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Hypersurfaces with Constant Anisotropic Mean

Curvatures

By Hui Ma and Changwei Xiong

Abstract. In this note, we apply the evolution method to present
another proof of the anisotropic version of Heinze-Karcher inequality
for hypersurfaces in the Euclidean space, from which the Alexandrov
type theorem follows from a standard argument via the Minkowski
formula.

1. Introduction

The classical Alexandrov theorem is one of the most remarkable results

which states that any closed embedded constant mean curvature hypersur-

face in the Euclidean space is a round sphere. There are different methods

to prove it, for instance, Alexandrov reflection ([1]), application of Reilly’s

formula ([21, 22]), Montiel-Ros’ integration ([18]), a spinorial Reilly-type in-

equality ([10]), etc. It can also be generalized to many other ambient man-

ifolds or hypersurfaces with constant higher order mean curvatures ([21],

[17], [22], [18], [14], [7] and references therein). Recently, S. Brendle ([3])

proved an Alexandrov type theorem in certain warped product manifolds,

including deSitter-Schwarzschild and Reissner-Nordstorm manifolds. His

proof is based on evolution equations, which seems to have generality.

On the other hand, as a natural generalization of surfaces with constant

mean curvature, extensive research has been devoted to studying surfaces

with constant anisotropic mean curvature in the Euclidean space in the

fields of analysis, geometry and material sciences (cf. [23], [8], [2], [9], [5],

[20], [6], [24], [15, 16], [11, 12] and the references therein). Let F : S
n → R

+

be a smooth positive function defined on the unit sphere which satisfies the

following convexity condition:

AF := (D2F + F1)x > 0, ∀x ∈ S
n,
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where D2F denotes the Hessian of F on S
n, 1 denotes the identity on TxS

n

and > 0 means that the matrix is positive definite. Now let x : Σ → R
n+1

be a smooth immersion of a closed orientable hypersurface and ν : Σ → S
n

denote its Gauss map. Then the anisotropic surface energy of x is defined

as follows:

F(x) =

∫
Σ
F (ν)dA.

Notice that if F ≡ 1, then F(x) is the usual area functional of x. The

algebraic (n+ 1)-volume enclosed by Σ is given by

V =
1

n+ 1

∫
Σ
〈x, ν〉dA.

It is very interesting to study the critical points of F for volume-preserving

variations. The Euler-Lagrange equation for this constrained variational

problem is

HF := −divΣDF + nHF = constant,(1.1)

where H := − 1
ntrdν is the mean curvature of x. Thus HF is called the

anisotropic mean curvature of x. Notice that if F ≡ 1 then HF is nothing

but nH.

Among all hypersurfaces with constant anisotropic mean curvature,

there is one class of special hypersurfaces which are the generalization of

the unit spheres. Consider the map

ϕ : S
n → R

n+1

x 	→ DFx + F (x)x,

where DF is the gradient of F on S
n. We call WF = ϕ(Sn) the Wulff shape

of F or F . Under the convexity condition of F , WF is a smooth convex

hypersurface and F is called a parametric elliptic functional. When F ≡ 1,

the Wulff shape is the unit sphere.

Observe that

HF = −trd(ϕ ◦ ν),

so one can call

SF := −d(ϕ ◦ ν) = −AF ◦ dν
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the anisotropic Weingarten operator of x. Let S := −dν be the classical

Weingarten operator. Remark that in general SF is not symmetric, but

it still has real eigenvalues λ1, · · · , λn, which are called anisotropic prin-

cipal curvatures. Similar to the classical hypersurfaces theory, we have

the following characterization for the anisotropic umbilical hypersurfaces in

R
n+1:

Lemma 1.1 (See [11, 12]). Let x : Σn → R
n+1 be an immersed closed

hypersurface. If λ1 = λ2 = · · · = λn �= 0 holds everywhere on Σ, then Σ is

the Wulff shape, up to translations and hometheties.

