölder continuity is along the

argument due to DiBenedetto-Friedman [18], [19] (see also [17]). In partic-

ular, we employ the maximum depending parabolic cylinder to consider the

Hölder regularity. Since we have the external term in the equation (1.10), we

need to treat it from the very first step of the alternative selection lemma.

In fact, we show the Hölder continuity of the weak solution involving the

external term div F := div (yv − e−κsv∇φ). Unfortunately, the alternative

method in [18] does not work directly well for this case, we reconstruct the

alternative selection lemma (Lemma 3.2 and Lemma 3.3 in the section 3

below) for proving the oscillation estimate of the weak solution. This part

gives a large contrast to the classical argument found in [18], [19]. Thanks

to the uniform moment bound for the weak solution, this is possible and we

many derive the asymptotic convergence in the algebraic decay order.

This paper is organized as follows. In the next section, we introduce

the forward self-similar transform and its properties. We show the Hölder

continuity of the self-similar transform in section 3. In section 4, we give

the relationship between the asymptotic stability of the solution of (1.1)

and the Hölder continuity of the self-similar transform.

We introduce some notation. We denote a positive part of a by a+ :=

max{a, 0} and a negative part of a by a− := max{−a, 0}. We write the
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oscillation of a function f in a set A as

osc
A

f := sup
x∈A

f(x) − inf
x∈A

f(x).

For ρ > 0, we denote by Bρ(x0) the open ball centered at x0 with the radius

ρ > 0. We simply write Bρ = Bρ(0).

For Lebesgue measurable set A ⊂ R
n, we denote by |A| the Lebesgue

measure of A. For f ∈ Lp(Rn), let ‖f‖p denote the norm of f in Lp(Rn).

Lps = Lps(Rn) denotes the weighted Lebesgue space defined by {f ∈ Lp(Rn),

|x|sf(x) ∈ Lp(Rn)}. For an open interval I ⊂ R, a domain Ω ⊂ R
n and

1 ≤ p, q ≤ ∞, we denote Lp(I ; Lq(Ω)) by Lp(Lq)(I × Ω).

2. Forward Self-Similar Transform

In this section, we show the time decay of the global weak solution of the

degenerated Keller-Segel system. This is originally shown in [54] however,

we present the method of rescaling which is shown in [47].

2.1. Rescaled equation

We introduce the new scaled variables (t′, x′) as


t′ =
1

σ
log(1 + σt),

x′ =
x

(1 + σt)
1
σ

,
(2.1)

where σ = n(α − 1) + 2 and introduce the new scaled unknown functions

v(t′, x′), φ(t′, x′) by

u(t, x) = (1 + σt)−
n
σ v

(
1

σ
log(1 + σt),

x

(1 + σt)
1
σ

)
,

ψ(t, x) = (1 + σt)−
n
σ φ

(
1

σ
log(1 + σt),

x

(1 + σt)
1
σ

)
.

Or one may write as

v
(
t′, x′

)
≡ ent

′
u

(
1

σ
(eσt

′ − 1), x′et
′
)
,
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φ
(
t′, x′

)
≡ ent

′
ψ

(
1

σ
(eσt

′ − 1), x′et
′
)

and the resulting scaling equation of (v, φ) follows by setting κ = n+2−σ =

n(2 − α),




∂t′v − div x′(∇x′vα + x′v − e−κt
′
v∇x′φ) = 0, t′ > 0, x′ ∈ R

n,

− e−2t′∆x′φ + φ = v, t′ > 0, x′ ∈ R
n,

v(0, x′) = u0(x
′), x′ ∈ R

n.

(2.2)

In this case, the vanishing exponent as before can be found as α = 2 by

0 = σ − n− 2 = n(α− 2)

and thus the sub-critical case is corresponding to α < 2. Hereafter we

analyze the above rescaled equation (2.2) to see the asymptotic behavior of

the solution. We slightly change the outlook of the solution as follows:

The existence of the weak solution of (2.2) may be proven by a simi-

lar way to the original equation. Indeed, the scaling does not change any

analytical feature of the original weak solution so that the solution can be

obtained from the weak solution of (1.1) except the weighted restriction

such as v ∈ C((0, T );Lα∩L1
a(R

n)) for a ≥ 2. Similar to the original system,

we consider the approximated system by the parabolic regularization:


∂t′v − div x′(∇x′(v + ε)α + x′v
−e−κt

′
v∇x′φ) = 0,

t′ > 0, x′ ∈ R
n,

− e−2t′∆x′φ + φ = v, t′ > 0, x′ ∈ R
n,

v(0, x′) = u0(x
′), x′ ∈ R

n.

(2.3)

Namely we again consider the nonnegative weak solution v(t′, x′) as before.

Note that for the construction of the weak solution, we need to use the diag-

onal argument obtaining the weak solutions (u, ψ) and (v, φ) simultaneously,

since we do not know the uniqueness of the weak solution.

2.2. Rescaled uniform bounds

The following estimate is a direct consequence of the above a priori

bound of the rescaled solution.
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Proposition 2.1. Let 1 < α ≤ 2 − 2
n and (v(t′), φ(t′)) be a weak

solution of (2.2) for the initial data u0 ∈ L1
2(R

n) ∩ L∞(Rn). Assume that

‖u0‖1−γ
1 W (0)

γ−α+1
α < CC−1

HLS(2.4)

for 1 < α ≤ 2 − 2
n and γ + 1 = α

α−1
n−2
n , where En is the fundamental

solution to −∆ + 1 in R
n. Then

(1) we have

‖v(t)‖q ≤ C

for all 1 ≤ q ≤ ∞.

(2) for all n
n−1 < r ≤ ∞,

‖∇φ(t)‖r ≤ Cet.

Once we obtain the above uniform bound for the rescaled solution, we

can immediately obtain the time decay estimate for the solution of the

original equation.

∫
Rn

vq(t′, x′)dx′ =

∫
Rn

en(q−1)t′uq(t, x)dx

= (1 + σt)
n
σ

(q−1)

∫
Rn

uq(t, x)dx

(2.5)

in the original variables (t, x). Hence we obtain the following decay estimate

for the original solution as a corollary of Proposition 2.1.

Proposition 2.2 ([47], [54]). Let u0 ∈ L1
2 ∩ L∞ and (u(t), ψ(t)) be a

weak solution of (1.1). If 1 < α ≤ 2 − 2
n with small initial data (2.4), we

have

‖u(t)‖q ≤ C(1 + σt)
−n

σ
(1− 1

q
)

for all 1 ≤ q ≤ ∞.
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2.3. The moment bounds

The last part of this section, we show the second moment of the weak

solution remains bounded for t ∈ [0, T ].

Proposition 2.3. Let u0 ∈ L1 ∩ Lα with |x|2u0(x) ∈ L1(Rn). Then

the weak solution (v, φ) of (2.2) satisfies∫
Rn

|x′|2v(t′)dx′ ≤ e−nt
′
∫
Rn

|x′|2u0dx
′ +

2(n− 2)

n
Ws(0),(2.6)

where

Ws(t
′) :=

1

α− 1

∫
Rn

vα(t′) dx′ +
1

2

∫
Rn

|x′|2v(t′) dx′ − 1

2
e−κt

′
v(t′)φ(t′) dx′.

Namely, |x′|2v(t′) ∈ L1(Rn) for almost all t′. In addition if we assume that

u0 ∈ L1
a(R

2) with a > 2, then we have∫
R2

|x′|av(t′) dx ≤ e−at
′
∫
R2

|x′|au0 dx + C.(2.7)

Proof of Proposition 2.3. We only give the formal proof. It can

be justified some appropriate cut off and approximation procedure. To show

(2.6) we test |x′|2 to the equation and we see

d

dt′

∫
Rn

|x′|2v(t′) dx′ = 2n‖v(t′)‖αα − 2

∫
Rn

|x′|2v(t′) dx′

+ 2e−κt
′
∫
Rn

(
x′v(t′) · ∇φ(t′)

)
dx′.

(2.8)

We invoke the Pohozaev identity for the second equation. We multiply

the elliptic part of the system by the generator of the dilation x′ · ∇φ and

integrate it by parts. Then it follows∫
Rn

x′ · ∇φ(t′)v(t′)dx′ = e−2t′
(
1 − n

2

)∫
Rn

|∇φ(t′)|2dx

− n

2

∫
Rn

|φ(t′)|2dx′

=
(
1 − n

2

)∫
Rn

v(t′)φ(t′)dx′ − ‖φ(t′)‖2
2.

(2.9)
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Combining (2.8) and (2.9), we obtain

d

dt′

∫
Rn

|x′|2v(t′)dx + n

∫
Rn

|x′|2v(t′)dx′

= 2n‖v(t′)‖αα + (n− 2)

∫
Rn

|x′|2v(t′)dx′

+ (2 − n)e−κt
∫
Rn

v(t′)φ(t′)dx′ − 2e−κt
′‖φ(t′)‖2

2

= 2(n− 2)Ws(t
′)

+ 2n

(
α− 2 + 2

n

α− 1

)
‖v(t′)‖αα − 2e−κt

′‖φ(t′)‖2
2.

(2.10)

Thus under the condition α ≤ 2 − 2
n , we see that∫

Rn

|x′|2v(t′)dx′ ≤ e−nt
′
∫
Rn

|x′|2u0dx
′ +

2(n− 2)

n
Ws(0)(1 − e−nt

′
).

For further weighted estimate, we modify (2.8) to have

d

dt′

∫
R2

|x′|av(t′) dx′ + a

∫
R2

|x′|av(t′) dx′

= a(n− 2 + a)

∫
R2

|x′|a−2vα(t′) dx′

+ ae−κt
′
∫
R2

|x′|a−2
(
x′ · ∇φ

)
v(t′) dx′.

(2.11)

It follows that

d

dt′

[
eat

′
∫
R2

|x′|av(t′) dx′
]

= a(n− 2 + a)eat
′‖v(t′)‖α−1

∞

∫
Rn

|x′|a−2v(t′) dx′

+ ae−(κ−a)t′‖∇φ‖∞
∫
Rn

|x′|a−1v(t′) dx′.

(2.12)

By the uniform boundedness for ‖v(t′)‖∞, e−t
′‖∇φ‖∞ (Proposition 2.1) and

the lower moment bounds implies that∫
Rn

|x′|av(t′) dx′ ≤ e−at
′
∫
Rn

|x′|au0 dx
′ + C. �(2.13)



388 Masashi Mizuno and Takayoshi Ogawa

This uniform bound for the second moment of v(t) naturally yields the

bound for the second moment of u(t) such as∫
Rn

|x|2u(t)dx ≤
∫
Rn

|x|2u0dx +
2(n− 2)

n
Ws(0)(1 + σt)2/σ.

3. The Hölder Continuity

In this section, we consider the Hölder estimate of the perturbed degen-

erate parabolic equation:

{
∂tϕ(u) − ∆u = div F, t > 0 , x ∈ R

n,

u(0, y) = u
1
α
0 (x) ≥ 0,

(3.1)

where u = u(t, x) is the unknown function and we put ϕ(u) := u
1
α (t, x)

and F = F (t, x) is a given function. The solution of the above problem is

connected to our rescaled problem (2.2) by letting v(t, x) = ϕ(u)(t, x) and

F := xϕ(u) − e−κtϕ(u)∇φ,

where φ = (−e−2t∆+1)−1ϕ(u). To state the Hölder estimate, we introduce

the uniformly local Lp spaces.

Definition. For 1 ≤ p < ∞, we define the uniformly local Lp spaces

Lpuloc(R
n) as

Lpuloc(R
n) :=

{
f ∈ Lploc(R

n) : ‖f‖Lp
uloc(R

n) := sup
r≤1 , a∈Rn

‖f‖Lp(Br(a)) < ∞
}
.

Now, we state the Hölder estimate of the weak solution of (3.1).

Theorem 3.1. Let u be a bounded nonnegative weak solution of (3.1).

