Dixmier Approximation and Symmetric Amenability for C^* -Algebras

By Narutaka Ozawa

Abstract. We study some general properties of tracial C^* -algebras. In the first part, we consider Dixmier type approximation theorem and characterize symmetric amenability for C^* -algebras. In the second part, we consider continuous bundles of tracial von Neumann algebras and classify some of them.

1. Introduction

The general study of tracial states on C^{*}-algebras has a long history, but recently it gained a renewed interest in connection with the ongoing classification program for finite nuclear C*-algebras. In this note, we record several facts about tracial C*-algebras which may be useful in the future study. The results are two-fold. First, we consider Dixmier type approximation property for C*-algebras and relate it to symmetric amenability. The Dixmier approximation theorem (Theorem III.5.1 in [Di]) states a fundamental fact about von Neumann algebras that for any von Neumann algebra N and any element $a \in N$, the norm-closed convex hull of $\{uau^* : u \in \mathcal{U}(N)\}$ meets the center $\mathcal{Z}(N)$ of N. Here $\mathcal{U}(N)$ denotes the unitary group of N. If N is moreover a finite von Neumann algebra, then this intersection is a singleton and consists of ctr(a). Here ctr denotes the center-valued trace, which is the unique conditional expectation from N onto $\mathcal{Z}(N)$ that satis fies $\operatorname{ctr}(xy) = \operatorname{ctr}(yx)$. It is proved by Haagerup and Zsido ([HZ]) that the Dixmier approximation theorem holds for simple C*-algebras having at most one tracial states (and obviously does not for simple C*-algebras having more than one tracial states). Recall that a C^{*}-algebra A has the quotient tracial state property (QTS property) if every non-zero quotient

²⁰¹⁰ Mathematics Subject Classification. 46L05, 46L10.

Key words: Dixmier approximation, symmetric amenability, continuous bundles of von Neumann algebras.

Partially supported by JSPS (23540233).

C^{*}-algebra of A has a tracial state ([Mu]). We denote by T(A) the space of the tracial states on A, equipped with the weak^{*}-topology.

THEOREM 1. For a unital C^* -algebra A, the following are equivalent.

- (i) The C^{*}-algebra A has the QTS property.
- (ii) For every $\varepsilon > 0$ and $a \in A$ that satisfy $\sup_{\tau \in T(A)} |\tau(a)| < \varepsilon$, there are k and $u_1, \ldots, u_k \in \mathcal{U}(A)$ such that $\|\frac{1}{k} \sum_{i=1}^k u_i a u_i^*\| < \varepsilon$.

Unlike the case for von Neumann algebras, there is no bound of k in terms of ε and ||a|| that works for an arbitrary element a in a C^{*}-algebra (see Section 3, where we study a relation between trace zero elements and commutators). Recall that a Banach algebra A is said to be *amenable* if there is a net $(\Delta_n)_n$, called an approximate diagonal, in the algebraic tensor product $A \otimes_{\mathbb{C}} A$ (we reserve the symbol \otimes for the minimal tensor product) such that

- (1) $\sup_n \|\Delta_n\|_{\wedge} < +\infty$,
- (2) $(m(\Delta_n))_n$ is an approximate identity,
- (3) $\lim_n \|a \cdot \Delta_n \Delta_n \cdot a\|_{\wedge} = 0$ for every $a \in A$.

Here $\|\cdot\|_{\wedge}$ is the projective norm on $A \otimes_{\mathbb{C}} A$, m: $A \otimes_{\mathbb{C}} A \to A$ is the multiplication, and $a \cdot (\sum_{i} x_i \otimes y_i) = \sum_{i} ax_i \otimes y_i$ and $(\sum_{i} x_i \otimes y_i) \cdot a = \sum_{i} x_i \otimes y_i a$. The celebrated theorem of Connes–Haagerup ([Co, Ha1]) states that a C*-algebra A is amenable as a Banach algebra if and only if it is nuclear. The Banach algebra A is said to be symmetrically amenable ([Jo]) if the approximate diagonal $(\Delta_n)_n$ can be taken symmetric under the flip $x \otimes y \to y \otimes x$. We characterize symmetric amenability for C*-algebras.

THEOREM 2. For a unital C^* -algebra A, the following are equivalent.

- (i) The C^{*}-algebra A is nuclear and has the QTS property.
- (ii) The C*-algebra A has an approximate diagonal $\Delta_n = \sum_{i=1}^{k(n)} x_i(n)^* \otimes x_i(n)$ such that $\lim_n \sum_{i=1}^{k(n)} \|x_i(n)\|^2 = 1$, $\operatorname{m}(\Delta_n) = 1$, and $\lim_n \|1 \sum_{i=1}^{k(n)} x_i(n)x_i(n)^*\| = 0$.

(iii) The C^{*}-algebra A is symmetrically amenable.

(iv) The C*-algebra A has a symmetric approximate diagonal $(\Delta_n)_n$ in

$$\{\sum_{i} x_i^* \otimes x_i \in A \otimes_{\mathbb{C}} A : \sum_{i} ||x_i||^2 \le 1\}$$

Recall that a unital C*-algebra A is strongly amenable if there is an approximate diagonal that consists of convex combinations of $\{u^* \otimes u : u \in \mathcal{U}(A)\}$. This property is formally stronger than symmetric amenability, but it is unclear whether there is really a gap between these properties.

Second, we describe what is the C*-completion \overline{A}^{u} of a unital C*-algebra A under the uniform 2-norm. This work is strongly influenced by the recent works of Kirchberg–Rørdam ([KR]), Sato ([Sa2]), and Toms–White–Winter ([TWW]), who studied the central sequence algebra of a C*-algebra modulo uniformly 2-norm null sequences, in order to extend Matui–Sato's result ([MS]) from C*-algebras with finitely many extremal tracial states to more general ones. In fact, our result is very similar to theirs (particularly to Kirchberg–Rørdam's). Let A be a C*-algebra and $S \subset T(A)$ be a non-empty metrizable closed face. The reason we assume S be metrizable is because it makes the description of the boundary measures simpler. We define the uniform 2-norm on A corresponding to S by

$$||a||_{2,S} = \sup\{\tau(a^*a)^{1/2} : \tau \in S\}.$$

The uniform 2-norm satisfies

$$||ab||_{2,S} \le \min\{||a|| ||b||_{2,S}, ||a||_{2,S} ||b||\}$$
 and $\sup_{\tau \in S} |\tau(a)| \le ||a||_{2,S}.$

The C*-completion \overline{A}^{u} is defined to be the C*-algebra of the norm-bounded uniform 2-norm Cauchy sequences, modulo the ideal of the uniform 2-norm null sequences. For $\tau \in T(A)$, we denote by π_{τ} the corresponding GNS representation and also $||a||_{2,\tau} = \tau(a^*a)^{1/2}$. Let $N = (\bigoplus_{\tau \in S} \pi_{\tau})(A)''$ be the enveloping von Neumann algebra with respect to S. When S = T(A), it is the finite summand A_{f}^{**} of the second dual von Neumann algebra A^{**} . The tracial state $\tau \in S$ and the GNS representation π_{τ} extend normally on N. For the center-valued trace ctr: $N \to \mathcal{Z}(N)$, one has $||a||_{2,S} = || \operatorname{ctr}(a^*a) ||^{1/2}$ and \overline{A}^{u} coincides with the closure \overline{A}^{st} of A in N with respect to the strict topology associated with the Hilbert $\mathcal{Z}(N)$ -module (N, ctr).

Recall that the trace space T(A) of a unital C*-algebra is a Choquet simplex and so is the closed face S. We denote by Aff(S) the space of the affine continuous functions on S and consider the function system $\mathcal{A}\mathrm{ff}(S) =$ $\{f|_{\partial S} : f \in \mathrm{Aff}(S)\}$ in $B(\partial S)$, where $B(\partial S)$ denotes the C*-algebra of the bounded Borel functions on ∂S . For every $a \in A$, the formula $\hat{a}(\tau) = \tau(a)$ defines a function \hat{a} in Aff(S) (or $\mathcal{A}\mathrm{ff}(S)$). We note that $\{\hat{a} : a \in A\}$ is dense in Aff(S) (in fact equal, see [CP]). Let $\mathcal{M}^1_+(\partial S)$ be the space of the probability measures on the extreme boundary ∂S of S. Since S is a metrizable Choquet simplex, every $\tau \in S$ has a unique representing measure $\mu_{\tau} \in \mathcal{M}^1_+(\partial S)$, which satisfies

$$\tau(a) = \int \lambda(a) \, d\mu_{\tau}(\lambda) = \int \hat{a}(\lambda) \, d\mu_{\tau}(\lambda)$$

for every $a \in A$ (Theorem II.3.16 in [Al]). The center $\mathcal{Z}(\mathcal{A}\mathrm{ff}(S))$ is defined to be

$$\mathcal{Z}(\mathcal{A}\mathrm{ff}(S)) = \{ f \in B(\partial S) : f \,\mathcal{A}\mathrm{ff}(S) \subset \mathcal{A}\mathrm{ff}(S) \} \subset \mathcal{A}\mathrm{ff}(S).$$

When ∂S is closed (i.e., when S is a Bauer simplex), one has $\mathcal{A}\mathrm{ff}(S) = C(\partial S)$ and $\mathcal{Z}(\mathcal{A}\mathrm{ff}(S)) = C(\partial S)$. However in general, the center $\mathcal{Z}(\mathcal{A}\mathrm{ff}(S))$ can be trivial (see Section II.7 in [Al]).

THEOREM 3. Let A, S, and N be as above. Then, there is a unital *-homomorphism $\theta: B(\partial S) \to \mathcal{Z}(N)$ with ultraweakly dense range such that $\theta(\hat{a}) = \operatorname{ctr}(a)$ and

$$\tau(\theta(f)a) = \int f(\lambda)\lambda(a) \, d\mu_{\tau}(\lambda) = \int f\hat{a} \, d\mu_{\tau}(\lambda)$$

for every $a \in A$ and $\tau \in S$. One has

$$\overline{A}^{\mathrm{st}} = \{ x \in N : \operatorname{ctr}(xA) \subset \theta(\mathcal{A}\mathrm{ff}(S)), \ \operatorname{ctr}(x^*x) \in \theta(\mathcal{A}\mathrm{ff}(S)) \}.$$

In particular,

$$\overline{A}^{\mathrm{st}} \cap \mathcal{Z}(N) = \{\theta(f) : f \in \mathcal{Z}(\mathcal{A}\mathrm{ff}(S))\}.$$

Moreover, if ∂S is closed, then for every $\tau \in \partial S$, one has $\pi_{\tau}(\overline{A}^{st}) = \pi_{\tau}(N) = \pi_{\tau}(A)''$.

