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Long-Time Solvability of the Navier-Stokes-Boussinesq

Equations with Almost Periodic Initial Large Data

By Slim Ibrahim and Tsuyoshi Yoneda

Abstract. We investigate long time existence of solutions of the
Navier-Stokes-Boussinesq equations with spatially almost periodic
large data when the density stratification parameter is sufficiently
large. In 1996, Kimura and Herring [16] examined numerical simula-
tions to show a stabilizing effect due to the large stratification. They
observed scattered two-dimensional pancake-shaped vortex patches ly-
ing almost in the horizontal plane. Our result gives a mathematical
foundation of the presence of such two-dimensional pancakes.

1. Introduction

Large-scale fluids such as atmosphere and ocean are parts of geophysi-

cal fluids, and the Coriolis force caused by the rotation of the earth plays

a significant role in the large scale flows considered in meteorology and

geophysics.

Mathematically, such significant role was first investigated by Poincaré

[20]. Later on, the problem of strong Coriolis force was extensively studied.

Babin, Mahalov and Nicolaenko (BMN) [1, 2] studied the incompressible ro-

tating Navier-Stokes and Euler equations in the periodic case while Chemin,

Desjardins, Gallagher and Grenier [8] analyzed the case of data decaying at

space infinity. Recently, the second author of the present paper considered

the almost periodic case [21]. Gallagher in [10] studied a more abstract

parabolic system. We also refer to Paicu [19] for anisotropic viscous fluids,

Benameur, Ibrahim and Majdoub [5] for rotating Magneto-Hydro-Dynamic
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system, and Gallagher and Saint-Raymond [11] for inhomogeheous rotating

fluid equations.

Moreover the case when fluids are governed by both strong Coriolis force

and vertical stratification effects was investigated by BMN in [3] in the peri-

odic setting and by Charve in [6] for decaying data, respectively. However,

their studies do not cover the case when fluid equations are governed by

the only effect of stratification. It is now well known that a strong Coriolis

force has a stabilizing effect (see [1]). However, in BMN [4, Section 9.2]

they observed that for ideal fluids (i.e., with zero viscosity), the only effect

of stratification leads to unbalanced dynamics. On the other hand, Kimura

and Herring [16] examined numerical simulations to show a stabilizing effect

due to the effect of stratification for viscous fluid. They observed scattered

two-dimensional pancake-shaped vortex patches lying almost in the hori-

zontal plane. Our result gives a mathematical foundation of the presence of

such two-dimensional pancakes.

More precisely, we study long-time solvability for Navier-Stokes-

Boussinesq equation with stratification effects:


∂tu− ν∆u+ (u · ∇)u+ ∇p = gρe3, x ∈ R
3, t > 0

∂tρ− κ∆ρ+ (u · ∇)ρ = −N 2u3, x ∈ R
3, t > 0

∇ · u = 0, x ∈ R
3, t > 0

u|t=0 = u0, ρ|t=0 = ρ0, x ∈ R
3,

(1.1)

where the unknown functions u = u(x, t) = (u1, u2, u3), ρ = ρ(x, t) and

p = p(x, t) are the fluid velocity, the thermal disturbances and the pressure,

respectively. The parameters ν > 0, κ > 0 and g > 0 represent the viscosity,

the thermal diffusivity and the gravity force, respectively. The parameter

N > 0 is Brunt-Väisälä frequency (stratification-parameter). We use the

notations: ∆ := (∂2
1 + ∂2

2 + ∂2
3), ∇ := (∂1, ∂2, ∂3) and e3 := (0, 0, 1). For the

physical background of (1.1), see [16].

Our method follows the ideas based on BMN. We show that the limit

equations (formally obtained by letting N tend to infinity in equation (1.1))

is almost equivalent to the 2D-Navier-Stokes equations1, which is known to

have a unique global solution (see for example [15]). A straightforward

1In the sense that there is a one to one correspondence between solutions of the two
equations.
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application of the energy method is impossible if the initial data is almost

periodic. To overcome this difficulty, we use 
1-norm of amplitudes with

sum closed frequency set and Fujita-Kato’s method. We use the analytic

functional setting (see [21]) as follows:

Definition 1.1 (Countable sum closed frequency set). A countable

set Λ in R
3 is called a sum closed frequency set if it satisfies the following

properties:

Λ = {a+ b : a, b ∈ Λ} and − Λ = Λ.

Remark 1.2. If {ej}3
j=1 is the standard orthogonal basis in R

3, then

the sets Z
3, {(m1 +

√
2m2)e1 + (m3 +

√
3m4)e2 + (m5 +

√
5m6)e3 : m1, · · · ,

m6 ∈ Z} and {m1e1 + m2(e1 + e2
√

2) + m3(e2 + e3
√

3) : m1,m2,m3 ∈ Z}
are examples of such countable sum closed frequency sets. Clearly, the case

Z
3 corresponds to the periodic. Each of the other two cases is dense in R

3

and therefore they correspond to “purely” almost periodic setting.

Definition 1.3 (An 
1-type function space). Let BUC be the space

of all bounded uniformly continuous functions defined in R
3 equipped with

the L∞-norm. For a countable sum closed frequency set Λ ⊂ R
3, let

XΛ(R3) :=

{
u =

∑
n∈Λ

ûne
in·x ∈ BUC(R3) for {ûn}n∈Λ ⊂ C :

û−n = û∗n for n ∈ Λ, ‖u‖ :=
∑
n∈Λ

|ûn| <∞
}
,

where û∗n is the complex conjugate coefficient of ûn.

The condition û−n = û∗n guarantees that functions inXΛ are real-valued.

Remark 1.4. Note that functions in 
1 do not necessarily decay as

x → ∞. Also, this almost periodic setting is in general, different from the

periodic case since the frequency set may have accumulation points. The

almost periodic setting is between the periodic and the fully non-decaying

cases.



