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Lower Weight Gel’fand-Kalinin-Fuks Cohomology

Groups of the Formal Hamiltonian Vector Fields on R*

By Kentaro MikAMI® and Yasuharu NAKAE

Abstract. In this paper, we investigate the relative Gel’fand-
Kalinin-Fuks cohomology groups of the formal Hamiltonian vector
fields on R*. In the case of formal Hamiltonian vector fields on R?,
we computed the relative Gel’fand-Kalinin-Fuks cohomology groups
of weight < 20 in the paper by Mikami-Nakae-Kodama. The main
strategy there was decomposing the Gel’fand-Fucks cochain complex
into irreducible factors and picking up the trivial representations and
their concrete bases, and ours is essentially the same. By computer
calculation, we determine the relative Gel’fand-Kalinin-Fuks cohomol-
ogy groups of the formal Hamiltonian vector fields on R?* of weights 2,
4 and 6. In the case of weight 2, the Betti number of the cohomology
group is equal to 1 at degree 2 and is 0 at any other degree. In weight
4, the Betti number is 2 at degree 4 and is 0 at any other degree, and
in weight 6, the Betti number is 0 at any degree.

1. Introduction

Inspired by [4], we are interested in getting information about the rel-
ative Gel’fand-Kalinin-Fuks cohomology groups of the formal Hamiltonian
vector fields on R?" of a given weight.

In [6], we dealt with the case where n = 1 of weight < 20. In this paper,
we investigate the relative Gel’fand-Kalinin-Fuks cohomology groups of the
formal Hamiltonian vector fields on R*. Even for n = 1 or 2, the limita-
tion comes from overloading of heavy computations of picking up the trivial
representations and their concrete bases. Comparing the case where n = 2
with the case n = 1, we encountered more difficulty of decomposing into ir-
reducible factors of tensor product, even though the Littlewood-Richardson
formula is theoretically rather simple. So far, the information we have gotten

*Partially supported by Grant-in-Aid for Scientific Research (C) of JSPS,
No0.23540067 and No.20540059.
2010 Mathematics Subject Classification. Primary 57R32, 57R17; Secondary 17B66.

699



700 Kentaro MikAMI and Yasuharu NAKAE

about the relative Gel’fand-Kalinin-Fuks cohomology groups of the formal
Hamiltonian vector fields on R* is only in the cases of weight=2,4,6, and
the corresponding Euler characteristic numbers are 1,2 and 0, respectively.

2. Splitting Cochains by Weight

We are interested in the standard linear symplectic space R**. The
function space C°°(R?") forms a Lie algebra with respect to the Poisson

bracket {-,-}. For the Darboux coordinate (z1,... ,Zn,¥y1,... ,Yn), We have
{zi,yit = —{yjyzi} = 6y and {z;,2;} = {yi,y;} = 0. Then the space
of polynomials of z1,...,y, is a subalgebra with respect to the Poisson

bracket. The space ham9, of Hamiltonian vector fields which have poly-
nomials as Hamiltonian potentials is a Lie algebra and the map f — —Hy
from the Hamiltonian potentials to Hamiltonian vector fields is a Lie algebra
homomorphism with the kernel = R.

We look at the Lie subalgebra ham%n of hamgn formed by elements which
vanish at 0. ham%n corresponds to the algebra of polynomials without linear
terms.

In this paper, we are interested in the Gel’fand-Kalinin-Fuks cohomology
groups of hamy, when n = 2.

We can split the polynomial functions by their homogeneity. The
cochain complex is the exterior algebra of dual of polynomial functions and
we introduce the “weight” on the cochain complex as follows:

DEFINITION 1. Let &y be the dual space of £-homogeneous polynomial
functions, and define the weight of each non zero element of &, to be £ — 2.
For each non-zero element of Sy, A Gp, A -+ NGy, (b1 < by < -+ < Uy),

define its weight to be Z(& —2).
i=1

PROPOSITION 1 (cf.[4],[6]). The coboundary operator d of the
Gel’fand-Kalinin-Fuks cochain complex preserves the weight, namely, if a
cochain o is of weight w, then do is also of weight w.