Takesaki and Tomiyama ([TT]) have studied the structure of a C*-algebra, for which the set of pure states is closed in the state space, by using a continuous bundle of C*-algebras (see also [Fe]). We carry out a similar study in Section 5 for a C*-algebra A, for which ∂S is closed, in terms of a continuous W*-bundle, and present W*-analogues of a few results for C*-bundles obtained in [HRW, DW]. In particular, we give a criterion for a continuous W*-bundle over a compact space K with all fibers isomorphic to the hyperfinite II₁ factor \mathcal{R} to be isomorphic to the trivial bundle $C_{\sigma}(K,\mathcal{R})$, the C*-algebra of the norm-bounded and ultrastrongly continuous functions from K into \mathcal{R} . We denote the evaluation map at $\lambda \in K$ by $\mathrm{ev}_{\lambda} \colon C_{\sigma}(K,\mathcal{R}) \to \mathcal{R}$. As an application, we show that $\overline{A}^{\mathrm{st}} \cong C_{\sigma}(\partial S,\mathcal{R})$ for certain A.

THEOREM 4. Let A be a separable C^{*}-algebra and $S \subset T(A)$ be a closed face. Assume that $\pi_{\tau}(A)'' \cong \mathcal{R}$ for all $\tau \in \partial S$ and that ∂S is a compact space with finite covering dimension. Then, one can coordinatize the isomorphisms $\pi_{\tau}(A)'' = \mathcal{R}$ in such a way that they together give rise to a *-homomorphism $\pi: A \to C_{\sigma}(\partial S, \mathcal{R})$ such that $\pi_{\tau} = ev_{\tau} \circ \pi$. The image of π is dense with respect to the uniform 2-norm.

Acknowledgment. The author is grateful to Yasuhiko Sato for many illuminating conversations. The author was partially supported by JSPS (23540233).

2. QTS Property and Symmetric Amenability

PROOF OF THEOREM 1. Ad (i) \Rightarrow (ii). Although the proof becomes a bit shorter if we use Theorem 5 in [HZ], we give here a more direct proof of this implication. Let $a \in A$ and $\varepsilon > 0$ be given as in condition (ii). Let $\varepsilon_0 = \sup_{\tau \in T(A)} |\tau(a)| < \varepsilon$. We decompose the second dual von Neumann algebra A^{**} into the finite summand A_{f}^{**} and the properly infinite summand A_{∞}^{**} . We denote the corresponding embedding of A by π_f and π_{∞} , and the center-valued trace of A_{f}^{**} by ctr. We note that $\|\operatorname{ctr}(\pi_f(a))\| = \varepsilon_0$. By the Dixmier approximation theorem, there are $v_1, \ldots, v_k \in \mathcal{U}(A_{f}^{**})$

such that $\|\operatorname{ctr}(\pi_{\mathrm{f}}(a)) - \frac{1}{k}\sum_{i=1}^{k} v_{i}\pi_{\mathrm{f}}(a)v_{i}^{*}\| < \varepsilon - \varepsilon_{0}$. On the other hand, by Halpern's theorem ([Hal]), there are $w_{1}, \ldots, w_{l} \in \mathcal{U}(A_{\infty}^{**})$ such that $\|\frac{1}{l}\sum_{j=1}^{l} w_{i}\pi_{\infty}(a)w_{i}^{*}\| < \varepsilon$. Before giving the detail of the proof of this fact, we finish the proof of (i) \Rightarrow (ii). By allowing multiplicity, we may assume that k = l and consider $u_{i} = v_{i} \oplus w_{i} \in A^{**}$. Then, $\|\frac{1}{k}\sum_{i=1}^{k} u_{i}au_{i}^{*}\| < \varepsilon$ in A^{**} . For each *i*, take a net $(u_{i}(\lambda))_{\lambda}$ of unitary elements in A which converges to $u_{i} \in A^{**}$ in the ultrastrong*-topology. By the Hahn-Banach theorem, $\operatorname{conv}\{\frac{1}{k}\sum_{i=1}^{k} u_{i}(\lambda)au_{i}(\lambda)^{*}\}_{\lambda}$ contains an element of norm less than ε .

Now, we explain how to apply Halpern's theorem. Let Z (resp. I) be the center (resp. strong radical) of A_{∞}^{**} . Let Λ be the directed set of all finite partitions of unity by projections in Z, and $\lambda = \{p_{\lambda,i}\}_i \in \Lambda$ be given. Applying the QTS property to the non-zero *-homomorphism $A \ni x \mapsto$ $p_{\lambda,i}(\pi_{\infty}(x) + I) \in p_{\lambda,i}((\pi_{\infty}(A) + I)/I)$, one obtains a (tracial) state $\tau_{\lambda,i}$ on $\pi_{\infty}(A) + I$ such that $\tau_{\lambda,i}(p_{\lambda,i}) = 1$, $\tau_{\lambda,i}(I) = 0$, and $|\tau_{\lambda,i}(\pi_{\infty}(a))| \leq \varepsilon_0$. Let $\tilde{\tau}_{\lambda,i}$ be a state extension of it on $p_{\lambda,i}A_{\infty}^{**}$. We define the linear map $\varphi_{\lambda} \colon A_{\infty}^{**} \to$ Z by $\varphi_{\lambda}(x) = \sum_{i} \tilde{\tau}_{\lambda,i}(x)p_{\lambda,i}$, and take a limit point $\varphi \colon A_{\infty}^{**} \to Z$. The map φ is a unital positive Z-linear map such that $\varphi(I) = 0$ and $\|\varphi(\pi_{\infty}(a))\| \leq \varepsilon_0$. By Halpern's theorem (Theorem 4.12 in [Hal]), the norm-closed convex hull of the unitary conjugations of $\pi_{\infty}(a)$ contains $\varphi(\pi_{\infty}(a))$.

Ad (ii) \Rightarrow (i). Suppose that there is a closed two-sided proper ideal I in A such that A/I does not have a tracial state. Let e_n be the approximate unit of I. Then, one has $\tau(1 - e_n) \searrow 0$ for every $\tau \in T(A)$. By Dini's theorem, there is n such that $q = 1 - e_n$ satisfies $\tau(q) < 1/2$ for all $\tau \in T(A)$. By condition (ii), there are $u_1, \ldots, u_k \in \mathcal{U}(A)$ such that $\|\frac{1}{k} \sum_{i=1}^k u_i q u_i^*\| < 1/2$, which is in contradiction with the fact that $\frac{1}{k} \sum_{i=1}^k u_i q u_i^* \in 1 + I$. \Box

PROOF OF THEOREM 2. The implication (iv) \Rightarrow (iii) is obvious and (iii) \Rightarrow (i) is standard: Since amenability implies nuclearity by Connes's theorem ([Co]), we only have to prove the QTS property. Let $(\Delta_n)_n$ be a symmetric approximate diagonal and define $m_{\Delta}(a) = \sum_i x_i a y_i$ for $\Delta = \sum_i x_i \otimes y_i \in A \otimes_{\mathbb{C}} A$ and $a \in A$. Then, for any proper ideal I in A and a state φ on A such that $\varphi(I) = 0$, any limit point τ of $(\varphi \circ m_{\Delta_n})_n$ is a bounded trace such that $\tau(I) = 0$ and $\tau(1) = 1$. By polar decomposition, one obtains a tracial state on A which vanishes on I.

We prove the implication (i) \Rightarrow (ii) \Rightarrow (iv). Since A is nuclear, it is amenable thanks to Haagerup's theorem (Theorem 3.1 in [Ha1]). Moreover,

there is an approximate diagonal $(\Delta'_n)_n$ in the convex hull of $\{x^* \otimes x : \|x\| \leq 1\}$. We note that $\varepsilon_n := \|1 - \mathrm{m}(\Delta'_n)\| \to 0$. We fix n for the moment and write $\Delta'_n = \sum_i x_i^* \otimes x_i$. By replacing x_i with $x_i \mathrm{m}(\Delta'_n)^{-1/2}$, we may assume $\mathrm{m}(\Delta'_n) = 1$ but $\sum_i \|x_i\|^2 \leq (1 - \varepsilon_n)^{-1}$. Since $\tau(\sum_i x_i x_i^*) = 1$ for all $\tau \in T(A)$, Theorem 1 provides $u_1, \ldots, u_l \in \mathcal{U}(A)$ such that $\|\frac{1}{l} \sum_{j=1}^l \sum_i u_j x_i x_i^* u_j^*\| \leq 1 + \varepsilon_n$. Thus, $\Delta_n = \frac{1}{l} \sum_{i,j} x_i^* u_j^* \otimes u_j x_i$ satisfies condition (ii). Now, rewrite Δ_n as $\sum_i y_i^* \otimes y_i$. Then, $\Delta_n^{\sharp} = (\sum_i \|y_i\|^2)^{-2} \sum_{i,j} y_i^* y_j \otimes y_j^* y_i$ is a symmetric approximate diagonal that meets condition (iv). \Box

3. Trace Zero Elements and Commutators

In this section, we consider the trace zero elements in a C^{*}-algebra. A simple application of the Hahn–Banach theorem implies that $a \in A$ satisfies $\tau(a) = 0$ for all $\tau \in T(A)$ if and only if it belongs to the norm-closure of the subspace [A, A] spanned by commutators [b, c] = bc - cb, $b, c \in A$. Moreover, such a can be written as a convergent sum of commutators ([CP]). There are many works as to how uniformly this happens ([PP, Fa, FH, Ma, Po] just to name a few). The following fact is rather standard.