Let σr be the elementary symmetric functions of the anisotropic prin-

cipal curvatures λ1, · · · , λn, i.e., σr :=
∑

i1<···<ir
λi1 · · ·λir for 1 ≤ r ≤ n.

Set σ0 = 1. Then the r-th anisotropic mean curvature Hr is defined by

Hr = σr/C
r
n, where Cr

n = n!
r!(n−r)! . In particular, H1 = HF /n.

We have proved the following Alexandrov type theorem in [13]:

Theorem 1.1. Let Σ be a closed oriented hypersurface embedded in

the Euclidean space R
n+1. If Hr is constant for some r = 1, · · · , n, then Σ

is the Wulff shape, up to translations and hometheties.

In this note, we will apply the evolution method introduced by Bren-

dle [3] to derive another proof of the Heinze-Karcher inequality (Theorem

3.1), from which Alexandrov type Theorem 1.1 follows from a standard

argument via the Minkowski formula. In Section 2, we first recall hypersur-

faces theory in the Euclidean space in terms of moving frames and then we

prove three fundamental equations for an immersed oriented hypersurface

in R
n+1 related to its anisotropic mean curvature. In Section 3, we use one

of the fundamental equations obtained in Section 2 and employ the evolu-

tion method introduced by Brendle ([3]) to show the Heintz-Karcher type

inequality. Then Theorem 1.1 follows from the standard argument.

2. Preliminaries and Basic Equations

For the convenience of the reader, we firstly recall the basic facts related

to anisotropic mean curvature of a hypersurface in terms of moving frames.

See more details in [12].
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Let x : Σ → R
n+1 be a smooth oriented hypersurface with its Gauss

map ν : Σ → S
n. Let {E1, · · · , En} be a local orthonormal frame on S

n,

then {e1 := E1 ◦ ν, · · · , en := En ◦ ν} is a local orthonormal frame of Σ

and e1, · · · , en, en+1 = ν is a local orthonormal frame on R
n+1 along x.

Denote the dual frames of Ei and ei by θi and ωi, respectively, and the

corresponding connection forms by θij and ωij .

Throughout this paper, we agree on the range of indices: 1 ≤ i, j, · · · ≤ n
and 1 ≤ A,B, · · · ≤ n + 1. Recall that the structure equations of y : S

n →
R
n+1 are as follows:

dy =
∑
i

θiEi, dEi =
∑
j

θijEj − θiy,

dθi =
∑
j

θij ∧ θj , dθij −
∑
k

θik ∧ θkj = −θi ∧ θj ,
(2.1)

where θij + θji = 0. Let F ∈ C∞(Sn) be a smooth function defined on

S
n. With respect to the dual frame field θ1, · · · , θn of S

n chosen above, the

exterior derivative, the second covariant derivative and the third covariant

derivative of F are defined by

dF =
∑
i

Fiθi,

∑
j

Fijθj = dFi +
∑
j

Fjθji,

∑
k

Fijkθk = dFij +
∑
k

Fikθkj +
∑
k

Fkjθki,

(2.2)

respectively. It follows from (2.1) and Ricci identity that

Fijk − Fikj = Fjδik − Fkδij ,

which implies that (Fij + Fδij),k = (Fik + Fδik),j . Denote the coefficients

of AF by Aij = Fij + Fδij , then we have

Aij,k = Aik,j ,

where
∑
k

Aij,kθk = dAij +Aikθkj +Akjθki.
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The structure equations of x : Σ → R
n+1 are given by

dx =
∑
i

ωiei,

dei =
∑
j

ωijej +
∑
j

hijωjν, dν = −
∑
ij

hijωjei,

dωi =
∑
j

ωij ∧ ωj , dωij = ωik ∧ ωkj −
1

2
Rijklωk ∧ ωl,

where ωin+1 =
∑

j hijωj and hij = hji. Making use of (2.1), we get

dei = d(Ei ◦ ν) = ν∗dEi =
∑
j

ν∗θijej − ν∗θiν,

thus we have

ωij = ν∗θij , ν∗θi = −
∑
j

hijωj .(2.3)

Let f ∈ C∞(Σ) be a smooth function defined on Σ. With respect to the

dual frame field ω1, · · · , ωn of Σ defined above, the exterior derivative and

the second covariant derivative of f are given by

df =
∑
i

fiωi,
∑
j

fijωj = dfi +
∑
j

fjωji.

