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Spectral Anomalies of the Robin Laplacian in

Non-Lipschitz Domains

By Sergey A. Nazarov and Jari Taskinen

Abstract. We consider the spectral Laplace-Robin problem in
bounded peak shaped domains of Rn, n ≥ 2. In case of a sufficiently
sharp peak and ”wrong” sign of the Robin coefficients, the spectrum
becomes pathological: the residual spectrum covers the whole com-
plex plane, while all complex numbers are eigenvalues of the adjoint
problem operator. Our results solve a spectral problem posed by H.
Amann and D. Daners.

1. Introduction

1.1. Preamble
For the so-called rooms-and-corridors-domain Ω ⊂ R2 the Sobolev em-

bedding H1(Ω) ⊂ L2(Ω) fails, as shown in [5]; see Fig. 1.1, where squares
of size 2−k × 2−k are connected with rectangles of size 2−k−1 × 2−2k. As a
consequence, the spectrum of the Neumann Laplacian cannot be discrete.
Many other “interesting” domains can be found, e.g., in the papers [8, 10,
33] and the books [18, 22], all having the property that the natural compact
embedding is lost and the essential spectrum of the classical boundary value
problem becomes nonempty. However, in all those examples the spectrum
σ is contained in the closed positive semi-axis R+ of the complex plane C.
The inclusion σ ⊂ R+ is a consequence of the general result [4, Thm. 10.1.2],
which associates a semi-bounded self-adjoint operator with a semi-bounded
closed quadradic form in a proper Hilbert space. The energy quadratic form
of the above mentioned boundary value problems apparently gives rise to a
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Fig. 1.1. Rooms and corridors.

positive self-adjoint operator in L2(Ω), the spectrum of which is contained
in R+, and the non-discreteness of the spectrum is caused just by the non-
compactness of the Sobolev embedding H1(Ω) ⊂ L2(Ω) ([4, Thm. 10.1.5].)

In this work we give a different kind of example by considering the
spectral Helmholtz equation with the Robin boundary condition in a peak-
shaped domain with some geometric requirements (Fig. 1.2). We show that,
first, if the Robin coefficient has the “wrong” sign (see (1.4) and (1.13) be-
low), the above mentioned theory does not always apply, since the quadratic
form may lose semi-boundedness, though it is still symmetric. Second, the
spectrum of the Robin Laplacian with the natural domain becomes patho-
logical: it covers the whole complex plane and apart from a countable set of
real eigenvalues, stays residual with empty discrete and continuous spectra.
At the same time, any point λ ∈ C is an eigenvalue of the adjoint operator
in the Lebesgue space L2(Ω). This is caused by the fact that the corre-
sponding operator is symmetric but not self-adjoint. Third, we describe
all possible self-adjoint extensions of the operator and prove that each of
them has discrete spectrum on the real axis with two accumulation points,
at +∞ and −∞. In this way there is no natural choice of an appropriate
self-adjoint extension.

For a treatment of the Robin problem on general domains but with
a “good” coefficient (see (1.4) and (1.10) below), we refer to [6] and the
citations therein.

1.2. Statement of the problem; notation
Let ω be a domain in Rn−1, n ≥ 2, with Lipschitz boundary ∂ω and

compact closure ω = ω∪∂ω. For technical reasons we assume that 0 ∈ Rn−1

is contained in ω and that ω is star shaped with respect to 0; this assumption
may be relaxed, see the explanations just after the formula (1.8). We denote
by Πd a peak of height d > 0,

Πd = {x = (y, z) ∈ R
n−1 × R : z ∈ (0, d), z−1−γy ∈ ω},(1.1)
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Fig. 1.2. Peak-shaped domains.

where γ > 0 is the sharpness exponent. The height d will be chosen small
enough during the course of the proofs. We introduce the peak–shaped
domain Ω (Fig. 1.2) which coincides with Π1 inside the layer {x : y ∈
Rn−1, 0 < z < 1} and has the boundary Γ = ∂Ω and compact closure Ω.
The surface Γ is assumed Lipschitz everywhere else except in the origin
O = (0, 0) ∈ Rn−1 × R; indeed, if γ > 0, the Lipschitz property is lost
at O due to (1.1). If γ were equal to 0, the set (1.1) would be a cone,
hence, Ω would be Lipschitz. The following additional notation will be used
throughout the paper:

Ω(d) := Ω \ Πd , Γ(d) := Γ \ ∂Πd,

ϖd := ∂Πd ∩ ∂Ω , ω(z) := {y : z−1−γy ∈ ω},(1.2)

where d ∈ (0, 1] and 0 < z < d.

We consider the Helmholtz equation

−∆xu(x) = λu(x) , x ∈ Ω,(1.3)

where ∆x is the Laplacian and λ ∈ C is a spectral parameter. Taking into
account that the outward unit normal ν is defined almost everywhere on
the surface Γ, we supply (1.3) with the Robin boundary condition

∂νu(x) + a(x)u(x) = 0 for a.e. x ∈ Γ,(1.4)
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where ∂ν is the outward normal derivative and a is a measurable function
on Γ such that

|a(x) − a0| ≤ c|x|α for a.e. x ∈ Γ,(1.5)

and α > 0, c > 0 and a0 are some constants. In particular (1.5) means that
a ∈ L∞(Γ).

The variational formulation of the problem (1.3), (1.4) is written as the
integral identity [15]

(∇xu,∇xv)Ω + (au, v)Γ = λ(u, v)Ω , v ∈ C∞
c (Ω \ O) ,(1.6)

where ∇x is the gradient, (·, ·)Ω is the natural inner product of L2(Ω) and
(·, ·)Γ has a similar meaning, and the linear space C∞

c (Ω \ O) consists of
infinitely differentiable functions with supports in Ω \ O, i.e. functions
vanishing in a neighbourhood of O.

The main goal of the paper is to show that the loss of the Lipschitz
property may lead to a pathological structure of the spectrum of the Robin
problem (1.3), (1.4). The question on the structure of this spectrum was
posed to the authors by H. Amann and D. Daners.

1.3. Preliminary information on the spectrum
Let us first comment on the case Ω is Lipschitz, e.g., γ = 0. Then

it is known that the Sobolev space H1(Ω) with the traditional norm

∥u;H1(Ω)∥ =
(
∥∇xu;L2(Ω)∥2 + ∥u;L2(Ω)∥2

)1/2
embeds compactly both

into L2(Ω) and L2(Γ) (cf. [15]) Hence, the spectrum σ of the problem (1.6),
posed in H1(Ω), is discrete and forms the unbounded monotone sequence

λ1 ≤ λ2 ≤ . . . ≤ λp ≤ . . . → +∞ .(1.7)

If a ≥ 0 almost everywhere on Γ, the first eigenvalue in (1.7) satisfies

λ1 = inf
u∈H1(Ω)\{0}

∥∇xu;L2(Ω)∥2 + (au, u)Γ
∥u;L2(Ω)∥2

≥ 0.(1.8)

Let now γ > 0. We start by remarking that in this case both C∞(Ω)
and C∞

c (Ω\O) are dense in H1(Ω). The first case follows from [18], Th. 2 in
Section 1.1.6., since the domain Πd is an epigraph of a continuous functions
due to the star shaped assumption on ω. (This is the only point of the
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paper where this assumption is used. Hence, it is quite obvious that the
assumption could be made weaker.) For the second, given g ∈ H1(Ω) we first
approximate it in the Sobolev-norm by a function f ∈ C∞(Ω). Then, for all
0 < δ < 1/2 we choose an infinitely smooth cut-off function χδ : R+ → [0, 1]
such that χδ(z) = 0 for 0 ≤ z ≤ δ/2 and χδ(z) = 1 for z ≥ δ and such
that |χ′

δ(z)| ≤ C/δ for some constant C > 0 and all z. For any r > 0,
denote Ar = {x = (y, z) ∈ Ω : z < r}. The quantity ∥f − χδf ;H1(Ω)∥2

can be estimated in a straightforward way by a sum of terms
∫
Aδ

|f |2dx,∫
Aδ

|∇xf |2dx and
∫
Aδ

|f∇x(1 − χδ)|2dx. The first two tend to zero as δ →
+0, since f and ∇xf are bounded functions and since the measure of the
integration domain tends to 0. The third is majorized by a constant times
δ−2

∫
Aδ\Aδ/2

|f |2dx. This also tends to zero, again since f is bounded, and

the d-dimensional measure of Aδ \Aδ/2 is at most Cδ1+(1+γ)(d−1).
The following Hardy type inequality was proven in [30, Proposition] for

domains Ω with any γ > 0. The citation actually contains a proof for
functions in a special function space, but the remark above generalizes it
for all u ∈ H1(Ω). (See also [22] for much more general results).

Lemma 1.1. Let γ > 0. For any u ∈ C∞
c (Ω \ O), we have

∥r(γ−1)/2u;L2(Γ)∥ + ∥r−1u;L2(Ω)∥ ≤ cΩ∥u;H1(Ω)∥,(1.9)

where r = |x| and cΩ > 0 is a constant independent of u.

From (1.9) it follows that the embedding H1(Ω) ⊂ L2(Ω) is compact
for any γ > 0. If γ ∈ (0, 1), the embedding operator H1(Ω) ⊂ L2(Γ)
is also compact, because it is the sum of a compact operator (restricted
to the Lipschitz domain Ω(d)) and a small operator with norm O(d(1−γ)/2)
(restricted to the peak Πd, due to the large weight r(γ−1)/2 ≥ cd(γ−1)/2 in the
first norm in (1.9)). Hence, the spectrum σ stays discrete for insufficiently
sharp peaks with exponent γ ∈ (0, 1).

Let the peak be sharp, i.e. γ ≥ 1. It follows from a result in [6] that in
case the stabilization condition (1.5) holds with

a0 > 0,(1.10)

the spectrum is discrete as well. We give here a proof of this fact using a
result [4, Ch. 10]. Let d > 0 be chosen such that (cf. (1.10) and (1.5))

a(x) > ad > 0 for a.e. x ∈ ϖd.(1.11)
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The sesquilinear form

qd(u, v) = (∇xu,∇xv)Ω + (au, v)ϖd(1.12)

defines a scalar product in the Hilbert space H = H1(Ω) ∩ L2(Γ) (recall
that the surface Γ \ϖd is Lipschitz; H is usually called the Maz’ya space).
Hence, the theory mentioned above associates with the form (1.12) a self-
adjoint positive operator Ad with domain D(Ad) ⊂ H1(Ω) ∩ L2(Γ). Since
the embedding H1(Ω) ⊂ L2(Ω) is compact, the spectrum σ(Ad) is discrete
and consists of positive eigenvalues, [4, Th.10.1.5 and 10.2.2]. The operator
A of the problem (1.6) is generated by the sesquilinear form q(u, v) on the
left hand side of the identity (1.6), and it is a compact perturbation of Ad

with D(A) = D(Ad). Hence, by [4, Th.9.1.3], the spectrum σ(A) is discrete,
too, although the relation λ1 > 0 may be lost.

1.4. The main goal of the paper
We are going to investigate the spectrum of the problem (1.6) in the

case the Robin coefficient has “wrong” sign, that is,

a0 < 0,(1.13)

which means that for some d > 0 we have

−a(x) > ad > 0 for a.e. x ∈ ϖd ,(1.14)

contrary to (1.10) and (1.11). The next lemma demonstrates that if γ > 1,
then the form (1.12) in the space H1(Ω) ∩ L2(Γ) is not semibounded and
therefore the theory in [4, Ch. 10] does not apply. The case γ = 1 is much
more delicate and will be considered in Section 3.3.

Lemma 1.2. For any m > 0 there exist functions um± ∈ H1(Ω)∩L2(Γ)
such that

±q(um± , um± ) ≥ m∥um± ;L2(Ω)∥2.(1.15)

In other words, neither the form

q(u, v) = (∇xu,∇xv)Ω + (au, v)Γ,(1.16)

nor the form −q is semibounded from below.
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Proof. Clearly, it suffices to deal with large m. To define the functions
um+ , we just pick them so as to satisfy

∥∇xu
m
+ ;L2(Ω)∥2 ≥ m∥um+ ;L2(Ω)∥2(1.17)

from the subspace H1
0 (Ω; Γ) of functions in H1(Ω) which vanish on Γ.

To construct the functions um− , let χ ∈ C∞
c (1, 2) be such that 0 ≤ χ ≤

1 and χ(z) = 1 for z ∈ (5/4, 7/4). We set um− (z) = χ(2mz). A direct
calculation shows that

∥um− ;L2(Ω)∥2 ≤ |ω|
21−m∫

2−m

z(n−1)(1+γ)dz ≤ c02
−m((n−1)(1+γ)+1),

∥∇xu
m
− ;L2(Ω)∥2 ≤ cχ|ω|

21−m∫

2−m

z(n−1)(1+γ)dz ≤ c12
−m((n−1)(1+γ)−1),

∥um− ;L2(Γ)∥2 ≥ cχ|∂ω|
7·2−m/4∫

5·2−m/4

z(n−2)(1+γ)(1 + cωz
2γ)1/2dz

≥ cΓ2−m((n−2)(1+γ)+1) = cΓ2−m((n−1)(1+γ)−γ),(1.18)

where |ω| = mesn−1ω and |∂ω| = mesn−2∂ω are the (n − 1)-dimensional
volume of ω and the (n − 2)-dimensional area of its surface, respectively.
Since γ > 1 (for γ = 1 the conclusion is wrong), we infer for all sufficiently
large m that

−q(um− , um− ) ≥ 2−m(n−1)(1+γ)(cΓ2mγ − c12
m) ≥ 1

2
cΓ2−m(n−1)(1+γ)2mγ

≥ c02
−m(n−1)(1+γ)2−mm ≥ m∥um− ;L2(Ω)∥2. !(1.19)

1.5. Excursis to the theory of elliptic problems in peak-shaped
domains

We assume for a while that ∂ω and ∂Ω \ O are smooth. The theory of
boundary value problems for elliptic systems in peak-shaped domains was
developed in [20, 32, 19, 23] (see also the monographs [14, 13]). The starting
point for this approach is the coordinate change

y -→ η = h(z)−1y , z -→ ζ = −
d∫

z

dt

h(t)
,(1.20)
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which transforms the peak

{(y, z) : z ∈ (0, d), h(z)−1y ∈ ω}

into the semi-cylinder Q = ω× (−∞, 0). Our particular sharpness function
h(z) = z1+γ leads to

η = z−1−γy , ζ = −1

γ
(z−γ − d−γ).(1.21)

We have

∇η = h(z)−1∇y , ∂z = h(z)−1(∂ζ − h′(z)η ·∇η),(1.22)

where h′(z) = (1 + γ)zγ → 0 as z → 0+ and ζ → −∞. The Helmholtz
equation (1.3) takes the form

−
(
∆η + h(z)(∂ζ − h′(z)η ·∇η)h(z)−1(∂ζ − h′(z)η ·∇η)

)
u(η, ζ)

= λh(z)2u(η, ζ) , (η, ζ) ∈ Q,

and still has the Laplace operator ∆η + ∂2
ζ as the main part as ζ → −∞.

Moreover, the normal derivative ∂ν(η) on ∂ω× (−∞, 0) remains as the main
part of the Robin boundary operator in (1.4). As evident, e.g., in [2, 12,
19], an appropriate scale of function spaces in cylindrical domains is the
Sobolev spaces W l

β(Q) with exponentially weighted norms

∥ exp(βζ)u;H l(Q)∥.(1.23)

It was shown in [19] and [14], [13] that the problem operator with a domain
in the W l

β-class becomes Fredholm for every β ∈ R, with the exception of
a countable set of forbidden indices. These are produced by eigenvalues of
the auxiliary spectral problem on the cross-section ω.