THEOREM 5. There is a constant C > 0 which satisfies the following. Let A be a C^* -algebra and $a \in A$ and $\varepsilon > 0$ be such that $\sup_{\tau \in T(A)} |\tau(a)| < \varepsilon$. Then, there are $k \in \mathbb{N}$ and b_i and c_i in A such that $\sum_{i=1}^k \|b_i\| \|c_i\| \le C \|a\|$ and $\|a - \sum_{i=1}^k [b_i, c_i]\| < \varepsilon$.

Unlike the case for von Neumann algebras, there is no bound on k in terms of ε and ||a|| that works for general C*-algebras. A counterexample is constructed by Pedersen and Petersen (Lemma 3.5 in [PP]: the element $x_n-y_n \in [A_n, A_n]$ constructed there has the property that $||(x_n-y_n)-z|| \ge 1$ for any sum z of n self-commutators). This also means that k in Theorem 1 depends on the particular element a in A. Nevertheless one can bound kunder some regularity condition. Recall that A is said to be \mathcal{Z} -stable if $A \cong \mathcal{Z} \otimes A$ for the Jiang–Su algebra \mathcal{Z} . The Jiang–Su algebra \mathcal{Z} is a simple C*-algebra which is an inductive limit of prime dimension drop algebras and such that $\mathcal{Z} \cong \mathcal{Z}^{\otimes \infty}$ (Theorem 2.9 and Theorem 4 in [JS]).

THEOREM 6. There is a constant C > 0 which satisfies the following. Let A be an exact \mathcal{Z} -stable C^{*}-algebra, and $\varepsilon > 0$ and $a \in A$ be such

that $\sup_{\tau \in T(A)} |\tau(a)| < \varepsilon$. Then, for every $R \in \mathbb{N}$, there are b(r) and c(r) in A such that $\sum_{r=1}^{R} \|b(r)\| \|c(r)\| \leq C \|a\|$ and $\|a - \sum_{r=1}^{R} [b(r), c(r)]\| < \varepsilon + C \|a\| R^{-1/2}$.

PROOF OF THEOREM 5. Let $a \in A$. We denote by ctr the centervalued trace from the second dual von Neumann algebra A^{**} onto the center $\mathcal{Z}(A_{\mathrm{f}}^{**})$ of the finite summand A_{f}^{**} of A^{**} . One has $\|\operatorname{ctr}(a)\| =$ $\sup_{\tau \in T(A)} |\tau(a)| < \varepsilon$ and $a' := a - \operatorname{ctr}(a)$ has zero traces. By a theorem of Fack and de la Harpe, for $C = 2 \cdot 12^2$ and m = 10, there are $b_i, c_i \in A^{**}$ such that $\sum_{i=1}^{m} \|b_i\| \|c_i\| \leq C \|a\|$ and $a' = \sum_{i=1}^{m} [b_i, c_i]$. See [Ma, Po] for a better estimate of C and m. By Kaplansky's density theorem, there is a net $(b_i(\lambda))_{\lambda}$ in A such that $\|b_i(\lambda)\| \leq \|b_i\|$ and $b_i(\lambda) \to b_i$ ultrastrongly. Likewise for $(c_i(\lambda))_{\lambda}$. Since

$$\|\lim_{\lambda} (a - \sum_{i=1}^{m} [b_i(\lambda), c_i(\lambda)])\| = \|a - a'\| < \varepsilon,$$

there is $a'' \in \operatorname{conv}\{\sum_{i=1}^{m} [b_i(\lambda), c_i(\lambda)]\}_{\lambda}$ which satisfies $||a - a''|| < \varepsilon$. \Box

The proof of Theorem 6 is inspired by [Ha2] and uses the free semicircular system and random matrix argument of Haagerup–Thorbjørnsen ([HT]). Let \mathcal{O}_{∞} be the Cuntz algebra generated by isometries $l_i(r)$ such that $l_i(r)^*l_j(s) = \delta_{i,j}\delta_{r,s}$, and let $S_i(r) := l_i(r) + l_i(r)^*$ be the corresponding semicircular system. We note that $\mathfrak{C} := \mathbb{C}^*(\{S_i(r) : i, r\})$ is *-isomorphic to the reduced free product of the copies of C([-2, 2]) with respect to the Lebesgue measure (see Section 2.6 in [VDN]), and the corresponding tracial state coincides with the restriction of the vacuum state on \mathcal{O}_{∞} to \mathfrak{C} .

LEMMA 7. Let $b_i, c_i \in A$ be such that $||b_i|| = ||c_i||$. Then, for every $R \in \mathbb{N}$, letting $\tilde{b}(r) = \sum_{i=1}^n S_i(r) \otimes b_i$ and $\tilde{c}(r) = \sum_{j=1}^n S_j(r) \otimes c_j$, one has

$$\frac{1}{R}\sum_{r=1}^{R} \|\tilde{b}(r)\| \|\tilde{c}(r)\| \le 4\sum \|b_i\| \|c_i\|$$

and

$$\|1 \otimes \sum_{i=1}^{n} [b_i, c_i] - \frac{1}{R} \sum_{r=1}^{R} [\tilde{b}(r), \tilde{c}(r)]\| \le \frac{6}{\sqrt{R}} \sum_{i} \|b_i\| \|c_i\|.$$

PROOF. For every r, one has

$$\|\tilde{b}(r)\| \le \|\sum l_i(r) \otimes b_i\| + \|\sum l_i(r)^* \otimes b_i\|$$

= $\|\sum b_i^* b_i\|^{1/2} + \|\sum b_i b_i^*\|^{1/2} \le 2(\sum \|b_i\|^2)^{1/2}$

and likewise for $\tilde{c}(r)$. It follows that $\|\tilde{b}(r)\|\|\tilde{c}(r)\| \leq 4 \sum \|b_i\|\|c_i\|$. Moreover,

$$\tilde{b}(r)\tilde{c}(r) = \sum_{i,j} (\delta_{i,j}1 + l_i(r)l_j(r) + l_i(r)l_j(r)^* + l_i(r)^*l_j(r)^*) \otimes b_i c_j,$$

and

$$\begin{split} \|\sum_{r,i,j} l_i(r) l_j(r) \otimes b_i c_j\| &= \|\sum_{r,i,j} c_j^* b_i^* b_i c_j\|^{1/2} \le R^{1/2} \sum_i \|b_i\| \|c_i\|, \\ \|\sum_{r,i,j} l_i(r)^* l_j(r)^* \otimes b_i c_j\| &= \|\sum_{r,i,j} b_i c_j c_j^* b_i^*\|^{1/2} \le R^{1/2} \sum_i \|b_i\| \|c_i\|, \\ \|\sum_{r,i,j} l_i(r) l_j(r)^* \otimes b_i c_j\| &= \max_r \|\sum_{i,j} l_i(r) l_j(r)^* \otimes b_i c_j\| \le \sum_i \|b_i\| \|c_i\|. \end{split}$$

Likewise for $\tilde{c}(r)\tilde{b}(r)$, and one obtains the conclusion. \Box

PROOF OF THEOREM 6. Let $a \in A \setminus \{0\}$ be such that $\sup_{\tau \in T(A)} |\tau(a)| < \varepsilon$. Since $\mathcal{Z} \cong \mathcal{Z}^{\otimes \infty}$, we may assume that $A = \mathcal{Z} \otimes A_0$ and $a \in A_0$. By Theorem 5, there are b_i, c_i such that $||b_i|| = ||c_i||$, $\sum_{i=1}^k ||b_i|| ||c_i|| \le C ||a||$, and $||a - \sum_{i=1}^k [b_i, c_i]|| < \varepsilon$. Recall the theorem of Haagerup and Thorbjørnsen ([HT]) which states that the C*-algebra \mathfrak{C} can be embedded into $\prod \mathfrak{M}_n / \bigoplus \mathfrak{M}_n$. By exactness of A_0 , there is a canonical *-isomorphism

$$(\prod \mathbb{M}_n / \bigoplus \mathbb{M}_n) \otimes A_0 \cong ((\prod \mathbb{M}_n) \otimes A_0) / (\bigoplus \mathbb{M}_n \otimes A_0).$$

Lemma 7, combined with this fact, implies that there are matrices $s_i^{(n)}(r) \in \mathbb{M}_n$ such that $\tilde{b}^{(n)}(r) = \sum_{i=1}^k s_i^{(n)}(r) \otimes b_i$ and $\tilde{c}^{(n)}(r) = \sum_{j=1}^k s_j^{(n)}(r) \otimes c_j$ satisfy

$$\limsup_{n} \frac{1}{R} \sum_{r=1}^{R} \|\tilde{b}^{(n)}(r)\| \|\tilde{c}^{(n)}(r)\| \le 4 \sum \|b_i\| \|c_i\| \le 4C \|a\|$$

and

$$\limsup_{n} \|1 \otimes a - \frac{1}{R} \sum_{r=1}^{R} [\tilde{b}^{(n)}(r), \tilde{c}^{(n)}(r)]\| \le \varepsilon + \frac{6C \|a\|}{\sqrt{R}}.$$

For every relatively prime $p, q \in \mathbb{N}$, the Jiang–Su algebra \mathcal{Z} contains the prime dimension drop algebra

$$I(p,q) = \{ f \in C([0,1], \mathbb{M}_p \otimes \mathbb{M}_q) : f(0) \in \mathbb{M}_p \otimes \mathbb{C}1, f(1) \in \mathbb{C}1 \otimes \mathbb{M}_q \}$$

and hence $t\mathbb{M}_q$ and $(1-t)\mathbb{M}_p$ also, where $t \in I(p,q)$ is the identity function on [0, 1]. It follows that there are $b(r), c(r), b'(r), c'(r) \in \mathbb{Z} \otimes A_0$ such that

$$\frac{1}{R}\sum_{r=1}^{R} (\|b(r)\|\|c(r)\| + \|b'(r)\|\|c'(r)\|) < 9C\|a\|$$

and

$$\|a - \frac{1}{R}\sum_{r=1}^{R} ([b(r), c(r)] + [b'(r), c'(r)])\| < \varepsilon + \frac{7C\|a\|}{\sqrt{R}}.$$

Here, we note that $||t \otimes x + (1-t) \otimes y|| = \max\{||x||, ||y||\}$ for any x and y. \Box