4 Slim Ibrahim and Tsuyoshi Yoneda

Before defining our solutions, we first recall the notion of (usual) mild

solution. Note that our definition of the solution is rather unusual in geo-

physical field. Applying the extended Leray projection P to equations (1.1)

we annihilate the gradient term ∇p and therefore deduce the integral equa-

tion of (1.1):

v(t) = et(ν̃∆−NS)v0 −
∫ t

0
e(t−s)(ν̃∆−NS)P (u(s) · ∇)v(s) ds,

where v = (u,
√
g

N ρ), ν̃ = (ν, ν, ν, κ) and S = PJP (for the detail, see Section

2). The pressure p can be recovered by

p =
∑

1≤i,j≤3

RiRjuiuj − g(−∆)−1∂x3ρ,

where Rj is the Riesz transform (see Section 2). As this was pointed out

in [17], it is difficult to handle mild solutions in the case when κ �= ν.

Indeed, the main difficulty is that NS and ν̃∆ do not commute, namely

NS(ν̃∆) �= (ν̃∆)NS. Thus we cannot use this type of mild solution directly.

We define a solution of (1.1) as follows

Definition 1.5. Let XΛ be a Banach space given by Definition 1.3.

We call v(t) a solution to (1.1) in XΛ if v has a form

v = v(t, x) =
∑
n∈Λ

v̂n(t)ein·x

with v̂n ∈ C([0, T ],C4) solving the following ODE:

∂tv̂n(t) = − ν̃|n|2v̂n(t) − Snv̂n(t)(1.2)

− iPn

∑
k,m∈Λ,

n=k+m

(v̂k(t) · &m)v̂m(t) with (&n · v̂n(t)) = 0

for n ∈ Λ, where &m := (m, 0) = (m1,m2,m3, 0) (we define ν̃, Pn and Sn in

the next section), and the above sum converges uniformly in C([0, T ], XΛ).

To construct the family (vn(t))n∈Λ, we apply Craya-Herring decomposi-

tion and use a filtering procedure enabling us to obtain this “different type”

of mild solutions. See (2.8),(3.2) and (3.3) for details.
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Now, we define anisotropic dilation of the frequency set as follows.

Definition 1.6. Let Λ be a countable sum closed frequency set. For

γ = (γ1, γ2) ∈ (0,∞)2, let

Λ(γ) := {(γ1n1, γ2n2, n3) ∈ R
3 : (n1, n2, n3) ∈ Λ}.(1.3)

Now, we introduce the following Quasi-Geostrophic equation which is a

part of the limiting system (formally obtained from equation (1.1) when N
tends to infinity):


∂tθ − ∆θ + (−∆h)

−1/2
[
(v · ∇)

(
(−∆h)

1/2θ)
)]

= 0,

v =
(
−∂x2(−∆h)

−1/2θ, ∂x1(−∆h)
−1/2θ

)
θ(t)|t=0 = θ0 = −∂x2(−∆h)

−1/2u0,1 + ∂x1(−∆h)
−1/2u0,2,

(1.4)

where θ = θ(t) = θ(t, x1, x2, x3), ∆h := ∂2
x1

+ ∂2
x2

and ∆ := ∂2
x1

+ ∂2
x2

+ ∂2
x3

.

We see that (−∆h)
−1/2u =

∑
n∈Λ |n|−1

h ûne
in·x for u =

∑
n∈Λ ûne

in·x. We

give an explicit one-to-one correspondence between the QG and a 2D type

Navier-Stokes equations:{
∂tv − ∆v + (v · ∇2)v + ∇2p = 0,

∇2 · v = 0, v|t=0 = v0.
(1.5)

In this case we set θ = (−∆h)
−1/2rot2v. For the existence of the unique

global solution to 2D-Navier-Stokes equation with almost periodic initial

data, see [15].

Before stating the main result, and in order to avoid resonances, we

need the following setting: for any sum closed frequency set Λ, we choose

a set of frequencies dilation factors Γ(Λ) ⊂ (0,∞)2 as (2.14). Note that its

complement set Γc is at most countable. Let us take Λ(γ) (see Definition

1.6) and fix it. Now we choose an arbitrary large initial datum (u0, ρ0) ∈
XΛ(γ) × XΛ(γ) and set θ0 := −∂x2(−∆h)

−1/2u0,1 + ∂x1(−∆h)
−1/2u0,2. We

know that for this initial data, (1.4) has a global-in-time unique solution.

We also take ν > 0, κ > 0 and fix them. The main result is the following:

Theorem 1.7. Set N = N√
g and take arbitrarily T > 0. If zero-

mean value divergence free initial vector field u0 ∈ XΛ(γ) and initial ther-

mal disturbance ρ0 ∈ XΛ(γ) are chosen as above, then there exists N0 > g
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depending only on ν, κ, u0, ρ0 such that if |N | > N0, then there exists

a unique smooth solution to the equation (1.1) (in the sense of Definition

1.5), u(t) ∈ C([0, T ] : XΛ(γ)) with zero-mean value and divergence free, and

ρ(t) ∈ C([0, T ] : XΛ(γ)) .

Remark 1.8. In order to see the functional space of the pressure, it

is convenient to divide it into low and high frequency parts, since we have

the explicit representation of the pressure p and it has g(−∆)−1∂x3ρ. We

see that the low frequency part of ∇p (or equivalently (−∆)−1/2p) is in XΛ

and its high frequency part is also in XΛ for t ∈ [0, T ].

Remark 1.9. For the periodic case, we do not need to restrict the fre-

quency set to Γ i.e. we can take Γ(Λ) = (0,∞)2. However, the computation

in this case is more complicated and needs a“restricted convolution” type

result in the spirit of [2].

2. Preliminaries

Before going any further, we first recall the following facts about the

space XΛ:

• (XΛ, ‖·‖) is a Banach space, and any almost periodic function u ∈ XΛ

can be decomposed u(x) = Σn∈Λûne
inx, where each “Fourier coeffi-

cient” ûn is uniquely determined by

ûn = lim
|B|→∞

1

|B|

∫
B
u(x)eix·n dx,

where B stands for a ball in R
3 (see for example [7]).

• XΛ is a closed subspace of FM ; the Fourier preimage of the space

of all finite Radon measures proposed by Giga, Inui, Mahalov and

Matsui in [12, 13, 14].

• Leray projection on almost periodic functions P̄ = {P̄jk}j,k=1,2,3 is

defined by

P̄jk := δjk +RjRk (1 ≤ j, k ≤ 3),
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where δjk is Kronecker’s delta and Rj is the Riesz transform defined

by

Rj =
∂

∂xj
(−∆)−

1
2 for j = 1, 2, 3.