The inverse change (η, ζ) -→ (y, z) brings the weight

exp(−βγ−1z−γ)

from (1.23) into the Sobolev norm in Ω. In order to make (1.6) the varia-
tional formulation of the problem (1.3), (1.4) we have to accept β = 0. Un-
fortunately, though not surprisingly, the index β = 0 is forbidden, because
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in our case the auxiliary problem, namely the spectral Neumann problem in
ω with the Laplace operator ∆η, has the null eigenvalue. Hence, the general
theory mentioned above does not suffice to answer the above posed question
on the spectrum of (1.3),(1.4).

In [11] the authors studied the problem (1.3), (1.4) with a(x) = a0 < 0
in a two-dimensional peak-shaped domain, that is, ω = (0, h) ⊂ R, h > 0,
and γ = 1 in (1.1). They constructed the asymptotics of the solutions using
the projection technique developed in [20, 32, 23] (see also [14] and [13]);
however, estimates of the asymptotic remainders were derived in [11] in
the scale of weighted Hölder spaces, which is not suitable for our purposes.
Hence, to consider general peak-shaped domains in Rn with Lipchitz cross-
sections we shall employ a different approach [25], which is partly based on
some techniques in [24] and involves asymptotic ansätze from the theory
of elliptic problems in thin domains (see [28], [21, Ch. 15,16], [26], [27] and
others). In this connection we emphazise that the peak (1.1) is a rapidly
thinning domain as z → 0+.

1.6. The case γ = 1; formal asymptotics
We proceed to construct the formal asymptotics for the solution u of the

inhomogeneous problem

− ∆xu(x) = f(x) , x ∈ Ω,(1.24)

∂νu(x) + a(x)u(x) = g(x) , x ∈ Γ,(1.25)

which is written as the integral identity

(∇xu,∇xv)Ω + (au, v)Γ = (f, v)Ω + (g, v)Γ, v ∈ C∞
c (Ω \ O).(1.26)

Notice that the term λu of (1.3) is included in f on the right hand side (see
Remarks 2.4 and 2.7 for an explanation). Here, f as well as g are supposed
to have “nice” properties. The asymptotic procedure applied here will be
justified in Section 2.4.

Assuming for a while that ∂ω is smooth, the normal ν(x) of the lateral
peak surface ϖ1 takes the form

N(η, z)1/2ν(y, z) =
(
ν ′(η),−2zη · ν ′(η)

)
,(1.27)

where η = z−2y is the “rapid” variable on the cross–section of the peak such
that

Πd = {x = (y, z) : z ∈ (0, d), η ∈ ω}
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(cf. (1.1) and (1.20), (1.21)). Furthermore, ν ′(η) is the unit vector of the
outward normal at the boundary of ω ⊂ Rn−1, and the normalization factor
N is given by

N(η, z) = 1 + 4z2|η · ν ′(η)|2,(1.28)

where the central dot stands for the scalar product of Rn−1. The same
factor (1.28) appears in the relation

dsx = N(η, z)1/2z2(n−2)dsηdz(1.29)

of the measures dsx and dsη on ϖ1 and ∂ω, respectively. Notice that
N(η, z) = 1 + O(z2) and

dx = dydz = z2(n−1)dηdz.(1.30)

The leading term in the asymptotics of solutions in thin domains usually
stays independent of the transversal variables1, as it is demonstrated in [26]
and [28], [21, Ch. 15,16] for many boundary value problems, see also Remark
1.3 with the ansatz (1.37). We accept this assumption and leave its rigorous
justification for Section 2.4. Let us change u(x) and v(x) in (1.26) for U(z)
and V (z), where V ∈ C∞

c (0, d) and the function U , independent of y, is to
be found. We use the formulas (1.29) and (1.30) and get rid of the lower
order terms by replacing N and a with 1 and a0 according to (1.28) and
(1.5), respectively. After integrating over ω and ∂ω, the left hand side of
(1.26) becomes

|ω|
d∫

0

z2(n−1)∂zU(z)∂zV (z)dz + a0|∂ω|
d∫

0

U(z)V (z)dz.(1.31)

Assuming the right hand sides f and g to decay sufficiently fast as z → +0,
we put (1.31) equal to null, and after integrating by parts arrive at the
ordinary differential equation

− d

dz
z2(n−1)dU

dz
(z) −Az2(n−2)U(z) = 0 , z > 0,(1.32)

1We emphasize that this is especially true in the theory of thin plates, where the
Kirchhoff asymptotics gets a complicated structure: the leading term does indeed not
depend on the transversal variable, but the important correction terms do.
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where

A = −a0
|∂ω|
|ω| > 0;(1.33)

recall that we have fixed a0 < 0. The equation is of Euler type and has the
general solution

U(z) = c+U
+(z) + c−U

−(z) for A ̸= (n− 3/2)2,(1.34)

U±(z) = zλ± , λ± = −n +
3

2
±

√(
n− 3

2

)2
−A

and

U(z) = z−n+3/2(c0 + c1 ln z) for A = (n− 3/2)2.(1.35)

We emphasize that

λ+ > −n + 3/2 > λ− for A < (n− 3/2)2,(1.36)

Reλ± = −n + 3/2 for A ≥ (n− 3/2)2.

Remark 1.3. The functions U± = zλ± can also be found by inserting
the following asymptotic ansatz in thin domains (see, e.g., [28, Ch. 1])

u(x) ∼ zλ + zλ+2W (z−2y)(1.37)

into the problem (1.24), (1.25) restricted to the peak and extracting terms
of order zλ−2 in Πd and of order zλ in ϖd. Notice that z is considered here
as a small parameter. Writing these equal to zero we get the Neumann
problem

−∆ηW (η) = λ(λ− 1) , η ∈ ω

∂ν′W (η) = 2λη · ν ′(η) − a0 , η ∈ ∂ω.(1.38)

Since
∫

∂ω

η · ν ′(η)dsη =

∫

ω

∇η · η dη = (n− 1)|ω| ,
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the compatibility condition in problem (1.38) reads as

λ(λ− 1)|ω| + λ(n− 1)|ω|− a0|∂ω| = 0

and yields the same quadratic equation

λ2 + (2n− 3)λ− a0
|∂ω|
|ω| = 0

and roots λ± in (1.34) as the Euler method for the ordinary differential
equation (1.32). Once the compatibility condition is satisfied by the proper
choice of λ in (1.34), the problem (1.38) admits a unique solution of mean
zero. We shall use this solution in Section 3.

Remark 1.4. In the critical case A = (n− 3/2)2 we shall also use the
particular solutions

U±(z) = z−n+3/2(1 ± i ln z)(1.39)

so that the general solution

U(z) = c+U
+(z) + c−U

−(z) for A = (n− 3/2)2(1.40)

takes the same form as in (1.34).

The structure and the properties of the solutions mentioned above es-
tablish the threshold

a‡ =
(
n− 3

2

)2 |ω|
|∂ω| .(1.41)

Namely, in the case a0 ∈ (−a‡, 0), i.e. above the threshold −a‡, the normal-
ized solution

z -→ zn−3/2U±(z)(1.42)

either grows unboundedly, or decays as z → +0. In contrast, for a < −a‡,
i.e. below the threshold, the function (1.42) oscillates in the logarithmic
scale and has no limit as z → +0. At the threshold a = −a‡ the solution
(1.34), with c1 = 0 and multiplied by zn−3/2, neither grows nor decays but
stays constant.
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1.7. Preliminary description of the results on the spectrum
One of our aims is to give an explicit formula for the domain of the

unbounded operator, which is naturally related to the problem (1.3), (1.4).
To this end we shall assume in Section 3 that the boundary ∂ω and the
punctured surface ∂Ω \ O are smooth, say C3, and that the coefficient a
belongs to C1 in a neighbourhood of ∂Ω. Furthermore, we restrict ourselves
to the case

γ = 1,(1.43)

where a straightforward asymptotic analysis is available (see Section 1.6
and §2) and which provides the noncompact embedding H1(Ω) ⊂ L2(Γ).
We discuss the case of a non-smooth ∂Ω and a in Section 3.7

If the punctured surface ∂Ω\O is not smooth and the normal derivative is
not properly defined, we have to define the domain of the problem operator
of (1.3), (1.4), which is an unbounded operator in L2(Ω), as follows: based
on the integral identity (1.6) we set

D(T ) = { u ∈ H1(Ω) : ∆xu ∈ L2(Ω) and

(∆xu, v)Ω + (∇xu,∇xv)Ω + (au, v)Γ = 0 for all v ∈ H1(Ω)}.(1.44)

Notice that owing to Lemma 1.1 and (1.43), the scalar product in L2(Γ)
is defined correctly. However, when ∂Ω \ O is smooth, the local elliptic
estimates (cf. [1], [17]) put u into the Sobolev space H2(K) for any compact
K ⊂ Ω \ O, hence, u ∈ H2

loc(Ω \ O). Moreover, taking a test function
v ∈ C∞

c (Ω \ O) and integrating by parts turn the identity in (1.44) into

(∂νu, v)Γ + (au, v)Γ = 0 , v ∈ C∞
c (Ω \ O).

We now see that the boundary condition (1.4) is met by functions u ∈ D(T )
and the domain of the operator becomes

D(T ) = { u ∈ H1(Ω) ∩H2
loc(Ω \ O) : ∆xu ∈ L2(Ω) ,

∂νu(x) + a(x)u(x) = 0 , x ∈ ∂Ω \ O}.(1.45)

Note that the boundary condition in the formula (1.45) is to be understood

in the Sobolev-Slobodetskii class H1/2
loc (∂Ω \ O).

In Section 3 we prove in particular the following theorem which distin-
guishes the properties of the operator T above and below the threshold −a‡.



40 Sergey A. Nazarov and Jari Taskinen

Theorem 1.5. 1) In the case a0 > −a‡ the operator T is self-adjoint
with discrete spectrum.
2) In the case a0 ≤ −a‡ the operator is still symmetric but no longer self-
adjoint. Its spectrum covers the whole complex plane C.

Furthermore, in Section 3 we give a much more accurate description of
the domain D(T ) and additional information on the spectra of T and the
adjoint T ∗ below the threshold.

The simplest formula (see Theorem 3.5)

D(T ) = {u ∈ H2(Ω) : ∂νu(x) + a(x)u(x) = 0 , x ∈ ∂Ω \ O}(1.46)

occurs in the case2

0 > a0 > −a• = −
(
n2 − 3n +

5

4

) |ω|
|∂ω|(1.47)

while for

a0 ∈ (−a‡,−a•)(1.48)

the domain becomes

D(T ) = { u = K+χ0U
+ + ũ : ũ ∈ H2(Ω) , K+ ∈ C ,

∂νu(x) + a(x)u(x) = 0 , x ∈ ∂Ω \ O},(1.49)

where χ0 is a smooth cut-off function with support in Πd such that χ0(x) = 1
for x ∈ Πd/2.

Notice that the function U+ defined in (1.34) belongs to H2(Πd) only
under the condition (1.47), when the exponent λ+ is bigger than −n+ 5/2,
while U+ ∈ H1(Πd)\H2(Πd) for a0 ∈ (−a‡,−a•] and U+ ∈ L2(Πd)\H1(Πd)
for a0 ≤ −a‡. At the same time the function U− (see (1.34) and (1.35),
(1.39)) always stays outside H1(Πd), because the exponent λ− is smaller
than or equal to −n + 3/2.

This simple observation is the main distinguishing feature of the above-
threshold case: none of the functions U± belongs to the natural domain
(1.45) of T , but both fall into the domain of the adjoint T ∗. The latter

2The critical case a0 = −a• leads to a complication of the formulas (1.49) and (1.46)
for the domain of T , see Remark 3.6.
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makes any λ ∈ C an eigenvalue of T ∗ and thus a point of the residual
spectrum of T (Section 3.5). Of course, one may try to find an intrinsic
self-adjoint extension of T with discrete spectrum, and in Section 3.6 we
describe all such extensions. However, the explicit formula (3.58) in Theo-
rem 3.13 does not allow to select a canonical self-adjoint extension, and the
discrete spectrum remains dependent on the extension parameter. We find
that below the threshold, there is no possibility to construct a self-adjoint
operator of the problem (1.6), which possesses the same nice properties as
the operator does above the threshold.

In Section 2 we reformulate the boundary value problem (1.3), (1.4) as
an integral identity and examine the solutions in weighted Sobolev spaces,
namely Kondratiev spaces [12], see the norm (2.2) and also Remark 2.1.
This approach with weak solutions in weighted spaces reduces the smooth-
ness requirements on the problem data so that for example peaks and edges
like in Fig. 1.2,b), can be treated. We find a necessary and sufficient condi-
tion for the problem operator to be Fredholm, and we present an asymptotic
form of the solution by constructing a parametrix and making rigorous the
dimension reduction, outlined in Section 1.6. As a conclusion of these re-
sults we prove Theorem 2.16 concerning the index of the problem operator
in weighted spaces, see Fig. 2.4. This becomes the key point in our investiga-
tion, since it reveals the underlying reason for the pathology of the spectrum
of the problem (1.3), (1.4).

Section 3 is devoted to a study of the spectrum of the problem (1.24),
(1.25), that is, the spectrum of the operator T with the domain (1.44).
Below the threshold the form (1.16) stays semibounded from below (Section
3.1) and therefore the spectrum is discrete, while the domains of T are
described in Theorem 3.5 (and Remark 3.6). The main tool to verify the
explicit formulas (1.46) and (1.49) becomes Lemma 3.2 on lifting smoothness
of the weak solutions of (1.24), (1.25). Below the threshold the form (1.16)
is no more semibounded (see Lemma 3.7), but the domain is still of the
form (1.46). On the other hand, using Theorem 2.16 on the index and the
generalized Green formula (Lemma 3.10) we find out in Section 3.4 that
the domain (3.47) of the adjoint operator T ∗ is much bigger. Moreover,
in Section 3.5 we describe all main properties of the spectra of T and T ∗,
and in particular prove the second assertion of Theorem 1.5. In Section
3.6, Theorem 3.13, we investigate all possible self-adjoint extensions of the
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symmetric operator T and notice that each of them has two unbounded,
positive and negative, sequences of eigenvalues. As a conclusion, the the
boundary value problem (1.3), (1.4) cannot be realized above the threshold
as a self-adjoint operator in L2(Ω) in the same way as below the threshold,
with similar general properties like discrete spectrum of type (1.7). Finally,
in Section 3.7 we discuss the case of non-smooth problem data.

2. The Fredholm Property in Weighted Spaces and Asymptotics
of the Solution

2.1. Weighted function spaces and formulation of theorems
We consider the Poisson equation (1.24) with the Robin condition (1.25)

written in the variational form

(∇xu,∇xv)Ω + (au, v)Γ = F (v) , v ∈ C∞
c (Ω \ O);(2.1)

cf. (1.26). Here, the functional F can determined by the right hand sides
f and g in (1.24) and (1.25), but we shall also consider general (anti)linear
functionals. We search for the solution of (2.1) in the function space V 1

β (Ω)
with the weighted norm

∥u;V 1
β (Ω)∥ =

(
∥rβ∇xu;L2(Ω)∥2 + ∥rβ−1u;L2(Ω)∥2

)1/2
,(2.2)

where r = |x| and β ∈ R is the weight index. Actually, V 1
β (Ω) is obtained

as the completion of C∞
c (Ω\O) with respect to the norm (2.2) and consists

of all functions in H1
loc(Ω \O) with finite norm (2.2). The last term in (2.2)

defines a norm in the weighted Lebesgue space L2
β−1(Ω).

Remark 2.1. The norm (2.2) has the same distribution of weights
as in the Kondratiev spaces in conical domains (see [12] and, e.g. [29,
14]). However, the reason for this distribution in peak–shaped domains
is completely different and crucially relies upon the introduced restriction
(1.43), cf. weights in the inequality (1.9) and other estimates presented
below in this section.