Hence we can decompose the total space of cochain complex by degree
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and weight: namely,

mo(ham), ) = LinearSpan of {o € AF1&S| A ARGy A - A ARG, |
Zki:mvZki<i_2):w75:1>2a-'-}
i=1 i=1

and we can define the cohomology group Hp(ham3, ).

C% - (hamd,),, is the subspace of C&p(ham,,),, characterized by &k = 0.
If we restrict our attention to the cochain complex relative to Sp(2n,R),
then it turns out k2 = 0 (cf.[6]). Thus we first look at the subcomplex
Cop(hamd )., of C&p(haml, ), spanned by cochains such that k; = ko = 0.

We consider finite sequences of non-negative integers (ks, k4, . . . , ks) sat-
isfying

(1) iki:m and iki(i—Q):w.
=3 =3

Shifting the indices by 2 as k; = kio (i > 0), we see

w=ky + 2koy + -+ thy
=4+t + Q2+ A+ A+ D)=l L+ -+l
—_————

];Zt ];32 ’Af 1

where t = s —2and {1 > €y > --- > £, > 1. This is a partition of w of
length m or a Young diagram of height m with w cells. Conversely, for a
partition of w

(2)

ki = #{j| ¢; =i} gives a solution of (1). That means there is a one-to-one
correspondence between the solutions of (1) and all the partitions of w of
length m or Young diagrams of height m with w cells.

REMARK 1. Since —Identity € Sp(2n,R), we see that the relative
cochain complex of odd weight must be the zero space, and hence we only
deal with the complexes of even weights.
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ProproOSITION 2. When weight = 2, 4 or 6, the non-trivial cochain
groups are as follows:

Cep(haml,)s = &4, Coyp(hamd )s = A2,

alGF(hcu‘“%n)éL = 661
Chp(hamd,)s = (63 A 65) ® A26, = (63 © 65) @ A%Sy,
Cop(hamb,)s = A3 A 6,4 = 263 ® G4, Cep(hamb,)s = 'S,

In the above, we identify the exterior product &3 N\ &5 with the tensor prod-
uct 63 ® G5 as vector spaces, and we often use this identification without
comments.

(hams,)s = Ss, Clp(haml,)s = (63 ® 67) & (64 © &) @ A26;
Car(hamy,)s = (A’G3 ® &) @ (63 ® 64 ® G5) & A’S,

(hamg, )6 = (A°S3 @ 65) & (A’S3 © A’S4)
Cor(hamy,)s = A'G3 ® &y, Cep(haml,)s = A6,

In general, AP&, = {0} if p > dim S, = (¢ + 2n — 1)!/(¢!(2n — 1)!). If
n =1, dim &3 =4 and we have @gp(bam%)g = {0}.

PrROOF. (1) weight= 2 case: When m = 1, then ¢; = 2, so we have
ky =1and kj =0 (j # 2). Thus, ky = 1. When m = 2, then 2 = ¢; + {3
(>0 >1), 0 =0 =1, sowehavel;q:Qandl;:j:O(jyél). Thus,
ks = 2.

(2) weight= 4 case: When m = 2, ie., 4 = {1 + 0y ({1 > by > 1),
then (¢1,02) = (3,1) or (2,2), so we have (l;:l = 1,k = 1), or ko =
Thus, (ks = 1,ks = 1) or (kg = 2). When m = 3, i.e., 4 = {1 + lo + {3 (
61 2 62 Z 63 2 1), 61 = 2,62 = 1,63 = 1. Thus (]%2 = 1,]%1 = 2), SO (kg =
2,ky = 1). When m =4, ie,4=01+0y+ 3+ {4 (ﬁl > Uy >3 >0y > 1),
51252253254:1. Thus /%1:4, SO k3:4.

(3) weight= 6 case: Way is the same, we omit the discussion. O
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3. Coboundary Operator

The relative cochain complex is defined by

CgF(ham%n7 Sp(2n7 R))w
= {0 € Clp(bamd,) | i = 0,ijigdo =0 (V€ € sp(2n, )]

where .J is the momentum mapping of Sp(2n, R) on R?". The first condition
ijeo =0 (V¢ € sp(2n,R)) means that &9 does never appear. The second
condition i j . do = 0 (V¢ € sp(2n,R)) means the cochain complex consists
of the trivial representation spaces.