For p > n, we assume F ∈ L∞(0,∞ ; Lpuloc(R
n)). Then for all ε > 0, there

exist some constants C = C(n, α, p, ε) and 0 < γ = γ(n, α, p) < 1 such that

(3.2) |u(t, x) − u(s, y)|
≤ C(‖u‖L∞((0,∞)×Rn) + ‖F‖L∞(0,∞ ;Lp

uloc(R
n)))
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× (‖u‖
γβ
2

L∞((0,∞)×Rn)|t− s|
γ
2 + |x− y|γ)

for all (t, x) , (s, y) ∈ (ε,∞) × R
n, where β = 1 − 1

α .

To show the Hölder regularity of the perturbed degenerate parabolic

equation, we employ the alternative argument originally due to

DiBenedetto-Friedman [18] (see also [17]). The argument is a substituted

to the standard Harnack property for the degenerate case.

3.1. Alternative Lemmas

For a fixed set of the nonnegative parameters (ρ,M, θ0) and space-time

point (t0, x0) ∈ R
n+1, we introduce usual parabolic cylinders Qρ, Q

θ0
ρ and

modified parabolic cylinders Qρ,,M , Qθ0ρ,M .

Definition. Let β = 1 − 1
α . We denote the time intervals by

Iρ,M (t0) = (t0 −
ρ2

Mβ
, t0), Iρ,M ≡ Iρ,M (0),

Iθ0ρ,M (t0) = (t0 −
θ0

2

ρ2

Mβ
, t0), Iθ0ρ,M ≡ Iθ0ρ,M (0)

and we introduce the parabolic cylinders given by

Qρ,M = Iρ,M (t0) ×Bρ(x0),

Qθ0ρ,M = Iθ0ρ,M (t0) ×Bρ(x0).

We abbreviate Qρ = Qρ,1 and Qθ0ρ = Qθ0ρ,1 for simplicity.

In what follows, we arbitrary choose the centered point (t0, x0) and fix

it. We frequently omit to denote it. We set p∗ > 1 as

1

p∗
=

1

n
− 1

p
.(3.3)

Then we assume that two important parameters M > 0 and ω > 0 are

chosen so that

sup
Qρ,M

u ≤ M ≤ 4 sup
Qρ,M

u(3.4)
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and

3

4
ω ≤ osc

Qρ,M

u ≤ ω.(3.5)

Namely the parameters M and ω are approximately the oscillation and the

maximum of the weak solution u(t, x) for (3.1) over Qρ,M respectively:

ω � osc
Qρ,M

u,

M � max
Qρ,M

u.
(3.6)

We then have the following alternative lemma.

Lemma 3.2 (1st alternative). Assume (3.4) and (3.5). For any p > n

we set p∗ by (3.3) and let ρ > 0 satisfy

ω−2ρ
2n
p∗ ‖F‖2

L∞(Lp)(Qρ,M ) ≤ δ1

for some δ1 > 0. Then there exists a constant 0 < θ0 < 1 depending only

on n, α, p, δ1 such that if∣∣∣Qρ,M ∩
{

(t, x) : u(t, x) < inf
Qρ,M

u +
ω

2

}∣∣∣ ≤ θ0|Qρ,M |,(3.7)

we obtain

u(t, x) ≥ inf
Qρ,M

u +
ω

4
(3.8)

for all (t, x) ∈ Q ρ
2
,M .

Lemma 3.3 (2nd alternative). Assume (3.4) and (3.5). For any p > n

we set p∗ by (3.3). Then for 0 < θ0 < 1, there exist δ2 > 0 and q0 > 0

depending only on n, α, p and θ0 such that if

ω−2ρ
2n
p∗ ‖F‖2

L∞(Lp)(Qρ,M ) ≤ δ2

and ∣∣∣Qρ,M ∩
{

(t, x) : u(t, x) < inf
Qρ,M

u +
ω

2

}∣∣∣∣ > θ0|Qρ,M |,
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we obtain

u(t, x) ≤ sup
Qρ,M

u− ω

2q0+2

for all (t, x) ∈ Qθ0ρ
2
,M

.

For simplicity, we set for a weak solution u;

µ+ := sup
Qρ,M

u ,

µ− := inf
Qρ,M

u
(3.9)

so that we may write osc
Qρ,M

u = µ+ − µ−.

3.2. Proof of Theorem 3.1

We show Theorem 3.1 by temporary admitting the alternative lemmas,

Lemma 3.2 and Lemma 3.3. We recall the parameters play in the roles in

(3.6).

Lemma 3.4 (oscillation lemma). Let M and ω satisfy the assumptions

(3.4) and (3.5). For any p > n let p∗ be defined in (3.3). Then there exist

0 < θ0, δ, η < 1 depending only on n, α and p such that for

ρ
2n
p∗ ω−2‖F‖2

L∞(Lp)(Qρ,M ) ≤ δ, it holds that

osc
Q

θ0
ρ
2 ,M

u ≤ ηω.

Proof of Lemma 3.4. By Lemma 3.2, for ρ > 0 with

ω−2ρ
2n
p∗ ‖F‖2

L∞(Lp)(Qρ,M ) ≤ 1, there exists 0 < θ0 < 1 depending only on

n, α, p such that if∣∣∣∣Qρ,M ∩
{

(t, x) : u(t, x) < µ− +
ω

2

}∣∣∣∣ ≤ θ0|Qρ,M |,

we have

u(t, x) ≥ µ− +
ω

4
(3.10)
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for (t, x) ∈ Q ρ
2
,M and by Lemma 3.3, there exist q0, δ2 > 0 depending only

on n, α, p such that if

ρ
2n
p∗

ω2
‖F‖2

L∞(Lp)(Qρ,M ) ≤ δ2

and ∣∣∣∣Qρ,M ∩
{

(t, x) : u(t, x) < µ− +
ω

2

}∣∣∣∣ > θ0|Qρ,M |,

then

u(t, x) ≤ µ+ − ω

2q0+2
(3.11)

for (t, x) ∈ Qθ0ρ
2
,M

. Letting

δ := min{1, δ2} , η := 1 − 1

2q0+2
,

we obtain from (3.10) and (3.11) that

osc
Q

θ0
ρ
2 ,M

u ≤ (µ+ − µ−) − ω

2q0+2
= ηω

provided

ρ
2n
p∗

ω2
‖F‖2

L∞(Lp)(Qρ,M ) ≤ δ. �

Remark. We can further assume η ≥ 3
4 .

Proof of Theorem 3.1. We put Q = (0,∞) × R
n and M0 = supQ u ,

ω0 = M0. Let θ0, δ and η be as in Lemma 3.4. We choose ρ0 > 0 satisfying

ρ
2n
p∗
0 ≤ δ‖F‖−2

L∞(0,∞ ;Lp
uloc(R

n))
ω2

0. We denote Q0 := Qρ0,M0 , µ
+
0 = supQ0

u

and µ−
0 = infQ0 u. Then we find



sup
Q0

u ≤ sup
Q

u ≤ M0,

osc
Q0

u ≤ ω0,

ρ
2n
p∗
0 ≤ δω2

0‖F‖−2
L∞(0,∞ ;Lp

uloc(R
n))

.
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We now fix every parameters as follows:

c0 := min

{
η

p∗
n ,

1

2

(1

3

)β
2
(θ0

2

) 1
2

}

and we take sequences as

ωk := ηkω0, ρk := ck0ρ0,

Mk := max{µ+
k−1, ωk}, Qk := Qρk,Mk

,

µ+
k := sup

Qk

u, µ−
k := inf

Qk

u

(3.12)

for k ∈ N. In the following, we claim for all k ∈ N that


sup
Qk

u ≤ sup
Qk−1

u ≤ Mk,

osc
Qk

u ≤ ωk,

ρ
2n
p∗
k ≤ δω2

k‖F‖−2
L∞(0,∞ ;Lp

uloc(R
n))

(3.13)

by the inductive argument. Indeed, either if oscQ0 u ≤ 3
4ω0, then by

M1

M0
≥ ω1

M0
= η ≥ 3

4
, c0 ≤ min

{
η

p∗
n ,
(3

4

)β
2

}

we have Q1 ⊂ Q0 and hence (3.13) holds for k = 1. If otherwise, 3
4ω0 ≤

oscQ(0) u ≤ ω0 and since M0 = ω0 ≤ 4
3µ

+
0 , we can apply Lemma 3.4 to

obtain

osc
Q

θ0
ρ0
2 ,M0

u ≤ ηω0.

Since c0 ≤ min{η p∗
n , 1

2( θ02 )
1
2 (3

4)
β
2 }, we have Q1 ⊂ Qθ0ρ0

2
,M0

⊂ Q0 and (3.13)

also holds for the case k = 1. We then assume (3.13) for 1, 2, · · · , k and we

will show the case of k + 1. If we consider the case of µ−
k−1 ≤ 1

3µ
+
k−1, then

µ+
k−1 ≤ ωk−1 +

1

3
µ+
k−1
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and it follows µ+
k−1 ≤ 3

2ωk−1 = 3
2ηωk. In the other case, we have

µ+
k−1 < 3µ−

k−1 ≤ 3µ−
k ≤ 3µ+

k .

Hence we obtain

µ+
k−1 ≤ max

{
3

2η
ωk , 3µ+

k

}
.(3.14)

Using (3.14), we show (3.13) for k + 1.

Case 1. We assume oscQk
u ≤ 3

4ωk. By the definition in (3.12), either

Mk = ωk or Mk = µ+
k−1 holds. If Mk = ωk, then

Mk+1

Mk
=

Mk+1

ωk
≥ ηωk

ωk
= η ≥ 3

4
.

Since c0 ≤ (3
4)

β
2 , we obtain Qk+1 ⊂ Qk. On the other hand, if Mk = µ+

k−1,

then by (3.14), we have

Mk+1

Mk
=

Mk+1

µ+
k−1

≥




2η2

3
if

3

2η
ωk ≥ 3µ+

k ,

1

3
if

3

2η
ωk ≤ 3µ+

k ,

≥ 1

3
.

Since c0 ≤ (1
3)

β
2 , it follows Qk+1 ⊂ Qk. Hence we have

sup
Qk+1

u ≤ sup
Qk

u ≤ Mk+1,

osc
Qk+1

u ≤ ωk+1 and ρ
2n
p∗
k+1 ≤ δ‖F‖−2

L∞(0,∞ ;Lp
uloc(R

n))
ω2
k+1.

Case 2. We assume 3
4ωk ≤ oscQk

u ≤ ωk. Since ωk ≤ 4
3µ

+
k , we obtain

µ+
k−1 ≤ max

{
3

2η
ωk , 3µ+

k

}
≤ max

{
2

η
µ+
k , 3µ+

k

}
≤ 3µ+

k
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and hence

Mk ≤ max

{
4

3
µ+
k , 3µ+

k

}
≤ 3µ+

k .

Applying Lemma 3.4, we obtain

osc
Q

θ0
ρk
2 ,Mk

u ≤ ηωk.

Since

Mk+1

Mk
≥ µ+

k

3µ+
k

=
1

3
and c0 ≤ 1

2

(
1

3

)β
2
(
θ0

2

) 1
2

,

we have Qk+1 ⊂ Qθ0ρk
2
,Mk

and hence

sup
Qk+1

u ≤ sup
Qk

u ≤ Mk+1, osc
Qk+1

u ≤ ωk+1 and ρ
2n
p∗
k+1 ≤ δ‖F‖−2

L∞(Lp)(Q)ω
2
k+1.

Remarking that Mk ≥ Mk+1 for k ∈ N, we have

osc
Qρk,M0

u ≤ osc
Qk

u ≤ ωk.

Choosing 0 < γ < 1 such that cγ0 = η, we see

osc
Qρk,M0

u ≤ ηkω0 = ω0

(
ρk
ρ0

)γ
.