Lemma 2.2. The following weighted trace inequality is valid:

∥u;L2
β(Γ)∥ := ∥rβu;L2(Γ)∥ ≤ cβ∥u;V 1

β (Ω)∥.(2.3)
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Proof. Let u ∈ C∞
c (Ω \ O) and insert v = rβu into (1.9) with γ = 1

to conclude that

∥u;L2
β(Γ)∥ = ∥v;L2(Γ)∥ ≤ c

(
∥∇xv;L

2(Ω)| + ∥v;L2(Ω)∥
)

≤ c
(
∥rβ∇xu;L2(Ω)∥ + ∥rβ−1u;L2(Ω)∥ + ∥rβu;L2(Ω)∥

)

≤ C∥u;V 1
β (Ω)∥. !

Using a density argument and applying Lemma 2.2 to the second term
on the left, we find that the integral identity (2.1) must hold for any test
function v ∈ V 1

−β(Ω). Hence, the right hand side of (2.1) may be any

continuous (anti)linear functional on V 1
−β(Ω), in other words, F belongs to

the dual space V 1
−β(Ω)∗. The problem (2.1) thus defines the mapping

Tβ : V 1
β (Ω) → V 1

−β(Ω)∗.(2.4)

Remark 2.3. The embedding L2
β−1(Ω) ⊂ V 1

β (Ω)∗ is compact. This
follows from the formula

(u, v)Ω = (u, v)Πε + (u, v)Ω(ε),

the standard Sobolev embedding in the Lipschitz domain Ω(ε), and the
estimate

|(u, v)Πε | ≤ |(r2rβ−1u, r−β−1v)Πε | ≤ ε2∥u;L2
β−1(Πε)∥∥v;V 1

−β(Πε)∥(2.5)

with the small factor ε.

Remark 2.4. Since V 1
β (Ω) ⊂ L2

β−1(Ω) by the definition (2.2), the iden-

tity mapping I : V 1
β (Ω) → V 1

−β(Ω)∗ is compact, by Remark 2.3. This per-
mits us to treat in the present section the Poisson equation instead of the
Helmholtz equation.

In the sequel we prove the following two theorems.

Theorem 2.5. The mapping (2.4) is Fredholm, if and only if

β ̸= β± := ±Re
√

(n− 3/2)2 −A.(2.6)
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In the case β = β+ or β = β− the range of the operator Tβ is not closed.

The proof will be presented in Section 2.3. We emphasize that Theorem
2.5 gives two forbidden indices β± for A < (n − 3/2)2 such that ±β± > 0.
On the other hand, β± = 0 for A ≥ (n − 3/2)2, where A is computed in
(1.33). The corresponding solutions (1.34) and (1.35) of the limit equation
(1.32) appear in the next theorem on asymptotics.

Theorem 2.6. Let u ∈ V 1
β (Ω) be a solution of the problem (2.1) with

F ∈ V 1
−θ(Ω)∗ and let the weight indices β and

θ ∈ [β − min{α, 1/2},β)(2.7)

(α as in (1.5)) meet the condition (2.6). Then u has the asymptotic form

u(x) = χ0(x)
∑

±
K±U

±(z) + ũ(x),(2.8)

where ũ ∈ V 1
θ (Ω), χ0 is a cut–off function which equals to one in a neigh-

bourhood of the peak tip and vanishes outside the peak Π1, K± is a numerical
coefficient which is null in the case

Reλ± /∈ I(β, θ) :=
(3

2
− n− β,

3

2
− n− θ

)
,(2.9)

where λ± is defined in (1.34), (1.35). The following estimate is valid:

∥ũ;V 1
θ (Ω)∥ +

∑

±
|K±| ≤ c

(
∥F ;V 1

−θ(Ω)∗∥ + ∥u;V 1
β (Ω)∥

)
.(2.10)

Remark 2.7. If u ∈ V 1
β (Ω), then the functional Fu ∈ V 1

−β(Ω)∗, given
by

Fu(v) = (u, v)Ω,

falls into the space V 1
2−β(Ω)∗ (cf. the left inequality (2.5) in Remark 2.3)

and therefore into V 1
−θ(Ω)∗, if (2.7) holds. This is just another reason to

consider in this section the Poisson equation instead of the inhomogeneous
Helmholtz equation.
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2.2. Weighted inequalities

The next lemma is formulated for the peak (1.1) with any sharpness
exponent γ > 0, although it will be used with γ = 1 only. We assume here
that v ∈ V 1

β (Πd) satisfies the orthogonality conditions

∫

ω(z)

v(y, z)dy = 0 for a.e. z ∈ (0, d).(2.11)

Lemma 2.8. The following inequality is valid:

∥zβ−1−γv;L2(Πd)∥2 + ∥zβ−(1+γ)/2v;L2(ϖd)∥2

≤ c∥zβ∇yv;L
2(Πd)∥2.(2.12)

Proof. From (2.11) we obtain for the function ω × (0, d) ∋ (η, z) -→
V (η, z) = v(z1+γη, z) the relation

∫

ω

V (η, z)dη = 0 for a.e. z ∈ (0, d).

Applying now the Poincare inequality in ω and then the standard trace
inequality in ∂ω (see e.g. [15]), we get

∥V ;L2(ω)∥2 + ∥V ;L2(∂ω)∥2 ≤ cω∥∇ηV ;L2(ω)∥2.(2.13)

Performing the change η -→ y = z1+γη and multiplying (2.13) by
zβ−2(1+γ)+(n−1)(1+γ), we integrate the result over (0, d) ∋ z and recall the
relation (1.29) to arrive at (2.12). Note that to make the integrals on the
left of (2.12) a priori converge, one may integrate over (ε, d) and then send
ε to +0. !

Weighted trace inequalities can be found for example in [22], but we
shall need the exact constant, which is not available in the cited standard
formulation. However, it is given in the next lemma, taken from [30]. For
the convenience of the reader we give here an abbreviated proof.
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Lemma 2.9. Let γ = 1. For any u ∈ H1(Ω) and any ε > 0, there holds
the inequality

∥u;L2(Γ)∥2 ≤
((

n− 3

2

)2 |ω|
|∂ω| − ε

)−1
∥∇xu;L2(Ω)∥2

+ Cε∥u;L2(Ω)∥2
)
,(2.14)

where Cε → +∞ as ε → +0.

Proof. In the well-known inequality (see, e.g., [15])

∥u;L2(Γ(ε))∥2 ≤ ε∥∇xu;L2(Ω(ε))∥2 + Cε∥u;L2(Ω(ε))∥2,(2.15)

where ε > 0 is arbitrary and Cε → ∞ as ε → +0, we take ε = d/2, and thus
we may restrict the consideration to functions u ∈ C∞

c (Πd \ O) which also
vanish at z = d. Notice that d will eventually be chosen small enough.

Recalling the notation in (1.2), we have

z2(n−1)|ω| = |ω(z)| , z2(n−2)|∂ω| = |∂ω(z)|.(2.16)

Let us make the decomposition

u(y, z) = u0(z) + u⊥(y, z) with u0(z) =
1

z2(n−1)|ω|

∫

ω(z)

u(y, z) dy.(2.17)

Notice that then u⊥ satisfies the orthogonality condition (2.11).
We apply Lemma 2.8 with γ = 1, β = 0 and d > 0 so small that

d ≤ εc−1/2(2.18)

(c is as in (2.12)) to get the bound

∥u⊥;L2(ϖd)∥2 ≤ ε2
∫

Πd

|∇yu⊥(x)|2 dx = ε2
∫

Πd

|∇yu(x)|2 dx.(2.19)

Next we derive a bound for the component u on Πd. First,

∫

Πd

|∇xu(x)|2 dx =

∫

Πd

|∇yu⊥(y, z)|2 dx +

∫

Πd

∣∣∣∣
∂u⊥
∂z

(y, z)

∣∣∣∣
2

dx



Anomalies of the Robin Laplacian 47

+

∫

Πd

∣∣∣∣
du0

dz
(z)

∣∣∣∣
2

dx + 2

∫

Πd

∂u0

dz
(z)

∂u⊥
∂z

(y, z) dx

=: I1 + I2 + I3 + 2I4 ≥ I3 + 2I4.(2.20)

The differentiation rule for integrals with varying limits and definition
(1.1) with γ = 1 establish the estimate

∣∣∣∣
d

dz

∫

ω(z)

u⊥(y, z) dy −
∫

ω(z)

∂u⊥
∂z

(y, z) dy

∣∣∣∣

≤ 2zcω

∫

∂ω(z)

|u⊥(y, z)| dsy , z ∈ (0, d),(2.21)

while the first integral on the left vanishes due to (2.17). Using (2.16) we
thus get

|I4| ≤ c

d∫

0

∣∣∣∣
du0

dz
(z)

∣∣∣∣

∫

ω(z)

∣∣∣∣
∂u⊥
∂z

(y, z)

∣∣∣∣ dydz

≤ c

d∫

0

∣∣∣∣
du0

dz
(z)

∣∣∣∣ z
∫

∂ω(z)

|u⊥(y, z)| dsydz

≤ c

( d∫

0

z2(n−1)

∣∣∣∣
du0

dz
(z)

∣∣∣∣
2

dz

)1/2

×
( d∫

0

z2−2(n−1)
( ∫

∂ω(z)

|u⊥(y, z)| dsy
)2

dz

)1/2

.(2.22)

Taking into account (2.16), the Cauchy-Bunyakovskii-Schwartz inequality
implies (∫

∂ω(z)
|u⊥|dsy

)2
≤ Cz2(n−2)

∫

∂ω(z)
|u⊥|2dsy,

and hence (2.22) can be bounded by

c ∥∂zu0;L2(Πd)∥ ∥u⊥;L2 (ϖd) ∥ = c I1/2
3 ∥u⊥;L2 (ϖd) ∥
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≤ c εI3 + cε−1 ∥u⊥;L2 (ϖd) ∥2.(2.23)

To estimate I3 we need the one-dimensional Hardy inequality

d∫

0

z2κ−1|U(z)|2dz ≤ 1

κ2

d∫

0

z2κ+1
∣∣∣
dU

dz
(z)

∣∣∣
2
dz,(2.24)

where κ = (2(n− 1)− 1)/2 = n− 3/2 > 0 and U(d) = 0 is assumed, so that
extending U as null for z > d reduces (2.24) to the case d = ∞. Taking also
into account (2.16) we obtain

I3 = |ω|
d∫

0

z2κ+1

∣∣∣∣
du0

dz
(z)

∣∣∣∣
2

dz ≥ κ2|∂ω|
d∫

0

z2κ−1|u0(z)|2 dz

= κ2 |ω|
|∂ω|

d∫

0

∫

∂ω(z)

|u0(z)|2 dsydz

=
(
n− 3

2

)2 |ω|
|∂ω|∥u;L2(ϖd)∥.(2.25)

The estimate

(1 + cε)∥∇xu;L2(Πd)∥ ≥
(
n− 3

2

)2 |ω|
|∂ω|(1 − c′ε)∥u0;L

2(ϖd)∥(2.26)

for some positive constants c and c′, follows by combining (2.20) with (2.25)
and (2.23); in (2.23) apply (2.19) to the second term. Moreover, using again
(2.19), the triangle inequality ∥u0;L2(ϖd)∥ + ∥u⊥;L2(ϖd)∥ ≥ ∥u;L2(ϖd)∥
and increasing the constant c on the left of (2.26), we obtain the inequality
(2.26) with u replacing u0. The result (2.14) follows from this together with
the inequality (2.15). !

2.3. The parametrix and the proof of Theorem 2.5
Let us construct a right parametrix of the operator (2.4), i.e. a mapping

Rβ : V 1
−β(Ω)∗ → V 1

β (Ω)(2.27)

such that the operator

I − TβRβ : V 1
−β(Ω)∗ → V 1

−β(Ω)∗(2.28)
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Fig. 2.1. Cut-off functions.

is compact. Since T−β is the adjoint of the operator Tβ and the require-
ment (2.6) holds true for both weight indices ±β simultaneously, the adjoint
operator R∗

−β serves as a left parametrix for Tβ, namely

I −R∗
−βTβ : V 1

β (Ω) → V 1
β (Ω)(2.29)

is compact as well. It is known (see, e.g., [3]) and can be readily verified,
that the statements (2.28) and (2.29) imply the Fredholm property for the
operator Tβ. The loss of this property at β = β±, see (2.6), will be shown
in Remark 2.13.

We introduce the smooth cut–off functions χΩ, χ′
Ω, χΠ, and χ′

Π such
that

χΩχ
′
Ω = χ′

Ω , χΩ(z) = 0 for z < d/3 , χ′
Ω(z) = 1 for z > 2d/3;
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Fig. 2.2. Blunted and truncated peaks.

χΠχ
′
Π = χ′

Π , χΠ(z) = 0 for z > 2d/3 , χ′
Π(z) = 1 for z < d/3;(2.30)

and {χ′
Ω,χ

′
Π} is a partition of unity in Ω. Possible graphs of these functions

are drawn and compared in Fig. 2.1.
Let us consider auxiliary problems in the domain Ω(d/3) with the

blunted peak and truncated peak Π2d/3 (see Fig. 2.2), namely,

(∇xu
Ω,∇xv

Ω)Ω(d/3) + (auΩ, vΩ)Γ(d/3) + M(uΩ, vΩ)Ω(d/3)

= FΩ(vΩ), vΩ ∈ H1(Ω(d/3)),(2.31)

(∇xu
Π,∇xv

Π)Π2d/3
+ a0(u

Π, vΠ)ϖ2d/3

= FΠ(vΠ), vΠ ∈ V 1
−β(Π2d/3),(2.32)

where M > 0 is a number to be fixed later on. Owing to the properties of
the cut–off functions in (2.30), the right–hand sides are defined as follows:

vΩ ∈ H1(Ω(d/3)) ⇒ χΩv
Ω ∈ V 1

−β(Ω) and FΩ(vΩ) = F (χΩv
Ω),

vΠ ∈ V 1
−β(Π2d/3) ⇒ χΠv

Π ∈ V 1
−β(Ω) and FΠ(vΠ) = F (χΠv

Π).(2.33)

Furthermore,

v ∈ V 1
−β(Ω(d/3)) ⇒ χ′

Ωv ∈ H1(Ω(d/3)) ,

χ′
Πv ∈ V 1

−β(Π2d/3) and

FΩ(χ′
Ωv) + FΠ(χ′

Πv) = F (χΩχ
′
Ωv) + F (χΠχ

′
Πv)

= F (χ′
Ωv) + F (χ′

Πv) = F (v).(2.34)
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Then, after solving the problems (2.31) and (2.32), we may determine the
approximate solution of the problem (2.1) by the formula

RβF = χ′
Ωu

Ω + χ′
Πu

Γ.(2.35)

The inequality (2.15), with d/3 replacing d, exhibits the compactness of
the embedding H1(Ω(d/3)) ⊂ L2(Γ(d/3)), and with its help we find the
number M = Md > 0 such that the problem (2.31) is uniquely solvable and
its solution uΩ ∈ H1(Ω(d/3)) obeys the estimate

∥uΩ;H1(Ω(d/3))∥ ≤ cd∥FΩ;H1(Ω(d/3))∗∥ ≤ cd∥F ;V 1
−β(Ω)∗∥.(2.36)

Let us turn to the second auxiliary problem (2.32). We set

uΠ(y, z) = uΠ
0 (z) + uΠ

⊥(y, z),(2.37)

uΠ
0 (z) = |ω(z)|−1

∫

ω(z)

uΠ(y, z)dy = |ω|−1
∫

ω

uΠ(z2η, z)dη,

0 =

∫

ω(z)

uΠ
⊥(y, z)dy = z2(n−1)

∫

ω

uΠ
⊥(z2η, z)dη.(2.38)

Clearly, uΠ
0 ∈ V 1

β (Π2d/3) in the case uΠ ∈ V 1
β (Π2d/3), but also

∥uΠ
0 ;V 1

β+n−1(0, 2d/3)∥2

=

2d/3∫

0

z2(β+n−1)(|∂zuΠ
0 (z)|2 + z−2|uΠ

0 (z)|2)dz

≤ c

2d/3∫

0

z2(β+n−1)
(∫

ω

(
|∂zuΠ(z2η, z)|2 + 4z2|η ·∇yu

Π(z2η, z)|2
)
dη

+ |ω(z)|−2z−2
∣∣∣
∫

ω(z)

uΠ(y, z)dy
∣∣∣
2)

dz

≤ c

2d/3∫

0

z2(β+n−1)
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×
(
z−2(n−1)

∫

ω(z)

(
|∂zuΠ(y, z)|2 + z2cω|∇yu

Π(y, z)|2
)
dy

+ cωz
−2(n−1)z2

∫

ω(z)

|uΠ(y, z)|2dy
)
dz ≤ C∥uΠ;V 1

β (Π2d/3)∥2.(2.39)

The same decomposition (2.37) applies to the test function v in (2.32).
We plug both the decompositions into the integral identity (2.32) and write
the system

(∂zu
Π
0 , ∂zv

Π
0 )Π2d/3

+ a0(u
Π
0 , v

Π
0 )ϖ2d/3

= FΠ(vΠ
0 ) − SΠ

0 (vΠ
0 ),(2.40)

(∇xu
Π
⊥,∇xv

Π
⊥)Π2d/3

+ a0(u
Π
0 , v

Π
⊥)ϖ2d/3

= FΠ(vΠ
⊥) − SΠ

⊥(vΠ
⊥),(2.41)

where vΠ
0 and vΠ

⊥ are arbitrary elements of the appropriate function spaces
and the cross terms are given by

SΠ
0 (vΠ

0 ) = (∂zu
Π
⊥, ∂zv

Π
0 )Π2d/3

+ a0(u
Π
⊥, v

Π
0 )ϖ2d/3

,

SΠ
⊥(vΠ

⊥) = (∂zu
Π
0 , ∂zv

Π
⊥)Π2d/3

+ a0(u
Π
0 , v

Π
⊥)ϖ2d/3

.(2.42)

First of all, we investigate the solvability of the problems (2.40) with SΠ
0 = 0

and (2.41) with SΠ
⊥ = 0; these are denoted by (2.40)′ and (2.32)′, respec-

tively.