The symbol σ(Rj) of Rj is inj/|n| and σ((−∆)−1/2) is |n|−1, where

i =
√
−1 (see [7]). Let P denote the extended Leray projection with

Fourier-multiplier Pn = {Pn,ij}i,j=1,2,3,4 (the symbol σ(P ) is Pn) given

by

Pn,ij :=

{
δij − ninj

|n|2 (1 ≤ i, j ≤ 3),

δij (otherwise).

• Helmholtz-Leray decomposition is defined on almost periodic func-

tions in the same way as in the periodic case. Namely, any u ∈ XΛ is

uniquely decomposed as

u = w + ∇π,

where π = −(−∆)−1div u ∈ XΛ and w = P̄ u ∈ XΛ.

Now we rewrite the system (1.1) in a more abstract way. Let N := N√
g

and v ≡ (v1, v2, v3, v4) := (u1, u2, u3,
√
g

N ρ). Then (v, p) solves

∂tv − ν̃∆v +NJv + ∇3p = −(v · ∇3)v,

v|t=0 = v0,

∇3 · v = 0

(2.1)

with ν̃ = diag(ν, ν, ν, κ), the initial data v0 = (u0,1, u0,2, u0,3,
√
g

N ρ0), ∇3 :=

(∂1, ∂2, ∂3, 0),

J :=




0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0


 ,

and (v · ∇3) = (v1∂1 + v2∂2 + v3∂3).

Observe that under the condition N > g we have N >
√
g and therefore

‖v0,4‖ = ‖
√
g

N ρ0‖ < ‖ρ0‖. We will assume this condition throughout the

paper.
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Applying the extended Leray projection P to (2.1) yields the following

system of equations that we will solve{
dv/dt+ (−ν̃∆ +NS)v = −P (v · ∇3)v,

v|t=0 = Pv0 = v0,
(2.2)

with S := PJP . Recall that for |n|h �= 0, the matrix Sn := PnJPn (the

symbol σ(S) is Sn) has the following Craya-Herring orthonormal eigenvec-

tors (for fixed n) {q1
n, q

−1
n , q0

n, q
div
n } (see [3, 9]) associated to the eigenvalues

{iωn,−iωn, 0, 0}, respectively. Here,

ωn =
|n|h
|n| , |n|h =

√
n2

1 + n2
2

and

q1
n := (q1

1,n, q
1
2,n, q

1
3,n, q

1
4,n) :=

1√
2|n|2h

(iωnn1n3, iωnn2n3,−i|n|2hωn, |n|2h),

q−1
n := (q−1

1,n, q
−1
2,n, q

−1
3,n, q

−1
4,n) :=

1√
2|n|2h

(−iωnn1n3,−iωnn2n3, i|n|2hωn, |n|2h),

q0
n := (q0

1,n, q
0
2,n, q

0
3,n, q

0
4,n) :=

1

|n|h
(−n2, n1, 0, 0),

qdivn := (qdiv1,n, q
div
2,n, q

div
3,n, q

div
4,n) :=

1

|n|(n1, n2, n3, 0).

Note that q1
n = q−1∗

n and q0
n = q0∗

n , where the ∗ notation stands for the

complex conjugate. We have Snq
1
n = iωnq

1
n, Snq

−1
n = −iωnq

−1
n , and Snq

0
n =

Snq
div
n = 0. In the case when |n|h = 0 and n3 �= 0, we define

q1
n :=(1/2, 1/2, 0, 1/

√
2)

q−1
n :=(−1/2,−1/2, 0, 1/

√
2)

q0
n :=(−1/

√
2, 1/

√
2, 0, 0)

qdivn :=(0, 0, 1, 0).

In fact, for |n|h = 0 and n3 �= 0, we have Sn = PnJPn = 0. We point out

that, the above choice of the basis is uniquely determined by the conditions

(ν̃q1
n · q1∗

n ) =
(
ν+κ

2

)
, (ν̃q−1

n · q−1∗
n ) =

(
ν+κ

2

)
and (ν̃q0

n · q0∗
n ) = ν. Moreover,
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the divergence-free condition requires that (v̂n(t) · qdivn ) = 0, giving qdivn :=

(0, 0, 1, 0).

Now we explain our strategy in solving (2.2). Recall that S and ν̃∆ do

not necessarily commute i.e. S(ν̃∆) �= (ν̃∆)S. Hence, we see that

et(ν̃∆−NS) �= etν̃∆etNS .

In [17], the authors considered the case κ = ν and therefore were able to

use the semigroup et(ν̃∆−NS) that enjoys the commutation property in this

case. It is not clear how to effectively use the semigroup et(ν̃∆−NS) under

the assumption κ �= ν. Our idea is to “filter out” solutions of (2.2) using

the semigroup etNS . After doing so, we prove a key observation showing

that the operator etNS(−ν̃∆)e−tNS keeps diffusivity and is independent of

time t. To be more precise, first recall that the standard basis of [L2(T3)]4

is given by

[(ein·x, 0, 0, 0)]n∈Z3 [(0, ein·x, 0, 0)]n∈Z3 , [(0, 0, ein·x, 0)]n∈Z3 and

[(0, 0, 0, ein·x)]n∈Z3 .

Clearly, these functions are not eigenfunctions of the operator NS =

N(PJP ). However, introducing the functions [Φj
n(x)]n∈Z3 defined, using

Craya-Herring eigenvectors, by

[Φ1
n(x)]n∈Z3 := [q1

ne
in·x]n∈Z3

= [(q1
1,ne

in·x, q1
2,ne

in·x, q1
3,ne

in·x, q1
4,ne

in·x)]n∈Z3 ,

[Φ2
n(x)]n∈Z3 := [q−1

n ein·x]n∈Z3

= [(q−1
1,ne

in·x, q−1
2,ne

in·x, q−1
3,ne

in·x, q−1
4,ne

in·x)]n∈Z3 ,

[Φ3
n(x)]n∈Z3 := [q0

ne
in·x]n∈Z3

= [(q0
1,ne

in·x, q0
2,ne

in·x, q0
3,ne

in·x, q0
4,ne

in·x)]n∈Z3 ,

[Φ4
n(x)]n∈Z3 := [qdivn ein·x]n∈Z3

= [(qdiv1,ne
in·x, qdiv2,ne

in·x, qdiv3,ne
in·x, qdiv4,ne

in·x)]n∈Z3 ,

we easily see that [Φj
n(x)]n∈Z3 are eigenfunctions of NS and constitue a

complete orthogonal basis in [L2(T3)]4. The eigenvalues are

{iωn}n∈Z3 , {−iωn}n∈Z3 , {0}n∈Z3 and {0}n∈Z3
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respectively. Second, set V (t) := etNSv(t) and V0 = V (0) = v(0). From