Particularly, considering x and ν as smooth functions on Σ, we have

xi = ei, xij = hijν,(2.4)

νi = −
∑
j

hijej , νij = −
∑
k

hikjek −
∑
k

hikhkjν,(2.5)

where hijk is defined by
∑

k hijkωk = dhij +
∑

k hkjωki +
∑

k hikωkj .

For a smooth positive function F : S
n → R

+ defined on S
n, F ◦ ν is a

function on Σ. We define the covariant derivatives of (F ◦ ν) and Aij ◦ ν by

d(F ◦ ν) =
∑
i

(F ◦ ν)iωi,
∑
j

(Fi ◦ ν)jωj = d(Fi ◦ ν) +
∑
j

(Fj ◦ ν)ωji,

∑
k

(Aij ◦ ν)kωk = d(Aij ◦ ν) +
∑
k

(Akj ◦ ν)ωki +
∑
k

(Aik ◦ ν)ωkj .

(2.6)
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Taking the pull-back ν∗ on both sides of equations (2.2) and using (2.3) and

(2.6), we get ([12])

(F ◦ ν)i = −
∑
j

hij(Fj ◦ ν),(2.7)

(Fi ◦ ν)j = −
∑
k

hjk(Fik ◦ ν),(2.8)

(Aij ◦ ν)k = −
∑
p

(Aijp ◦ ν)hpk.(2.9)

Denote SF ej =
∑

i sijei, then sij =
∑

l(Ail ◦ ν)hlj . Thus we have

sijk = −
∑
lp

(Ailp ◦ ν)hpkhlj +
∑
l

(Ail ◦ ν)hljk,(2.10)

and

sijk = sikj .(2.11)

Let p := 〈x, ν〉 denote the support function. The following identities were

already derived in [24] in the case when the anisotropic mean curvature is

constant and (2.13) has been obtained in [6]. (2.12) will play an important

role in the proof of Theorem 3.1.

Proposition 2.1.

∆F (F ◦ ν) + tr(AFS
2)(F ◦ ν) + 〈∇HF , DF |ν〉 = tr(S2

F ),(2.12)

∆F ν + tr(AFS
2)ν + ∇HF = 0,(2.13)

∆F p+ tr(AFS
2)p+HF + 〈x,∇HF 〉 = 0,(2.14)

where ∆F f := div(AF∇f), ∇f denotes the gradient of f with respect to the

induced metric on Σ, tr(S2
F ) =

∑
i,j sijsji and tr(S2) =

∑
i,j h

2
ij.

Proof. Making use of (2.9), (2.7), (2.8), (2.10) and (2.11), we get

∆F (F ◦ ν) =
∑
k,i

((Aik ◦ ν)(F ◦ ν)k)i
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=
∑
j,i,k,p

(Aikp ◦ ν)hpihkj(Fj ◦ ν) −
∑
k,i,j

(Aik ◦ ν)hkji(Fj ◦ ν)

−
∑
k,i,j

(Aik ◦ ν)hkj(Fj ◦ ν)i

=
∑
j

(
∑
i,k,p

(Aikp ◦ ν)hpihkj −
∑
i,k

(Aik ◦ ν)hkji)(Fj ◦ ν)

+
∑
k,i,j,p

(Aik ◦ ν)hkjhip(Fjp ◦ ν)

= −
∑
j

siji(Fj ◦ ν) +
∑
k,i,j,p

(Aik ◦ ν)hkjhip(Ajp ◦ ν − (F ◦ ν)δjp)

= −
∑
j

siij(Fj ◦ ν) +
∑
i,j

sijsji −
∑
i,j,k

(Aik ◦ ν)hkjhij(F ◦ ν)

= −
∑
j

(HF )j(Fj ◦ ν) + tr(S2
F ) − tr(AFS

2)F ◦ ν.