Proposition 2.10. If d > 0 is small and β ̸= β±, then the problem
(2.40)′ has a unique solution uΠ

0 ∈ V 1
β+n−1(0, 2d/3) which satisfies the esti-

mate

∥un0 ;V 1
β (Π2d/3)∥ ≤ c0∥un0 ;V 1

β+n−1(0, 2d/3)∥
≤ C0∥FΠ;V 1

−β(Π2d/3)
∗∥ ≤ cd∥F ;V 1

−β(Ω)∗∥,(2.43)

where the constants c0 and C0 are independent of d.

Proof. Performing integration with respect to y, we rewrite (2.40)′ as
follows:

|ω|(z2(n−1)∂zu
Π
0 , ∂zv

Π
0 )(0,2d/3) + a0|∂ω|(z2(n−2)uΠ

0 , v
Π
0 )(0,2d/3)

+ (s(z)z2(n−2)uΠ
0 , v

Π
0 )(0,2d/3) = FΠ(vΠ

0 ) , vΠ
0 ∈ V−β+n−1(0, 2d/3).(2.44)
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The term with the multiplier

s(z) =

∫

∂ω

(
(1 + 4z2|η · ν ′(η)|2 − 1

)
dsη = O(z2)(2.45)

arises from (1.28), (1.29), and it is small when d ≪ 1. The integral identity
(2.44) with s = 0 generates the Cauchy problem

− d

dz
z2(n−1)du

Π
0

dz
(z) −Az2(n−2)uΠ

0 = F(z), z ∈ (0, 2d/3),

∂zu
Π
0 (2d/3) = 0.(2.46)

We recall the notation in Section 2.1, the Euler change of variables z -→ t =
− ln z which reduces (1.32) to an ordinary differential equation with con-
stant coefficients, and the standard variation of constants method. Putting
together theses pieces of information provides the assertion. !

Let V 1
β (Π2d/3)⊥ be the subspace of functions uΠ

⊥ ∈ V 1
β (Π2d/3) satisfying

the orthogonality conditions in (2.38) for almost all z ∈ (0, 2d/3). Note that
codimV 1

β (Π2d/3)⊥ = ∞.

Proposition 2.11. For a small d > 0, the problem (2.41)′ has a
unique solution uΠ

⊥ ∈ V 1
β (Π2d/3)⊥ such that

∥zβ∇xu
Π
⊥;L2(Π2d/3)∥ + ∥zβ−2uΠ

⊥;L2(Π2d/3)∥
≤ c0∥FΠ;V 1

−β(Π3d/2)
∗∥ ≤ cd∥F ;V 1

−β(Ω)∗∥,(2.47)

where c0 does not depend on d.

Proof. If wΠ
⊥ ∈ V 1

β (Π2d/3)⊥, then vΠ
⊥ = z2βwΠ

⊥ ∈ V 1
−β(Π2d/3)⊥.

Hence, we can write the problem (2.41)′ in the form

(zβ∇xu
Π
⊥, z

β∇xw
Π
⊥)Π2d/3

+ β(zβ∇xu
Π
⊥, z

β−1wΠ
⊥)Π2d/3

+ a0(z
βuΠ

⊥, z
βwΠ

⊥) = FΠ(z2βwΠ
⊥) , wΠ

⊥ ∈ V 1
β (Π2d/3)⊥.(2.48)

By the inequality (2.12) with γ = 1 and the formula zβ∇xuΠ
⊥ = ∇x(zβuΠ

⊥)−
βzβ−1uΠ

⊥, we have

∥zβ∇xu
Π
⊥;L2(Π2d/3)∥2 ≥ 1

2
∥∇x(z

βuΠ
⊥);L2(Π2d/3∥2
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− β2∥zβ−1uΠ
⊥;L2(Π2d/3)∥2 ≥ 1

4
∥∇(zβuΠ

⊥);L2(Π2d/3)∥2

+
c

4
∥zβ−2uΠ

⊥;L2(Π2d/3)∥2 − β2∥zβ−1uΠ
⊥;L2(Π2d/3)∥2.

Choosing a small d > 0, we can make the last term smaller than the previous
one, since the exponent β−1 is larger than β−2. Thus, the first term on the
left of (2.48) serves for a scalar product in V 1

β (Π2d/3)⊥, and the left–hand

side of (2.47) does not exceed c∥zβ∇xuΠ
⊥(Π2d/3)∥2 with c > 0. Furthermore,

using Lemma 2.8 again, we see that

∥zβ−1wΠ
⊥;L2(Π2d/3)∥2 ≤ cd∥zβ∇xw

Π
⊥;L2(Π2d/3)∥2,

|(zβuΠ
⊥, z

βwΠ
⊥)ϖ2d/3

| ≤ cd2|(zβ−1uΠ
⊥, z

β−1wΠ
⊥)ϖ2d/3

|

≤ cd2∥zβ∇xu
Π
⊥;L2(Π2d/3)∥∥zβ∇xw

Π
⊥;L2(Π2d/3)∥.

These mean that the second and third terms on the left of (2.48) give rise
to small operators in the Hilbert space V 1

β (Π2d/3)⊥ so that our assertion is
established by the Riesz representation theorem. !

Differentiating the orthogonality condition (2.38) with respect to z and
using (2.16) we observe that

0 = 2

∫

ω(z)

z−1y ·∇yu
Π
⊥(y, z)dy +

∫

ω(z)

∂zu
Π
⊥(y, z)dy.(2.49)

Hence, replacing the last integral in (2.49) by the first one and taking into
account that |y| ≤ cωz2 on ω(z), we infer

|(∂zuΠ
⊥, ∂zv

Π
0 )Π2d/3

| =
∣∣∣

2d/3∫

0

∂zv
Π
0 (z)

∫

ω(z)

∂zu
Π
⊥(y, z)dydz

∣∣∣

≤ c

2d/3∫

0

z−β|∂zvΠ
0 (z)|

∫

ω(z)

zβ+1|∇yu
Π
⊥(y, z)|dydz

≤ cd∥zβ∇yu
Π
⊥;L2(Π2d/3)∥∥z−β∂zvΠ

0 ;L2(Π2d/3)∥

and

|(∂zuΠ
0 , ∂zv

Π
⊥)Π2d/3

|
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≤ cd∥zβ∂zuΠ
0 ;L2(Π2d/3)∥∥z−β∇yv

Π
⊥;L2(Π2d/3)∥.

These, together with the estimates

|(uΠ
⊥, v

Π
0 )ϖ2d/3

| ≤ c∥zβ∇yu
Π
⊥;L2(Π2d/3)∥∥z−β+1vΠ

0 ;L2(ϖ2d/3)∥

≤ c∥zβ∇yu
Π
⊥;L2(Π2d/3)∥∥z−βvΠ

0 ;L2(Π2d/3)∥
≤ cd∥zβ∇yu

Π
⊥;L2(Π2d/3)∥∥z−β−1vΠ

0 ;L2(Π2d/3)∥,
|(uΠ

0 , v
Π
⊥)ϖ2d/3

| ≤ cd∥zβ−1uΠ
0 ;L2(Π2d/3)∥∥z−β∇yv

Π
⊥;L2(Π2d/3)∥,(2.50)

taken from Lemma 2.8 with γ = 1, ensure that the cross terms (2.42) gener-
ate in (2.40) and (2.41) operators with norms of order d. Thus, Propositions
2.10 and 2.11 establish the unique solvability of the full problems (2.40),
(2.41) in case d > 0 is fixed small. As a corollary, the same holds for the
second auxiliary problem (2.32).

Recalling the notation (2.35), we take any v ∈ V 1
−β(Ω) and put the

test functions vΩ = χ′
Ωv ∈ H1(Ω(d/3)) and vΠ = χ′

Πv ∈ V 1
−β(Π2d/3) into

the integral identities (2.31) and (2.32). After commuting twice the cut–off
functions with the gradient operator, we have

(∇x(χ
′
Ωu

Ω),∇xv)Ω + (∇xu
Ω, v∇xχ

′
Ω)Ω − (uΩ∇xχ

′
Ω,∇xv)Ω

+ a(χ′
Ωu

Ω, v) + M(χ′
Ωu

Ω, v)Ω = F (χ′
Ωv),(2.51)

and

(∇x(χ
′
Πu

Π),∇xv)Ω + (∇xu
Π), v∇xχ

′
Π)Ω − (uΠ∇xχ

′
Π,∇xv)Ω

+ a0(χ
′
Πu

Π, v) = F (χ′
Πv).

The integrals can be extended over Ω and Π using the disposition of the sup-
ports of the cut–off functions. In view of (2.34) and (2.35), the summation
of the above relations gives

(∇zRβF,∇xv)Ω + (aRβF, v)Γ = F (v) − (SβF )(v) , v ∈ V 1
−β(Ω),(2.52)

where Sβ is an operator in V 1
−β(Ω)∗ defined by

(SβF )(v) = M(χ′uΩ, v)Ω + ((a0 − a)χ′
Πu

Π, v)Γ

+ (∇xu
Ω, v∇xχ

′
Ω)Ω
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− (uΩ∇xχ
′
Ω,∇xv)Ω + (∇xu

Γ, v∇xχ
′
Π)Ω − (uΓ∇xχ

′
Π,∇xv)Ω.(2.53)

By estimates (2.43) and (2.47), the operators Rβ and Sβ are continuous.
Moreover, Sβ is compact. Indeed, the first and second terms on the right of
(2.53) give rise to compact operators. The reasons are that the embedding
H1(Ω) ⊂ L2(Ω) is compact and that

|((a− a0)χ′
Πu

Π, v)∂ϖε | ≤ cεα∥uΠ;V 1
β (Π2d/3)∥∥v;V 1

−β(Ω)∥

for any ε (due to the stabilization condition (1.5)), and that the embedding
V 1
β (Π2d/3 \ Πε) ⊂ L2(ϖ2d/3 \ϖε) is compact (the peak top is cut off).

The last four terms in (2.53) do not contain products of derivatives of uΩ,
uΓ and v, therefore, they produce compact operators as well. In other words,
the property (2.28) of the operator Sβ = I − TβRβ holds true, and hence
the desired parametrix Rβ is constructed and Theorem 2.5 is proven. !

Corollary 2.12. If β meets the restriction (2.6), any function u ∈
V 1
β (Ω) satisfies the relation

∥u;V 1
β (Ω)∥ ≤ cd(β)

(
∥Tβu;V 1

−β(Ω)∗∥ + ∥u;L2(Ω(d))∥
)
,(2.54)

where the factor cd(β) is independent of u.

Proof. Theorem 2.5 ensures that Tβ is Fredholm, so, the dimension
of the kernel kerTβ is finite, and the estimate

∥u;V 1
β (Ω)∥ ≤ cf

(
∥Tβu;V 1

−β(Ω)∗∥ + |f(u)|
)

holds. Here, f is any nonlinear weakly continuous functional in V 1
β (Ω) such

that

f(tu) = tf(u), t ∈ [0,+∞) , u ∈ V 1
β (Ω) ;

f(u) = 0 , u ∈ kerTβ ⇔ u = 0.

Since a nontrivial harmonic function cannot vanish everywhere in Ω(d), we
take f(u) = ∥u;L2(Ω(d))∥ and finish the proof. !

Remark 2.13. To verify that the range Tβ±(V 1
β±

(Ω)) is not closed in

V 1
−β±(Ω)∗, we introduce a family of test functions

um(x) = χm(− ln z)U∓(z)(2.55)
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Fig. 2.3. A cut-off function.

with small supports located at the peak Π1. Here, U± are given in (1.34),

χm(t) = χ0(t− 2m+1 + 1)χ0(2
m + t + 1),(2.56)

and χ0 ∈ C∞(R), 0 ≤ χ ≤ 1, χ0(t) = 1 for t ≤ 0 and χ0(t) = 0 for t ≥ 1.
The graph of (2.56) is depicted in Fig. 2.3. By (1.34), (2.6) and (2.16), we
have

|um(z)| = z−β±−n+3/2 for z ∈ [exp(−2m+1 + 1), exp(−2m − 1)],

hence,

∥um;V 1
β±(Ω)∥2 ≥ ∥um;L2

β±−1(Π1)∥2 ≥

≥
exp(−2m−1)∫

exp(−2m+1+1)

r2(β±−1)|ω(z)|z−2β±−2n+3dz ≥
exp(−2m−1)∫

exp(−2m+1+1)

dz

z

≥ c(2m+1 − 2m − 2) = c(2m − 2) , c > 0.(2.57)

Differentiating the function (2.55) in the formula

(Tβ±u
m, v)Ω = −(∆um, v)Ω + (∂νu

m, v)Γ , v ∈ V 1
−β±(Ω)∗(2.58)

and using (1.27) for the normal ν, we deduce that

∆um = χmfm
0 + fm

χ , fm
0 (z) = λ∓(λ∓ − 1)zλ∓−2

and

∂νu
m + aum = χmgm0 + χmg̃m + gmχ , gm0 (y, z) = η · ν ′(η)λ± − a0 ,

where

|fm
χ (z)| ≤ czReλ∓−2 , |gmχ (y, z)| ≤ czReλ∓ , |g̃m(y, z)| ≤ czReλ∓ min{α,1} ,
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fχ(z) = 0 , gχ(y, z) = 0 for z /∈ [exp(−2m+1), exp(−2m+1 + 1)]

∪ [exp(−2m − 1), exp(−2m)].