We then obtain the intermediate case ρ �= ρk for all k ∈ N. When ρ ≤ ρ0,

there exists k ∈ N ∪ {0} such that ρk < ρ < ρk−1 and

osc
Qρ,M0

u ≤ ω0

(
ρk−1

ρ0

)γ
≤ ω0c

−γ
0

(
ρ

ρ0

)γ
.(3.15)

Taking ρ
2n
p∗
0 = δ‖F‖−2

L∞(0,∞ ;Lp
uloc(R

n))
ω2

0, we find from (3.15) that

osc
Qρ,M0

u ≤Cn,α,pω
1− p∗

n
γ

0 ‖F‖
p∗
n
γ

L∞(0,∞ ;Lp
uloc(R

n))
ργ
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≤Cn,α,pM
1− p∗

n
γ

0 ‖F‖
p∗
n
γ

L∞(0,∞ ;Lp
uloc(R

n))
ργ .

On the other hand, if ρ > ρ0, we immediately have

osc
Qρ,M0

u ≤ M0 ≤ M0

(
ρ

ρ0

)γ
≤ Cn,α,pM

1− p∗
n
γ

0 ‖F‖
p∗
n
γ

L∞(0,∞ ;Lp
uloc(R

n))
ργ .

In the both cases, we obtain by the Young inequality

osc
Qρ,M0

u ≤ Cn,α,p(M0 + ‖F‖L∞(0,∞;Lp
uloc(R

n)))ρ
γ .(3.16)

This concludes the Hölder continuity for the weak solution around the fix

point (t0, x0). Since the center point (t0, x0) is chosen arbitrary and from

the right hand side of the estimate (3.16), we obtain the uniform estimate.

This completes the proof of Theorem 3.1. �

3.3. Proof of the first alternative lemma

Without loss of generality, we assume t0 = 0 by using the parallel trans-

lation. And we omit the center of ball x0. For an open interval (a, b) ∈ R

and an open ball Bρ(x0) ⊂ R
n, we call η = η(t, x) a cut-off function in

Q = (a, b) ×Bρ(x0) if η ∈ C∞(Q) satisfies

∂tη(t, x) ≥ 0, a ≤ t ≤ b, x ∈ Bρ(x0)

η(t, x) ≡ 0, a ≤ t ≤ b, x ∈ ∂Bρ(x0)

and

η(a, x) ≡ 0, x ∈ Bρ(x0).

Lemma 3.5 (the Caccioppoli estimates for sublevel sets). For p > n,

we set p∗ as in (3.3). Let η = η(t, x) be a cut-off function in Qρ,M =

Iρ,M ×Bρ. For λ < µ− + 1
2ω, there exists Cα > 0 such that

sup
Iρ,M

∫
Bρ

(u− λ)2−η
2 dx + ϕ′(µ+)−1

∫∫
Qρ,M

|∇(u− λ)−|2η2 dtdx

≤ Cα

{
ω

∫∫
Qρ,M

(u− λ)−η∂tη dxdt
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+ ϕ′(µ+)−1

∫∫
Qρ,M

(u− λ)2−|∇η|2 dxdt

+ ϕ′(µ+)−1‖F‖2
L∞(Lp)(Qρ,M )

×
(∫

Iρ,M

|Bρ ∩ {u(t) < λ}|
r∗
q∗ dt

) 2
r∗ (1+ 2

p∗ )}
,

where r∗ = 2(1 + 2
p∗

) and q∗ = r∗(1 − 2
p)

−1.

Remark. The exponent r∗, q∗ satisfies the condition for the smooth

class of the weak solution (so called the Serrin class in the Navier-Stokes

system), namely
2

r∗
+

n

q∗
=

n

2
.

Proof of Lemma 3.5. Testing the function −(u−λ)−η2 to the equa-

tion (3.1), we have

sup
Iρ,M

∫
Bρ

(∫ (u−λ)−

0
ϕ′(λ− ξ)ξ dξ

)
η2 dx

+

∫∫
Qρ,M

|∇(u− λ)−|2η2 dxdt

=

∫∫
Qρ,M

(∫ (u−λ)−

0
ϕ′(λ− ξ)ξ dξ

)
∂tη

2 dxdt

−
∫∫

Qρ,M

(∇(u− λ)− · ∇η2)(u− λ)− dxdt

−
∫∫

Qρ,M

F · ∇(u− λ)−η
2 dxdt

−
∫∫

Qρ,M

F · ∇η2(u− λ)− dxdt.

(3.17)

Since

λ ≤ µ− +
ω

2
≤ µ+ − 1

4
ω ≤ µ+

and ϕ′(ξ) = 1
αξ

1
α
−1 is monotone decreasing, we have for the first term of

left hand side of (3.17) that

ϕ′(λ− ξ) ≥ ϕ′(λ) ≥ ϕ′(µ+), ξ ≥ 0



398 Masashi Mizuno and Takayoshi Ogawa

and hence

sup
Iρ,M

∫
Bρ

(u− λ)2−η
2 dx +

1

4
ϕ′(µ+)−1

∫∫
Qρ,M

|∇(u− λ)−|2η2 dxdt

=ϕ′(µ+)−1

∫∫
Qρ,M

(∫ (u−λ)−

0
ϕ′(λ− ξ)ξ dξ

)
∂tη

2 dxdt

+ 3ϕ′(µ+)−1

∫∫
Qρ,M

(u− λ)2−|∇η|2 dxdt

+ 2ϕ′(µ+)−1

∫∫
Qρ,M∩{u<λ}

|F |2η2 dxdt.

(3.18)

For the last term of the right hand side of (3.18), we use the Hölder

inequality to have∫∫
Qρ,M∩{u<λ}

|F |2η2 dxdt

≤
∫
Iρ,M

‖|F |2‖
L

p
2 (Bρ)

∣∣Bρ ∩ {u(t) < λ}
∣∣1− 2

p dt

≤ ‖F‖2
L∞(Lp)(Qρ,M )

∫
Iρ,M

|Bρ ∩ {u(t) < λ}|1−
2
p dt

≤ ‖F‖2
L∞(Lp)(Qρ,M )

(∫
Iρ,M

∣∣Bρ ∩ {u(t) < λ}
∣∣ r∗q∗ dt

) 2
r∗ (1+ 2

p∗ )

.

(3.19)

To estimate the first term of the right hand side in (3.18), we note that

∫ (u−λ)−

0
ϕ′(λ− ξ)ξ dξ ≤ −(u− λ)−

∫ (u−λ)−

0

∂

∂ξ
ϕ(λ− ξ) dξ

= (u− λ)−[ϕ(λ) − ϕ(λ− (u− λ)−)],

hence we have

∫∫
Qρ,M

(∫ (u−λ)−

0
ϕ′(λ− ξ)ξ dξ

)
∂tη

2 dxdt

≤
∫∫

Qρ,M

[
ϕ
(
µ− +

ω

2

)
− ϕ(µ−)

]
(u− λ)−∂tη

2 dxdt.

(3.20)
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Either if µ− ≤ 1
2µ

+, then µ+ ≤ 2ω and since ϕ(ξ) = ξ1/α, it follows by

ϕ′−1(ξ)ϕ(ξ) = αξ that

ϕ′(µ+)−1

[
ϕ
(
µ− +

ω

2

)
− ϕ(µ−)

]
≤ ϕ′(2ω)−1ϕ

(ω
2

)
≤ Cαω

and hence

I1 ≤ C(α)ω

∫∫
Qρ,M

(u− λ)−∂tη
2 dxdt.

Otherwise, if µ− > 1
2µ

+, then

ϕ′(µ+)−1

[
ϕ
(
µ− +

ω

2

)
− ϕ(µ−)

]
= ϕ′(µ+)−1ω

2

∫ 1

0
ϕ′
(
µ− +

ω

2
s
)
ds

≤ ϕ′(µ+)−1ω

2
ϕ′(µ−)

≤ ϕ′(µ+)−1ω

2
ϕ′
(1

2
µ+
)

≤ Cαω.

In both cases, we obtain

I1 ≤ Cαω

∫∫
Qρ,M

(u− λ)−∂tη
2 dxdt.(3.21)

Substituting (3.20) and (3.21) for (3.20), we obtain (3.17). �

Proof of Lemma 3.2. We consider the scale transform

s = Mβ(t− t0), Qρ = Qρ,1, Iρ = Iρ,1,

ũ(s, x) = u(t, x), η̃(s, x) = η(t, x), F̃ (s, x) = F (t, x).

and rewrite the Caccioppoli estimate (3.17) as follows:

(3.22) sup
Iρ

∫
Bρ

(ũ− λ)2−η̃
2 dx +

ϕ′(µ+)

Mβ

∫∫
Qρ

|∇(ũ− λ)−|2η̃2 dxds

≤ Cα

{
ω

∫∫
Qρ

(ũ− λ)−∂sη̃
2 dxds +

ϕ′(µ+)

Mβ

∫∫
Qρ

(ũ− λ)2−|∇η̃|2 dxds
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+
ϕ′(µ+)

Mβ
‖F‖2

L∞(Lp)(Qρ,M )

(∫
Iρ

|Bρ ∩ {ũ(s) < λ}|
r∗
q∗ ds

) 2
r∗ (1+ 2

p∗ )
}
.

We then resize the localization with the scaling for the solution by the

parametrized sequence: For k ∈ N ∪ {0}, we set

λk = µ− +
1

4
ω +

1

2k+1
ω, ρk =

1

2
ρ +

1

2k+1
ρ,

Yk :=
|Qρk ∩ {ũ < λk}|

|Qρ|
,

Zk =
ρ2

|Qρ|

(∫
Iρk

|Bρk ∩ {ũ(s) < λk}|
r∗
q∗ ds

) 2
r∗
,

|∇η̃k| ≤
2

ρk − ρk+1
≤ 8 · 2k

ρ
, ∂sη̃k ≤

2

ρ2
k − ρ2

k+1

≤ 16 · 22k

3ρ2

(3.23)

and we show that Yk → 0 as k → ∞. Then, by using µ+ ≤ M ≤ 4µ+ and

(ũ− λk)− ≤ ω
2 , we rewrite (3.22) as

‖(ũ− λk)−η̃k‖2
L∞(L2)(Qρk

)∩L2(H1)(Qρk
)

≤ Cα

{
ω

∫∫
Qρk

(ũ− λk)−∂sη̃k
2 dxds

+

∫∫
Qρk

(ũ− λk)
2
−|∇η̃k|2 dxds

+ ‖F‖2
L∞(Lp)(Qρ,M )

(∫
Iρk

|Bρi ∩ {ũ(s) < λk}|
r∗
q∗ ds

) 2
r∗ (1+ 2

p∗ )
}

≤ Cα

{
22kω2

ρ2
|{u < λk}| + ‖F‖2

L∞(Lp)(Qρ,M )

×
(∫

Iρk

|Bρk ∩ {ũ(s) < λk}|
r∗
q∗ ds

) 2
r∗ (1+ 2

p∗ )
}

≤ Cα
ω2|Qρ|

ρ2

{
22kYk + ‖F‖2

L∞(Lp)(Qρ,M )ω
−2

( |Qρ|
ρ2

) 2
p∗
Z

1+ 2
p∗

k

}
.

(3.24)

By the Ladyženskaja inequality and the Hölder inequality, we have

‖(ũ− λk)−η̃k‖2
L2(Qρk

)
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≤ ‖(ũ− λk)−η̃k‖2

L2+ 4
n (Qρk

)
‖χ{ũ<λk}‖

2
Ln+2(Qρk

)

≤ Cα,nω
2|Qρ|Y

2
n+2

k

{
22kYk + ‖F‖2

L∞(Lp)(Qρ,M )ω
−2

( |Qρ|
ρ2

) 2
p∗
Z

1+ 2
p∗

k

}

and

‖(ũ− λk)−η̃k‖2
Lr∗ (Lq∗ )(Qρk

)

≤ Cα,n
ω2|Qρ|

ρ2

{
22kYk + ‖F‖2

L∞(Lp)(Qρ,M )ω
−2

( |Qρ|
ρ2

) 2
p∗
Z

1+ 2
p∗

k

}
.