Let $(A_n)_n$ be a sequence of C^{*}-algebras and \mathcal{U} be a free ultrafilter on \mathbb{N} . We denote by

$$\prod A_n = \{ (a_n)_{n=1}^{\infty} : a_n \in A_n, \, \sup_n ||a_n|| < +\infty \}$$

the ℓ_{∞} -direct sum of (A_n) , and by

$$\prod A_n / \mathcal{U} = (\prod A_n) / \{ (a_n)_{n=1}^\infty : \lim_{\mathcal{U}} \|a_n\| = 0 \}$$

the ultraproduct of A_n . For every m, we view $\tau \in T(A_m)$ as an element of $T(\prod A_n)$ by $\tau((a_n)_n) = \tau(a_m)$. For each $(\tau_n)_n \in \prod T(A_n)$, there is a corresponding tracial state $\tau_{\mathcal{U}} := \lim_{\mathcal{U}} \tau_n$ on $\prod A_n/\mathcal{U}$, defined by

$$\tau_{\mathcal{U}}((a_n)_n) = \lim_{\mathcal{U}} \tau_n(a_n).$$

The set of tracial states that arise in this way is denoted by $\prod T(A_n)/\mathcal{U}$. We note that as soon as $\partial T(\prod A_n/\mathcal{U})$ is infinite, the inclusion $\prod T(A_n)/\mathcal{U} \subset$ $T(\prod A_n/\mathcal{U})$ is proper (see [BF]). Moreover, if we take A_n to be the counterexamples of Pedersen and Petersen ([PP]), then $\prod T(A_n)/\mathcal{U}$ (resp. $\operatorname{conv} \bigsqcup T(A_n)$) is not weak*-dense in $T(\prod A_n/\mathcal{U})$ (resp. $T(\prod A_n)$). The following theorem is proved by Sato [Sa1] (see also [Rø]) in the case where A is a simple nuclear C*-algebra having finitely many extremal tracial states.

THEOREM 8. Let $(A_n)_n$ be a sequence of exact \mathbb{Z} -stable C*-algebras and \mathcal{U} be a free ultrafilter on \mathbb{N} . Then, $\prod T(A_n)/\mathcal{U}$ (resp. conv $\bigsqcup T(A_n)$) is weak*-dense in $T(\prod A_n/\mathcal{U})$ (resp. $T(\prod A_n)$). In particular, for every $\tau \in T(\prod A_n/\mathcal{U})$ and every separable C*-subalgebra $B \subset \prod A_n/\mathcal{U}$, there is $\tau' \in \prod T(A_n)/\mathcal{U}$ such that $\tau|_B = \tau'|_B$.

PROOF OF THEOREM 8. Let A be either $\prod A_n$ or $\prod A_n/\mathcal{U}$, and denote by $\Sigma \subset T(A)$ either conv $(\bigsqcup T(A_n))$ or $\prod T(A_n)/\mathcal{U}$ accordingly. Suppose that the conclusion of the theorem is false for $\Sigma \subset T(A)$. Then, by the Hahn–Banach theorem, there are τ in T(A) and a self-adjoint element a_0 in A such that $\gamma := \tau(a_0) - \sup_{\sigma \in \Sigma} \sigma(a_0) > 0$. Let $\alpha = (|\inf_{\sigma \in \Sigma} \sigma(a_0)| - \tau(a_0)) \lor 0$, and take $b \in A_+$ such that $\tau(b) = \alpha$ and $||b|| < \alpha + \gamma$. It follows that $a = a_0 + b$ satisfies $\sup_{\sigma \in \Sigma} |\sigma(a)| < \tau(a)$. Now, expand $a \in A$ as $(a_n)_n$. We may assume that $||a_n|| \leq ||a||$ for all n. Let $I \in \mathcal{U}$ (or $I = \mathbb{N}$ in case $A = \prod A_n$) be such that $\varepsilon_0 := \sup_{n \in I} \sup_{\sigma \in T(A_n)} \sigma(a_n) < \tau(a)$. Let $R \in \mathbb{N}$ be such that $\varepsilon_1 := \varepsilon_0 + C ||a|| R^{-1/2} < \tau(a)$. Then, by Theorem 6, for each $n \in I$ there are $b_n(r), c_n(r) \in A_n$ such that $\sum_{r=1}^R ||b_n(r)|| ||c_n(r)|| \leq C ||a||$ and $||a_n - \sum_{r=1}^R [b_n(r), c_n(r)]|| \leq \varepsilon_1$. It follows that for $b(r) = (b_n(r))_n$ and $c(r) = (c_n(r))_n \in A$, one has

$$\tau(a) = \tau(a - \sum_{r=1}^{R} [b(r), c(r)]) \le ||a - \sum_{r=1}^{R} [b(r), c(r)]|| < \tau(a),$$

which is a contradiction. This proves the first half of the theorem.

For the second half, let τ and B be given. Take a dense sequence $(x(i))_{i=0}^{\infty}$ in B and expand them as $x(i) = (x_n(i))_n$. By the first half, for every m, there is $(\tau_n^{(m)})_n \in \prod T(A_n)$ such that $|\tau(x(i)) - \tau_{\mathcal{U}}^{(m)}(x(i))| < m^{-1}$ for $i = 0, \ldots, m$. Let

$$I_m = \{ n \in \mathbb{N} : |\tau(x(i)) - \tau_n^{(m)}(x_n(i))| < m^{-1} \text{ for all } i = 0, \dots, m \} \in \mathcal{U}$$

(so $I_0 = \mathbb{N}$), and $J_m = \bigcap_{l=0}^m I_l \in \mathcal{U}$. We define τ_n to be $\tau_n^{(m)}$ for $n \in J_m \setminus J_{m+1}$. It is not too hard to check $\tau = \tau_{\mathcal{U}}$ on B. \Box

In passing, we record the following fact.

LEMMA 9. Let A be a (non-separable) C^{*}-algebra and $X \subset A$ be a separable subset. Then there is a separable C^{*}-subalgebra $B \subset A$ that contains X and such that the restriction from T(A) to T(B) is onto.

Proof. We may assume that A is unital. We first claim that for every $x_1,\ldots,x_n \in A$ and $\varepsilon > 0$, there is a separable C*-subalgebra C which satisfies the following property: for every $\tau \in T(C)$ there is $\sigma \in T(A)$ such that $\max_i |\tau(x_i) - \sigma(x_i)| < \varepsilon$. Indeed if this were not true, then for every C there is $\tau_C \in T(C)$ such that $\max_i |\tau_C(x_i) - \sigma(x_i)| \ge \varepsilon$ for all $\sigma \in T(A)$. The set of separable C^* -subalgebras of A is upward directed and one can find a limit point τ of $\{\tau_C\}$. Then, we arrive at a contradiction that $\tau \in T(A)$ satisfies $\max_i |\tau(x_i) - \sigma(x_i)| \geq \varepsilon$ for all $\sigma \in T(A)$. We next claim that for every separable C*-subalgebra $B_0 \subset A$, there is a separable C*-subalgebra $B_1 \subset A$ that contains B_0 and such that $\operatorname{Res}_{B_0} T(B_1) = \operatorname{Res}_{B_0} T(A)$ in $T(B_0)$, where Res is the restriction map. Take a dense sequence x_1, x_2, \ldots in B_0 , and let $C_0 = B_0$. By the previous discussion, there is an increasing sequence of separable C*-subalgebras $C_0 \subset C_1 \subset \cdots$ such that for every $\tau \in T(C_n)$ there is $\sigma \in T(A)$ satisfying $|\tau(x_i) - \sigma(x_i)| < n^{-1}$ for i = 11,..., n. Now, letting $B_1 = \overline{\bigcup_n C_n}$ and we are done. Finally, we iterate this construction and obtain $X \subset B_0 \subset B_1 \subset \cdots$ such that $\operatorname{Res}_{B_n} T(B_{n+1}) =$ $\operatorname{Res}_{B_n} T(A)$. The separable C*-subalgebra $B = \bigcup B_n$ satisfies the desired property. \Box

Murphy ([Mu]) presents a non-separable example of a unital non-simple C^{*}-algebra with a unique faithful tracial state and asks whether a separable example of such exists. The above lemma answers it. There is another example, which is moreover nuclear. Kirchberg ([Ki]) proves that the Cuntz algebra \mathcal{O}_{∞} (or any other unital separable exact C^{*}-algebra) is a subquotient of the CAR algebra $\mathbb{M}_{2^{\infty}}$. Namely, there are C^{*}-subalgebras J and B in $\mathbb{M}_{2^{\infty}}$ such that J is hereditary in $\mathbb{M}_{2^{\infty}}$ and is an ideal in B such that $B/J = \mathcal{O}_{\infty}$. It follows that B is a unital separable nuclear non-simple C^{*}-algebra with a unique faithful tracial state.

4. Uniform 2-Norm and the Completion

Recall $S \subset T(A)$, $N = (\bigoplus_{\tau \in S} \pi_{\tau})(A)''$, and the center-valued trace ctr: $N \to \mathcal{Z}(N)$. Since S is a closed face of T(A), any normal tracial state on N restricts to a tracial state on A which belongs to S. Hence, one has

$$||a||_{2,S} = \sup\{||a||_{2,\tau} : \tau \in S\} = \sup\{||a||_{2,\tau} : \tau \in \partial S\} = ||\operatorname{ctr}(a^*a)||^{1/2}.$$

Since S is a metrizable closed face of the Choquet simplex T(A), it is also a Choquet simplex and there is a canonical one-to-one correspondence

$$S \ni \tau \longleftrightarrow \mu_{\tau} \in \mathcal{M}^{1}_{+}(\partial S), \ \tau(a) = \int \lambda(a) \, d\mu_{\tau}(\lambda) \text{ for } a \in A.$$

By uniqueness of the representing measure μ_{τ} , this correspondence is an affine transformation and extends uniquely to a linear order isomorphism between their linear spans.

LEMMA 10. For every $\tau \in S$, there is a normal *-isomorphism θ_{τ} : $L^{\infty}(\partial S, \mu_{\tau}) \to \mathcal{Z}(\pi_{\tau}(A)'')$ such that

$$\tau(\theta_{\tau}(f)a) = \int f(\lambda)\lambda(a) \, d\mu_{\tau}(\lambda)$$

for $a \in A$.