In view of the disposition of supp fm
χ and supp gmχ , we have

∥fm
χ ;L2

β±+1(Ω)∥2

≤ c

( exp(−2m+1+1)∫

exp(−2m+1)

+

exp(−2m)∫

exp(−2m−1)

)
z2(β±+1)z2(n−1)z2(Reλ∓−2)dz ≤ C,

∥gmχ ;L2
β±(Γ)∥2

≤ c

( exp(−2m+1+1)∫

exp(−2m+1)

+

exp(−2m)∫

exp(−2m−1)

)
z2β±z2(n−2)z2Reλ∓dz ≤ C.

Moreover,

∥χmg̃m;L2
β±(Γ)∥ ≤ C exp(−min{α, 1}2m).

Recalling a calculation in Remark 1.3 we also observe that

Im(v) := (χmfm
0 , v)Ω + (χmgm0 , v)Γ = (χmfm

0 , v⊥)Πd + (χmgm0 , v⊥)ϖd ,

where v⊥ is the component in the decomposition (2.17). The inequality
(2.12) with γ = 1 yields

|Im(v)| ≤ exp(−2m).

The above formulas provide the estimate

∥Tβ±um;V 1
−β±(Ω)∗∥ ≤ C,

which contradicts with (2.57), if we assume that the range Tβ±(V 1
β±

(Ω)) is
a closed subspace; the reason is that kerTβ± ⊂ kerTβ for any index β > β±
which is not forbidden, and hence dim kerTβ < +∞, owing to the already
exposed part of the proof of Theorem 2.5.
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2.4. Dimension reduction and the proof of Theorem 2.6
First of all, the result on asymptotics is local, because Theorem 2.6 does

not improve properties of the solution u ∈ V 1
β (Ω) outside a neighbourhood

of the peak top O. Indeed, by the definition (2.2), a function v ∈ V 1
β (Ω)

with support in Ω \O belongs to the Sobolev space H1(Ω) and moreover to
the Kondratiev space V 1

γ (Ω) with any weight exponent. Therefore, we may
work with a function u ∈ V 1

β (Ω) which vanishes outside the peak (1.1) with
any fixed d > 0.

We again employ the decomposition (2.37) for u(y, z) with the terms
u0(z) and u⊥(y, z). We have the estimate

∥u0;V
1
β+n−1(0, d)∥ + ∥zβ∇xu⊥;L2(Πd)∥

+ ∥zβ−2u⊥;L2(Πd)∥ ≤ c∥u;V 1
β (Ω)∥(2.59)

(cf. (2.39) and Lemma 2.8). The following integral identities are derived
from (2.1) similarly to (2.40), (2.44) and (2.41), but without using the de-
composition for the test function:

(z2(n−1)∂zu0, ∂zv0)(0,d) + a0(z
2(n−2)u0, v0)(0,d)

= F0(v0) := F (v0) − F0(v0) , v0 ∈ C∞
c (0, d),(2.60)

(∇xu⊥,∇xv)Πd + (au⊥, v)ωd

= F⊥(v) := F (v) − F⊥(v) , v ∈ C∞
c (Πd \ O).(2.61)

Here, the perturbation terms

F0(v0) = (∂zu⊥, ∂zv0)Πd + (au⊥, v0)ϖd

−
(
(a0 − a)u0, v0)ϖd − (sz2(n−2)u0, v0)(0,d),(2.62)

F⊥(v) = (∂zu0, ∂zv)Πd + (au0, v)ϖd(2.63)

are analogous to (2.42) and (2.45). Note that (2.60) is obtained just by
setting v = v0 in (2.1).

To investigate the problems (2.60) and (2.61), we need the next auxiliary
assertions.

Proposition 2.14. Assume that u⊥ ∈ V 1
β (Πd) satisfies the integral

identity (2.61), where the functional F⊥ meets the bound

|F⊥(v)| ≤ NF

(
∥r−θ∇xv;L

2(Πd)∥ + ∥r−θ−2v;L2(Πd)∥
)
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≤ cNF ∥v;V 1
−θ(Πd)∥(2.64)

for some θ ∈ (−∞,β) and any v ∈ V 1
−θ(Πd) with zero mean as in (2.11).

Then u⊥ belongs to the space V 1
θ (Πd), and there holds the inequality

∥rθ∇xu⊥;L2(Πd)∥ + ∥rθ−2u⊥;L2(Πd)∥ ≤ cNF(2.65)

Proof. By a completion argument, we extend (2.61) for test functions
in V 1

−β(Πd) and then introduce the weight function

Rζ(z) =

{
zθ for z ≥ ζ,
zβζ−β+θ for z ≤ ζ,

(2.66)

where ζ ∈ (0, d) is a parameter which will eventually be sent to +0. Since
Rζ(z) ≤ c(ζ)zβ and |∂zR(z)| ≤ c(ζ)zβ−1, we find that v = R2

ζu⊥ belongs

to V 1
−β(Πd) and hence it can be inserted as a test function into (2.61). We

denote U⊥ = Rζu⊥ ∈ V 1
0 (Πd), and after simple transformations, namely

commuting Rζ and ∇x several times, we take the real part of (2.61) and
convert it into

∥∇xU⊥;L2(Πd)∥2 = ReF⊥(RζU⊥) + ∥U⊥R−1
ζ ∇xRζ ;L

2(Πd)∥2

− (aU⊥, U⊥)ϖd .(2.67)

We emphasize once more that all integrals here converge absolutely. The
weight function (2.66) does not depend on y and meets the estimates

|Rζ(z)| ≤ zθ , |∂zRζ(z)| ≤ czθ−1 , |Rζ(z)∂zRζ(z)| ≤ cz−1(2.68)

with a constant independent of ζ. Note that U⊥ still satisfies the orthogo-
nality condition (2.11) and, by Lemma 2.8 with γ = 1,

∥z−2U⊥;L2(Πd)∥ + ∥z−1U⊥;L2(ϖd)∥ ≤ c∥∇xU⊥;L2(ϖd)∥.(2.69)

Therefore,

∥U⊥R
−1
ζ ∇Rζ ;L

2(Πd)∥2 + |(aU⊥, U⊥)ϖd | ≤ cd2∥∇xU⊥;L2(Πd)∥2.(2.70)



Anomalies of the Robin Laplacian 61

Moreover, owing to the first couple of formulas in (2.68), the inequality
(2.64) gives

|F⊥(RζU⊥)| ≤ NF
(
∥r−θ∇x(RζU⊥);L2(Πd)∥ + ∥r−θ−2RζU⊥;L2(Πd)∥

)

≤ cNF
(
∥∇xU⊥;L2(Πd)∥ + ∥z−2U⊥;L2(Πd)∥

)
.(2.71)

Collecting together these calculations, we obtain for small d > 0 that

∥Rζ∇xu⊥;L2(Πd)∥2 + ∥z−2Rζu⊥;L2(Πd)∥2

≤ c
(
∥∇xU⊥;L2(Πd)∥2 + ∥z−2U⊥;L2(Πd)∥2

)

≤ cNF ∥∇xU⊥;L2(Πd)∥.(2.72)

Thus, the left hand side of (2.72) remains uniformly bounded when ζ → +0.
It increases monotonely, cf. (2.66), and thus has a limit which readily
becomes (2.65). !

To conclude the estimate

∥u⊥;V 1
θ (Πd)| ≤ c

(
∥u;V 1

β (Ω)∥ + ∥F ;V 1
−θ(Ω)∗∥

)
(2.73)

for θ as in (2.7) of Theorem 2.6, it suffices to verify the condition (2.64)
for the functional (2.63), because this property is obvious for the functional
F ∈ V 1

−θ(Ω)∗, due to Lemma 2.8. For the last term in (2.63), the inequal-
ities (2.3), (2.59) for u0 and (2.12) for v (with γ = 1, β -→ −β + 1 and
orthogonality condition (2.11)) give

|(au0, v)ϖd | ≤ c∥zβu0;L
2(ϖd)∥ ∥z−βv;L2(ϖd)∥

≤ c∥u0;V
1
β (Πd)∥ ∥z−β+1∇xv;L

2(Πd)∥
≤ c∥u0;V

1
β+n−1(0, d)∥ ∥z−θ∇xv;L

2(Πd)∥
≤ Cu0∥r−θ∇xv;L

2(Πd)∥,

where the inequality −β+1 ≤ −θ for exponents follows from the restriction
(2.7). The same argument and (2.49) for v (recall that (2.11) is assumed)
is used in the calculation

|(∂zu0, ∂zv)Πd | = 2
∣∣(∂zu0, z

−1y ·∇yv)Πd

∣∣

≤ c∥zβ∂zu0;L
2(Πd)∥ ∥z−β−1y ·∇yv;L

2(Πd)∥
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≤ c∥u0;V
1
β+n−1(0, d)∥ ∥z−β+1∇yv;L

2(Πd)∥
≤ Cu0∥r−θ∇xv;L

2(Πd)∥.

The desired property of the functional (2.63) is thus verified and the proof
of (2.73) is complete. !

The problem (2.60) leads to the variational formulation of the ordinary
differential equation derived in Section 2.1, although in a perturbed form.
Thus, the next assertion on the asymptotics of its solution can be obtained
by standard methods. However, we first need to give appropriate estimates
for the perturbation terms.

Using the stabilization condition (1.5) and the relation (2.45) for the
coefficients generated by the Jacobian in (1.29), we easily derive the estimate

|((a0 − a)u0, v0)ϖd | + |(szn−2u0, v0)(0,d)|

≤ c∥zβ+n−2u0;L
2(0, d)∥

(
∥z−β+α+n−2v0;L

2(0, d)∥

+ ∥z2−β+n−2v0;L
2(0, d)∥

)

≤ c∥u0;V
1
β+n−1(0, d)∥ ∥v0;V

1
−θ+n−1(0, d)∥.(2.74)

Notice that by (2.7), α − β ≥ −θ. Based on the result which has been
concluded in Proposition 2.14, we now make use of the inequality (2.12) to
get the estimates of the two other terms in (2.62):

|(∂zu⊥, ∂zv0)Πd | ≤ ∥zθ∂zu⊥;L2(Πd)∥ ∥z−θ∂zv0;L
2(Πd)∥

≤ c∥u⊥;V 1
θ (Πd)∥ ∥v0;V

1
−θ+n−1(0, d)∥,(2.75)

and

|(au⊥, v0)ϖd | ≤ c∥zθu⊥;L2(ϖd)∥ ∥z−θv0;L
2(ϖd)∥

≤ c∥u⊥;V 1
θ (Πd)∥ ∥v0;V

1
−θ+n−1(0, d)∥.(2.76)

Formulas (2.74) and (2.75) mean that F0 is a continuous functional on
V 1
−θ+n−1(0, d) and, by virtue of (2.59) and (2.73), the norm of F0 does not

exceed c∥u;V 1
β (Ω)∥.

Proposition 2.15. The asymptotic representation

v0(z) =
∑

±
K±U±(z) + ṽ0(z) , z ∈ (0, d),(2.77)
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holds true; the notation is as in Theorem 2.6 and in particular the co-
efficients K± satisfy the same requirement as in (2.8)–(2.9). Here, ṽ ∈
V 1
θ+n−1(0, d) and moreover

∥ṽ0;V
1
θ+n−1(0, d)∥ +

∑

±
|K±| ≤ c

(
∥F ;V 1

−θ(Ω)∥ + ∥u;V 1
β (Ω)∥

)
.(2.78)

The representation (2.8) and the inequality (2.10) in Theorem 2.6 follow
by applying Propositions 2.14 and 2.15 to the components in the formula
u = u0 + u⊥ (cf. (2.37)).

2.5. Calculation of the index
Let us assume the condition (2.6) and calculate the index

IndTβ = dim kerTβ − dim cokerTβ,(2.79)

where kerTβ and cokerTβ stand for the kernel and cokernel of the operator
(2.4).

Above the threshold, i.e., for a0 > −a‡, the interval I(β−,β+), see (2.6),
includes β0 = 0 while, by the definition, the Fredholm operator T0 is self-
adjoint, hence, for β = 0 we have

IndTβ = 0.(2.80)

By Theorem 2.6 on asymptotics, ker Tβ = kerTθ, if the interval I(β, θ) does
not include any of the indices β±. Noting that I(β, θ) and I(−θ,−β) are
free of the forbidden indices simultaneously and thus cokerTβ = cokerTθ,
we extend the formula (2.80) for

|β| <

√
(
n− 3

2

)2
+ a0

|∂ω|
|ω| .(2.81)

Assume that β > β− > θ and that the hypotheses of Theorem 2.6 are
fulfilled. We introduce the space V1

θ(Ω) consisting of functions u of the form

u(x) = χ0(x)K−U
−(x) + ũ(x)

with the norm

∥u;V1
θ(Ω)∥ =

(
|K−|2 + ∥ũ;V 1

θ (Ω)∥2
)1/2

.
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Theorem 2.6 passes all the properties of the operator Tβ (under our condi-
tions) to the operator

Tθ : V1
θ(Ω) → V 1

θ (Ω)∗.

In particular, kerTθ = kerTβ and cokerT1
θ = cokerTβ. Since the dimension

of the quotient space V1
θ(Ω)/V 1

θ (Ω) is equal to 1, we have

IndTθ = IndTθ − 1 = IndTβ − 1 = −1.(2.82)

Again Theorem 2.6 extends the equality (2.82) for all θ < β− while the
relation A−θ = A∗

θ implies

IndTθ = 1 for θ > β+ = −β−.(2.83)

Theorem 2.16. 1) Assume a0 is above the threshold, i.e. a0 > −a‡.
We have

IndTβ = 0 for |β| <

√
(
n− 3

2

)2
+ a0

|∂ω|
|ω|

and

IndTβ = ±1 for ± β ≥ ±Re

√
(
n− 3

2

)2
+ a0

|∂ω|
|ω| .(2.84)

2) Below the threshold, a0 ≤ −a‡, the formula (2.84) holds for all ±β >
0 = Re

(
(n− 3/2)2 + a0|∂ω|/|ω|

)
.

Proof. It suffices to confirm the second assertion only. Let β > 0 and
θ = −β satisfy the hypotheses of Theorem 2.6. By V1

−β(Ω) we understand
the space of functions of the form (2.8), endowed with the norm

∥u;V1
−β(Ω)∥ =

(
|K−|2 + |K+|2 + ∥ũ;V 1

−β(Ω)∥2
)1/2

.

Again we have kerT−β = kerTβ, coker T−β = cokerTβ, but dim (V1
−β(Ω)/

V 1
−β(Ω)) = 2 so that

IndTβ = IndT−β = IndT−β + 2 = −IndTβ + 2.

This formula, Theorem 2.6 and the inequality T ∗
β = T−β yield (2.84) for any

β ̸= 0. !

The index areas for Tβ are drawn in Fig. 5.
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Fig. 2.4. The index areas.

3. Problem Operator in L2(Ω)

3.1. The discrete spectrum above the threshold
In the case a0 > −a‡ the sesquilinear form

q(u, v) = (∇xu,∇xv)Ω + (au, v)Γ(3.1)

is semi–bounded from below. To verify this property we use Lemma 2.9
with the exact constant in the embedding H1(Ω) ⊂ L2(Γ). Namely, we put
ε = (2(1 + a‡))−1(a‡ + a0) in the inequality (2.14) including the number Cε
and obtain

q(u, u) + M∥u;L2(Ω)∥2

= ε∥∇xu;L2(Ω)∥2 + (au, u)Γ + (1 − ε)
(
∥∇xu;L2(Ω)∥2

+ (a‡ − ε)Cε∥u;L2(Ω)∥2
)

+
(
M − (1 − ε)(a‡ − ε)Cε

)
∥u;L2(Ω)∥2

≥ ε∥∇xu;L2(Ω)∥2 + (au, u)Γ + (1 − ε)(a‡ − ε)∥u;L2(Γ)∥2

+
(
M − (1 − ε)(a‡ − ε)Cε

)
∥u;L2(Ω)∥2.