This proves (2.12).

By (2.9), (2.5), (2.10) and direct calculations, we get

∆F ν =
∑
k,i

((Aik ◦ ν)νk)i

=
∑
i,k,p,l

(Aikp ◦ ν)hpihklel −
∑
i,k,p

(Aik ◦ ν)(hkipep + hiphpkν)

= −
∑
l

siilel −
∑
i,k,p

(Aik ◦ ν)hkphpiν

= −
∑
l

(HF )lel − tr(AFS
2)ν,

which immediately verifies (2.13).

It follows from dp = 〈x, dν〉 = 〈x, νiωi〉 that pi = 〈x, νi〉. Using (2.4)

and (2.5), we get

pij = 〈x, νi〉j = 〈ej ,−hikek〉 + 〈x,−hijkek − hikhkjν〉
= −hij − hijk〈x, ek〉 − hikhkjp.
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Together with (2.9) and (2.10), it yields

∆F p =
∑
i,k

((Aik ◦ ν)pk)i

=
∑
i,k,q,l

(Aikq ◦ ν)hqihkl〈x, el〉

−
∑
i,k,q

(Aik ◦ ν)(hki + hkiq〈x, eq〉 + hkqhqip)

= −
∑
l

siil〈x, el〉 −HF − tr(AFS
2)p

= −〈x,∇HF 〉 −HF − tr(AFS
2)p,

which completes the proof of (2.14). �

The following Minkowski formula and its higher order version were ob-

tained in [11] and [12].

Proposition 2.2. Let Σ be a closed orientable hypersurface immersed

in R
n+1. Then ∫

Σ
(nF ◦ ν +HF 〈x, ν〉)dA = 0.

More generally, ∫
Σ
(HrF ◦ ν +Hr+1〈x, ν〉)dA = 0(2.15)

for r = 0, 1, · · · , n− 1.

3. Heintze-Karcher Type Inequality

Consider a closed orientable hypersurface Σ embedded in R
n+1. Denote

by ν the inner unit normal vector field to Σ. Assume that the anisotropic

mean curvatureHF with respect to the inner normal ν is everywhere positive

on Σ. Suppose that there exists a domain Ω ⊂ R
n+1 such that ∂Ω = Σ.

Given a smooth positive F with convexity condition, we can associate

the dual norm F ∗ : R
n+1 → R defined by ([19], [13])

F ∗(x) = sup{〈x, z〉
F (z)

|z ∈ S
n}.
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Then we can define the F -distance function dF : R
n+1 × R

n+1 → R to be

dF (x, y) = F ∗(y − x). Note that in general dF (x, y) �= dF (y, x) and when

F ≡ 1, dF is the Euclidean distance function d.

For each p ∈ Ω, let ρF (p) = dF (Σ, p) be the F -distance of p from Σ.

Then the level set of ρF can be expressed as

Σt := {p ∈ Ω|ρF (p) = t}
= {Φ(x, t) = x+ tνF (x)|x ∈ Σ}

for t is small enough. Remark that for fixed t,

dΦ(x, t) = (I − tSF ) ◦ dx.