(2.2), we see that the function V satisfies the following equation (we say

“filtering procedure”):{
dV/dt+ etNS(−ν̃∆)e−tNSV = −etNSP (e−tNSV · ∇3)e

−tNSV,

V |t=0 = PV0 = V0.
(2.3)

Finally, we show that the operator etNS(−ν̃∆)e−tNS is diffusive and time

independent. Indeed, a direct calculation enables us to see that

etNS(−ν̃∆)e−tNSΦ1
n(x) = (ν̃q1

n · q1∗
n )|n|2Φ1

n(x) =

(
ν + κ

2

)
|n|2Φ1

n(x),

etNS(−ν̃∆)e−tNSΦ2
n(x) = (ν̃q−1

n · q−1∗
n )|n|2Φ2

n(x) =

(
ν + κ

2

)
|n|2Φ2

n(x),

etNS(−ν̃∆)e−tNSΦ3
n(x) = (ν̃q0

n · q0∗
n )|n|2Φ3

n(x) = ν|n|2Φ3
n(x),

etNS(−ν̃∆)e−tNSΦ4
n(x) = (ν̃qdivn · qdiv∗n )|n|2Φ4

n(x) = ν|n|2Φ4
n(x)

which can be rewritten as

etNS(−ν̃∆)e−tNSΦj
n(x) = |n|2(ν̃qjn · qj∗n )Φj

n(x), j = 1, 2, 3, 4.(2.4)

Thus, etNS(−ν̃∆)e−tNS acts like a diffusion operator. In this way we can

therefore handle even the case κ �= ν. However, the price to pay is to

consider the three wave interaction in the almost periodic case. Up to now,

the analysis of such interactions is difficult and not known how one can

handle it. To avoid this problem, we use anisotropic dilation of the frequency

set (see Definition 2.7) so that these interactions cancel (see Lemma 2.7).

Since we look for an almost periodic solution to (2.2), we formally write

the solution v as

v(t, x) =
∑
n∈Λ

v̂n(t)ein·x,

where for n ∈ Λ, v̂n := (v̂n,1, v̂n,2, v̂n,3, v̂n,4), v̂n · &n = 0 and &n := (n, 0) =

(n1, n2, n3, 0). Then we decompose v̂n using Craya-Herring eigenvectors,

v̂n =
∑

σ0∈{−1,0,1}
aσ0
n qσ0

n with aσ0
n := (v̂n · qσ0∗

n ).
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Hence the filtered solution V (t) := etNSv(t) can be written as

V (t) =
∑
n∈Λ

∑
σ0∈{−1,0,1}

cσ0
n (t)Φσ0

n .

Using the important property of diffusivity of etNS(−ν̃∆)e−tNS , equation

(2.3) yields

∂tc
σ0
n (t) = −cσ0

n (t)|n|2(ν̃qσ0
n · qσ0∗

n )(2.5)

− i
∑

n=k+m, σ1,σ2∈{−1,0,1}
eiNtωσ

nkm

× cσ1
k cσ2

m (qσ1
k ·m)(qσ2

m · qσ0∗
n ),

where we set

ωσ
nkm := (−σ0ωn + σ1ωk + σ2ωm).(2.6)

Now we split the nonlinear part into the resonant (independent of N)

and non-resonant two parts defined by

B̄σ0
n (gσ1 , hσ2) := −i

∑
n=k+m, ωσ

nkm=0

(qσ1
k ·m)(qσ2

m · qσ0∗
n )gσ1

k hσ2
m

and

B̃σ0
n (Nt, gσ1 , hσ2)

:= −i
∑

n=k+m, ωσ
nkm 
=0

(qσ1
k ·m)(qσ2

m · qσ0∗
n )gσ1

k hσ2
m exp(iωσ

nkmNt),

respectively. In addition, thanks to the standard smoothing estimates of

the heat kernal we have the following estimates:

‖{e−ν|n|2tB̃σ0

n (Nt, gσ1 , hσ2)}n∈Λ‖ ≤ Cν

t1/2
‖gσ1‖‖hσ2‖

‖{e−ν|n|2tB̄σ0
n (gσ1 , hσ2)}n∈Λ‖ ≤ Cν

t1/2
‖gσ1‖‖hσ2‖

(2.7)

(for σ0 = −1, 0, 1) obtained by estimating the first derivative of the heat

kernel as follows

sup
n∈Λ

∣∣∣|n|e−ν|n|2t
∣∣∣ ≤ Cν

t1/2
.
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The constant Cν > 0 is independent of N .

Then we have the following equations:


∂tc
0
n(t) = −ν|n|2c0n(t)

+
∑

(σ1,σ2)∈{−1,0,1}2

(
B̄0

n(cσ1 , cσ2) + B̃0
n(Nt, cσ1 , cσ2)

)

∂tc
σ0
n (t) = −

(
ν+κ

2

)
|n|2cσ0

n (t)

+
∑

(σ1,σ2)∈{−1,0,1}2

(
B̄σ0

n (cσ1 , cσ2) + B̃σ0
n (Nt, cσ1 , cσ2)

)
,

c0n(t)|t=0 = c0n(0), cσ0
n (t)|t=0 = cσ0

n (0)

(2.8)

for σ0 = ±1. From the condition ωσ
nkm = 0, we easily see that the

terms B̄0
n(c1, c1), B̄0

n(c−1, c−1), B̄0
n(c0, c±1), B̄0

n(c±1, c0), B̄±1
n (c∓1, c0),

B̄±1
n (c0, c∓1) and B̄±1

n (c0, c0) disappear. Now, we define the “limit equa-

tions” by


∂tb
0
n(t) = −ν|n|2b0n(t) + B̄0

n(b0, b0) + B̄0
n(b1, b−1) + B̄0

n(b−1, b1),

∂tb
σ0
n (t) = −

(
ν+κ

2

)
|n|2bσ0

n (t)

+
∑

(σ1,σ2)∈{−1,0,1}2\D B̄σ0
n (bσ1 , bσ2), σ0 = ±1,

b0n(t)|t=0 = c0n(0), bσ0
n (t)|t=0 = cσ0

n (0),

(2.9)

where D := {(0, 0), (−1, 0), (0,−1)} for σ0 = 1 and D := {(0, 0), (1, 0),

(0, 1)} for σ0 = −1. Formally, we can get (2.9) from (2.8) when N → ∞.