Owing to (1.4) we have

a(x) + (1 − ε)(a‡ − ε) = a(x) + a‡ − (1 + a‡)ε + ε2
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≥ a(x) + a‡ −
1

2
(a‡ − a0) →

1

2
(a0 + a‡) > 0 as x → O.

We thus find a small d > 0 such that a(x) + (1− ε)(a‡ − ε) > 1
4(a0 + a‡) for

z ∈ [0, d], and therefore

(au, u)ϖ(d) + (1 − ε)(a‡ − ε)∥u;L2(ϖ(d))∥2 ≥ 1

4
(a0 + a‡)∥u;L2(ϖ(d))∥2.

We now use the inequality (2.15) to get an estimate for (au, u)Γ(d) and
then choose a small t > 0 and a large M such that

tmax
x∈Γ

|a(x)| ≤ ε

2
, M > (1 − ε)(a‡ − ε)Cε + Cd(t),(3.2)

where Cd(t) is the coefficient in (2.15). Gathering the above calculations
yields

q(u, u) + M∥u;L2(Ω)∥2 ≥ 0 ⇒ q(u, u) ≥ −M∥L2(Ω)∥2.(3.3)

Hence, q is semi–bounded from below and, evidently, it is also closed. Ac-
cording to [4, Th. 10.1.2], this form generates a semi-bounded self-adjoint
operator T in L2(Ω) associated with the problem (1.6) (or (1.3), (1.4)
in differential form). Finally, [4, Th. 10.1.5] establishes the following as-
sertion.

Theorem 3.1. In the case

lim
x→O

a(x) = a0 > −a‡ = −
(
n− 3

2

)2 |ω|
|∂ω| ,(3.4)

i.e. above the threshold, the spectrum of T and, hence, of the problem (1.6),
are discrete and form the eigenvalue sequence (1.7), where λ1 = −M and
M is the lowest constant in the estimate (3.3).

3.2. The explicit description of the operator domain above the
threshold

Theorem 3.1, which is based on the general results in [4, Ch. 10], does not
yield the explicit form of the domain D(T ). Moreover, the Lipschitz prop-
erty does not prevent the surfaces ∂ω and ∂Ω \O from having irregularities
like conical points, edges and so on, while a solution of the problem (1.3),
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(1.4) may possess singularities and thus live outside H2
loc(Ω \ O) (cf. the

introductory chapters in [29] and [14]). In order to describe D(T ) explicitely
we assume from now on that the surfaces ∂ω and ∂Ω\O are C3-smooth and
that the Robin coefficient a is continuously differentiable in a neighbourhood
of ∂Ω (see Section 3.7 for the case of Lipschitz surfaces).

Since the problem data is smooth, standard local elliptic estimates (see,
e.g., [1, 17]) guarantee that a solution u ∈ H1(Ω) of (1.26), or (1.24), (1.25)
with

f ∈ L2(Ω) , g = 0(3.5)

belongs to u ∈ H2
loc(Ω \ O) and satisfies the estimate

∥u;H2(Ω(2ε))∥ ≤ cε
(
∥f ;L2(Ω(ε))∥ + ∥u;L2(Ω(ε))∥

)
(3.6)

with any ε > 0 and coefficient cε which may grow unboundedly for ε → +0.
The next auxiliary lemma yields weighted estimates of the second deriva-

tives of solutions to the problem (1.24), (1.25) with

f ∈ L2
β+1(Ω) , g = G

∣∣
Γ
, G ∈ L2

β−1(Ω) , ∇xG ∈ L2
β+1(Ω).(3.7)

The right hand side of (1.25) is defined as the trace of the function G which

belongs to H1
loc(Ω \ O), hence, g ∈ H1/2

loc (Γ \ O). The solution u meets
the estimate (3.6) but with an additional term, either ∥G;H1(Ω(ε))∥ or
∥g;H1/2(Γ(ε))∥ on the left. In what follows we still refer to this modified
estimate as (3.6).

Lemma 3.2. Let u ∈ V 1
β (Ω) be a solution to the problem (1.26) with

data (3.7). Then ∇2
xu ∈ L2

β+1(Ω) and the following estimate is valid:

∥rβ+1∇2
xu;L2(Ω)∥ ≤ c

(
∥f ;L2

β+1(Ω)∥ + ∥u;V 1
β (Ω)∥

)
.(3.8)

Proof. Put u ∈ H2
loc(Ω \O), v ∈ C∞

c (Ω \O) into the integral identity
(1.26). Integrating it by parts shows that

(−∆xu, v)Ω + (au + ∂νu, v)Γ = (f, v)Ω + (g, v)Γ.(3.9)

Taking here test functions v ∈ C∞
c (Ω) yields the equation (1.24) and test

functions v ∈ C∞
c (Ω \ O) give the boundary condition (1.25). In view of



68 Sergey A. Nazarov and Jari Taskinen

(3.6), where ε = d/4, it suffices to consider only the peak Πd/2. We introduce
the sets

Ξj =
{
x : z ∈

(d
2
(1 + j)−1,

d

2
j−1

)
, y ∈ ω(z)

}
,

Ξ′
j =

{
x : z ∈

(d
2

(3

2
+ j

)−1
,
d

2

(
j − 1

2

)−1
)
, y ∈ ω(z)

}
(3.10)

and notice that

Ξj ⊂ Ξ′
j , Πd/2 =

⋃

j∈N
Ξj , Ξ′

j ⊂ Πd , Ξ′
j ∩ Ξ′

j+2 = ∅.(3.11)

Since 1
j − 1

1+j = 1
j2 + O( 1

j3 ) and the sets (3.10) have diameters O( 1
j2 ), we

make the coordinate dilatation

x -→ x̂j =
(
j2y, j2(z − d

2
j−1)

)
,(3.12)

which transforms (3.10) into

Ξ̂j =
{
x̂ : −d

2

j

j + 1
< ẑ < 0 ,

(d
2

+
1

j
ẑ
)−2

ŷ ∈ ω
}
,

Ξ̂′
j =

{
x̂ : −3d

4

j

j + 3/2
< ẑ <

d

4

j

j − 1/2
< 0 ,

(d
2

+
1

j
ẑ
)−2

ŷ ∈ ω
}
.

We emphasize that

Ξ̂j ⊂ Ξ̃j =
{
x̂ : −d

4
< ẑ < 0 ,

(d
2

+
1

j
ẑ
)−2

ŷ ∈ ω
}
,

Ξ̂′
j ⊃ Ξ̃′

j =
{
x̂ : −3d

10
< ẑ <

d

2
,
(d

2
+

1

j
ẑ
)−2

ŷ ∈ ω
}
⊃ Ξ̃j .(3.13)

The change of variables (3.12) converts the problem (1.24), (1.25) into

−∆x̂ûj(x̂) = j−4f̂j(x̂) , x̂ ∈ Ξ̃′
j ,

−∂ν̂ ûj(x̂) = −j−2âj(x̂)ûj(x̂) + j−2ĝj(x̂) , x̂ ∈ Γ̃′
j ,(3.14)

where Γ̃′
j = {x̂ ∈ ∂Ξ̃′

j : −3d
10 < ẑ < d

2} is the lateral side of the “cylinder”

Ξ̃′
j in (3.13) and ûj(x̂) = u(x) for x̂ ∈ Ξ̃′

j , and f̂j , ĝj and âj are defined
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similarly. We apply to (3.14) the local estimates for the Poisson equation
with Neumann condition (cf. [1, 17]) and write

∥∇2
x̂ûj ;L

2(Ξ̃j)∥2 ≤ c
(
j−8∥f̂j ;L2(Ξ̃′

j)∥2 + j−4∥âj f̂j ;H1/2(Γ̃′
j)∥2

+ j−2∥ĝj ;H1/2(Γ̃′
j)∥2 + ∥∇x̂ûj ;L

2(Ξ̃′
j)∥2

)
,(3.15)

where H1/2(Γ̃′
j) is the Sobolev-Slobodetskii space. Moreover, the bound

∥âj f̂j ;H1/2(Γ̃′
j)∥ ≤ c∥ûj ;H1(Ξ̃′

j)∥(3.16)

holds by virtue of the assumed smoothness property of the Robin coefficient.

Remark 3.3. Local estimates of type (3.15) are usually written
with the “weak” term ∥ûj ;L2(Ξ̃′

j)∥2 at the end, however, the norm

∥∇x̂ûj ;L
2(Ξ̃′

j)∥ is much more convenient here. This substitution is due
to the following simple observation: the estimate can initially be written for
ûj−uj , where uj is the mean value of ûj over Ξ̃′

j . The difference satisfies the

same Neumann problem in Ξ̃′
j and meets the relations ∇x̂(ûj − uj) = ∇x̂ûj

and ∥ûj − uj , L2(Ξ̃′
j)∥ ≤ c∥∇x̂ûj , L

2(Ξ̃′
j)∥.

For big indices j, the domain Ξ̃′
j in (3.13) is a small regular perturbation

of the cylinder

{
x̂ : −3d

10
< ẑ <

d

2
,

4

d2
ŷ ∈ ω

}
,

and hence the constant c in (3.15) can be chosen independent of j ∈ N and,
of course, ûj . Relations (3.15) and (3.16) give

∥∇2
x̂ûj ;L

2(Ξ̂j)∥2 ≤ c
(
j−8∥f̂j ;L2(Ξ̂′

j)∥2 + j−4∥Ĝj ;H
1(Ξ̂′

j)∥2

+ ∥∇x̂ûj ;L
2(Ξ̂′

j)∥2 + j−4∥ûj ;L2(Ξ̂′
j)∥2

)
,

and after the inverse change x̂j -→ x, we obtain

j−8∥∇2
xu;L2(Ξj)∥2 ≤ c

(
j−8∥f ;L2(Ξ′

j)∥2 + j−8∥∇xG;L2(Ξ′
j)∥2

+ j−4∥G;L2(Ξ′
j)∥2 + j−4∥∇xu;L2(Ξ′

j)∥2

+ j−4∥u;L2(Ξ′
j)∥2

)
.(3.17)
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We multiply (3.17) with j−2β+4 and make use of the relation

0 < cj−1 < r < Cj−1 for x ∈ Ξ′
j ,(3.18)

see (3.10), in order to turn the factor j−1 into the weight r inside the norm.
In this way we have

∥rβ+2∇2
xu;L2(Ξj)∥2 ≤ c

(
∥rβ+2f ;L2(Ξ′

j)∥2 + ∥rβ+2∇xG;L2(Ξ′
j)∥2

+ ∥rβG;L2(Ξ′
j)∥2 + ∥rβ∇xu;L2(Ξ′

j)∥2

+ ∥rβu;L2(Ξ′
j)∥2

)
.(3.19)

Summing up the inequalities (3.19) with respect to j ∈ N and recalling the
formulas (3.11) lead to the estimate

∥∇2
xu;L2

β+2(Πd/2)∥2 ≤ 2c
(
∥f ;L2

β+2(Πd)∥2 + ∥∇xG;L2
β+2(Πd)∥2

+ ∥G;L2
β(Πd)∥2 + ∥∇xu;L2

β(Πd)∥2

+ ∥u;L2
β(Πd)∥2

)
;(3.20)

the reason for the factor 2 is that the family {Ξ′
j}j∈N covers the set Πd/2

twice, see the last formula in (3.11). Note that all norms on the right of
(3.20) are bounded.

The inequality (3.20) together with (3.6) at ε = d/4 provide the inclusion
∇2

xu ∈ L2
β+2(Ω) and the estimate

∥rβ+2∇2
xu;L2(Ω)∥ ≤ c

(
∥f ;L2

β+1(Ω)∥ + ∥u;V 1
β (Ω)∥

)
,(3.21)

which however is not satisfactory because of the “wrong” exponent β+2 on
the left. However, it is straightforward to improve the exponent and turn
(3.21) into (3.8) by means of our previous calculations.

Multiplying the solution with an appropriate cut-off function χ and re-
calling the estimate (3.6), we may again assume that the support of u is
contained in Πd. Applying the decomposition (2.17), we write down the
integral identities of type (2.60) and (2.61) for the components u0(z) and
u⊥(y, z), respectively. The first identity, namely

|ω|(z2(n−1)∂zu0, ∂zv0)(0,d) = (F0, v0)(0,d) , v ∈ C∞
c (0, d)

turns into the ordinary differential equation

−|ω|∂zz2(n−1)∂zu0 = F0(z) , z ∈ (0, d),(3.22)
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where

F0(z) =

∫

ω(z)

f(y, z)dz + ∂z

∫

ω(z)

∂zu⊥(y, z)dy

−
∫

∂ω(z)

N(y, z)1/2a(y, z)u(y, z)dsy

=: Ff
0(z) + Fu

0(z) − Fa
0(z).(3.23)

Clearly, by virtue of (2.16),

d∫

0

z2(β+2−n)|Ff
0(z)|2dz ≤

d∫

0

z2(β+2−n)|ω(z)|2
∫

ω(z)

|f(y, z)|2dydz

≤ c∥f ;L2
β+1(Πd)∥2.

To process Fu
0 we take into account the relation (2.49) following from the

orthogonality condition (2.11) for u⊥:

∫

ω(z)

∂zu⊥(y, z)dy = −2

∫

ω(z)

z−1y ·∇yu⊥(y, z)dy

= −2

∫

ω(z)

z−1y ·∇yu(y, z)dy.

Together with the formula |y| ≤ cωz2 for y ∈ ω(z), this yields

d∫

0

z2(β+2−n)|Fu
0(z)|2dz

≤ c

d∫

0

z2(β+2−n)
∣∣∣
∫

ω(z)

(
|∇yu(y, z)| + z|∂z∇yu(y, z)|

)
dy

∣∣∣
2
dz

≤ c

d∫

0

z2(β+1)
∫

ω(z)

(
|∇yu(y, z)|2 + z2|∂z∇yu(y, z)|2

)
dydz



72 Sergey A. Nazarov and Jari Taskinen

≤ c
(
∥rβ+1∇xu;L2(Πd)∥2 + ∥rβ+2∇2

xu;L2(Πd)∥2
)
,

where both of the norms on the right are finite due to our assumption and
the estimate (3.21). Finally, we apply the trace inequality to obtain

d∫

0

z2(β+2−n)|Fa
0(z)|2dz ≤ c

d∫

0

z2(β+2−n)|∂ω(z)|
∫

∂ω(z)

|u(y, z)|2dsydz

≤ c

∫

ϖd

r2β |u(y, z)|2dsx ≤ c∥u;V 1
β (Πd)∥2.

It remains to mention that the proof of Lemma 2.8 yields

∥zβ−2+nu0;L
2(0, d)∥ + ∥zβ−1+n∂zu0;L

2(0, d)∥ ≤ c∥u;V 1
β (Πd)∥,(3.24)

and that the following estimate for the solution of (3.22) is evident:

∥rβ+1∂2
zu0;L

2(Πd)∥ ≤ c∥rβ+n∂2
zu0;L

2(0, d)∥
≤ c

(
∥zβ+1−nF0;L

2(0, d)∥ + ∥zβ−1+n∂zu0;L
2(0, d)∥

)
.(3.25)

The second integral identity is nothing but (2.61) with the functionals
F (v) = (f, v)Πd and (2.63). Both satisfy the condition (2.64) with θ = β−1.
Indeed, in view of Lemma 2.8 with γ = 1 we have

|(f, v)Πd | ≤ ∥zβ+1f ;L2(Πd)∥∥z−θ−2v;L2(Πd)∥
≤ c∥f ;L2

β+1(Πd)∥∥∇xv;L
2
−θ(Πd)∥,

|(au0, v)ϖd | ≤ c∥zβu0;L
2(ϖd)∥∥z−θ−1v;L2(ϖd)∥

≤ c∥zβ+n−1u0;L
2(0, d)∥∥∇xv;L

2
−θ(Πd)∥.