PROOF. Let $f \in L^{\infty}(\partial S, \mu_{\tau})$ be given. The right hand side of the claimed equality defines a tracial linear functional on A whose modulus is dominated by a scalar multiple of τ . Hence, by Sakai's Radon–Nikodym theorem, there is a unique $\theta_{\tau}(f) \in \mathcal{Z}(\pi_{\tau}(N))$ that satisfies the claimed equality. This defines a unital normal positive map θ_{τ} from $L^{\infty}(\partial S, \mu_{\tau})$ into $\mathcal{Z}(\pi_{\tau}(A)'')$. Next, let $z \in \mathcal{Z}(\pi_{\tau}(N))_{+}$ be given. Then, the tracial linear functional $z\tau$ on A defined by $(z\tau)(a) = \tau(az)$ is dominated by $||z||\tau$. Hence one has $\mu_{z\tau} \leq ||z||\mu_{\tau}$ and $z = \theta_{\tau}(d\mu_{z\tau}/d\mu_{\tau})$ with $d\mu_{z\tau}/d\mu_{\tau} \in L^{\infty}(\partial S, \mu_{\tau})$. This proves θ_{τ} is a positive linear isomorphism such that $\mu_{\theta_{\tau}(f)\tau} = f\mu_{\tau}$. Therefore, one has $\mu_{\theta_{\tau}(fg)\tau} = fg\mu_{\tau} = f\mu_{\theta_{\tau}(g)\tau} = \mu_{\theta_{\tau}(f)\theta_{\tau}(g)\tau}$, which proves $\theta_{\tau}(fg) = \theta_{\tau}(f)\theta_{\tau}(g)$. \Box

PROOF OF THEOREM 3. We first find the *-homomorphism θ : $B(\partial S) \to \mathcal{Z}(N)$ that satisfies

$$\tau(\theta(f)a) = \int f(\lambda)\lambda(a) \, d\mu_{\tau}(\lambda)$$

for every $a \in A$ and $\tau \in S$, or equivalently, $\pi_{\tau}(\theta(f)) = \theta_{\tau}(f)$ in $\pi_{\tau}(A)''$. For this, it suffices to show that the maps $\theta_{\tau}|_{B(\partial S)}$, given in Lemma 10, are compatible over $\tau \in S$. We recall that associated with the representation π_{τ} , there is a unique central projection $p_{\tau} \in \mathcal{Z}(N)$ such that $(1-p_{\tau})N = \ker \pi_{\tau}$. Since $p_{\tau} \vee p_{\sigma} = p_{(\tau+\sigma)/2}$, the family $\{p_{\tau} : \tau \in S\}$ is upward directed and $\sup_{\tau} p_{\tau} = 1$. We will show that if τ and σ are such that $\tau \leq C\sigma$ for some C > 1, then $\theta_{\tau}(f) = p_{\tau}\theta_{\sigma}(f)$ in $\mathcal{Z}(N)$. We note that p_{τ} is the support projection of $d\tau/d\sigma \in \mathcal{Z}(N)$. For every $f \in B(\partial S)$, one has

$$\sigma(\theta_{\sigma}(\frac{d\mu_{\tau}}{d\mu_{\sigma}}f)a) = \int (\frac{d\mu_{\tau}}{d\mu_{\sigma}}f)(\lambda)\lambda(a) d\mu_{\sigma}(\lambda)$$
$$= \int f(\lambda)\lambda(a) d\mu_{\tau}(\lambda)$$
$$= \tau(\theta_{\tau}(f)a)$$
$$= \sigma(\frac{d\tau}{d\sigma}\theta_{\tau}(f)a).$$

This implies $\theta_{\sigma}(\frac{d\mu_{\tau}}{d\mu_{\sigma}}f) = \frac{d\tau}{d\sigma}\theta_{\tau}(f)$ for every f. In particular, $\theta_{\sigma}(\frac{d\mu_{\tau}}{d\mu_{\sigma}}) = \frac{d\tau}{d\sigma}$ and $p_{\tau}\theta_{\sigma}(f) = \theta_{\tau}(f)$ in $\mathcal{Z}(N)$. Therefore, we may glue $\{\theta_{\tau}\}_{\tau\in S}$ together and obtain a globally defined *-homomorphism $\theta: B(\partial S) \to \mathcal{Z}(N)$. Since $\tau(\theta(\hat{a})) = \int \hat{a}(\lambda) d\mu_{\tau}(\lambda) = \tau(a)$ for every $\tau \in S$, one has $\theta(\hat{a}) = \operatorname{ctr}(a)$ for every $a \in A$. This proves the first part of the theorem.

For the second part, it suffices to prove

$$\overline{A}^{\mathrm{st}} \supset \{x \in N : \operatorname{ctr}(xA) \subset \mathcal{A}\mathrm{ff}(\partial S), \ \operatorname{ctr}(x^*x) \in \mathcal{A}\mathrm{ff}(\partial S)\},\$$

as the converse inclusion is trivial. Take x from the set in the right hand side. We will prove a stronger assertion that if a net $(b_j)_j$ in A converges to x ultrastrongly in N, then x is contained in the strict closure of the convex hull of $\{b_j : j\}$. We note that $\operatorname{Aff}(S) \ni f \mapsto f|_{\partial S} \in \operatorname{Aff}(\partial S)$ is an affine order isomorphism and that every positive norm-one linear functional μ on $\operatorname{Aff}(S)$ is given by the evaluation at a point $\tau_{\mu} \in S$. (Indeed by the Hahn–Banach theorem, we may regard μ as a state on C(S), which is a probability measure on S by the Riesz–Markov theorem. The point $\tau_{\mu} = \int \lambda d\mu(\lambda)$ satisfies $f(\tau_{\mu}) = \mu(f)$ for $f \in \operatorname{Aff}(S)$.) Thus, one has $\operatorname{ctr}((b_j - x)^*(b_j - x)) \to 0$ weakly in $\operatorname{Aff}(\partial S)$. Therefore, by the Hahn– Banach theorem, for every $\varepsilon > 0$ there is a finite sequence $\alpha_j \ge 0$, $\sum \alpha_j = 1$ such that $\|\sum_j \alpha_j \operatorname{ctr}((b_j - x)^*(b_j - x))\| < \varepsilon$. By reindexing, we assume $j = 1, \ldots, k$. Let $b = \sum \alpha_j b_j$. We note that

$$b = \begin{bmatrix} \alpha_1^{1/2} & \cdots & \alpha_m^{1/2} \end{bmatrix} \begin{bmatrix} \alpha_1^{1/2} b_1 \\ \vdots \\ \alpha_m^{1/2} b_m \end{bmatrix} =: rc.$$

Hence, $b^*b = c^*r^*rc \le ||r||^2c^*c = \sum \alpha_j b_j^*b_j$. It follows that

$$\operatorname{ctr}((b-x)^*(b-x)) = \operatorname{ctr}(b^*b - b^*x - x^*b + x^*x)$$

$$\leq \operatorname{ctr}(\sum \alpha_j b_j^* b_j - \sum \alpha_j b_j^* x - x^* \sum \alpha_j b_j + x^*x)$$

$$= \operatorname{ctr}(\sum \alpha_j (b_j - x)^* (b_j - x))$$

$$< \varepsilon.$$

This proves the claimed inclusion. The last assertion will be proved in more general setting as Theorem 11. \Box

5. Continuous W*-Bundles

Let K be a metrizable compact Hausdorff topological space. We call M a (tracial) continuous W^* -bundle over K if the following axiom hold:

- (1) There is a unital positive faithful tracial map $E: M \to C(K)$.
- (2) The closed unit ball of M is complete with respect to the uniform 2-norm

$$||x||_{2,\mathbf{u}} = ||E(x^*x)^{1/2}||.$$

(3) C(K) is contained in the center of M and E is a conditional expectation.

In case M satisfies only conditions (1) and (2), we say it is a continuous quasi-W^{*}-bundle. If we denote by π_E the GNS representation of M on the Hilbert C(K)-module $L^2(M, E)$, condition (2) is equivalent to that $\pi_E(M)$ is strictly closed in $\mathbb{B}(L^2(M, E))$. For each point $\lambda \in K$, we denote by π_{λ} the GNS representation for the tracial state $\tau_{\lambda} := \operatorname{ev}_{\lambda} \circ E$, and also

 $||x||_{2,\lambda} = \tau_{\lambda}(x^*x)^{1/2}$. We call each $\pi_{\lambda}(M)$ a fiber of M. A caveat is in order: the system $(M, K, \pi_{\lambda}(M))$ need not be a continuous C*-bundle because ker π_{λ} may not coincide with $C_0(K \setminus {\lambda})M$ —rather it coincides with the strict closure of that. In particular, for $x \in M$, the map $\lambda \mapsto ||\pi_{\lambda}(x)||$ need not be upper semi-continuous (but it is lower semi-continuous). The strict completion \overline{A}^{st} studied in Section 4 is a continuous quasi-W*-bundle over S, and by Theorem 3, it is a continuous W*-bundle over ∂S if ∂S is closed in S. Conversely, if each fiber $\pi_{\lambda}(M)$ is a factor, then K can be viewed as a closed subset of the extreme boundary of T(M) and hence the closed convex hull S of K is a metrizable closed face of T(M) such that $\partial S = K$.

THEOREM 11. Let M be a continuous W*-bundle over K. Then, $\pi_{\lambda}(M) = \pi_{\lambda}(M)''$ for every $\lambda \in K$. Moreover, if a bounded function $f: K \ni \lambda \mapsto f(\lambda) \in \pi_{\lambda}(M)$ is continuous in the following sense: for every $\lambda_0 \in K$ and $\varepsilon > 0$, there are a neighborhood O of λ_0 and $c \in M$ such that

$$\sup_{\lambda \in O} \|\pi_{\lambda}(c) - f(\lambda)\|_{2,\lambda} < \varepsilon;$$

then there is $a \in M$ such that $\pi_{\lambda}(a) = f(\lambda)$.