In the rest of this paper, we use the global variables x1,x2, 3, x4 on

R* and the symplectic form w on R* is given by w(=—,=—) =
0 0 g 0 0 0 O Ors
—w(z—,5—) =1 — V) = —w(=—,=—) =1 d the oth
“’(am’ Bxl) ’ w(axQ’ 8963) w(ﬁxg’ 8302) ) an ¢ others

are zero. (r4 = y; and x3 = yo for the Darboux coordinate x1, x2,y1,y2 we
explained in the section 2).
We consider the standard basis of homogeneous polynomials of x1, x2,

' i okt .
x3, T4 given by _'1_?/{_?6—;1 We use the notation z; ;¢ to express the dual
il gl kD2
basis of those. While we deal with polynomials with 0 < 4,7, k,£ < 9, the

4 digit number has the unique meaning and we may denote z; j 1 ¢ by Zijke-
Furthermore, in order to simplify expression we use the notation z;;.f ket
for z;jpe-

Now, the Poisson bracket is given by

Of dg _ 0f 99 Of dg  Of dg

69c1 8.%4 8172 81‘3 azrg 83;2 8954 8x1 '
al .a2 _.a3 _.a4
T T Ty X
If we denote —L- =273 "4
a1! a2! a3! CL4!

(a1 + bl — 1)' ((12 + bg)' (a3 + bg)' (CL4 —+ b4 — 1)‘
a1!61! a2!b2! a3!b3! a4!b4!

{f,9} =

by ea, where A = (a1, a2,a3,a4) € Zio, then

{ea,ep} =+ (a1bs — asby)

X €(ay+b;—1,a2+ba,a3+b3,a4+bs—1)
(a1 =+ bl)' (a2 —+ bg — 1)‘ (a3 =+ b3 — 1)' (a4 —+ b4)'
a1!b1! ag!bQ! a3!b3! a4!b4!

+ (a2b3 — agbs)

X €(ay14b1,a2+ba—1,a3+b3—1,a4+bs)
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From the definition of the coboundary operator d, dzc(es,ep) =
—(zc,{ea,ep}) holds good, and we see that

C!
dZC:— Z (a1b4—a4b1)MzA®zB
(A,B)eout(C)

C!
- Z (agbs — a352)MZA ® zp
(A,B)€inn(C)

where C! = ¢1leglesley!, out(C) consists of (A, B) with a3 +b; = 1+ ¢4,
as + by = ¢, ag + b3 = c3, ag + by = 1 + ¢y, ‘A’ > 1 and ‘B‘ > 1,
and also inn(C') consists of (A, B) with a1 + b1 = ¢1, ag + bs = 1 + ca,
as+bs =1+ c3, ag+ by = ¢4, |[A] > 1 and |B| > 1. Here the notation
|A] means a; + ag + a3 + a4. Since we are working in hamd | |A] > 1 and
|B| > 1.

4. Irreducible Decomposition of Cochain Complex

Our purpose here is to find the multiplicity of the trivial representations
for a given cochain complex. We try getting a complete irreducible decom-
position by finding the maximal weight vectors. A way of finding maximal
weight vectors is to find the invariant vectors by the maximal unipotent
subgroup of Sp(4, R).

4.1. weight = 2

Since @é r(ham})s = &4, and &y is a non-trivial irreducible representa-
tion of Sp(4,R), CLp(haml, Sp(4,R)); = {0}. Concerning Cop(hamb)y =
A2G3, by finding maximal weight vectors, we get an irreducible decomposi-
tion

NS5 = Vo) ® Vingy © Vigg) © Viga) @ Vigy ® Vs

where Vi, v is the irreducible representation of Sp(4,R) corresponding to
a Young diagram of length not greater than 2. We often denote Vi,
by Vi), and Vi, is identical with &,, and Vg = Vi = &p is the
the trivial representation. Hence, C%x(ham}, Sp(4,R))s = R.

The following is the reason why we try getting a complete irreducible de-
composition. By Weyl’s dimension formula, we can calculate the dimension

of Vip.g) for each p > ¢ > 0 and also dim ATV<I,7q>, dim (A’" Vipg) ® A" V<p,7q/>)
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and so on. When we get an irreducible decomposition of ATV<p,q>, we can
calculate the dimension of the left hand side of the decomposition by using
the dimension formula, and also the dimensions of all terms which appears
in the right hand side. This gives us an evidence which supports that our
decomposition given by a computer program would be correct.