We will justify this convergence in Lemma 3.2. Now we show that there is

more non trivial cancellation in the limit equations. More precisely,

Lemma 2.1. We have

B̄0
n(c1, c−1) + B̄0

n(c−1, c1) = 0.

Proof. To prove the lemma, it suffices to show
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(2.10) (q1
k ·m)(q−1

m · q0∗
n ) + (q−1

m · k)(q1
k · q0∗

n ) = 0

for any n = k +m with ωk = ωm.

First we show that ωk = ωm if and only if

k,m ∈ {n ∈ Z
3 : |n|2h = λn2

3} for some λ > 0.

(⇐): This direction is clear. Thus we omit it.

(⇒): Rewrite the identity ωk = ωm as F (X) = F (Y ), where X :=

|k|2h/k2
3, Y := |m|2h/m3

2 and F (X) := X/(X + 1). Since the function F is

monotone increasing, we see X = Y . This means that

k3 = ±|k|h√
λ

and m3 = ±|m|h√
λ
.

We only consider the case k3 = |k|h√
λ

and m3 = |m|h√
λ

, since the other cases

are similar. A direct calculation shows that

(q1
k ·m)(q−1

m · q0∗
n )

=
1√

2λ|m||k||n|h

(
kh ·mh

λ
− m3|k|√

1 + λ2

)
(−m2k1 +m1k2),

(q−1
m · k)(q1

k · q0∗
n )

=
1√

2λ|m||k||n|h

(
kh ·mh

λ
− k3|m|√

1 + λ2

)
(−k2m1 + k1m2).

From k3 = |k|h√
λ

and m3 = |m|h√
λ

, we have (2.10) as desired. �

Now we show that the function c0 in the limit equations satisfies a quasi

geostrophic (QG) equation type and that this QG equation is equivalent to

the 2D type Navier-Stokes equation. By the following lemma, we can see

that the function c0 satisfies the QG equation (1.4).

Lemma 2.2. Let |n|h =
√
n2

1 + n2
2. The resonant part B̄0

n(c0, c0) can

be expressed as follows:

B̄0
n(c0, c0) = −

∑
n=k+m

i(k ×m)|m|h
|k|h|n|h

c0kc
0
m.
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Proof. Since q0
n = 1

|n|h (−n2, n1, 0, 0) and q0
n = 1

|n|h (|k|hq0
k + |m|hq0

m)

for n = k +m, we have

B̄0
n(c0, c0) = −

∑
n=k+m

c0kc
0
m(q0

k · im)(q0
m · q0∗

n )

= −
∑

n=k+m

i

|k|h|n|h
(k2m1 − k1m2)

×
(
q0
m · (|k|hq0∗

k + |m|hq0∗
m )
)
c0kc

0
m

=
∑

n=k+m

− i|m|h
|k|h|n|h

(k2m1 − k1m2)c
0
kc

0
m

−
∑

n=k+m

i

|n|h
(k2m1 − k1m2)(q

0
m · q0∗

k )c0kc
0
m.

Since k ×m = −(m× k), we see that

∑
n=k+m

i

|n|h
(k2m1 − k1m2)(q

0
m · q0∗

k )c0kc
0
m = 0,

which leads to the desired formula. �

Now we show that there is a one-to-one correspondence between the QG

and a 2D type Navier-Stokes equations.

Lemma 2.3. Recall ∆h = ∂2
x1

+ ∂2
x2

and let

w := (w1(x1, x2, x3, t), w2(x1, x2, x3, t))

:=

(∑
n∈Λ

ŵ1,n(t)ein·x,
∑
n∈Λ

ŵ2,n(t)ein·x
)
.

Define θ = θ(t, x1, x2, x3) := (−∆h)
−1/2rot2w, with rot2 is the 2 dimensional

curl given by

rot2w = ∂1w2 − ∂2w1.

Then, w solves the following 2D type Navier-Stokes equation:{
∂tw − ∆w + (w · ∇2)w + ∇2p = 0,

∇2 · w = 0, w|t=0 = w0

(2.11)
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if and only if θ solves (1.4), where ∇2 = (∂x1 , ∂x2) and p is the pressure (a

scalar function).

Proof. First, we point the following claim:{
θ = (−∆h)

− 1
2 rot2w,

∇2 · w = 0

if and only if w = ∂2(−∆h)
− 1

2 θ,−∂1(−∆h)
− 1

2 θ). The indirect implication

(⇐) is clear by a straightforward computation of rot2w given ∇2 ·w = 0. To

prove (⇒), set θ̃ := (−∆h)
1
2 θ. Then we want to solve for a divergence free

w satisfying rot2w = θ̃. Applying ∂2 to both sides, and using the divergence

free condition, we get −∆hw1 = ∂2θ̃, which as a consequence gives w1. The

component w2 can be derived in a similar way.

Second, observe that for θ = (−∆h)
−1/2rot2w =

∑
n∈Λ θ̂n(t)ein·x, we

have by ∇2 · w = 0,

w = (i
∑
n∈Λ

n2

|n|h
θ̂n(t)ein·x,−i

∑
n∈Λ

n1

|n|h
θ̂n(t)ein·x)

= (∂2(−∆h)
− 1

2 θ,−∂1(−∆h)
− 1

2 θ).

Then, applying rot2 to (2.11), we get

∂trot2w − ∆rot2w + (w · ∇2)rot2w = 0.(2.12)

Here, we used the fact that

(w · ∇2)rot2w = rot2[(w · ∇2)w].(2.13)

Finally, applying (−∆h)
−1/2 to both sides of (2.12), we see that θ =

(−∆h)
−1/2rot2w satisfies the desired QG equation (1.4). Conversely, apply-

ing L := (−(−∆h)
−1∂x2 , (−∆h)

−1∂x1) (which commutes with ∆) to (2.12),

and by (2.13) we can see that Lrot2 is nothing but the two dimensional

Leray projection. Therefore, this implies (2.11) as desired. �

Remark 2.4. We refer to [15] for the existence of a unique global so-

lution to 2D type Navier-Stokes equation (2.11) with almost periodic initial

data.
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In what follows and in order to show the main theorem, we need the

following lemma (which is needed only for the almost periodic case) on the

dilation of the frequency set (1.3). This kind of restrictions is technical.