PROOF. Let $\lambda \in K$ be given. By Pedersen's up-down theorem (Theorem 2.4.4 in [Pe]), it suffices to show that $\pi_{\lambda}(M)$ is closed in $\pi_{\lambda}(M)''$ under monotone sequential limits. Let $(x_n)_{n=0}^{\infty}$ be an increasing sequence in $\pi_{\lambda}(M)_+$ such that $x_n \nearrow x$ in $\pi_{\lambda}(M)''$. We may assume that $||x_n - x||_{2,\lambda} < 2^{-n}$. We lift $(x_n)_{n=0}^{\infty}$ to an increasing sequence $(a_n)_{n=0}^{\infty}$ in M such that $a_n \leq ||x|| + 1$. Let $b_n = a_n - a_{n-1}$ for $n \geq 1$. Since $\tau_{\lambda}(b_n^*b_n) < 4^{-n+2}$, there is $f_n \in C(K)_+$ such that $0 \leq f_n \leq 1$, $f_n(\lambda) = 1$, and $||E(b_n^*b_n)f_n^2|| \leq 4^{-n+2}$. It follows that the series $a_0 + \sum_{n=1}^{\infty} b_n f_n$ is convergent in the uniform 2-norm. Moreover, since $a_0 + \sum_{k=1}^{n} b_k f_k \leq a_0 + \sum_{k=1}^{n} b_k = a_n \leq ||x|| + 1$, the series is norm bounded. Therefore, the series converges in M, by the completeness of the closed unit ball of M. The limit point a satisfies $\pi_{\lambda}(a) = x$.

We prove the second half. Let us fix n for a while. For each λ , there is $b_{\lambda} \in M$ such that $||b_{\lambda}|| \leq ||f(\lambda)||$ and $\pi_{\lambda}(b_{\lambda}) = f(\lambda)$. By continuity, there is a neighborhood O_{λ} of λ such that $||\pi_{\tau}(b_{\lambda}) - f(\tau)||_{2,\tau} < n^{-1}$ for $\tau \in O_{\lambda}$. Since K is compact, it is covered by a finite family $\{O_{\lambda_i}\}$. Let $g_i \in C(K) \subset \mathcal{Z}(M)$ be a partition of unity subordinated by it. Then, $a_n :=$ $\sum_i g_i b_{\lambda_i} \in M$ satisfies $||a_n|| \leq ||f||_{\infty}$ and $\sup_{\tau} ||\pi_{\tau}(a_n) - f(\tau)||_{2,\tau} < n^{-1}$. It follows that (a_n) is a norm bounded and Cauchy in the uniform 2-norm. Hence it converges to $a \in M$ such that $\pi_{\lambda}(a) = f(\lambda)$ for every $\lambda \in K$. \Box

The following is a W*-analogue of the result for C*-algebras in [HRW], and is essentially the same as Proposition 7.7 in [KR].

COROLLARY 12. Let M be a continuous W^* -bundle over K. Assume that each fiber $\pi_{\lambda}(M)$ has the McDuff property and that K has finite covering dimension. Then, for every k, there is an approximately central approximately multiplicative embedding of \mathbb{M}_k into M, namely a net of unital completely positive maps $\varphi_n \colon \mathbb{M}_k \to M$ such that $\limsup_n \|\varphi_n(xy) - \varphi_n(x)\varphi_n(y)\|_{2,u} = 0$ and $\limsup_n \|[\varphi_n(x), a]\|_{2,u} = 0$ for every $x, y \in \mathbb{M}_k$ and $a \in M$.

PROOF. The proof is particularly easy when K is zero-dimensional: Since $\pi_{\lambda}(M)$ is McDuff, there is an approximately central embedding of \mathbb{M}_k into $\pi_{\lambda}(M)$. We lift it to a unital completely positive map $\psi_{\lambda} \colon \mathbb{M}_k \to M$. It is almost multiplicative on a neighborhood O_{λ} of λ . Since K is compact and zero-dimensional, there is a partition of K into finitely many clopen subsets $\{V_i\}$ such that $V_i \subset O_{\lambda_i}$. By Theorem 11, one can define $\varphi \colon \mathbb{M}_k \to M$ by the relation $\pi_{\lambda} \circ \varphi = \pi_{\lambda} \circ \psi_{\lambda_i}$ for $\lambda \in V_i$. The case $0 < \dim K < +\infty$ is more complicated but follows from a standard argument involving orderzero maps. See Section 7 in [KR] (or [Sa2, TWW]) for the detail. \Box

Every separable hyperfinite von Neumann algebra with a faithful normal tracial state has a trace preserving embedding into the separable hyperfinite II₁ factor \mathcal{R} . We consider coordinatization of such embeddings for strictly separable fiberwise hyperfinite continuous quasi-W^{*}-bundle. We define the C^{*}-algebra $C_{\sigma}(K,\mathcal{R})$ to be the subalgebra of $\ell_{\infty}(K,\mathcal{R})$ which consists of those norm-bounded functions $f: K \to \mathcal{R}$ that are continuous from K into $L^2(\mathcal{R}, \tau_{\mathcal{R}})$.

THEOREM 13. Let M be a strictly separable continuous quasi-W^{*}bundle over K such that $\pi_{\lambda}(M)''$ is hyperfinite for every $\lambda \in K$. Then, there are an embedding $\theta \colon M \hookrightarrow C_{\sigma}(K, \mathcal{R})$ and embeddings $\iota_{\lambda} \colon \pi_{\lambda}(M) \hookrightarrow \mathcal{R}$ such that $\operatorname{ev}_{\lambda} \circ \theta = \iota_{\lambda} \circ \pi_{\lambda}$. If M is moreover a continuous W^{*}-bundle, then one has

$$\theta(M) = \{ f \in C_{\sigma}(K, \mathcal{R}) : f(\lambda) \in (\iota_{\lambda} \circ \pi_{\lambda})(M)'' \}.$$

Recall the fact that if (A, τ) is a separable hyperfinite von Neumann algebra with a distinguished tracial state, then a trace-preserving embedding of A into the tracial ultrapower \mathcal{R}^{ω} of the hyperfinite II₁ factor is unique up to unitary conjugacy (see [Ju]). For every *n*-tuples $x_1, \ldots, x_n \in P$ and $y_1, \ldots, y_n \in Q$ in hyperfinite II₁ factors P and Q, we define

$$d(\{x_i\}_{i=1}^n, \{y_i\}_{i=1}^n) = \inf_{\pi, \rho} \max_i \|\pi(x_i) - \rho(y_i)\|_2,$$

where the infimum runs over all trace-preserving embeddings of P and Qinto \mathcal{R}^{ω} . Then, d is a pseudo-metric and it depends on $(W^*(\{x_1, \ldots, x_n\}), \tau)$, i.e., the joint distribution of $\{x_1, \ldots, x_n\}$ with respect to τ_P , rather than the specific embedding of $W^*(\{x_1, \ldots, x_n\})$ into P. Once *-isomorphisms $P \cong Q \cong \mathcal{R}$ are fixed, P and Q are embedded into \mathcal{R}^{ω} as constant sequences and

$$d(\{x_i\}_{i=1}^n, \{y_i\}_{i=1}^n) = \inf_{U \in \mathcal{U}(\mathcal{R}^\omega)} \max_i \|\operatorname{Ad}_U(x_i) - y_i\|_2.$$

It follows that

$$d(\{x_i\}_{i=1}^n, \{y_i\}_{i=1}^n) = \inf_{\pi} \max_i \|\pi(x_i) - y_i\|_2,$$

where infimum runs over all trace-preserving *-homomorphisms π from $W^*(\{x_1,\ldots,x_n\})$ into Q, or over all *-isomorphisms π from P onto Q. If M is a continuous quasi-W*-bundle, then for every $a_1,\ldots,a_n \in M$, the map

$$K \ni \lambda \mapsto \{\pi_\lambda(a_i)\}_{i=1}^n$$

is continuous with respect to d.

LEMMA 14. Let $N = C_{\sigma}(K, \mathcal{R})$ or any other continuous W^* -bundle over K such that $\operatorname{ev}_{\lambda}(N) \cong \mathcal{R}$ for every $\lambda \in K$ and such that for every $k \in \mathbb{N}$ there is an approximately central approximately multiplicative embedding of \mathbb{M}_k into N. Let M be a continuous quasi- W^* -bundle over K such that $\pi_{\lambda}(M)''$ is hyperfinite for every $\lambda \in K$, and let $F_0 \subset F_1$ be finite subsets in the unit ball of M and $\varepsilon > 0$. Assume that there is a map θ_0 from F_0 into the unit ball of N such that

$$\sup_{\lambda \in K} d(\{\pi_{\lambda}(a)\}_{a \in F_0}, \{\operatorname{ev}_{\lambda}(\theta_0(a))\}_{a \in F_0}) < \varepsilon.$$

Then, for every $\delta > 0$, there is a map θ_1 from F_1 into the unit ball of N such that

$$\sup_{\lambda \in K} d(\{\pi_{\lambda}(a)\}_{a \in F_1}, \{\operatorname{ev}_{\lambda}(\theta_1(a))\}_{a \in F_1}) < \delta$$

and

$$\max_{a\in F_0} \|\theta_1(a) - \theta_0(a)\|_{2,\mathrm{u}} < \varepsilon.$$

Here the symbol ev_{λ} , instead of π_{λ} , is used for the N side to make a distinction from the M side.