Compactness of Σ guarantees that there exists ε > 0, such that Φ(x, t)

remains an immersed hypersurface if |t| < ε. Moreover, up to parallel

translations, ν is still the unit normal vector field of Φ(x, t). Define c : Σ →
(0,+∞) to be the F -cut function of Σ satisfying c(x) is the greatest t such

that dF (Σ, x+ tνF (x)) = t (See [13]). The point Φ(x, t) on Σt satisfies

∂

∂t
Φ(x, t) = νF =: fν + ξ,(3.1)

and Σt will disappear at the time T = maxΣc(x), where f is a smooth

function defined on Σ× I ⊂ Σ×R and ξ is tangent to Σt. Remark that the

anisotropic normal νF = φ◦ν = F (ν)ν+DF |ν . So f = F (ν) and ξ = DF |ν
in (3.1).

Proposition 3.1. Under the flow (3.1), we have the following evolu-

tion equations:

∂

∂t
dAt = (divξ − nHf)dAt,

∂ν

∂t
= −∇f + dν(ξ),

∂

∂t
F ◦ νt = 〈DF (νt),−∇f + dνt(ξ)〉,

∂

∂t
HF = ∆F f + tr(AFS

2)f + 〈∇HF , ξ〉.
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Proof. In fact, the first three equations are classical results and the

last one follows from Lemma 2.1 of [12] or (4.20) in [6]. �

Define

Q(t) := n

∫
Σt

F ◦ νt
HF

dAt.

From the identities in Proposition 3.1, we have

1

n
Q′(t) =

∫
Σt

{fdiv(
1

HF
DF |νt) − div(

f

HF
DF |νt) + div(

F ◦ νt
HF

ξ)

− f

HF
nH(F ◦ νt) −

F ◦ νt
H2

F

(∆F f + tr(AFS
2)f)}dAt.

Thus by the divergence theorem and the definition of HF (1.1) we get

1

n
Q′(t) =

∫
Σt

{f〈∇ 1

HF
, DF ◦ νt〉 +

f

HF
[div(DF ◦ νt) − nHF ◦ νt]

−F ◦ νt
H2

F

[∆F f + tr(AFS
2)f ]}dAt

=

∫
Σt

{− f

H2
F

〈∇HF , DF ◦ νt〉

−f − F ◦ νt
H2

F

[∆F f + tr(AFS
2)f ]}dAt.

Now taking into account that f = F ◦ νt and (2.12), we get

1

n
Q′(t) =

∫
Σt

{−F ◦ νt
H2

F

[〈∇HF , DF ◦ νt〉 + ∆F (F ◦ νt)

+tr(AFS
2)F ◦ νt] − F ◦ νt}dAt

= −
∫

Σt

(
tr(S2

F )

H2
F

+ 1)F ◦ νtdAt

≤ −(1 +
1

n
)

∫
Σt

F ◦ νtdAt < 0,

where we have used
tr(S2

F )

H2
F

≥ 1
n and the equal sign holds if and only if

SF = HF
n Id. This shows that Q(t) is monotone decreasing.
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For 0 < τ < T ,

Q(0) −Q(τ) = −
∫ τ

0
Q′(t)dt ≥ (n+ 1)

∫ τ

0

∫
Σt

F ◦ νtdAdt

= (n+ 1)

∫
Ω∩{ρF≤τ}

dV,

where the last equality follows from the co-area formula. Let τ → T . Then

we obtain the following Heintze-Karcher type integral inequality that one

can find also in [13] where it was proved using the ideas of [18].

Theorem 3.1. Let x : Σ → R
n+1 be a closed hypersurface embedded

into the Euclidean space. If the anisotropic mean curvature HF with respect

to the inner normal ν is everywhere positive on Σ, then we have

n

∫
Σ

F ◦ ν
HF

dA ≥ (n+ 1)V (Ω),(3.2)

where V (Ω) is the volume of the compact domain Ω determined by Σ. More-

over, the equality holds if and only if Σ is anisotropic umbilical.

Once we have Minkowski formula (2.15), Heintze-Karcher type inequal-

ity (3.2) and the characterization for the anisotropic umbilical hypersurfaces

in R
n+1 (Lemma 1.1), it is straightforward to prove the Alexandrov type

theorem 1.1 by the standard argument ([18], [13]).
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