However we do not know whether or not such constraints are removable.

This means that the general almost periodic setting seems to remain open.

Let

Γ := Γ(Λ) :=
⋂

n,k,m∈Λ\{0}
|n|h,|k|h,|m|h 
=0

{γ ∈ (0,∞)2 : Pnkm(γ) �= 0},(2.14)

where

Pnkm(γ) := |ñ|8|k̃|8|m̃|8
∏

σ∈{−1,1}3

ωσ
ñk̃m̃

with ñ = (γ1n1, γ2n2, n3), k̃ = (γ1k1, γ2k2, k3) and m̃ = (γ1m1, γ2m2,m3),

and σ = (σ0, σ1, σ2) and ωσ
ñk̃m̃

is given by (2.6). (We put |ñ|8|k̃|8|m̃|8 in

front of
∏

σ∈{−1,1}3 ωσ
ñk̃m̃

, since we can have a polynomial Pnkm(γ)).

Lemma 2.5. Γ is not empty and |Γ| = ∞.

Remark 2.6. To extract γ from Γ, we need to admit “Axiom of

choice”. In other words, “Every set includes a countable set”. This seems

to be a crucial point in order to consider the almost periodic setting. Once

we extract γ from Γ (it seems difficult to figure out the concrete value

of γ), then we can see that ωσ
ñk̃m̃

�= 0 for any n, k,m ∈ Λ(γ) \ {0} with

|n|h, |k|h, |m|h �= 0.

Proof. We show that Γ cannot be empty. By a direct calculation, we

have

Pnkm(γ) = |ñ|8|k̃|8|m̃|8(
(ωñ + ωk̃ + ωm̃)(−ωñ + ωk̃ + ωm̃)

(ωñ − ωk̃ + ωm̃)(ωñ + ωk̃ − ωm̃)
)2

= |ñ|8|k̃|8|m̃|8
(
ω2
ñ − (ωk̃ + ωm̃)2

)2 (
(ω2

ñ − (ωk̃ − ωm̃)2
)2

= |ñ|8|k̃|8|m̃|8
(
(ω2

ñ − ω2
k̃
− ω2

m̃)2 − 4ω2
k̃
ω2
m̃

)2

= |ñ|8|k̃|8|m̃|8
(
ω4
ñ + ω4

k̃
+ ω4

m̃ − 2ω2
k̃
ω2
m̃ − 2ω2

m̃ω
2
ñ − 2ω2

ñω
2
k̃

)2
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=

(
|ñ|4h|k̃|4|m̃|4 + |ñ|4|k̃|4h|m̃|4 + |ñ|4|k̃|4|m̃|4h

−2|ñ|2|ñ|2h|k̃|2|k̃|2h|m̃|4 − 2|ñ|2|ñ|2h|k̃|4|m̃|2|m̃|2h

−2|ñ|4|k̃|2|k̃|2h|m̃|2|m̃|2h
)2

=

(
− 3n2

1k
2
1m

2
1γ

6
1 − 3n2

2k
2
2m

2
2γ

6
2

−3n2
1k

2
1m

2
2γ

4
1γ

2
2 − 3n2

1k
2
2m

2
1γ

4
1γ

2
2 − 3n2

2k
2
1m

2
1γ

4
1γ

2
2

−3n2
2k

2
2m

2
1γ

2
1γ

4
2 − 3n2

2k
2
1m

2
2γ

2
1γ

4
2 − 3n2

1k
2
2m

2
2γ

2
1γ

4
2 + l.o.t

)2

,

where l.o.t stands for lower order terms. Since |n|h, |k|h, |m|h �= 0, then

the highest order terms never disappear. This means that Pnkm(γ) is a

polynomial and coefficients of highest order terms in both γ1 and γ2 are not

zero. Thus

|{γ ∈ Γ : Pnkm(γ) = 0}| = 0 for fixed n, k and m.(2.15)

Since

(0,∞)2 = {γ ∈ (0,∞)2 : Pnkm(γ) �= 0} ∪ {γ ∈ (0,∞)2 : Pnkm(γ) = 0},

then we see

(0,∞)2 =

(
∩ n,k,m∈Λ\{0}
|n|h,|k|h,|m|h 
=0

{γ : Pnkm(γ) �= 0}
)

⋃(
∪ n,k,m∈Λ\{0}
|n|h,|k|h,|m|h 
=0

{γ : Pnkm(γ) = 0}
)
.

By (2.15) we have∣∣∣∣ ∩ n,k,m∈Λ\{0}
|n|h,|k|h,|m|h 
=0

{γ ∈ (0,∞)2 : Pnkm(γ) �= 0}
∣∣∣∣ = |(0,∞)2| = ∞. �

Now we show that the limit equations have a global solution. In the

almost periodic case, the non-resonant part B̄±1(c±1, c±1) disappears just

by restricting the frequencies set to Λ(γ).
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Lemma 2.7. Let Λ be a sum closed frequency set. We extract γ from

Γ(Λ) and fix it. Then for σ0 = ±1 there exists a global-in-time unique

solution cσ0(t) to equations (2.9) such that cσ0(t) ∈ C([0,∞) : 
1(Λ(γ)))

with (cσ0
n (t) · n) = 0 for all n ∈ Λ(γ) and cσ0

0 (t) = 0.

Proof. Recall that ñ = (γ1n1, γ2n2, n3), k̃ = (γ1k1, γ2k2, k3) and m̃ =

(γ1m1, γ2m2,m3). By restricting γ ∈ Γ, we can eliminate the worst non-

linear term. More precisely, for all n ∈ Λ and σ = (σ1, σ2, σ3) ∈ {−1, 1}3,

the term

B̄σ0
ñ (cσ1 , cσ2) =

∑
ñ=k̃+m̃
ωσ
ñk̃m̃

=0

(qσ1

k̃
· im̃)(qσ2

m̃ · qσ0∗
ñ )cσ1

k̃
cσ2
m̃ disappears.