Moreover, integrating by parts and recalling the formula (1.27) for the nor-
mal ν(y, z) we derive similarly

|(∂zu0, ∂zv)Πd | = |(∂2
zu0, ∂zv)Πd + 2(z−1y · ν ′∂zu0, v)ϖd |

≤ c
(
∥zβ+n−2∂2

zu0;L
2(0, d)∥ + ∥zβ+n−1∂zu0;L

2(0, d)∥
)
∥∇xv;L

2
−θ(Πd)∥,

where both norms of u0 also appear in (3.24) and (3.25). In other words,
Proposition 2.14 furnishes the estimate

∥rβ−1∇xu⊥;L2(Πd)∥ + ∥rβ−3u⊥;L2(Πd)∥
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≤ c
(
∥rβ+1f ;L2(Πd)∥ + ∥u;V 1

β (Πd)∥
)
.(3.26)

We emphasize that the increasing of weights from rβ on ∇xu to rβ−1 on
∇xu⊥ and from rβ−1 on u to rβ−3 on u⊥ allows us to derive the necessary
estimate

∥rβ+1∇2
xu⊥;L2(Πd)∥2 ≤ c

(
∥rβ+1f ;L2(Πd)∥2 + ∥u;V 1

β (Πd)∥2
)
;

here we also use the local estimates for the solution u⊥ of the problem

−∆xu⊥(x) = f⊥(x) := f(x) + ∂2
zu0(x) , x ∈ Πd,

∂νu⊥(x) + a(x)u⊥(x) = g⊥(x) := −∂νu0(z) − a(x)u0(x) , x ∈ ϖd.(3.27)

To this end, we rewrite the estimate (3.17) as follows:

j−8∥∇2
xu⊥;L2(Ξj)∥2 ≤ c

(
j−8∥f⊥;L2(Ξ′

j)∥2

+ j−4∥∇xu⊥;L2(Ξ′
j)∥2 + j−4∥u⊥;L2(Ξ′

j)∥2
)
.

Multiplying with j−2β+6 and using (3.18), one can again introduce weighted
norms and obtain

∥rβ+1∇2
xu⊥;L2(Ξj)∥2 ≤ c

(
∥rβ+1f⊥;L2(Ξ′

j)∥2

+ ∥rβ−1∇xu⊥;L2(Ξ′
j)∥2 + ∥rβ−1u⊥;L2(Ξ′

j)∥2
)
.(3.28)

The right hand sides possess the necesssary properties because of the esti-
mates (3.24) and (3.25) for the component u0. For example, the extension
G⊥ of g⊥ in (3.27) is given by

G⊥(y, z) = −a(y, z)u0(z) − 2z−1y ·N ′(z−2y)∂zu0(z),(3.29)

where N ′ = (N ′
1, N

′
2) is a vector function in ω coinciding with

N(z−2y)−1/2ν ′(z−2y) at ∂ω, see the formulas (1.27) and (1.28) for the ex-
terior normal ν(y, z) on ∂ϖd. The inclusions for G⊥ in (3.7) are verified by
a direct calculation.

Summing (3.28) up with respect to the index j ∈ N leads to the estimate
(3.26), which together with (3.25) completes the proof. !

Remark 3.4. Introducing the weighted Kondratiev space V 2
θ (Ω) with

the norm

∥u;V 2
θ (Ω)∥ =

(
∥rθ∇2

xu;L2(Ω)∥2
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+ ∥rθ−1∇xu;L2(Ω)∥2 + ∥rθ−2u;L2(Ω)∥2
)1/2

,(3.30)

we may rewrite the inequality (3.8) in the same way as in (2.2):

∥u;V 2
β+1(Ω)∥ ≤ c(∥f ;L2

β+1(Ω)∥ + ∥u;V 1
β (Ω)∥).(3.31)

We have assumed here that g = 0 in the boundary condition (1.25) so that
u satisfies (1.4). Furthermore, the evident multiplicative inequality

∥rβ∇xu;L2(Ω)∥ ≤ c∥∇xu;V 1
β+1(Ω)∥ ∥u;L2

β−1(Ω)∥

allows us to write (3.31) in the new form

∥u;V 2
β+1(Ω)∥ ≤ c(∥f ;L2

β+1(Ω)∥ + ∥u;L2
β−1(Ω)∥),(3.32)

and a completion argument proves that a solution u ∈ H2
loc(Ω\O)∩L2

β−1(Ω)

of the problem (1.24), (1.4) with f ∈ L2
β+1(Ω) falls into V 2

β+1(Ω). There are
crucial differences between the estimates (3.31) (or (3.32)) and (2.54): in
both (3.31) and (3.32) the forbidden indices β = β± of (2.6) are accepted,
but (2.54) does not permit β = β±. On the other hand, (2.54) involves
the L2(Ω(d))-norm of u and V 1

β (Ω) is embedded compactly into this space,

while none of the embeddings V 2
β+1(Ω) ⊂ V 1

β (Ω) ⊂ L2
β−1(Ω) is compact.

We are now in a position to verify the given formulas for D(T ).

Theorem 3.5. In the case a0 ∈ (−a•, 0) the domain D(T ) of the
operator T takes the form (1.46), while for a0 ∈ (−a‡,−a•) it equals
(1.49).

Proof. If u belongs to the linear space (1.45), then u ∈ H1(Ω) =
V 1

0 (Ω) is a solution of the problem (1.24) with the right-hand sides f ∈
L2(Ω) = L2

0(Ω) and g = 0. At the same time it becomes a solution of the
problem (2.1) with the functional

F (v) = (f, v)Ω + λ(u, v)Ω , F ∈ V 1
−θ(Ω)∗ with θ = −1.

In the case (1.47) the exponents λ± in (1.34) live outside the interval
I(0,−1), see (2.9). Hence, recalling the restriction (2.7), a recursive ap-
plication of Theorem 2.6 shows that u ∈ V 1

−1(Ω) and

∥u;V 1
−1(Ω)∥ ≤ c

(
∥F ;V 1

1 (Ω)∗∥ + ∥u;V 1
0 (Ω)∥

)
≤ c∥u;H1(Ω)∥.
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Furthermore, Lemma 3.2 with β = −1 proves that ∇2
xu ∈ L2

0(Ω) = L2(Ω)
and

∥∇2
xu;L2(Ω)∥ ≤ c

(
∥f ;L2(Ω)∥ + ∥u;V −1

1 (Ω)∥
)
.

This yields (1.46).
In the case (1.48) the exponent λ+, (1.34), falls into the interval I(0,−1),

(2.9), and so Theorem 2.6 assures that

u(x) = χ0(x)K+U
+(z) + ũ(z) ,

|K+| + ∥ũ(z);V 1
−1(Ω)∥ ≤ c

(
∥F ;V 1

1 (Ω)∗∥ + ∥u;V 1
0 (Ω)∥

)
.(3.33)

We rewrite the representation (3.33) as follows:

u(x) = χ0(x)K+
(
zλ+ + zλ++2W+(z−2y)

)
+ ŭ(x) ,(3.34)

where W+ is a solution of the Neumann problem (1.38) described in Remark
1.3. Noting that

χ0K+z
λ++2W+ ∈ H2(Ω) ⊂ V 1

−1(Ω)(3.35)

we find that the new remainder ŭ = ũ− χ0K+zλ++2W+ ∈ V 1
−1(Ω) satisfies

the problem (1.24) with the right-hand sides

f̆ = f + K+∆xχ0(U
+ + zλ++2W+) ,

ğ = −K+(∂ν + a)χ0(U
+ + zλ++2W+) .

A direct calculation repeating the arguments in Section 1.6 shows that

f̆ ∈ L2
0(Ω) , ğ = Ğ

∣∣
Γ
, Ğ ∈ L2

−2(Ω) , ∇xĞ ∈ L2
0(Ω),(3.36)

while the corresponding norms do not exceed c(∥f ;L2(Ω)∥ + |K+|). Thus,
Lemma 3.2 yields the following:

∇2
xŭ ∈ L2(Ω), i.e., ŭ ∈ V 2

0 (Ω) and ∥∇2
xŭ;L2(Ω)∥ ≤ c

(
∥f ;L2(Ω)∥ + |K+|

)
.

This and (3.33) show that the representation (3.34) readily converts into
the one in (1.49). !

Remark 3.6. In the case a0 = −a• we have β± = ±1 and

U±(z) = z±1−n+3/2,(3.37)
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cf. (2.6), (1.34) and (1.47), so that we cannot derive the formulas (3.33)
from Theorem 2.6, since the weight index θ = −1 is forbidden. This means
that we need to repeat the dimension reduction procedure to yield the dif-
ferential equation (3.22) with F0 ∈ L2

1−n(0, d). Taking into account the last
weight exponent 1 − n and the form (3.37) of the solution U+, we get the
representation

u(x) = χ0(x)K+(z)U+(z) + ũ(x)(3.38)

by using the variation of constants-method found in standard textbooks of
differential equations. However, the function K+ has logarithmic growth
as z → +0, instead of the constant K+ in (3.33). The estimate for the
remainder ũ also differs from the one in (3.33). The present particular case
a0 = −a• is above the threshold and thus has discrete spectrum, however,
it requires cumbersome calculations which lay a bit outside the scope of the
paper. Hence, we only formulate an easily accessible result: for any δ > 0,

D(T ) = {u ∈ V 2
δ (Ω) : ∆u ∈ L2(Ω),

∂νu(x) + a(x)u(x) = 0, x ∈ ∂Ω \ O}.(3.39)

We also refer to papers [20], [32], [23] and the book [13], which contain
general methods for describing in detail the properties of the terms in (3.38).
Finally, we mention that the Sobolev space H2(Ω) can be replaced in (3.33)
and (3.35) by the Kondratiev space V 2

0 (Ω), but (3.39) does not hold for the
index δ = 0.

3.3. The operator below the threshold
We proceed with the following assertion which demonstrates that under

the condition

lim
x→O

a(x) = a0 < −a‡ = −
(
n− 3

2

)2 |ω|
|∂ω|(3.40)

the sesquilinear form (3.1) is not semibounded. Hence, the results in [4,
Ch. 10] do not apply, and we have to investigate the operator of the problem
(1.6) by special methods.

Lemma 3.7. If (3.40) holds, one can find for any m a function um± ∈
H1(Ω) ⊂ L2(∂Ω) such that the inequality (1.15) is valid.
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Proof. As in the proof of Lemma 1.2, we again define the functions
um+ by choosing for every large m one from C∞

c (Ω) satisfying (1.17)
Let us define the functions um− ∈ H1(Ω) by

um− (z) = χm(− ln z)z−n+3/2,

where χm is the cut-off function (2.56), see Fig.2.3, so the support of um− is
contained in the interval [exp(−2m+1), exp(−2m)]. Recalling (2.16) we can
calculate

∥um− ;L2(Ω)∥2 ≤ |ω|
exp(−2m)∫

exp(−2m+1)

z−2n+3z2(n−1)dz

≤ 1

2
|ω|

(
exp(−2m+1) − exp(−2m+2)

)
,

∥∇xu
m
− ;L2(Ω)∥2 = ∥∂zum− ;L2(Ω)∥2

≤ |ω|
exp(−2m−1)∫

exp(−2m+1+1)

((
− n +

3

2

)2
z2(−n+1/2)z2(n−1)dz

+
( exp(−2m+1+1)∫

exp(−2m+1)

+

exp(−2m)∫

exp(−2m−1)

)(
cχz

−n+3/2 +
(
n− 3

2

)
z−n+ 1

2

)2
z2n−1dz

)

≤ |ω|
((

n− 3

2

)2
(2m+1 − 2m − 2) + cχ,n exp(−2m)

)
,

∥um− ;L2(∂Ω)∥2 ≥ |∂ω|
exp(−2m−1)∫

exp(−2m+1+1)

(1 + cNz2)z−2(n−3/2)z2(n−2)dz

≥ |∂ω|(2m+1 − 2m − 2)).(3.41)

In the last formula we have used (1.28) and (1.29). The relation (1.15)
follows now from the threshold condition (3.40): we can find a δ > 0 such
that, for large enough m,

a(x)|∂ω| < −(n− 3/2)2|ω|− δ(3.42)
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for x = (y, z) with z < exp(−2m). Then (3.42) holds in the support of um− ,
we can deduce using (3.42)

−q(um− , um− ) ≥ − inf
z<e−2m

a(x)∥um− ;L2(∂Ω)∥2 − ∥∇xu
m
− ;L2(Ω)∥2

≥ − inf
z<e−2m

a(x)|∂ω|(2m+1 − 2m − 2))

− |ω|(n− 3/2)2(2m+1 − 2m − 2) − c exp(−2m)

≥ δ(2m+1 − 2m − 2) − c exp(−2m)

≥ m∥um− ;L2(Ω)∥2. !(3.43)

Remark 3.8. In the proof of Lemma 3.7 we did not care for the Robin
boundary condition (1.4), which however will become important in Section
3.6. For smooth data it is not difficult to modify the test functions (3.62)
so as to satisfy (1.4). Similarly to (3.34) we set

um
− (x) = χm(− ln z)

(
zλ+ + zλ++2W+(z−2y)

)
+ Wm(y, z)

with two correction terms. The first one, defined according to Remark 1.3,
satisfies

∥χmzλ++2W+;L2(Ω)∥2 ≤ c

exp(−2m)∫

exp(−2m+1)

z2(n−1)z2(−n+7/2)dz

≤ c exp(−6 · 2m),

∥∇x(χmzλ++2W+);L2(Ω)∥2 ≤ c

exp(−2m)∫

exp(−2m+1)

z2(n−1)z2(−n+3/2)dz

≤ c exp(−2 · 2m),

∥χmzλ++2W+;L2(∂Ω)∥2 ≤ c

exp(−2m)∫

exp(−2m+1)

z2(n−2)z2(2−n+3/2)dz

≤ c exp(−4 · 2m),(3.44)

and thus cannot spoil the calculations (3.41) and (3.43). The second term
Wm is intended to compensate for a discrepancy left in (1.4), which can be
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put to the following form using the formula (1.27) for the normal on ϖd:

∂ν
(
χm(− ln z)(zλ+ + zλ++2W+(z−2y))

)

= χm(− ln z)zλ+
(
∂ν′W+(η) − 2λ+η · ν ′(η) + a0

)
+ gm(y, z).

The first term on the right vanishes in view of the boundary condition in
the problem (1.38) for W+. The remainder has support in {(y, z) ∈ ϖd :
z ∈ [exp(−2m+1), exp(−2m)]} and meets the estimates

|gm(y, z)| ≤ cz−n+5/2 , |∂νgm(y, z)| ≤ cz−n+3/2 ,

|∇yg
m(y, z)| ≤ cz−n+1/2.

Going over to the coordinates (η, ζ), see (1.21), we can readily find a function
Wm without solving a differential equation, such that the following holds: its
support is contained in {(y, z) ∈ ϖd : z ∈ [2−1 exp(−2m+1), 2 exp(−2m)]},
and moreover ∂νWn + aWn = 0 on ∂Ω, and

|Wm(y, z)| ≤ cz−n+7/2 , |∂zWm(y, z)| ≤ cz−n+5/2,

|∇yWm(y, z)| ≤ cz−n+3/2.

Hence, the relations (3.44) are valid for the second correction term as well
and therefore the family {um−} satisfies (1.17). Notice that there is no
need to modify the family {um+} because the functions um+ vanish near the
boundary.

In the next assertion we show that below the threshold the domain (1.45)
again takes the form (1.46). However, later we discover that the operator
T loses all nice properties.

Theorem 3.9. The formula (1.46) holds for a0 < −a‡.