Since

‖(ũ− λk)−η̃k‖2
L2(Qρk

) ≥ ‖(ũ− λk)−‖2
L2(Qρk+1

∩{ũ<λk+1})

≥ (λk − λk+1)
2
−|Qρk+1

∩ {ũ < λk+1}|

=
ω2

64 · 22k
|Qρ|Yk+1

and

‖(ũ− λk)−η̃k‖2
Lr∗ (Lq∗ )(Qρk

)

≥ ‖(ũ− λk)−‖2
Lr∗ (Lq∗ )(Qρk+1

∩{ũ<λk+1})

≥ (λk − λk+1)
2
−

(∫
Iρk+1

|Bρk+1
∩ {ũ(s) < λk+1}|

r∗
q∗ ds

) 2
r∗

=
ω2

64 · 22k

|Qρ|
ρ2

Zk+1,

we obtain

Yk+1 ≤ Cα,n

{
24kY

1+ 2
n+2

k

+ 22k‖F‖2
L∞(Lp)(Qρ,M )ω

−2

( |Qρ|
ρ2

) 2
p∗
Y

2
n+2

k Z
1+ 2

p∗
k

}
,

Zk+1 ≤ Cα,n

{
24kYk + 22k‖F‖2

L∞(Lp)(Qρ,M )ω
−2

( |Qρ|
ρ2

) 2
p∗
Z

1+ 2
p∗

k

}
.

(3.25)
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Since r∗
q∗

< 1 and n
2 = 2

r∗
+ n
q∗

, we have

Z0 =
ρ2

|Qρ|

(∫
Iρ0

|Bρ0 ∩ {ũ(s) < λ0}|
r∗
q∗ ds

) 2
r∗

≤ ρ2

|Qρ|

(∫
Iρ

|Bρ ∩ {ũ(s) < λ0}| ds
) 2

q∗

ρ
4
r∗ (1− r∗

q∗ ) ≤ Cn,pY
2
q∗

0 .

Therefore, by the assumption
ρ

2n
p∗

ω2
‖F‖2

L∞(Lp)(Qρ,M ) ≤ δ1 and Lemma A.1

there exists 0 < θ0 = θ0(n, α, p, δ1) < 1 such that if Y0 ≤ θ0, then Yk → 0

as k → ∞. This concludes

ũ(s, x) > µ− +
ω

4

for almost all (s, x) ∈ Q ρ
2
. �

3.4. Proof of the second alternative lemma

We next show Lemma 3.3.

Lemma 3.6. Let 0 < θ0 < 1. If assumption (3.7) fails i.e.∣∣∣∣Qρ,M ∩
{

(t, x) : u(t, x) < µ− +
ω

2

}∣∣∣∣ > θ0|Qρ,M |,(3.26)

then for all 0 < θ < θ0, there exists − ρ2

Mβ < τ < −θ ρ
2

Mβ such that

∣∣∣∣Bρ ∩
{
x : u(τ, x) > µ− +

ω

2

}∣∣∣∣ ≤ 1 − θ0

1 − θ
|Bρ|.

Proof of Lemma 3.6. By the change of variable t = ρ2

Mβ s, ũ(s, x) =

u(t, x), and the inequality (3.26), we obtain

∫ 0

−1

∣∣∣Bρ ∩ {x ∈ Bρ : ũ(s, x) > µ− +
ω

2

}∣∣∣ ds
=

Mβ

ρ2

∣∣∣Qρ,M ∩
{
u > µ− +

ω

2

}∣∣∣
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≤ Mβ

ρ2

(
|Qρ,M | −

∣∣∣Qρ,M ∩
{
u < µ− +

ω

2

}∣∣∣)

<
Mβ

ρ2
(1 − θ0)|Qρ,M | = (1 − θ0)|Bρ|.

If |Bρ ∩ {ũ(s) > µ− + ω
2 }| >

1−θ0
1−θ for all −1 < s < −θ, then∫ 0

−1

∣∣∣Bρ ∩ {x ∈ Bρ : ũ(s, x) > µ− +
ω

2

}∣∣∣ ds
≥
∫ −θ0

−1

∣∣∣Bρ ∩ {x ∈ Bρ : ũ(s, x) > µ− +
ω

2

}∣∣∣ ds
≥ (1 − θ0)|Bρ|,

which is contradiction. �

Lemma 3.7. There exists r0 = r0(n, α, θ0) > 0 and δ1 = δ1(n, α,

p, θ0) > 0 such that for any ρ
2n
p∗
ω2 ‖F‖2

L∞(Lp)(Qρ,M ) ≤ δ1, we have

∣∣∣∣Bρ ∩
{
x : u(t, x) > µ+ − ω

2r0

}∣∣∣∣ ≤
(

1 −
(
θ0

2

)2)
|Bρ|

for − θ02
ρ2

Mβ < t < 0.

Proof of Lemma 3.7. We take the cut-off function η = η(x) as

η ≡ 1 on B(1−σ)ρ , |∇η| ≤ 2

σρ

where σ > 0 be chosen later. We rewrite the equation (3.1) by

∂tu− (ϕ′)−1∆u = (ϕ′)−1div F.

Let λ = µ− + ω
2 , c = ω

2r0 , H = µ+ − λ = oscQρ,M
u− ω

2 and

g(ξ) := log+

(
H

H − (ξ − λ)+ + c

)
, w = g(u).

where the parameter r0 > 2 will be chosen later. Testing the function

(g2)′(u)η2 over (τ, t) ×Bρ to the equation and using

∇((ϕ′)−1(g2)′η2) = − ϕ′′(ϕ′)−2(g2)′η2∇u + (ϕ′)−1(g2)′′η2∇u
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+ (ϕ′)−1(g2)′∇η2,

we obtain

1

2

∫
Bρ

w2η2 dx

∣∣∣∣
t

τ

−
∫ t

τ

∫
Bρ

ϕ′′(ϕ′)−2(g2)′|∇u|2η2 dxdt

+

∫ t

τ

∫
Bρ

(ϕ′)−1(g2)′′|∇u|2η2 dxdt

= −
∫ t

τ

∫
Bρ

(ϕ′)−1(g2)′∇u · ∇η2 dxdt

−
∫ t

τ

∫
Bρ

ϕ′′(ϕ′)−2(g2)′η2F · ∇u dxdt

+

∫ t

τ

∫
Bρ

(ϕ′)−1(g2)′′η2F · ∇u dxdt

+

∫ t

τ

∫
Bρ

(ϕ′)−1(g2)′F · ∇η2 dxdt

=: I1 + I2 + I3 + I4.

(3.27)

By the Young inequality, we have

I1 ≤
∫ t

τ

∫
Bρ

(ϕ′)−1w|∇w|2η2 dxdt + 4

∫ t

τ

∫
Bρ

(ϕ′)−1w|∇η|2 dxdt

I2 ≤ −1

2

∫ t

τ

∫
Bρ

ϕ′′(ϕ′)−2(g2)′|∇u|2η2 dxdt

− 1

2

∫ t

τ

∫
Bρ

ϕ′′(ϕ′)−2(g2)′|F |2η2 dxdt

I4 ≤ 2

∫ t

τ

∫
Bρ

(ϕ′)−1w|∇η|2 dxdt + 2

∫ t

τ

∫
Bρ

(ϕ′)−1(g′)2w|F |2η2 dxdt.

Remarking that g′′ = (g′)2, (g2)′′ = 2(g′)2(1 + g), we also have

I3 ≤
∫ t

τ

∫
Bρ

(ϕ′)−1(g2)′′|∇u|2η2 dxdt +

∫ t

τ

∫
Bρ

(ϕ′)−1(g2)′′|F |2η2 dxdt

≤1

2

∫ t

τ

∫
Bρ

(ϕ′)−1|∇w|2η2 dxdt +
1

2

∫ t

τ

∫
Bρ

(ϕ′)−1w|∇w|2η2 dxdt
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+

∫ t

τ

∫
Bρ

(ϕ′)−1(g2)′′|F |2η2 dxdt.

Combining of those estimates, we have

1

2

∫
Bρ

w2(t)η2(t) dx− 1

2

∫ t

τ

∫
Bρ

ϕ′′(ϕ′)−2(g2)′|∇u|2η2 dxdt

+
3

2

∫ t

τ

∫
Bρ

(ϕ′)−1|∇w|2η2 dxdt

+
1

2

∫ t

τ

∫
Bρ

(ϕ′)−1w|∇w|2η2 dxdt

≤ 1

2

∫
Bρ

w2(τ)η2(τ) dx + 6

∫ t

τ

∫
Bρ

(ϕ′)−1w|∇η|2 dxdt

− 1

2

∫ t

τ

∫
Bρ

ϕ′′(ϕ′)−2(g2)′|F |2η2 dxdt

+ 2

∫ t

τ

∫
Bρ

(ϕ′)−1(g′)2(1 + 2w)|F |2η2 dxdt

=: I5 + I6 + I7 + I8.

(3.28)

For the simplicity, we put λ′ = µ+−c = µ+− ω
2r0 . Since λ′ > λ, we have

1

2

∫
Bρ

w2(t)η2(t) dx ≥
∫
B(1−σ)ρ∩{u(t)>λ′}

w2(t) dx

≥
∫
B(1−σ)ρ∩{u(t)>λ′}

log2

(
H

H − (λ′ − λ) + c

)
dx

≥ C(r0 − 3)2
∣∣B(1−σ)ρ ∩ {u(t) > λ′}

∣∣.
(3.29)

For I5, we suppose that τ as in Lemma 3.6 with θ = θ0
2 . Then

w = log+

(
H

H − (u− λ)+ + c

)
≤ log

( 1
2ω
1

2r0 ω

)
= C(r0 − 1)

and hence

I5 ≤ 1

2

∫
Bρ∩{u(τ)>λ}

w2(τ) dx

≤ C(r0 − 1)2
∣∣Bρ ∩ {u(τ) > λ}

∣∣ ≤ C
1 − θ0

1 − θ0
2

(r0 − 1)2|Bρ|.
(3.30)
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Since (ϕ′)−1 = αu1− 1
α and µ+ ≤ M , we have

I6 ≤ 6α(µ+)β(t− τ)(r0 − 1) log 2

(
2

σρ

)2

|Bρ| ≤ C
(r0 − 1

σ2

)
|Bρ|.(3.31)

Next, we estimate I7. Since

g′ ≤ 1

c
=

2r0

ω
, (g2)′ ≤ 2

c
log

H

c
≤ C

2r0+1

ω
(r0 − 1)

and

u−
1
α ≤ λ− 1

α ≤
(
ω

2

)− 1
α

for u ≥ λ,

we have

I7 ≤ log 2

(
2r0+1

ω

)
(r0 − 1)

∫ t

τ

∫
Bρ∩{u(s)>λ}

u−
1
α |F (s)|2 dxds

≤ Cα
2r0

ω2
(r0 − 1)ωβ

∫ t

τ

∫
Bρ∩{u(s)>λ}

|F (s)|2 dxds

≤ Cα
2r0

ω2
(r0 − 1)ωβ

∫ t

τ
‖|F (s)|2‖

L
p
2 (Bρ)

|Bρ|1−
2
p ds

≤ Cα|B1|−
2
p
ρ

2n
p∗

ω2
‖F‖2

L∞(Lp)(Qρ,M )2
r0(r0 − 1)

ωβ

Mβ
|Bρ|

≤ Cα|B1|−
2
p
ρ

2n
p∗

ω2
‖F‖2

L∞(Lp)(Qρ,M )2
r0(r0 − 1)|Bρ|,

where we have used that 3
4ω ≤ oscQρ,M

u ≤ µ+ ≤ M . As the estimate of I7,

we obtain for I8 that

I8 ≤ 2α|B1|−
2
p
ρ

2n
p∗

ω2
‖F‖2

L∞(Lp)(Qρ,M )2
2r0(1 + 2(r0 − 1) log 2)|Bρ|.(3.32)

Combining of those estimate (3.29)–(3.32), we have

∣∣B(1−σ)ρ ∩ {x : u(t, x) > λ′}
∣∣ ≤

{
1 − θ0

1 − θ0
2

(
r0 − 1

r0 − 3

)2

+
C1(α)

σ2

r0 − 1

(r0 − 3)2
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+ C2(n, α, p)
ρ

2n
p∗

ω2
‖F‖2

L∞(Lp)(Qρ,M )

2r0(r0 − 1)

(r0 − 3)2

+ C3(n, α, p)
ρ

2n
p∗

ω2
‖F‖2

L∞(Lp)(Qρ,M )

22r0(1 + 2(r0 − 1) log 2)

(r0 − 3)2

}
|Bρ|.