ProrosiTiON 3. When weight = 2, then we have the following table.

degree

0 1 2
0 0 1

dim

Thus, we see the Euler characteristic number of weight 2 is (—1)°0 +
(-0 +(-1)%1=1.

Note that we can also see that in the case of weight 2, Betti number
h? of the cohomology is equal to 1 and h°® = h' = 0 by the observation of
Proposition 3.

4.2. weight = 4 and relative

The Littlewood-Richardson rule is used to decompose the tensor product
of two irreducible representations into irreducible components in general. In
many places below, by the help of Littlewood-Richardson rule, we decom-
pose the tensor product Vi, ;y @ Vi o1y of two irreducible representations (of
length at most 2) into irreducible components. We write down the results

only, but by the symbol I::\F’{, we suggest using of the Littlewood-Richardson
rule.

Here we review the Littlewood-Richardson rule and the specialization
algorithm briefly. The product of Schur functions is given by

848y, = Z LRl);,,s,\ ,
A
where A, u,v are general partitions and LR;}V is called the Littlewood-
Richardson coefficient. LRﬁV is obtained by
LR;\W =#{T € SSTab(\/p :v) | w(T) is a lattice permutation}

(this is called the Littlewood-Richardson rule). SSTab(\/u,v) is the set of
semistandard tableaux of shape \/u and weight v. When T; denotes the



706 Kentaro MikAMI and Yasuharu NAKAE

i-th row of T' and reverse(T;) the word obtained by reading 7; from right
to left, the w(T) is the concatenated word (reverse(T}),...,reverse(1,))
whose length equals |v| = |A| — |p|, where m = ¢(T'), the length of 7.

In order to obtain the character corresponding to each irreducible repre-
sentation of Sp(2n, R), the virtual character S,y and the universal character
s(n are defined in the completely same form as follows.

1
Sy = 9 det(Hx,—itj + Hx,—i—j)1<ij<en)

1
S = 5 det(hx,—itj + P, —i—j)i<ij<en)

where Hj is the character of the k-th symmetric tensor product of the
natural representation R?" of Sp(2n,R), H, = 0if k < 0, and hy, is the k-th
complete symmetric function.

As the Schur functions {s)} is a basis of the space of symmetric functions
Symeo, {s(xy} is also a basis of Sym. It is known that the product of two
universal characters is given by

_ o
(3) $0080) = D LR 30
A
where o
A _ i v A
LRy = > LRASLRY LR}, .

a,Byy

There is a homomorphism
7 Syme, — Rep(Sp(2n,R)) : hy — Hy, (E=1,2,...),

which is surjective and whose kernel is generated by ey — eg,—x (0 < k < n)
and ey (k > 2n), where ey, is the k-th elementary symmetric function. m is
called the specialization homomorphism and satisfies

In the Sp(2n,R)-representation theory, equivalence classes of the irre-
ducible representations are parametrized by the set of partitions A whose
length £(A\) < n. We use the notation V() for that representation. Al-
though the character m(s(\)) = Sy is defined for each general partition
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A, if £(A) < n then m(s(yy) = Sy is the irreducible character of Viy. If
£(\) > n, it is known that Sy = 0 or £S5, with £(\') < n by some rule,
which is called the specialization algorithm. Applying the specialization
homomorphism 7 to the formula (3) , we see that

_ N (A ()
= LR, Sy = Y. LRG S+ D LRE, Sy
A L(A)<n L(A)>n
- IRY, 8
- Z (1) ()2 (N
L(AN)<n

where ﬁéﬁi@) is the slight modification of LR% W) caused by applying the
specialization algorithm. In our context,

- Y T

L(AN)<n

About the Littlewood-Richardson rule for Sp(2n,R), we refer to Soichi
Okada’s book: Representation theory of classical groups and Combinatorics,
Baifukan, 2006 (in Japanase) Volume2, p.258 and also Volume 2, p.253 for
specialization algorithm.

LR
We stress that all the 2 in the paper are done by ourselves by following
the Littlewood-Richardson rule and the specialization algorithm faithfully.
The decomposition for weight = 4 is as follows.