Proof. We have to study once more the solution u ∈ H1(Ω) = V 1
0 (Ω)

of the problem (1.24), (1.25) with right-hand sides f ∈ L2(Ω) and g = 0.
However, we cannot directly apply Theorem 2.6, because the index β = 0
becomes forbidden due to (2.6). So, we fix a small positive β′, and using
u ∈ V 1

0 (Ω) ⊂ V 1
β′(Ω) and Theorem 2.6 with β = β′, θ = β′ − 1/2 we obtain
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the representation (2.8), where ũ ∈ V 1
θ (Ω) ⊂ H1(Ω). None of the functions

χ0zλ± , (1.34), lives in H1(Ω), since the integral

∫

Πd

|∂zzλ± |2dx = |λ±|2|ω|
d∫

0

z2(−n+1/2)z2(n−1)dz

diverges. Notice that if a0 = −a‡, none of the functions (1.35) and (1.39)
belongs to H1(Ω) either. Hence, the coefficients K± in the decomposition
(2.8) of u ∈ H1(Ω) must vanish, and we conlude that u = ũ ∈ V 1

β′−1/2(Ω).

Now an application of Theorem 2.6 with β = β′ − 1/2 ∈ (0, 1) and θ = −1
(this index is no more forbidden here) shows that u ∈ V 1

−1(Ω), and Lemma
3.2 completes the proof. !

3.4. The generalized Green formula and the adjoint operator
above the threshold

If both u ∈ V 2
0 (Ω) and v ∈ V 2

0 (Ω) ⊂ L2(Ω) satisfy the two condi-
tions imposed in (1.46), the traditional Green formula is valid, by a com-
pletion argument, and as a consequence, the symplectic (sesquilinear and
anti-Hermitian) form

s(u, v) = (−∆xu, v)Ω − (u,−∆xv)Ω(3.45)

vanishes. Note here in particular that the form (3.45) can be defined by
continuity in V 2

β (Ω) × V 2
−β(Ω) for any β ∈ R.

Let δ ∈ (0, 1/2) be fixed and let V1
−1(Ω) denote the space of functions

of the form (2.8) with the norm

∥u;V1
−1(Ω)∥ =

(
|K−|2 + |K+|2 + ∥ũ;V 1

−1(Ω)∥2
)1/2

.(3.46)

Clearly V1
−1(Ω) ⊂ V 1

1 (Ω) ⊂ L2(Ω). Notice that U± are taken from (1.34)
in the case A > (n− 3/2)2 and from (1.39), if A = (n− 3/2)2.

Remark. 1.) If the Fredholm operator T1 is an epimorhism and T−1

is thus a monomorphism, then V1
−1(Ω) is but the preimage (T1)−1V 1

−1(Ω)
with the induced topology.

2.) The space V1
−1(Ω) inherits the Hilbert space structure from V 1

−1(Ω),
although this fact will not be used later. The superscripts 2 and 1/2 can be
omitted simultaneously in (3.46).
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Let T ∗ denote an unbounded operator in L2(Ω) with the differential
expression −∆x and the domain

D(T ∗) = { u ∈ V1
−1(Ω) : ∆xu ∈ L2(Ω) ,

∂νu(z) + a(x)u(x) = 0, x ∈ ∂Ω \ O}.(3.47)

We emphasize that the boundary condition can be understood in H1/2(∂Ω\
O). As the chosen notation suggests, we are going to verify that T ∗ is the
adjoint for T .

The form (3.45) is defined for functions in (3.47), but it does not vanish
any more.

Lemma 3.10. For functions u, v ∈ D(T ∗) with the attributes K±, ũ,
and L±, ṽ, respectively, the following generalized Green formula is valid:

s(u, v) = µi
∑

±
±K±L±,(3.48)

where

µ = 2|ω|
{ (

A− (n− 3/2)2
)1/2

for A > (n− 3/2)2,
1 for A = (n− 3/2)2.

(3.49)

Proof. Since C∞
c (Ω \ O) is dense in V 1

−1(Ω), it suffices to consider
ŭ, v̆ ∈ C∞

c (Ω \ O). For a small d > 0 we thus have

(−∆xu, v)Ω(d) − (u,∆xv)Ω(d)

=

∫

ω(d)

(
v(y, d)∂zu(y, d) − u(y, d)∂zv(y, d)

)
dy

= |ω(d)|
∑

ϕ=±

∑

ψ=±
KϕLψ

((
Uψ(d) + O(d−n+7/2)

)

×
(
∂zU

ϕ(d) + O(d−n+3/2)
)

−
(
Uϕ(d) + O(d−n+7/2)

)(
∂zUψ(d) + O(d−n+3/2)

))
.(3.50)

In the case A > (n − 3/2)2 the formulas (1.34), (3.49) and (2.16) show
that the expression (3.50) indeed tends to the right-hand side of (3.48) as
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d → 0+. The case A = (n−3/2)2 is treated similary, using the functions U±

in (1.39). It suffices to note that s(u, v) is the limit of (3.50) as d → 0+. !

Proposition 3.11. Let T ∗ be the adjoint of the operator T with do-
main (1.45) = (1.46). The domain D(T ∗) is given by (3.47).

Proof. We need to verify the following: If u, f ∈ L2(Ω) and

(u, f)Ω = (−∆xu, v)Ω for any u ∈ D(T ),(3.51)

then v ∈ D(T ∗) and −∆xv = f . First, we can conlude that u ∈ H2
loc(Ω \O)

using the general results on lifting the regularity of solutions of elliptic
problems in domains with smooth boundaries, see [17]. Integrating by parts
in (3.51) yields

0 = (u, f)Ω + (∆xu, v)Ω = (u, f)Ω + (u,∆xv)Ω + (∂νu, v)Γ − (u, ∂νv)Γ

= (u,∆xv + f)Ω − (u, ∂νv + av)Γ,

where the boundary condition in (1.45) was used. Hence, v satisfies the
problem (1.24), (1.4) with f ∈ L2(Ω). Next, since f ∈ L2

0(Ω) ⊂ L2
2(Ω) and

v ∈ L2
0(Ω), Remark 3.4 with β = 1 imply ∈ V 2

2 (Ω) ⊂ V 1
1 (Ω). Applying

Theorem 2.6 with β = 1 and θ = −δ (recursively, because β− θ > 1/2) and
Lemma 3.2 we conclude that v falls into the linear space (3.47).

Finally, we observe that by Lemma 3.10,

s(u, v) = 0

for all u ∈ D(T ) and v ∈ V1
−1(Ω) satisfying the condition (1.4). This means

that, indeed, any element of the space (3.47) belongs to the domain of the
adjoint operator T ∗. !

3.5. The spectra of T and T ∗

We proceed with the following simple observation.

Lemma 3.12. If λ ∈ C \R, the kernel of the operator T −λ is trivial.

Proof. Assuming u ∈ ker(T − λ) ⊂ D(T ) ⊂ H1(Ω), we deduce from
the integral identity in (1.44) with −∆xu = λu ∈ L2(Ω) that

(∇xu,∇xu)Ω + (au, u)Γ = λ(u, u)Ω.(3.52)
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Let Imλ ̸= 0. Since the left hand side of (3.52) is real, we conclude that
∥u;L2(Ω)∥ = 0 and u = 0. !

Let us now consider the Fredholm operator

T−1 : V 1
−1(Ω) → V 1

1 (Ω)∗(3.53)

(cf. (2.4)). Since evidently

V 1
−1(Ω) ⊂ L2

−2(Ω) ⊂ L2
0(Ω) ⊂ V 1

1 (Ω)∗,(3.54)

the embedding V 1
−1(Ω) ⊂ V 1

1 (Ω)∗ is compact. We can thus use the general
result [9, Th.1.5.1] to conclude that the spectrum of the operator (3.53)
consists of normal eigenvalues and has no finite accumulation point. Since
ker (T−1−λ) = {0} for λ ∈ C\R (cf. Lemma 3.12), the eigenvalues fall into
the real axis of the complex plane and form a countable set Λ of separated
points. The set Λ thus belongs to the point spectrum σp(T ) of the operator
T . Moreover the formula

σp(T ) = Λ(3.55)

holds, because T is the restriction of T 1
−1 onto the linear set (1.46), which

is included in V 2
0 (Ω), while all eigenfunctions of T 1

−1 also belong to V 2
0 (Ω),

by Lemma 3.2.
Since ker (T 1

−1 − λ) = {0} for λ ∈ C \ R, we have

ker (T 1
−1 − λ) = coker (T 1

−1 − λ) = {0} , λ ∈ C \ Λ,(3.56)

and, by the index formula (2.84),

dim coker (T 1
−1 − λ) = dim ker (T 1

−1 − λ) = 1.(3.57)

From the above information, we conclude for T that the regularity field
ϱ̂(T ) equals C \ Λ and the resolvent set ϱ(T ) is empty. So, the spectrum
σ(T ) = C \ ϱ(T ) fills the whole plane while Λ coincides with the spectral
kernel σ̂ = C \ ϱ̂(T ). Its complement is the residual spectrum: σr(T ) =
σ(T ) \ σ̂(T ) = C \ Λ.

For the adjoint operator T ∗ we have

ϱ(T ∗) = ϱ̂(T ∗) = ∅ , σ(T ∗) = σp(T ∗) = C
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(cf. the second inequality (3.57)). Furthermore, any point in C \ Λ is a
simple eigenvalue, while eigenvalues in Λ have finite multiplicities bigger
than 1.

For both T and T ∗, the continuous and essential spectra are empty (the
latter because of the finite multiplicities).

3.6. Self-adjoint extensions
Formulas (3.56) and (3.57) show in particular that defect number d(λ)

of T −λ is equal to 1 everywhere in C\Λ ⊃ {λ ∈ C : Imλ > 0}. Hence, any
symmetric extension of T is self-adjoint (see, e.g., [4, § 4.4]). The famous
Neumann formulas give a parametrization of all self-adjoint extensions. This
can also be determined via the generalized Green formula (Lemma 3.10).
Indeed, if T ϑ is a symmetric extension of T ∗, the identity

s(u, v) = 0 , u, v ∈ D(T ϑ),

is valid due to the symmetry. The null spaces of the symplectic form s have
a direct description (see [16]), namely

D(T ϑ) = {u ∈ D(T ∗) : K+ = eiϑK−}(3.58)

with the parameter ϑ ∈ [0, 2π). Notice that by (3.48) we have

s(u, v) = iµ2
(
Ku

+K
v
− −Ku

−K
u
−
)

= iµ2Ku
+K

v
+(1 − eiϑe−iϑ) = 0

for any u, v ∈ D(T ϑ) with the attributes Ku
±, Kv

±.

Theorem 3.13. Any self-adjoint extension of T has the domain
(3.58), and the restriction T ϑ of T ∗ to (3.58) is self-adjoint.

The embedding D(T ϑ) ⊂ L2(Ω) is still compact because D(T ϑ) differs
from D(T ) ⊂ H2(Ω) ⊂ V 1

−1(Ω) by a one-dimensional subspace. Thus, by
[4, Thm. 9.2.1], the spectrum σϑ = σ(T ϑ) is discrete. We divide it into two
sets, σϑ+ = {λ ∈ σϑ : λ ≥ 0} and σϑ− = {λ ∈ σϑ : λ < 0}. If σϑ− contains
only a finite number ♯(σϑ−) of points, then the operator T ϑ happens to
be semibounded from below, and therefore the smallest eigenvalue can be
computed from the minimum principle

min
u∈D(T ϑ)\{0}

(T ϑu, u)Ω
(u, u)Ω

.(3.59)



Anomalies of the Robin Laplacian 85

On the other hand, a calculation in Remark 3.8 shows that the minimum
(3.59) does not exist, i.e., it equals −∞. The same argument applied to the
operator −T ϑ (notice the minus-sign) proves that #(σϑ+) = ∞ . Hence, the
spectrum σϑ+ ∪ σϑ− of T forms two unbounded sequences

0 ≤ λϑ1 ≤ λϑ2 ≤ . . . ≤ λϑn . . . → +∞,

0 > λϑ−1 ≥ λϑ−2 ≥ . . . ≥ λϑ−n . . . → −∞.(3.60)

In this way, none of the self-adjoint operators associated to the problem
(1.3), (1.4) above the threshold possesses the properties of T below the
threshold, such as the monotone sequence (1.7) of eigenvalues. We empha-
size that in this situation, a much more physically relevant tool would be to
impose a radiation condition at the peak tip (see [31] for a different geomet-
rical setting), but we do not discuss this in the present paper. Let us only
mention that a radiation condition leads to an anti-symmetric extension of
the operator onto the subspace of waves D(T ∗)/D(T ) (cf. [29, Ch. 6]).

3.7. Returning to the case of Lipschitz domains
For Lipschitz surfaces ∂ω, ∂Ω \ O and a Robin coefficient a ∈ L∞(Γ),

the formulas (1.46) and (1.49) are of course no longer true. However, using
Theorem 2.6 we readily conclude that below the threshold, in case (1.47),
the space H1(Ω) in (1.44) can be replaced by the smaller space V 1

−1(Ω).
Furthermore, assuming the condition (1.48) the functions u ∈ D(T ) have
the representation

u = K+χ0U
+ + ũ , K+ ∈ C , ũ ∈ V 1

θ (Ω) , θ = β− − min{α, 1/2},(3.61)

see (2.7) and (2.8).
At the same time, all main conclusions about spectra and self-adjoint

extensions in Sections 3.5 and 3.6 remain valid above the threshold. This is
due to the following formulas for the domains of T and T ∗:

D(T ) = {u ∈ V 1
−1(Ω) : u satisfies the conditions in (1.44)}

D(T ∗) = {u ∈ V 1
1 (Ω) : u takes the form (3.61) and satisfies

the conditions in (1.44)}.

To derive these formulas one may argue in the same way as in Section 3.4,
using only Theorem 2.6 and the generalized Green formula (3.48); they do
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not require smooth data, since the form (3.45) is defined properly for u,
v ∈ H1(Ω) such that ∆xu, ∆xv ∈ L2(Ω).

Let V1
−1(Ω) denote the space of functions of the form

u(x) = χ0(x)
∑

±
K±

(
zλ± + zλ±+2W±(z−2y)

)
+ ŭ(x),(3.62)

where K± ∈ C, ŭ ∈ V 2
0 (Ω) and W± are solutions of the Neumann problem

in ω described in Remark 1.3. This space is endowed with the norm

∥u;V1
−1(Ω)∥ =

(
|K−|2 + |K+|2 + ∥ŭ;V 2

0 (Ω)∥2
)1/2

.

Clearly V1
−1(Ω) ⊂ V 1

1 (Ω) ⊂ L2(Ω). Notice that U± are taken from (1.34)
in the case A > (n− 3/2)2 and from (1.39), if A = (n− 3/2)2.

The representation (3.62) looks like (3.34) and it is a bit different from
(2.8). It is obtained in the following way. First, we apply Theorem 2.6 itera-
tively and obtain the representation (2.8) with the remainder ũ ∈ V 1

−1+δ(Ω)
for any δ > 0. It is impossible to take δ = 0, for example due to the
observation that

f̃ = f +
∑

±
K±∆xχ0U

± ∈ L2
δ(Ω) but f̃ /∈ L2

0(Ω).

However, similarly to the proof of Theorem 3.5 we find that the right hand
sides

f̆ = f +
∑

±
K±∆xχ0(U

± + zλ±+2W±),

ğ = −
∑

±
K±(∂ν + a)χ0(U

± + zλ±+2W±)(3.63)

of the problem (1.24), (1.25) for ũ satisfy (3.36), a fact caused by the correc-
tion terms zλ±+2W±(z−2y) of (3.62). We emphasize that |U+(z)| = |U−(z)|
and the inclusion (3.35) fails above the threshold. Nevertheless, the func-
tions (3.63) generate a functional F̆ ∈ V 1

1 (Ω)∗ on the right-hand side of the
integral identity (1.26) for ŭ. Thus, Theorem 2.6 proves that ŭ ∈ V 1

−1(Ω)
while ŭ ∈ V 2

0 (Ω) due to Lemma 3.2 (and Remark 3.4).
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