Remarking that

|Bρ ∩ {x : u(t, x) > λ′}| = |(Bρ \B(1−σ)ρ) ∩ {x : u(t, x) > λ′}|
+ |B(1−σ)ρ ∩ {x : u(t, x) > λ′}|,

we have

|B(1−σ)ρ ∩ {x : u(t, x) > λ′}|

≤
{

1 − θ0

1 − θ0
2

(
r0 − 1

r0 − 3

)2

+
C1(α)

σ2

r0 − 1

(r0 − 3)2
+ (1 − (1 − σ)n)

+ max{C2, C3}
ρ

2n
p∗

ω2
‖F‖2

L∞(Lp)(Qρ,M )C(r0)

}
|Bρ|,

where

C(r0) = max

{
2r0(r0 − 1)

(r0 − 3)2
,
22r0(1 + 2(r0 − 1) log 2)

(r0 − 3)2

}
.

Now, we fix the parameters r0, σ and δ0 in the following way: Let σ =

σ(n, θ0) satisfying 1 − (1 − σ)n ≤ 1
8θ

2
0 and then we choose r0 = r0(n, α, θ0)

satisfying(
r0 − 1

r0 − 3

)2

≤
(

1 − θ0

2

)
(1 + θ0) and

C1(α)

σ2

r0 − 1

(r0 − 3)2
≤ 1

8
θ2
0.

Finally, we choose δ1 = δ1(n, α, p, θ0) > 0 sufficiently small such that

max{C2, C3}C(r0) ≤ δ1 ≤ 1

2
θ2
0.

Then, if ρ
2n
p∗ ω−2‖F‖2

L∞(Lp)(Qρ,M ) ≤ δ1, we have

∣∣Bρ ∩ {x : u(t, x) > λ′}
∣∣ ≤ (1 −

(
θ0

2

)2)
|Bρ|. �
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Lemma 3.8 (the Caccioppoli estimates for super level sets). Let

Iθ0ρ,M = (− θ02
ρ2

M , 0) and let η = η(t, x) be a cut-off function in Qθ0ρ,M . For

λ ≥ µ+ − ω
2 , we have

1

2
ϕ′(M) sup

t∈Iθ0ρ,M

∫
Bρ

(u(t) − λ)2+η
2 dx

+
1

4

∫∫
Q

θ0
ρ,M

|∇(u− λ)+|2η2 dxdt

≤ 1

2
ϕ′
(1

4
µ+
)∫∫

Q
θ0
ρ,M

(u− λ)2+∂tη
2 dxdt

+ 3

∫∫
Q

θ0
ρ,M

(u− λ)2+|∇η|2 dxdt

+ ‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

(∫
I
θ0
ρ,M

|Bρ ∩ {u(t) > λ}|
r∗
q∗ dt

) 2
r∗ (1+ 2

p∗ )

.

(3.33)

Proof of Lemma 3.8. The estimate is similarly obtained by Lemma

3.5. We take a test function (u− λ)+η
2 to (3.1) and integrate by parts, we

obtain

sup
I
θ0
ρ,M

∫
Bρ

(∫ (u−λ)+

0
ϕ′(λ + ξ)ξ dξ

)
η2 dx

+

∫∫
Q

θ0
ρ,M

|∇(u− λ)+|2η2 dxdt

≤
∫∫

Q
θ0
ρ,M

(∫ (u−λ)+

0
ϕ′(λ + ξ)ξ dξ

)
∂tη

2 dxdt

−
∫∫

Q
θ0
ρ,M

∇(u− λ)+ · ∇η2(u− λ)+ dxdt

+

∫∫
Q

θ0
ρ,M

F · ∇(u− λ)+η
2 dxdt

+

∫∫
Q

θ0
ρ,M

F · ∇η2(u− λ)+ dxdt

=:I1 + I2 + I3 + I4.

(3.34)
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By the Young inequality, we have

I2 ≤ 1

2

∫∫
Q

θ0
ρ,M

|∇(u− λ)+|2η2 dxdt

+ 2

∫∫
Q

θ0
ρ,M

(u− λ)2+|∇η|2 dxdt,

I3 ≤ 1

4

∫∫
Q

θ0
ρ,M

|∇(u− λ)+|2η2 dxdt +

∫∫
Q

θ0
ρ,M∩{u>λ}

|F |2η2 dxdt,

I4 ≤
∫∫

Q
θ0
ρ,M

(u− λ)2+|∇η|2 dxdt +

∫∫
Q

θ0
ρ,M∩{u>λ}

|F |2η2 dxdt.

(3.35)

Since ϕ′ is monotone decreasing,

ϕ′(λ + ξ) ≥ ϕ′(u) ≥ ϕ′(µ+) ≥ ϕ′(M) for 0 ≤ ξ ≤ (u− λ)+,

and we have ∫ (u−λ)+

0
ϕ′(λ + ξ)ξ dξ ≥ 1

2
ϕ′(M)(u− λ)2+.(3.36)

Finally, we estimate of I1. Since 3
4ω ≤ oscQρ,M

u ≤ µ+, we have

ϕ′(λ + ξ) ≤ ϕ′(λ) ≤ ϕ′
(
µ+ − ω

2

)
≤ ϕ′

(1

4
µ+
)

and hence

I1 ≤ 1

2
ϕ′
(1

4
µ+
)∫∫

Q
θ0
ρ,M

(u− λ)2+∂tη
2 dxdt.(3.37)

Combining of those estimates (3.35), (3.36), (3.37), we obtain

1

2
ϕ′(M) sup

t∈Iθ0ρ,M

∫
Bρ

(u(t) − λ)2+η
2 dx +

1

4

∫∫
Q

θ0
ρ,M

|∇(u− λ)+|2η2 dxdt

≤ 1

2
ϕ′
(1

4
µ+
)∫∫

Q
θ0
ρ,M

(u− λ)2+∂tη
2 dxdt + 3

∫∫
Q

θ0
ρ,M

(u− λ)2+|∇η|2 dxdt

+ 2

∫∫
Q

θ0
ρ,M∩{u>λ}

|F |2η2 dxdt.
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As the same argument of proof of Lemma 3.5, we have∫∫
Q

θ0
ρ,M∩{u>λ}

|F |2η2 dxdt

≤ ‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

(∫
I
θ0
ρ,M

|Bρ ∩ {u(t) > λ}|
r∗
q∗ dt

) 2
r∗ (1+ 2

p∗ )

.

Substituting this estimate, we obtain (3.33). �

Lemma 3.9 (the hole filling argument). Let ρ0 = 3
4ρ. For 0 <

ν < 1, there exists q0 = q0(n, α, p, θ0, ν) ≥ 0 such that for

ρ
2n
p∗ ω−2‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

≤ min{θ−1
0 2−2q0 , δ1}, we have

∣∣∣∣Qθ0ρ0,M ∩
{

(t, x) : u(t, x) > µ+ − ω

2q0+1

}∣∣∣∣ ≤ ν|Qθ0ρ0,M |,

where r0, δ1 > 0 is as in Lemma 3.7.

Proof of Lemma 3.9. We fix t ∈ Iθ0ρ,M =
(
− θ0

2
ρ2

Mβ , 0
)

and set

λ′ := µ+ − ω

2k+1
, λ := µ+ − ω

2k
,

where k ≥ r0. By the Poincaré type inequality (Lemma A.2), we have

ω

2k+1
|Bρ0 ∩ {x : u(t, x) > λ′}|

≤ Cnρ
n+1
0

|Bρ0 ∩ {x : u(t, x) ≤ λ}|

∫
Bρ0∩{λ<u(t)≤λ′}

|∇u(t)| dx.

Since λ > µ+ − ω
2r0 and Lemma 3.7, we have

|Bρ0 ∩ {x : u(t, x) ≤ λ}| = |Bρ0 | − |Bρ0 ∩ {x : u(t, x) > λ}| ≥
(
θ0

2

)2

|Bρ0 |

and hence

ω

2k+1
|Bρ0 ∩ {x : u(t, x) > λ′}| ≤ Cnρ0

θ2
0

∫
Bρ0∩{λ<u(t)≤λ′}

|∇u(t)| dx.(3.38)
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Integrating (3.38) over Iθ0ρ,M , we obtain

ω

2k+1

∣∣Qθ0ρ0,M ∩ {u > λ′}
∣∣

≤ Cnρ0

θ2
0

∫
I
θ0
ρ,M

∫
Bρ0∩{λ<u(t)≤λ′}

|∇u(t)| dxdt

≤ Cnρ0

θ2
0

‖∇(u− λ)+‖L2(Q
θ0
ρ0,M

)

∣∣Qθ0ρ0,M ∩ {λ < u ≤ λ′}
∣∣ 12 .

Let η ∈ C∞
0 (I×R

n) be a smooth cut off function satisfying η ≡ 1 on Qθ0ρ0,M .

By the Caccioppoli estimate (Lemma 3.8), we have

‖∇(u− λ)+‖2

L2(Q
θ0
ρ0,M

)

≤ ‖∇(u− λ)+η‖2

L2(Q
θ0
ρ,M )

≤ Cα

{∫∫
Q

θ0
ρ,M

(u− λ)2+(|∇η|2 + ϕ′(µ+)∂tη
2) dxdt

+ ‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

∫
I
θ0
ρ,M

|Bρ ∩ {u(t) > λ}|1−
2
p dt

}

=: I1 + I2.

(3.39)

Since we can further assume

|∇η(t, x)| ≤8

ρ
,

∂tη(t, x) ≤10Mβ

θ0ρ2
,

we proceed to estimate I1 by using M ≤ 4µ+,

I1 ≤ Cα(µ
+ − λ)2+

(
1

ρ2
+

Mβ

θ0ρ2
ϕ′(µ+)

)
|Qθ0ρ0,M |

≤ Cα

(
ω

2k

)2 1

θ0ρ2

(
M

µ+

)β
|Qθ0ρ0,M | ≤ Cα

(
ω

2k

)2 1

θ0ρ2
|Qθ0ρ0,M |.