Then we have two coupled linear equations for {c−1
n }n and {c1n}n. In this

case, the global existence will immediately follow from estimates (2.7). �

3. Proof of the Main Theorem

Before proving the main theorem, we first mention the local existence

result. Using estimate (2.7), we obtain a local-in-time unique solution to

(2.8) in C([0, T ] : 
1(Λ)) as stated in the following lemma.

Lemma 3.1. Assume that c(0) := {cσ0
n (0)}n∈Λ,σ0∈{−1,0,1} ∈ 
1(Λ) and

cσ0
0 (0) = 0 for σ0 ∈ {−1, 0, 1}. Then there is a local-in-time unique solution

c(t) ∈ C([0, TL] : 
1(Λ)) and cσ0
0 (t) = 0 (σ0 ∈ {−1, 0, 1}) to (2.8) satisfying

TL ≥ C

‖c(0)‖2
, sup

0<t<TL

‖c(t)‖ ≤ 10‖c(0)‖,(3.1)

where C is a positive constant independent of N .

Proof. First we consider a mild formulation of (2.8):

c0n(t) = e−ν|n|2tc0n(0)(3.2)

+
∑

(σ1,σ2)∈{−1,0,1}2

×
∫ t

0
e−ν(t−s)|n|2

(
B̄0

n(cσ1 , cσ2) + B̃0
n(Nt, cσ1 , cσ2)

)
ds
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and

cσ0
n (t) = e−

ν+κ
2

|n|2tcσ0
n (0)(3.3)

+
∑

(σ1,σ2)∈{−1,0,1}2

×
∫ t

0
e−

ν+κ
2

(t−s)|n|2
(
B̄σ0

n (cσ1 , cσ2) + B̃σ0
n (Nt, cσ1 , cσ2)

)
ds.

By (2.7), we have the estimates

‖c0n(t)‖ ≤ ‖c0n(0)‖ + Cνt
1/2

∑
(σ1,σ2)∈{−1,0,1}2

(
sup

0≤s<t
‖cσ1(s)‖ sup

0≤s<t
‖cσ2(s)‖

)

and

‖cσ0
n (t)‖ ≤ ‖cσ0

n (0)‖

+C( ν+κ
2 )t

1/2
∑

(σ1,σ2)∈{−1,0,1}2

(
sup

0≤s<t
‖cσ1(s)‖ sup

0≤s<t
‖cσ2(s)‖

)
.

These à-priori estimates of supt ‖c0(t)‖ and supt ‖cσ0(t)‖ give us through a

standard fixed point argument the existence of a local-in-time unique solu-

tion (for the detailed computation, see [12] for example). We can obtain

inequalities (3.1) from the above inequalities (in this case, we take suffi-

ciently small TL depending on Cν and C( ν+κ
2 ), and then use an absorbing

argument). �

Let bσ0(t) be the solution of the limit equations (2.9) and cσ0(t) be the

solution to the original equation (2.8). The main point is to control the


1-norm of the remainder term rσ0
n (t) := cσ0

n (t) − bσ0
n (t) (σ0 = −1, 0, 1) by

the large parameter N . Note that the initial data r0
n(0) and rσ0

n (0) are zeros.

More precisely, r0 and rσ0 satisfy

∂tr
0
n(t) = − ν|n|2r0

n(t)

+
∑

(σ1,σ2)∈{−1,0,1}2

(
B̄0

n(rσ1 , cσ2) + B̄0
n(bσ1 , rσ2) + B̃0

n(Nt, cσ1 , cσ2)
)
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and

∂tr
σ0
n (t) = −

(
ν + κ

2

)
|n|2rσ0

n (t)

+
∑

(σ1,σ2)∈{−1,0,1}2

(
B̄σ0

n (rσ1 , cσ2) + B̄σ0
n (bσ1 , rσ2)

+B̃σ0
n (Nt, cσ1 , cσ2)

)
,

respectively. Once we control the remainder term in the 
1-norm, we eas-

ily have the main result by a standard bootstrapping argument (see [21]

for example). Now we show the following lemma concerning the small-

ness of the reminder term. Let b(t) := {bσ0
n (t)}n∈Λ,σ0∈{−1,0,1} and r(t) :=

{rσ0
n (t)}n∈Λ,σ0∈{−1,0,1}.

Lemma 3.2. For all ε > 0, there is N0 > 0 such that ‖r(t)‖ ≤ ε for

|N | > N0 and 0 < t < TL with TL is the local existence time (see Lemma

3.1).

Proof. To simplify the remainder equation, we introduce the following

notation. Let

R̄σ0
n (r, c, b) : =

∑
(σ1,σ2)∈{−1,0,1}2

(
B̄σ0

n (rσ1 , cσ2) + B̄σ0
n (bσ1 , rσ2)

)
,

R̃σ0
n (Nt, c) : =

∑
(σ1,σ2)∈{−1,0,1}2

B̃σ0
n (Nt, cσ1 , cσ2).

Rewrite the remainder equations as follows:



∂tr

0
n(t) = −ν|n|2r0

n(t) + R̄0
n(r, c, b) + R̃0

n(Nt, c)

∂tr
σ0
n (t) = −

(
ν+κ

2

)
|n|2rσ0

n (t) + R̄σ0
n (r, c, b) + R̃σ0

n (Nt, c)

for σ0 = −1, 1.

(3.4)

In order to control r, the key is to estimate R̃0
n(Nt, c) and R̃σ0

n (Nt, c) in

(3.4). To do so, we need to analyze the following oscillatory integral of the

non-resonant part as follows:

B̃σ0
n (Nt, gσ1 , hσ2)(3.5)
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:=
∑

n=k+m,ωσ
nkm 
=0

1

iNωσ
nkm

eiNtωσ
nkm(qσ1

k · im)(qσ2
m · qσ0∗

n )gσ1
k hσ2

m

and

R̃σ0
n (Nt, c) :=

∑
(σ1,σ2)∈{−1,0,1}2

B̃σ0
n (cσ1 , cσ2).(3.6)

First, note that we have the following relation between B̃ and B̃, and R̃

and R̃, respectively:

∂t

(
B̃σ0
n (Nt, gσ1 , hσ2)

)
= B̃σ0

n (Nt, gσ1 , hσ2) + B̃σ0
n (Nt, ∂tg

σ1 , hσ2)

+B̃σ0
n (Nt, gσ1 , ∂th

σ2)

and

∂t

(
R̃σ0

n (Nt, c)
)

= R̃σ0
n (Nt, c) + R̃σ0

n (Nt, ∂tc).