PROOF. For each λ , there is a trace-preserving embedding ρ_{λ} : $\pi_{\lambda}(M) \to \text{ev}_{\lambda}(N)$. By the remarks preceding this lemma, we may assume that

$$\max_{a\in F_0} \|\rho_{\lambda}(\pi_{\lambda}(a)) - \operatorname{ev}_{\lambda}(\theta_0(a))\|_2 < \varepsilon.$$

For each $a \in F_1$, we lift $(\rho_{\lambda} \circ \pi_{\lambda})(a) \in ev_{\lambda}(N)$ to $a^{\lambda} \in N$ with $||a^{\lambda}|| \leq 1$. There is a neighborhood O_{λ} of λ such that $\tau \in O_{\lambda}$ implies

$$d(\{\pi_{\tau}(a)\}_{a\in F_1}, \{ev_{\tau}(a^{\lambda})\}_{a\in F_1}) < \delta$$

and

$$\max_{a\in F_0} \|\operatorname{ev}_{\tau}(a^{\lambda}) - \operatorname{ev}_{\tau}(\theta_0(a))\|_2 < \varepsilon.$$

By compactness, K is covered by a finite family $\{O_{\lambda_j}\}$. Take a partition of unity $g_j \in C(K)$ subordinated by $\{O_{\lambda_j}\}$. Let $h_0 = 0$ and $h_j = \sum_{i=1}^j g_i$. For each k, take an approximately central approximately multiplicative embedding $\varphi_{k,n}$ of \mathbb{M}_k into N. Since the closed unit ball of \mathbb{M}_k is norm-compact, one has

$$\forall a \in N \quad \limsup_{n} \sup \{ \| [\varphi_{k,n}(x), a] \|_{2,u} : x \in \mathbb{M}_k, \| x \| \le 1 \} = 0.$$

For $t \in [0, 1]$, we define $p_t \in \mathbb{M}_k$ to be diag $(1, \ldots, 1, t - \lfloor t \rfloor, 0, \ldots, 0)$, with 1s in the first $\lfloor t \rfloor$ diagonal entries, $t - \lfloor t \rfloor$ in the $(\lfloor t \rfloor + 1)$ -th entry, and 0s

in the rest. It follows that $t \mapsto p_t$ is continuous, $0 \le p_t \le 1$, $\operatorname{tr}(p_t) = t$, and $\tau(p_t - p_t^2) \le (4k)^{-1}$. We write $p_{[s,t]} = p_t - p_s$. With the help of Theorem 11, we define $f_{k,n,j} \in N$ to be the element such that

$$\operatorname{ev}_{\lambda}(f_{k,n,j}) = \operatorname{ev}_{\lambda}(\varphi_{k,n}(p_{[h_{j-1}(\lambda),h_j(\lambda)]})).$$

For $a \in F_1$, we define $\theta_1^{k,n}(a) \in N$ by $\theta_1^{k,n}(a) = \sum_j f_{k,n,j}^{1/2} a^{\lambda_j} f_{k,n,j}^{1/2}$. Since $F'_1 := F_1 \cup \{a^{\lambda_j} : a \in F_1, j\}$ is finite, it is not too hard to see

$$\limsup_{k} \sup_{n} \sup_{a \in F_0} \max_{0} \|\theta_1^{k,n}(a) - \theta_0(a)\|_{2,\mathbf{u}} < \varepsilon.$$

It remains to estimate

$$d(\{\pi_{\tau}(a)\}_{a\in F_1}, \{\operatorname{ev}_{\tau}(\theta_1^{k,n}(a))\}_{a\in F_1}).$$

Let k be fixed for the moment. Since $(\varphi_{k,n})_n$ is approximately multiplicative, there are unital *-homomorphisms $\psi_{k,n}^{\tau} \colon \mathbb{M}_k \to ev_{\tau}(N)$ such that

$$\limsup_{n} \sup_{\tau} \sup_{x \in \mathbb{M}_{k}, \|x\| \le 1} \|\operatorname{ev}_{\tau} \circ \varphi_{k,n}(x) - \psi_{k,n}^{\tau}(x)\|_{2} = 0.$$

Let $E_{k,n}^{\tau}$ be the trace-preserving conditional expectation from $\operatorname{ev}_{\tau}(N)$ onto the relative commutant $\psi_{k,n}^{\tau}(\mathbb{M}_k)' \cap \operatorname{ev}_{\tau}(N)$, which is given by $E_{k,n}^{\tau}(b) =$ $|G|^{-1} \sum_{u \in G} \psi_{k,n}^{\tau}(u) b \psi_{k,n}^{\tau}(u)^*$ for the group G of permutation matrices in $\mathcal{U}(\mathbb{M}_k)$. It follows that

$$\limsup_{n} \sup_{\tau} \sup_{\tau} \|\operatorname{ev}_{\tau}(b) - E_{k,n}^{\tau}(\operatorname{ev}_{\tau}(b))\|_{2} = 0$$

for every $b \in N$. This implies

$$\limsup_{n} \sup_{j, \tau \in O_{\lambda_{j}}} \sup_{d(\{\pi_{\tau}(a)\}_{a \in F_{1}}, \{E_{k,n}^{\tau}(\operatorname{ev}_{\tau}(a^{\lambda_{j}}))\}_{a \in F_{1}}) < \delta,$$

$$\limsup_{n} \sup_{j, \tau \in O_{\lambda_j}} d(\{\operatorname{ev}_{\tau}(a^{\lambda_j})\}_{a \in F_1}, \{E_{k,n}^{\tau}(\operatorname{ev}_{\tau}(a^{\lambda_j}))\}_{a \in F_1}) = 0,$$

and

$$\limsup_{n} \sup_{j,\tau \in O_{\lambda_j}} d(\{\operatorname{ev}_{\tau}(\theta_1^{k,n}(a))\}_{a \in F_1}, \\ \{\sum_{j} \psi_{k,n}^{\tau}(p_{[h_{j-1}(\lambda),h_j(\lambda)]}) E_{k,n}^{\tau}(\operatorname{ev}_{\tau}(a^{\lambda_j}))\}_{a \in F_1}) = 0.$$

If we view $\operatorname{ev}_{\tau}(N) = \mathbb{M}_{k}(\psi_{k,n}^{\tau}(\mathbb{M}_{k})' \cap \operatorname{ev}_{\tau}(N))$, then $a' = E_{k,n}^{\tau}(\operatorname{ev}_{\tau}(a))$ looks like diag (a', a', \ldots, a') , and $\psi_{k,n}^{\tau}(p_{t})$ looks like diag $(1, \ldots, 1, t - \lfloor t \rfloor, 0 \ldots, 0)$. Hence, one has

$$\sup_{\tau} d(\{\pi_{\tau}(a)\}_{a \in F_{1}}, \{\sum_{j} \psi_{k,n}^{\tau}(p_{[h_{j-1}(\lambda),h_{j}(\lambda)]}) E_{k,n}^{\tau}(\operatorname{ev}_{\tau}(a^{\lambda_{j}}))\}_{a \in F_{1}})^{2} < \frac{2|\{O_{\lambda_{j}}\}|}{k} + \sum_{j} g_{j}(\tau) d(\{\pi_{\tau}(a)\}_{a \in F_{1}}, \{E_{k,n}^{\tau}(\operatorname{ev}_{\tau}(a^{\lambda_{j}}))\}_{a \in F_{1}})^{2}.$$

Altogether, one has

$$\limsup_{k} \limsup_{n} \sup_{\tau} \sup_{\tau} d(\{\pi_{\tau}(a)\}_{a \in F_1}, \{\operatorname{ev}_{\tau}(\theta_1^{k,n}(a))\}_{a \in F_1}) < \delta.$$

Therefore, for some k, n, the map $\theta_1 = \theta_1^{k,n}$ satisfies the desired properties. \Box

PROOF OF THEOREM 13. Let $(a_n)_{n=1}^{\infty}$ be a strictly dense sequence in the unit ball of M. We use Lemma 14 recursively and obtain sequences $(\{\theta_n(a_i)\}_{i=1}^n)_{n=1}^{\infty}$ in $C_{\sigma}(K, \mathcal{R})$ such that

$$\sup_{\lambda} d(\{ ev_{\lambda}(\theta_n(a_i)) \}_{i=1}^n, \{ \pi_{\lambda}(a_i) \}_{i=1}^n) < 2^{-n}$$

and

$$\max_{i=1,\dots,n-1} \|\theta_n(a_i) - \theta_{n-1}(a_i)\|_{2,\mathbf{u}} < 2^{-(n-1)}.$$

Then, each sequence $(\theta_n(a_i))_{n=i}^{\infty}$ converges to an element $\theta(a_i) \in C_{\sigma}(K, \mathcal{R})$. The map θ extends to a *-homomorphism from M into $C_{\sigma}(K, \mathcal{R})$, and $ev_{\lambda} \circ \theta$ factors through π_{λ} . This proves the first assertion. The second follows from Theorem 11. \Box

We give a criterion for a continuous \mathcal{R} -bundle to be a trivial bundle.

THEOREM 15. Let M be a strictly separable continuous W^{*}-bundle over K such that $\pi_{\lambda}(M) \cong \mathcal{R}$ for every $\lambda \in K$. Then, the following are equivalent.

(i) $M \cong C_{\sigma}(K, \mathcal{R})$ as a continuous W^{*}-bundle.

- (ii) There is a sequence $(p_n)_n$ in M such that $0 \le p_n \le 1$, $||p_n p_n^2||_{2,u} \to 0$, $||E(p_n) - 1/2|| \to 0$, and $||[p_n, a]||_{2,u} \to 0$ for all $a \in M$.
- (iii) For every k, there is an approximately central approximately multiplicative embedding of M_k into M.

PROOF. The implication (i) \Rightarrow (ii) is obvious. For (ii) \Rightarrow (iii), we we observe that since $\pi_{\lambda}(M)$'s are all factors, the central sequence $(p_n)_n$ satisfies $||E(p_na) - E(p_n)E(a)|| \rightarrow 0$ for every $a \in M$. Indeed, let $a \in M$ and $\varepsilon > 0$ be given. By the Dixmier approximation theorem and the proof of Theorem 3, there are $u_1, \ldots, u_k \in \mathcal{U}(M)$ such that $||E(a) - \frac{1}{k} \sum_{i=1}^k u_i a u_i^*||_{2,\mathbf{u}} < \varepsilon$. It follows that

$$\begin{split} \limsup_{n \to \infty} \|E(p_n)E(a) - E(p_n a)\| &= \limsup_{n \to \infty} \|E(p_n E(a)) - \frac{1}{k} \sum_{i=1}^k E(u_i p_n a u_i^*)\| \\ &= \limsup_{n \to \infty} \|E(p_n (E(a) - \frac{1}{k} \sum_{i=1}^k u_i a u_i^*))\| \\ &\leq \varepsilon. \end{split}$$

Let $m \in \mathbb{N}$ be arbitrary. For a given finite sequence $(p_n)_{n=1}^m$, $0 \leq p_i \leq 1$, and $\nu \in \{0,1\}^m$, we define $q_\nu \in M$ by

$$q_{\nu} = r_1^{1/2} \cdots r_{m-1}^{1/2} r_m r_{m-1}^{1/2} \cdots r_1^{1/2} \in M,$$

where $r_i = p_i$ or $1 - p_i$ depending on $\nu(i) \in \{0, 1\}$. We note that $q_{\nu} \ge 0$ and $\sum q_{\nu} = 1$. By choosing $(p_n)_{n=1}^m$ appropriately, we obtain an approximately central approximately multiplicative embedding of $\ell_{\infty}(\{0, 1\}^m)$ into M. Now, condition (iii) follows by choosing at the local level approximately central approximately multiplicative embeddings of \mathbb{M}_k into $\pi_{\lambda}(M)$ and glue them together, as in the proof of Lemma 14, by an approximately central approximately projective partition of unity.