(3.40)
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On the other hand, since

∫
I
θ0
ρ,M

|Bρ ∩ {x : u(t, x) > λ}|1−
2
p dt

≤ Cn|Bρ|−
2
p |Qθ0ρ0,M |

≤ Cn,p

(
ρ
2− 2n

p

(
2k

ω

)2

θ0

)
1

θ0ρ2

(
ω

2k

)2

|Qθ0ρ0,M |,

we obtain

I2 ≤ Cn,α,p

(
‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

ρ
2n
p∗ ω−222kθ0

) 1

θ0ρ2

(
ω

2k

)2

|Qθ0ρ0,M |.(3.41)

Combining of those estimates (3.39), (3.40) and (3.41), we obtain

‖∇(u− λ)+‖2

L2(Q
θ0
ρ0,M

)

≤ Cn,α,p

(
1 + ‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

ρ
2n
p∗ ω−222kθ0

) 1

θ0ρ2

(
ω

2k

)2

|Qθ0ρ0,M |

and hence

(
ω

2k+1

)2∣∣Qθ0ρ0,M ∩ {(t, x) : u(t, x) > λ′}
∣∣2

≤Cn,α,p
θ5
0

(
ω

2k

)2(
1 + ‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

ρ
2n
p∗ ω−222kθ0

)∣∣Qθ0ρ0,M ∣∣
·
∣∣Qθ0ρ0,M ∩ {λ < u ≤ λ′}

∣∣.
(3.42)
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Summing over k = r0 + 1, . . . , q0, we have

(q0 − r0)

∣∣∣∣Qθ0ρ0,M ∩
{
u > µ+ − ω

2q0+1

}∣∣∣∣
2

≤
q0∑

k=r0+1

∣∣∣∣Qθ0ρ0,M ∩
{
u > µ+ − ω

2k+1

}∣∣∣∣
2

≤Cn,α,p
θ5
0

|Qθ0ρ0,M |
q0∑

k=r0+1

(
1 + ‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

ρ
2n
p∗ ω−222kθ0

)

×
∣∣∣∣Qθ0ρ0,M ∩

{
µ+ − ω

2k
< u ≤ µ+ − ω

2k+1

}∣∣∣∣
≤Cn,α,p

θ5
0

|Qθ0ρ0,M |
(
1 + ‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

ρ
2n
p∗ ω−222q0θ0

)

×
∞∑

k=r0+1

∣∣∣∣Qθ0ρ0,M ∩
{
µ+ − ω

2k
< u ≤ µ+ − ω

2k+1

}∣∣∣∣
≤Cn,α,p

θ5
0

|Qθ0ρ0,M |2.
(
1 + ‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

ρ
2n
p∗ ω−222q0θ0

)
.

(3.43)

Choosing q0 > 0 enough large such that

Cn,α,p
θ5
0(q0 − r0)

≤ ν2,

we have by the assumption

ρ
2n
p∗

ω2
‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

≤ min{θ−1
0 2−2q0 , δ1}

and (3.43) that∣∣∣∣Qθ0ρ0,M ∩
{
u > µ+ − ω

2q0+1

}∣∣∣∣
2

≤ ν2|Qθ0ρ0,M |2. �

Proof of Lemma 3.3. Let 0 < µ < 1 be chosen later. We take δ1 > 0

as in Lemma 3.7 and q0 as in Lemma 3.9. We put δ2 := min{2−2q0θ−1
0 , δ1}.

Introduce the scale transform

s = Mβ(t− t0), Qθ0ρ = Qθ0ρ,1, Iθ0ρ = Iθ0ρ,1
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ũ(s, x) = u(t, x), η̃(s, x) = η(t, x), ψ̃(s, x) = ψ(t, x).

Then we rewrite the Caccioppoli estimate (3.33) as follows:

ϕ′(M) sup
I
θ0
ρ

∫
Bρ

(ũ− λ)2+η̃
2 dx +

1

Mβ

∫∫
Q

θ0
ρ

|∇(ũ− λ)+|2η̃2 dxds

≤Cα

{∫∫
Q

θ0
ρ

(ũ− λ)2+

{
ϕ′(µ+)∂sη̃

2 +
1

Mβ
|∇η̃|2

}
dxds

+
1

Mβ
‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

×
(∫ 0

− θ0
2
ρ2
|Bρ ∩ {ũ(s) > λ}|

r∗
q∗ ds

) 2
r∗ (1+ 2

p∗ )
}
.

(3.44)

For k ∈ N ∪ {0}, we take ρ = ρk, λ = λk, η̃ = η̃k satisfying η̃k ≡ 1 on

Qθ0ρk+1
and

λk = µ+ − 1

2q0
ω +

1

2q0+k+2
ω, ρk =

1

2
ρ +

1

2k+2
ρ,

Yk :=
|Qρk ∩ {ũ > λk}|

|Qρ0 |
,

Zk =
ρ2
0

|Qρ0 |

(∫ 0

−ρ2k
|Bρk ∩ {ũ(s) > λk}|

r∗
q∗ ds

) 2
r∗
,

|∇η̃k| ≤
2

ρk − ρk+1
≤ 12 · 2k

ρ0
, ∂sη̃k ≤

4

θ0

1

ρ2
k − ρ2

k+1

≤ 48 · 22k

θ0ρ2
.

Multiplying ϕ′(M)−1 by (3.44), we have

sup
− θ0

2
ρ2k<t<0

∫
Bρk

(ũ−λk)
2
+η̃k

2 dx+
1

ϕ′(M)Mβ

∫∫
Q

θ0
ρk

|∇(ũ−λk)+|2η̃k2 dxds

≤ Cα

{∫∫
Q

θ0
ρk

(ũ− λk)
2
+

{
ϕ′(µ+)

ϕ′(M)

1

θ0
+

1

ϕ′(M)Mβ

}
22k

ρ2
0

dxds

+
1

ϕ′(M)Mβ
‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

(∫ 0

− θ0
2
ρ2k

|Bρk ∩ {ũ(s) > λk}|
r∗
q∗ ds

) 2
r∗ (1+ 2

p∗ )
}

≤ Cα,θ0

{
22k−2q0ω2

|Qθ0ρ0 |
ρ0

Yk + ‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

( |Qθ0ρ0 |
ρ0

)1+ 2
p∗
Z

1+ 2
p∗

k

}
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since (ũ− λk)+ ≤ ω
2q0+1 and M ≤ 4µ+. Remarking that

‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

ω−2

( |Qθ0ρ0 |
ρ0

) 2
p∗

≤ Cn,p,θ0‖F‖2

L∞(Lp)(Q
θ0
ρ,M )

ω−2ρ
2n
p∗
0

≤ Cn,p,θ0δ2 ≤ Cn,p,θ02
−2q0 ,

we obtain

‖(ũ− λk)+η̃k‖2

L∞(L2)(Q
θ0
ρk

)∩L2(H1)(Q
θ0
ρk

)

≤ Cn,α,p,θ02
−2q0ω2

|Qθ0ρ0 |
ρ0

{
22kYk + Z

1+ 2
p∗

k

}

By the Ladyženskaja inequality and the Hölder inequality, we have

‖(ũ− λk)+η̃k‖2

L2(Q
θ0
ρk

)
≤ ‖(ũ− λk)+η̃k‖2

L2+ 4
n (Q

θ0
ρk

)
‖χ{ũ>λk}‖

2

Ln+2(Q
θ0
ρk

)

≤ Cn,α,p,θ02
−2q0ω2

|Qθ0ρ0 |
1+ 2

n+2

ρ2
0

Y
2

n+2

k

{
22kYk + Z

1+ 2
p∗

k

}

and

‖(ũ− λk)+η̃k‖2

Lr∗ (Lq∗ )(Q
θ0
ρk

)
≤ Cn,α,p,θ02

−2q0ω2
|Qθ0ρ0 |
ρ2
0

{
22kYk + Z

1+ 2
p∗

k

}
.

Since

‖(ũ− λk)+η̃k‖2

L2(Q
θ0
ρk

)
≥ ‖(ũ− λk)+‖2

L2(Q
θ0
ρk+1

∩{ũ>λk+1})

≥ (λk+1 − λk)
2|Qθ0ρk+1

∩ {ũ > λk+1}|

=

(
ω

2q0+k+3

)2

|Qθ0ρ0 |Yk+1

and

‖(ũ− λk)+η̃k‖2

Lr∗ (Lq∗ )(Q
θ0
ρk

)
≥ ‖(ũ− λk)+‖2

Lr∗ (Lq∗ )(Q
θ0
ρk+1

∩{ũ>λk+1})

≥
(

ω

2q0+k+3

)2 |Qθ0ρ0 |
ρ2
0

Zk+1,
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we obtain

Yk+1 ≤ Cn,α,p,θ0

{
24kY

1+ 2
n+2

k + 22kY
2

n+2

k Z
1+ 2

p∗
k

}
and

Zk+1 ≤ Cn,α,p,θ0

{
24kYk + 22kZ

1+ 2
p∗

k

}
.

Since r∗
q∗

< 1 and n
2 = 2

r∗
+ n
q∗

, we have

Z0 =
ρ2
0

|Qθ0ρ0 |

(∫ 0

−ρ20
|Bρ0 ∩ {ũ(s) > λ0}|

r∗
q∗ ds

) 2
r∗

≤ ρ2
0

|Qθ0ρ0 |

(∫ 0

−ρ20
|Bρ0 ∩ {ũ(s) < λ0}| ds

) 2
q∗

ρ
4
r∗ (1− r∗

q∗ ) ≤ Cn,p,θ0Y
2
q∗

0 .

By Lemma A.1, there exists 0 < ν = ν(n, α, p, θ0) < 1 such that if Y0 ≤ ν,

then Yk → 0 as k → ∞, i.e.

ũ(s, x) < µ+ − ω

2q0+2
a.e. (s, x) ∈ Qθ0ρ

2
. �

4. The Asymptotic Profile

In this section, we show the asymptotic convergence of the weak solution

u(t, x) of (1.1) to the Barenblatt-Pattle solution by using the uniform Hölder

estimate.

Theorem 4.1. Let 1 < α ≤ 2 − 2
n . Then for any positive initial data

u0 ∈ L1
a(R

n) ∩ L∞(Rn) with a > n, the corresponding global weak solution

u(t, x) satisfies the following asymptotic behavior: For M = ‖u0‖1, with the

condition (1.5), there exists a constant C > 0 such that

‖u(t) − U(t)‖1 ≤ C(1 + σt)−ν ,

for t > 0, where σ = n(α− 1) + 2 and 0 < ν < 2 with ‖U(t)‖1 = M .

To show the asymptotic convergence, we consider as we mentioned in

the introduction that the self-similar transform of the system and consider
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the weak solution of the rescaled system:




∂t′v − divx′(∇x′vα + x′v − e−κt
′
v∇x′φ) = 0, t′ > 0 , x′ ∈ R

n,

− e−2t′∆x′φ + φ = v, t′ > 0 , x′ ∈ R
n,

v(0, x′) = u0(x
′) ≥ 0, x′ ∈ R

n,

(4.1)

where κ = n + 2 − σ = n(2 − α).

In what follows, we only treat the scaled system (2.2) and hence we use

a simpler notations as t′ → t and x′ → x if it does not cause any confusion.

Applying the method of the transport equation or the Fokker-Planck

equation due to Carrillo-Toscani [12], we compute the time derivative of the

free energy functional: For a weak solution v and φ of (2.2) , we let for

κ = n(2 − α),

H(v(t)) :=
1

α− 1

∫
Rn

vα(t)dx +
1

2

∫
Rn

|x|2v(t)dx,

J(v(t)) :=

∫
Rn

v(t)

∣∣∣∣∇
(

α

α− 1
vα−1(t) +

|x|2
2

)∣∣∣∣
2

dx,

I(v(t)) :=

∫
Rn

v(t)

∣∣∣∣∇
(

α

α− 1
vα−1(t) +

|x|2
2

− e−κtφ(t)

)∣∣∣∣
2

dx.

The key idea to show the asymptotic convergence is to consider the decay

of the dissipative flux term I(v) in t. We firstly observe that the entropy

functional has a certain relation:

Proposition 4.2. For a weak solution v and φ of (2.2) , we have

H(v(t)) +
1

2
e−κt(e−2t‖∇φ(t)‖2

2 + ‖φ(t)‖2
2) +

∫ t

s
J(v(τ))dτ

≤ H(v(s)) +
1

2
e−κs(e−2s‖∇φ(s)‖2

2 + ‖φ(s)‖2
2)

+

∫ t

s
e−κτ

[
2 − κ

2
e−2τ‖∇φ(τ)‖2

2 −
κ

2
‖φ(τ)‖2

2

]
dτ

+

∫ t

s
e−2κτ

∫
Rn

v(τ)|∇φ(τ)|2dxdτ,

(4.2)
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where κ = n(2−α). In particular, for 1 < α ≤ 2− 2
n , we have that H(v(t))

is uniformly bounded in t under the smallness condition (2.4)

H(v(t)) ≤ H(u0) −
1

2

∫
Rn

φ(0)v(0) dx

+ C sup
τ>0

[
e−2κτ‖v(τ)‖∞‖∇φ(τ)‖2

2

](4.3)

for any t > 0.