To control r, we split (3.4) into two parts: finitely many terms and

small (in 
1(Λ)) remainder terms, respectively (cf. [1, Theorem 6.3]). For

r ∈ 
1(Λ) and η = 1, 2, · · · , we choose {sj}∞j=1 ⊂ N (s1 < s2 < · · · ) in order

to satisfy ‖(I − Pη)r‖ → 0, as (η → ∞), where

Pηr :=

{
rn1 , rn2 , · · · , rnsη

:

n1, · · · , nsη ∈ Λ : nk �= n� (k �= 
), |nj | ≤ η for all j = 1, · · · , sη
}
.

The choice of n1 · · · nsη is not uniquely determined, however this does

not matter. Then we can divide r into two parts: finitely many terms

rn1 , · · · , rnsη
and small remainder terms {(I − Pη)rn}n∈Λ.

Remark 3.3. By (2.7) and (3.5), we have the following estimates (we

omit the time variable t):

‖PηB̃σ0(Pηc,Pηc)‖ ≤ β(η)

N
(1 + η2)1/2‖Pηc‖2,

‖PηR̄
σ0(Pηy, c, b)‖ ≤ (1 + η2)1/2‖Pηy‖(‖c‖ + ‖b‖)
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for 0 < t < TL (TL is a local existence time, see (3.1)), where

β(η) := max{|ωσ
nkm|−1 : k = k1, · · · ksη , n = n1, · · · , nsη , m = n− k}.

Let y ∈ 
1(Λ). Since Py only have finitely many terms, we see

‖|n|2Pηy‖ ≤ (1 + η2)‖Pηy‖.

Note that β(η) is always finite, since it only have finite combinations

for the choice of n, k and m. We can also have the same type estimate for

‖∂tPηc‖ by using (2.9).

Second, we use a change of variables to control R̃0 and R̃σ0 . Let us set

y as

y0
n(t) := r0

n(t) − R̃0
n(Nt,Pηc) and yσ0

n (t) := rσ0
n (t) − R̃σ0

n (Nt,Pηc).

From (3.4), we see that

∂t

(
y0
n + R̃0

n

)
= −ν|n|2(y0

n + R̃0
n) + R̄0

n(y0 + R̃0, c, b)

+R̃0
n(Nt,Pηc) + R̃0

n(Nt, (I − Pη)c),

∂t

(
yσ0
n + R̃σ0

n

)
= −

(
ν + κ

2

)
|n|2(yσ0

n + R̃σ0
n ) + R̄σ0

n (yσ0 + R̃σ0 , c, b)

+R̃σ0
n (Nt,Pηc) + R̃σ0

n (Nt, (I − Pη)c).

Next, we control Pηy
0 and Pηy

σ0 for fixed η. If y0
n is one of the element of

Pηy, then y0
n satisfies the following equation. By (3.6),

∂ty
0
n(t) = −ν|n|2y0

n + R̄0
n(Pηy, c, b) + E0

n,(3.7)

∂ty
σ0
n (t) = −

(
ν + κ

2

)
|n|2yσ0

n + R̄σ0
n (Pηy, c, b) + Eσ0

n ,

where

E0
n : = −R̃0

n(Nt,Pη∂tc) + R̄0
n(PηR̃0

n(Nt,Pηc), c, b)

−ν|n|2R̃0
n(Nt,Pηc) + R̃0

n(Nt, (I − Pη)c)
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and

Eσ0
n : = −R̃σ0

n (Nt,Pη∂tc) + R̄σ0
n (PηR̃σ0

n (Nt,Pηc), c, b)

−
(
ν + κ

2

)
|n|2R̃σ0

n (Nt,Pηc) + R̃σ0
n (Nt, (I − Pη)c).

Note that (3.7) are linear heat type equations with external force E0 and

Eσ0 . Thus the point is to control E0 and Eσ0 . By Remark 3.3, we can

see that for any ε > 0, there is η0 and N0 (depending on η0) such that if

N > N0 and η > η0, then ‖Eσ0‖ < ε and ‖Eσ0‖ < ε. Thus we have from

(3.7),

‖Pηy
0
n(t)‖ ≤

∫ t

0

(
Cν

(t− s)1/2
‖Pηy

0(s)‖(‖c(s)‖ + ‖b(s)‖) + ε

)
ds

and

‖Pηy
σ0
n (t)‖ ≤

∫ t

0

(
Cν,κ

(t− s)1/2
‖Pηy

σ0(s)‖(‖c(s)‖ + ‖b(s)‖) + ε

)
ds.

Finally, the rest of the proof is rather standard manner, thus we only give

an outline of the proof. By Gronwall’s inequality, we conclude that for any

ε > 0, there is η0 (independent of N0) and N0 (depending on η0) such that if

η > η0 and N > N0, then ‖Pηy
0‖ < ε and ‖Pηy

σ0‖ < ε for 0 < t < TL (TL is

dependeng only on 
1-norm of the initial datum, independent of η0 and N0).

Clearly, we can also control (I −Pη)y with sufficiently large η (independent

of N0), and PηR̃σ0
n (Nt,Pηc) with sufficiently large N (depending on η0).

Thus we can control r for sufficiently large η and N . �
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27 (1910), 321.

[21] Yoneda, T., Long-time solvability of the Navier-Stokes equations in a rotating
frame with spatially almost periodic large data, Arch. Ration. Mech. Anal.
200 (2011), 225–237.

(Received May 7, 2012)
(Revised March 4, 2013)

Slim Ibrahim
Department of Mathematics and Statistics
University of Victoria
PO Box 3060 STN CSC
Victoria, BC, Canada, V8W 3R4
E-mail: ibrahim@math.uvic.ca
URL: http://www.math.uvic.ca/˜ibrahim/

Tsuyoshi Yoneda
Department of Mathematics
Hokkaido University
Sapporo 060-0810, Japan
E-mail: yoneda@math.sci.hokudai.ac.jp