The proof of (iii) \Rightarrow (i) is similar to that of Theorem 13. Let $(a_n)_{n=1}^{\infty}$ (resp. $(b_n)_{n=1}^{\infty}$) be a strictly dense sequence in the unit ball of M (resp. $C_{\sigma}(K, \mathcal{R})$). We recursively construct finite subsets $F_1 \subset F_2 \subset \cdots$ of M and maps $\theta_n \colon F_n \to C_{\sigma}(K, \mathcal{R})$ such that $\{a_1, \ldots, a_n\} \subset F_n$,

$$\sup_{\lambda} d(\{\operatorname{ev}_{\lambda}(\theta_n(a))\}_{a \in F_n}, \{\pi_{\lambda}(a)\}_{a \in F_n}) < 2^{-n},$$

$$\max_{a \in F_{n-1}} \|\theta_n(a) - \theta_{n-1}(a)\|_{2,\mathbf{u}} < 2^{-(n-1)},$$

and $\{b_1, \ldots, b_n\} \subset \theta_n(F_n)$. Let $F_0 = \emptyset$ and suppose that we have constructed up to n-1. Let $F'_n = F_{n-1} \cup \{a_n\}$. We use Lemma 14 and obtain a map $\theta'_n \colon F'_n \to C_\sigma(K, \mathcal{R})$ such that

$$\sup_{\lambda} d(\{\operatorname{ev}_{\lambda}(\theta_{n}'(a))\}_{a \in F_{n}'}, \{\pi_{\lambda}(a)\}_{a \in F_{n}'}) < 2^{-(n+1)}$$

and

$$\max_{a \in F_{n-1}} \|\theta'_n(a) - \theta_{n-1}(a)\|_{2,\mathbf{u}} < 2^{-(n-1)}.$$

We may assume that θ'_n is injective and $\theta'_n(F'_n)$ does not contain any of b_1, \ldots, b_n . We use Lemma 14 again but this time to $\theta'_n(F'_n) \subset \tilde{F} := \theta'_n(F'_n) \cup \{b_1, \ldots, b_n\}$ and $(\theta'_n)^{-1}$. Then, there is $\psi : \tilde{F} \to M$ such that

$$\sup_{\lambda} d(\{\pi_{\lambda}(\psi(b))\}_{b\in\tilde{F}}, \{\operatorname{ev}_{\lambda}(b)\}_{b\in\tilde{F}}) < 2^{-(n+1)}$$

and

$$\max_{a \in F'_n} \|a - \psi(\theta'_n(a))\|_{2,\mathbf{u}} < 2^{-(n+1)}.$$

Now, we set $F_n = F'_n \cup \{\psi(b_1), \dots, \psi(b_n)\}$ (which can be assumed to be a disjoint union) and define $\theta_n \colon F_n \to C_{\sigma}(K, \mathcal{R})$ by $\theta_n = \theta'_n$ on F'_n and $\theta_n(\psi(b_i)) = b_i$. One has

$$\sup_{\lambda} d(\{\operatorname{ev}_{\lambda}(\theta_{n}(a))\}_{a \in F_{n}}, \{\pi_{\lambda}(a)\}_{a \in F_{n}}) \\
\leq \sup_{\lambda} (d(\{\operatorname{ev}_{\lambda}(b)\}_{b \in \tilde{F}}, \{\pi_{\lambda}(\psi(b))\}_{b \in \tilde{F}}) + \max_{a \in F_{n}'} \|\pi_{\lambda}(\psi(\theta_{n}'(a))) - \pi_{\lambda}(a)\|_{2}) \\
< 2^{-n}$$

as desired. By taking the limit of $(\theta_n)_n$, one obtains a *-isomorphism θ from M onto $C_{\sigma}(K, \mathcal{R})$. \Box

By combining Corollary 12 and Theorem 15, one obtains the following W^* -analogue of Theorem 1.1 in [DW]. This also implies Theorem 4. It is unclear whether the finite-dimensionality assumption is essential.

COROLLARY 16. Let M be a strictly separable continuous W^* -bundle over K. If every fiber $\pi_{\lambda}(M)$ is isomorphic to \mathcal{R} and K has finite covering dimension, then $M \cong C_{\sigma}(K, \mathcal{R})$ as a continuous W^* -bundle.

References

- [Al] Alfsen, E. M., Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57. Springer-Verlag, New York-Heidelberg, 1971.
- [BF] Bice, T. and I. Farah, Traces, ultrapowers and the Pedersen–Petersen C*-algebras, Preprint. arXiv:1307.0111.
- [Co] Connes, A., On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), 248–253.
- [CP] Cuntz, J. and G. K. Pedersen, Equivalence and traces on C*-algebras, J. Funct. Anal. 33 (1979), 135–164.
- [DW] Dadarlat, M. and W. Winter, Trivialization of C(X)-algebras with strongly self-absorbing fibres, Bull. Soc. Math. France **136** (2008), 575–606.
- [Di] Dixmier, J., Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Cahiers Scientifiques, Fasc. XXV. Gauthier-Villars Éditeur, Paris, 1969.
- [Fa] Fack, T., Finite sums of commutators in C*-algebras, Ann. Inst. Fourier (Grenoble) **32** (1982), 129–137.
- [FH] Fack, Th. and P. de la Harpe, Sommes de commutateurs dans les algèbres de von Neumann finies continues, Ann. Inst. Fourier (Grenoble) 30 (1980), 49–73.
- [Fe] Fell, J. M. G., The structure of algebras of operator fields, Acta Math. 106 (1961), 233–280.
- [Ha1] Haagerup, U., All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), 305–319.
- [Ha2] Haagerup, U., A new proof of the equivalence of injectivity and hyperfiniteness for factors on a separable Hilbert space, J. Funct. Anal. 62 (1985), 160–201.
- [HT] Haagerup, U. and S. Thorbjørnsen, A new application of random matrices: $\text{Ext}(C^*_{\text{red}}(F_2))$ is not a group, Ann. of Math. (2) **162** (2005), 711–775.
- [HZ] Haagerup, U. and L. Zsido, Sur la propriété de Dixmier pour les C^{*}algèbres, C. R. Acad. Sci. Paris Sér. I Math. **298** (1984), 173–176.

- [Hal] Halpern, H., Essential central spectrum and range for elements of a von Neumann algebra, Pacific J. Math. **43** (1972), 349–380.
- [HRW] Hirshberg, I., Rørdam, M. and W. Winter, $C_0(X)$ -algebras, stability and strongly self-absorbing C*-algebras, Math. Ann. **339** (2007), 695–732.
- [JS] Jiang, X. and H. Su, On a simple unital projectionless C*-algebra, Amer.
 J. Math. 121 (1999), 359–413.
- [Jo] Johnson, B. E., Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc. Cambridge Philos. Soc. **120** (1996), 455–473.
- [Ju] Jung, K., Amenability, tubularity, and embeddings into \mathbb{R}^{ω} , Math. Ann. **338** (2007), 241–248.
- [Ki] Kirchberg, E., On subalgebras of the CAR-algebra, J. Funct. Anal. 129 (1995), 35–63.
- [KR] Kirchberg, E. and M. Rørdam, Central sequence C*-algebras and tensorial absorption of the Jiang-Su algebra, J. Reine Angew. Math., to appear. arXiv:1209.5311.
- [Ma] Marcoux, L. W., Sums of small number of commutators, J. Operator Theory **56** (2006), 111–142.
- [MS] Matui, H. and Y. Sato, Strict comparison and Z-absorption of nuclear C*-algebras, Acta Math. **209** (2012), 179–196.
- [Mu] Murphy, G. J., Uniqueness of the trace and simplicity, Proc. Amer. Math. Soc. **128** (2000), 3563–3570.
- [Pe] Pedersen, G. K., C*-algebras and their automorphism groups, London Mathematical Society Monographs, 14. Academic Press, Inc. London-New York, 1979. ix+416 pp.
- [PP] Pedersen, G. K. and N. H. Petersen, Ideals in a C*-algebra, Math. Scand. 27 (1970), 193–204.
- [Po] Pop, C., Finite sums of commutators, Proc. Amer. Math. Soc. 130 (2002), 3039–3041.
- [Rø] Rørdam, M., The stable and the real rank of Z-absorbing C*-algebras, Internat. J. Math. 15 (2004), 1065–1084.
- [Sa1] Sato, Y., Discrete amenable group actions on von Neumann algebras and invariant nuclear C^{*}-subalgebras, Preprint. arXiv:1104.4339.
- [Sa2] Sato, Y., Trace spaces of simple nuclear C*-algebras with finite-dimensional extreme boundary, Preprint. arXiv:1209.3000.
- [TT] Tomiyama, J. and M. Takesaki, Applications of fibre bundles to the certain class of C^{*}-algebras, Tohoku Math. J. (2) **13** (1961), 498–522.
- [TWW] Toms, A., White, S. and W. Winter, *Z*-stability and finite dimensional tracial boundaries, Preprint. arXiv:1209.3292.

[VDN] Voiculescu, D. V., Dykema, K. J. and A. Nica, Free random variables, CRM Monograph Series, 1. American Mathematical Society, Providence, RI, 1992. vi+70 pp.

(Received April 24, 2013)

RIMS, Kyoto University 606-8502 Kyoto, Japan E-mail: narutaka@kurims.kyoto-u.ac.jp