Proof of Proposition 4.2. Decomposing Ws(t) into H(t) and terms

with φ, we see formally that

d

dt

[
H(v(t)) +

1

2
e−κt(‖φ(t)‖2

2 + e−2t‖∇φ(t)‖2
2)
]

+ J(v(t))

=e−2κt

∫
Rn

v(t)|∇φ(t)|2dx + e−κt
[2 − κ

2
e−2t‖∇φ(t)‖2

2 −
κ

2
‖φ(t)‖2

2

]
.

(4.4)

Integrate (4.4) over [s, t] we obtain (4.2). Under the condition 1 < α ≤ 2− 2
n ,

we have κ ≥ 2 and by Proposition 2.1 ‖v(t)‖∞ ≤ C and e−t‖∇φ(t)‖2 ≤ C.

Therefore it follows

H(v(t)) +

∫ t

0
J(v(τ))dτ

≤ H(v(0)) +
1

2

[
‖∇φ(0)‖2

2 + ‖φ(0)‖2
2

]
+ C sup

t>0

(
e−2t‖v(t)‖∞‖∇φ(t)‖2

2

)

≤ H(v(0)) − 1

2

∫
Rn

v(0)φ(0)dx + C sup
t>0

(
e−2t‖v(t)‖∞‖∇φ(t)‖2

2

)

for all t > 0. �

For a solution v and φ of (2.2), we let

I(v(t)) ≡
∫
Rn

v(t, x) |K(x, v(t), φ(t))|2 dx.

where K(x, v, φ) = x+ α
α−1∇vα−1(t, x)− e−κt∇φ(t, x) and κ = n(2−α). It

is not so difficult to see that the asymptotic profile is given by J(v(t)) → 0
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from the above inequality. However to obtain the convergence rate for a

weak solution in the weighted class L1
2(R

n)∩L∞(Rn), we derive that I(v(t))

is exponentially decaying. To this end, we observe the time derivative of

the functional I(v(t)). We assume that κ > 0 namely α < 2 .

Following [12], we formally have

d

dt
I(v(t)) = −2

∫
Rn

v|K(x, v, φ)|2 dx

− 2(α− 1)

∫
Rn

vα
∣∣∣div K(x, v, φ)

∣∣∣2 dx
− 2

∫
Rn

vα |∇K(x, v, φ)|2 dx

+ 2e−κt
∫
Rn

vKi(x, v, φ)Kj(x, v, φ)
(
D2
ijφ
)
dx

+ 2e−κt
∫
Rn

div (vK(x, v, φ))∂tφdx

− 2κe−κt
∫
Rn

vK(x, v, φ)∇φdx.

(4.5)

Since the weak solution does not have enough regularity, the above identity

is not necessarily valid and the actual estimate should be obtained in the

form of the integral inequality. This is justified by an appropriate approxi-

mation: Let (v, φ) be a solution of the regularized system:


∂tv − div
(
(v + ε)Kε(x, v, φ)

)
= −ε

(
e−(κ−2)t(v − φ) + n

)
, t > 0, x ∈ R

n,

− e−2t∆φ + φ = v, t > 0, x ∈ R
n,

v(0, x) = u0(x), x ∈ R
n,

(4.6)

where

Kε(x, v, φ) ≡ α

α− 1
∇(v + ε)α−1(t, x) + x− e−κt∇φ(t, x).

Note that the above system (4.6) is equivalent to (2.3). The existence of

the smooth and sufficiently fast decaying solution at |x| → ∞ of (4.6) is

obtained in a similar manner in [54].

Proposition 4.3. Let ζ = ζ(x) be a smooth cut off function such that

ζ = 1 in BR and whose derivatives are supported in B2R\BR. For a solution
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v and φ of (4.6) belonging to L1, we let

Iε(v(t)) ≡
∫
Rn

v(t) |Kε(x, v(t), φ(t))|2 ζ2dx,

where κ = n(2 − α). Then we have

d

dt
Iε(v(t)) ≤− 2

∫
Rn

(v + ε)|Kε(x, v, φ)|2ζdx

− 2(α− 1)

∫
Rn

(v + ε)α
∣∣∣div Kε(x, v, φ)

∣∣∣2ζdx
− 2

∫
Rn

(v + ε)α|∇Kε(x, v, φ)|2ζdx

+ 2e−κt
∫
Rn

(v + ε)Kε,i(x, v, φ)Kε,j(x, v, φ)
(
D2
ijφ
)
ζdx

+ 2e−(κ−2)t

∫
Rn

|vKε(x, v, φ)|2 ζdx

− 2κe−κt
∫
Rn

vKε(x, v, φ) · ∇φζdx

+ EI(x, v, φ, ε,∇ζ),

(4.7)

where EI(x, v, φ, ε,∇ζ) denotes the error term and it will be vanishing when

we take the limit R → ∞ and ε → 0.

The derivation and rigorous treatment of (4.7) is given in appendix in

[48]. We proceed to the following.

Proposition 4.4. Let (v, φ) be a weak solution of (2.2). We set

I(v(t)) ≡
∫
Rn

v(t)|K(x, v, φ)|2dx

with K(x, v, φ) ≡ α
α−1v

α−1 + x − e−κt∇φ. Then under the condition 1 <

α ≤ 2− 2
n and the solution v has uniform estimate supt>0 ‖v(t)‖∞ ≤ C∗ for

some constant, there exist T0, ν > 0 such that for any T0 < t,

I(v(t)) + ν

∫ t

T0

I(v(τ)) dτ ≤ I(u(T0)).(4.8)
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In particular, we have

I(v(t)) ≤ Ce−νt, t > T0

where the constant C is depending on the initial data u0 and T0.

To obtain the above proposition, we need the following two ingredients.

First one is the Sobolev type inequality in the critical type originally due

to Brezis-Gallouet [9]. This is the generalized version obtained in Ogawa-

Taniuchi [49].

Proposition 4.5 ([9], [29], [49]). There exists a constant C depending

only on n such that for f ∈ L2(Rn)∩Cγ(Rn), the following inequality holds:

‖f‖∞ ≤C (1 + ‖f‖BMO log (e + ‖f‖2 + ‖f‖Cγ )) .(4.9)

Proof of Proposition 4.4. To avoid the complexity of the nota-

tion, we treat the estimate only for the essential parts in rather formal way,

namely dropping the parameter ε and cut off function ζ without integration

in t variable. The actual estimate are done for the approximated solution.

The rigorous procedure requires that all those estimates are proceeded be-

fore passing to the limit R → ∞ and ε → 0 and the rigorous treatment can

be found in [48]. Observing the estimate (4.7), we need to estimate the last

four terms in the right-hand side. The fourth error term EI(x, v, φ, ε,∇ζ)

is handled in [48, Appendix A] since it does not give any effect for the esti-

mation of the other terms. Firstly, the sixth term of the right hand side of

(4.7) can be estimated as follows.

−2κe−κt
∫
Rn

vK(x, v, φ)∇φdx

≤ 2κe−κt‖∇φ(t)‖∞
(∫

Rn

vdx

)1/2(∫
Rn

v|K(x, v, φ)|2dx
)1/2

≤ 2κε−1e−2κt‖∇φ(t)‖2
∞

∫
Rn

v dx +
ε

2

∫
Rn

v|K(x, v, φ)|2dx
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where ε > 0 is a small parameter. Hence from Proposition 4.3, we obtain

that

d

dt
I(v(t)) ≤ −(2 − ε)I(v(t)) − 2(α− 1)

∫
Rn

vα
∣∣∣div K(x, v, φ)

∣∣∣2dx
− 2

∫
Rn

vα |∇K(x, v, φ)|2 dx

+ 2e−(κ−2)t

∫
Rn

v2 |K(x, v, φ)|2 dx

+ 2e−κt
∫
Rn

vKi(x, v, φ)Kj(x, v, φ)
(
D2
ijφ
)
dx

+ Cε−1e−2(κ−1)t‖v(t)‖1 sup
t

(e−2t‖∇φ(t)‖2
∞),

(4.10)

where K(x, v, φ) = x + α
α−1∇vα−1(t, x) − e−κt∇φ(t, x). We now turn into

how to treat the following term:∫
Rn

vKi(x, v, φ)Kj(x, v, φ)D2
ijφdx.

Applying the logarithmic interpolation inequality of Brezis-Gallouet type

(4.9), we see

‖D2φ(t)‖∞ ≤ C
(
1 + ‖D2φ(t)‖BMO log

(
e + ‖D2φ(t)‖2 + ‖D2φ(t)‖Cγ

))
.

By the Calderon-Zygmund inequality, we have

‖D2φ‖2 ≤ C‖∆φ‖2 ≤ Ce2t(‖v‖2 + ‖φ‖2) ≤ Ce2t‖v‖2.

By the Schauder estimate, we obtain

‖D2φ‖Cγ ≤ Ce2t(‖v‖Cγ + ‖φ‖Cγ ) ≤ Ce2t.

Finally, by the Calderon-Zygmund inequality again, we have

‖D2φ‖BMO ≤ C‖∆φ‖BMO ≤ C‖∆(−e−2t∆ + 1)−1v‖BMO.(4.11)

We notice that the corresponding Fourier multiplier of the operator appear-

ing the right-hand side of (4.11) is given by

|ξ|2
e−2t|ξ|2 + 1

=
e2t|ξ|2−γ
|ξ|2 + e2t

|ξ|γ = e(2−γ)t e
γt|ξ|2−γ

|ξ|2 + e2t
|ξ|γ
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and the multiplier satisfies the condition so that the operator

e(γ−2)t|∇|2−γ(−e−2t∆ + 1)−1 is bounded in BMO. Therefore

‖D2φ‖BMO ≤ Ce(2−γ)t‖|∇|γv‖BMO.

From the uniform Hölder estimate Theorem 3.1 ‖|∇|γv‖BMO is bounded

uniformly in t. This enable us to proceed the estimate as

2e−κt
∫
Rn

vKi(x, v, φ)Kj(x, v, φ)∂i∂jφdx

≤ 2e−κt‖D2φ(t)‖∞
∫
Rn

v|K(x, v, φ)|2 dx

≤ Ce−(κ−2+γ′)t
∫
Rn

v|K(x, v, φ)|2 dx

(4.12)

for some γ′ > 0. Combining (4.10) and (4.12), we obtain that if κ = 2 i.e.

α = 2 − 2
n ,

d

dt
I(v(t)) ≤ −(2 − ε)I(v(t)) + C sup

t
‖v(t)‖∞I(v(t)) + Cε−1e−2t(4.13)

Note that at this stage, the inequality (4.13) does not include the higher

order terms so that it is possible to justify it for the weak solution. Since

2(κ − 2) = 0 when α = 2 − 2
n , we can choose ν, η > 0 such that for some

large T0 > 0, which depends on C, for any t ≥ T0,

d

dt
(eνtI(v(t)) ≤ Ce−ηt.(4.14)

Immediately we obtain that

I(v(t)) ≤ e−νt
(
I(v(T0)) + C

∫ ∞

T0

eητ dτ

)
.

Since T0 is only depending on C we may conclude that I(v(t)) ≤ C(T0) for

0 ≤ t ≤ T0 and this concludes the desired estimate. �

The proof of the asymptotic profile in Theorem 1.2 completes after prov-

ing the convergence of the rescaled solution and rescaling.
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Proposition 4.6. Let 1 < α ≤ 2 − 2
n and (v, φ) be a weak solution to

(2.2). If the initial data satisfies the condition (1.5), then we have for some

ν > 0 that

‖v(t) − V ‖1 ≤ Ce−νt,

where

V (x) =

[
A− α− 1

2α
|x|2
]1/(α−1)

+

and the constant A is chosen as ‖V ‖1 = ‖u0‖1.

Proof of Proposition 4.6. Due to the result from Proposition 4.4,

we immediately obtain that

lim
t→∞

I(v(t)) = 0.(4.15)

On the other hand, since by Proposition 2.1,

J(v(t)) ≤ 2I(v(t)) + 2e−2κt

∫
Rn

v(t)|∇φ(t)|2dx

≤ 2I(v(t)) + 2e−2κt‖v(t)‖∞‖∇φ(t)‖2
2

≤ 2I(u0)e
−νt + 2e−(2κ−2)tC(v, φ),

(4.16)

we conclude from (4.2) in Proposition 4.2 and Proposition 2.1 that for any

s < t, ∣∣∣H(v(t)) −H(v(s))
∣∣∣

≤ |e−κt(e−2t‖∇φ(t)‖2
2 + ‖φ(t)‖2

2) − e−κs(e−2s‖∇φ(s)‖2
2 + ‖φ(s)‖2

2)|

+

∫ t

s

(
κ− 2

2
e−(κ+2)τ‖∇φ(τ)‖2

2 +
κ

2
e−κτ‖φ(τ)‖2

2 + J(v(τ))

)
dτ

+

∫ t

s
e−2κτ

(∫
Rn

v(τ)|∇φ(τ)|2 dx
)
dτ

≤ C(κ)e−κs sup
τ>0

(
e−2τ‖∇φ(τ)‖2

2 + ‖φ(τ)‖2
2

)
+ 2I(v(u0))e

−νs + 2C(κ)e−2(κ−1)s

+ e−2(κ−1)s sup
τ>0

(
e−2τ‖v(τ)‖∞‖∇φ(τ)‖2

2

)
≤ Ce−νs → 0, as s, t → ∞

(4.17)
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and this shows that {H(v(tn))}n is the Cauchy sequence in tn → ∞. More-

over since vα ∈ L1 with ∇vα ∈ L1 by∫
Rn

|∇vα|dx ≤ α2

(α− 1/2)2

(∫
Rn

u0dx

)1/2(∫
Rn

|∇vα−
1
2 |2dx

)1/2

≤ C.

Besides the moment bound (2.7) in Proposition 2.3, |x|av ∈ L1 for some

a > 2. Therefore by the compactness W 1,1 ∩ L1
a(R

n) ⊂ L1(Rn) ∩ L1
2(R

n),

we have a subsequence v(tn) such that it converges strongly to V (x) ∈
Lα(Rn) ∩ L1

2(R
n). The similar argument found in [12, Theorem 3.1] works

for our case and we see that there exists a limit function V in L1
2(R

n) such

that

v(tn) → V, tn → ∞

in L1(Rn). It turns out that the limit function is also nonnegative and

bounded. While by (4.15), the moment bound Proposition 2.3 and the

natural regularity of the weak solution, we see that

J(v(t)) → J(V ) =

∫
Rn

V

∣∣∣∣ α

α− 1
∇V α−1 + x

∣∣∣∣
2

dx = 0

and we obtain either V = 0 or ∇V α−1 = −α−1
α x almost everywhere. This

concludes by recalling M = ‖u0‖1,

V (x) =

[
A− α− 1

2α
|x|2
] 1

α−1

+

,

where A is chosen such that the L1 norm of V (x) is normalized as 1. Again

the estimate (4.2) in Proposition 4.2 and (4.17) gives

|H(v(t)) −H(V )| ≤ Ce−νt(4.18)

and the desired estimate follows from the argument in [12, Theorem 4.5].

Namely we see firstly that∫
v<V

|v(t) − V |dx

≤
(

1

α
|H(χBM

v(t)) −H(V )|
)1/2(∫

BM

V (x)
2
ndx

)1/2(4.19)
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by the special structure of the Barenblatt solution, where BM = suppB ≡
{|x| ≤ 2αA

α−1} and χBM
is the characteristic function on BM . While by

M = ‖V ‖1 = ‖v(t)‖1 and V ≥ 0, we see∫
v≥V

|v(t) − V |dx =

∫
v<V

(V − v(t))dx =

∫
v<V

|v(t) − V |dx.(4.20)

We note that over BcM , V is vanishing and by [12, Lemma 4.4]

1

α− 1

∫
|x|2>C

vα(t)dx +
1

2

∫
|x|2>C

(|x|2 −D)v(t)dx

≤ |H(v(t)) −H(V )|,

D

∫
|x|2>C

v(t)dx ≤ Ce−γt.

(4.21)

Combining (4.19), (4.20) and (4.21) with (4.18) we conclude that

‖v(t) − V ‖1 ≤ Ce−ν
′t,

for some ν ′ > 0. �

Appendix A. Some Fundamental Calculus

Their results are well-known, however we give proofs for self-contained-

ness.

Lemma A.1 (cf. Ladyženskaja-Solonnikov-Ural’ceva [33, pp.96 Lemma

5.7]). Let C, ε, δ > 0, b ≥ 1 and let {Yn}∞n=0 , {Zn}∞n=0 ⊂ (0,∞) satisfy

Yn+1 ≤ Cbn(Y 1+δ
n + Y δnZ

1+ε
n )

Zn+1 ≤ Cbn(Yn + Z1+ε
n ).

(A.1)

Set

d := min

{
δ,

ε

1 + ε

}
, λ = min

{
(2C)−

1
δ b−

1
δd , (2C)−

1+ε
ε b−

1
εd

}
.

Then if Y0 ≤ λ and Z0 ≤ λ
1

1+ε , we obtain

Yn ≤ λb−
n
d , Zn ≤ (λb−

n
d )

1
1+ε .(A.2)
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Proof of Lemma A.1. Inequality (A.2) are valid for n = 0. We prove

(A.2) by induction. If (A.2) hold for n, then by (A.1), we have

Yn+1 ≤ 2Cλ1+δbn(1−
1+δ
d

) , Zn+1 ≤ 2Cλbn(1−
1
d
).

Since λ ≤ (2C)−
1
δ b−

1
δd and d ≤ δ, we have

2Cλ1+δbn(1−
1+δ
d

) ≤ λb−
1
d b−

n
d
+n(1− δ

d
) ≤ λb−

n+1
d .

Similarly, since λ ≤ (2C)−
1+ε
ε b−

1
εd , we obtain

2Cλbn(1−
1
d
) = 2Cλ

ε
1+ελ

1
1+ε b

− n+1
(1+ε)d b

n(1− 1
d
)+ n+1

(1+ε)d ≤ (λb−
n+1
d )

1
1+ε b

n(1− ε
(1+ε)d

)
.

Since d ≤ ε
1+ε , we find 1− ε

(1+ε)d ≤ 0 and hence we have (A.2) for n+ 1. �

Lemma A.2 (cf. Ladyženskaja-Solonnikov-Ural’ceva [33, p.91]). Let

w ∈ W 1,1(Bρ) and let l > k. Then there exists a constant C depending on

n only such that

(l − k)|A+
ρ;l| ≤

Cρn+1

|Bρ| − |A+
ρ;k|

∫
A+

ρ;k\A
+
ρ;l

|∇w| dx

where

A+
ρ;k := {x ∈ Bρ ; w(x) > k}.

For the proof of Lemma A.2, we need the following weighted Poincaré

inequality:

Lemma A.3 (cf. Ladyženskaja-Solonnikov-Ural’ceva [33, p.89]). Let g

be a nonnegative function in W 1,1(Bρ) and let N0 := {g = 0}. Then∫
Bρ

g(x) dx ≤ Cnρ
n+1

|N0|

∫
Bρ

|∇g(x)|η(x) dx.

Proof of Lemma A.3. We only consider the case n ≥ 2. For x ∈
Bρ, x′ ∈ N0, we have

g(x) = g(x) − g(x′) = −
∫ |x′−x|

0

d

dr
g(x + rω) dr ≤

∫ |x′−x|

0
|∇g(x + rω)| dr
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where ω = x′−x
|x′−x| . Integrating over x ∈ Bρ and x′ ∈ N0, we have

|N0|
∫
Bρ

g(x) dx ≤
∫
Bρ

dx

∫
N0

dx′
∫ |x′−x|

0
|∇g(x + rω)| dr.

Let g(x) be zero on x ∈ R
n \ Bρ. Introducing the polar coordinate, we

obtain∫
N0

dx′
∫ |x′−x|

0
|∇g(x + rω)| dr

≤
∫
B2ρ(x)

dx′
∫ |x′−x|

0
|∇g(x + rω)| dr

≤
∫
B2ρ(x)

dx′
∫ |x′−x|

0
|∇g(x + rω)| dr

=

∫ 2ρ

0
sn−1 ds

∫
Sn−1

dσ

∫ s

0

|∇g(x + rω)|
rn−1

rn−1 dr

( x′ = sσ + x,

σ ∈ S
n−1,

0 < s < 2ρ

)

=

∫ 2ρ

0
sn−1 ds

∫
Bs(x)

|∇g(y)|
|x− y|n−1

dy (y = x + rσ)

≤ (2ρ)n

n

∫
Bρ

|∇g(y)|
|x− y|n−1

dy,

where S
n−1 is the (n− 1)-dimensional unit sphere. Therefore,

|N0|
∫
Bρ

g(x) dx ≤ (2ρ)n

n

∫
Bρ

dx

∫
Bρ

|∇g(y)|
|x− y|n−1

dy

= Cnρ
n

∫
Bρ

|∇g(y)| dy
∫
Bρ

1

|x− y|n−1
dx.

Since∫
Bρ

1

|x− y|n−1
dx ≤

∫
B2ρ(y)

1

|x− y|n−1
dx ≤

∫
Sn−1

dσ

∫ 2ρ

0

rn−1

rn−1
dr = Cnρ,

we obtain

|N0|
∫
Bρ

g(x) dx ≤ Cnρ
n+1

∫
Bρ

|∇g(y)| dy. �



Regularity and Asymptotic Behavior for the Keller-Segel System 429

Proof of Lemma A.2. Let

g(x) := max{l − k , (w − k)+} ∈ W 1,1(Bρ), N0 := {w < k}.

Then, by Lemma A.3, we have∫
Bρ

g(x) dx ≤ Cnρ
n+1

|N0|

∫
Bρ

|∇g(x)| dx,

hence

(l − k)|{w > l}| ≤ Cnρ
n+1

|{w < k}|

∫
{k<w≤l}

|∇w(x)| dx. �

Lemma A.4 (scaled Bessel potential). Let f ∈ Lq(Rn). Then for all

λ ≥ 0 and 1 ≤ r ≤ n
n−2 , we have:

‖(−λ−2∆ + 1)−1f‖p ≤ λ
n
q (1 + |λ|−n

r )‖G1‖r‖f‖q,(A.3)

where G1 is the Bessel potential for (−∆ + 1)−1 and 1
p = 1

q + 1
r − 1.

Proof of Lemma A.4. Let Gλ(x) be the Bessel kernel for the Bessel

potential (− 1
λ2 ∆ + 1)−1. Then since

(−λ−2∆ + 1)−1f =cn

∫
Rn

eix·ξ
1

|ξ/λ|2 + 1
f̂(ξ)dξ

=cn

∫
Rn

eix·λη
1

|η|2 + 1
f̂(λη)λndη

=λncn

∫
Rn

eiλx·η
1

|η|2 + 1
ˆ̃
f(η)dη

=λnG1(λ·) ∗
(
λ−nf(λ−1·)

)
=G1(λ·) ∗

(
f(λ−1·)

)
where f̃(x) = λ−nf(λ−1x). Hence

‖(−λ−2∆ + 1)−1f‖p =
∥∥G1(λ·) ∗

(
f(λ−1·)

)∥∥
≤‖G1(λ·)‖r‖f(λ−1·)‖q
=λ

n
q ‖G1(λ·)‖r‖f‖q,
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where
1

p
=

1

q
−
(

1 − 1

r

)

and r ≤ n
n−2 . Namely 1 − 1

r ≤ 2
n and hence we obtain the result. �
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