Cep(haml)y =6

CGF([] N12(63® 65) @ A%6,

LR
= (Vigy ® Vigy & Vi) ® Vigy ® Viz 1) © Viag)

S Vis1y ® Viss ® Vigay ® Virpy) ® A*Sy
=(Viz) @ Viay @ Vi) © Vig) @ Vi 1) © Vig)
® Visy © Visz) @ Viea) ® Vi)
® (Vigy + Vis) + Viuz) + Visg) + Viey + Virpy)
=2Vig) + Vigy +2Vig) + Vig) + 2Viz 1) +2Via)
T Visa) +2Vis ) + Viga) + 2Viryy
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Cop(hamb), 2A26; ® &,

=(Vioy + Vigy + Vi) + Viggy + Vig sy + Vis1)) © Vigy

LR
=+ Vi

+ (Vigy + Vig) + Viy + Vigy + Vigy + Viw gy + Vigg) + Via
+Viga) + Viaoy + Viaay + Vs + Viszy + Viea) + Vi)
+ (Vigy + Vizgy + Vis,1))
+ (Vigy + Vieoy + Visny + Vioy + Visy + Vie2))
+ (Vigy +Visay + Vigg) + Viagy +Vis) + Visg)
+ Vie2y + Viz3))
+ (Vigy + Viay + Vi) + Vigy + Vinay + Vizgy +2Vizn) + Viga)
+2Vig9) + Vigay +2Vi51) +2Vis 3y + Vis 5y + 2Vie 2
+ Vieay +2Viz 1y + Vigay + Viga) + Vig1y)
=Vio) +2Vig) +6Via) + 2Vig) + 2Vig) + 2Via 1) + 3V 9
+6Via 1) + 3V a) + 5Vig) + 2Viaa) + 6Vis 1) +4Vis 3
T Viss) +5Vis2) + Vieay +3Vizn) +2Vigs) + Viga) + Voo
Cir(ham})s =A163
=3Vio) + Vi) + 2Vig) + Vig) + 2Vl 1) +4Vig) + 3Vig )
T 4Viz ) +3Viag) + 3Viaa) +5Vis0) + 2Vis ) + Viss)
+4Vig2) + Viea) + Vies) + Viza) +2Vizs) + Vigoy.

Thus we obtain

CLp(haml, Sp(4,R))s = {0} C&p(ham}, Sp(4,R))s = {0}
C%F(bam}iasp(47R))4 =R Cép(f)am}l,Sp(ZL,R)M gRg_

PropPOSITION 4. When the weight = 4, we have

degree |0 1 2 3 4
dim |0 0 0 1 3

Thus, the Euler characteristic number of weight 4 is (—1)°0 + (=1)31 +
(-1)*3 = 2.
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4.3. weight = 6 and relative

The decomposition into irreducible representations for degrees 1,2 and
3 are as follows.

Ss
(G332 67) @ (64 ® 6¢) B A265

—1
Cer(hamy)g

Cip(hamb)s

RS 1R

(Viay + Viey + Vigy + Viaoy + Vis,1) + Vig2) + Vi) + Vizg
+ Vig2y + Vio1y)
+ (Vigy + Vigy + Vigy + Vi) + Viaoy + Vigny + Viao) + Vs
+ Viszy + Vieo) + Vieay + Viray + Virsy + Vigay + Vi)
+ (Vi) + Vi) + Viea) + Vigg) + Vigy + Viuy + Vis )
+Viss) + Vieo) + Virs) + Vi) + Vo)
=Vioy + Vig) + 3Viuy +2Vie) + 3Vig) + 2Viao) + Viuyy + Vig)
T Vi + Viza) + Viag) + Viaay +3Visn) + Viss) + Vis )
+3Vie2) + Vi) +2Viz 1) + 3Virs) +2Vig 2y + 3Vign

=

R
= (2Vig) + 2Vigy + 6Vig) + 2Vig) + 2Vig) + Vi) + Vio)

+3Viz1) +2Viga) + 5Viuz) + Vi) + 6Vis 1) +4Vis 3
+ Viss) +5Vieo) +3Viea) +6Vig 1y +4Vi7 3y + Viz s
+5Vig2y + Vigay +3Vig1y +2Vig3) + Vino2y + Vi)

+ (Vioy + 6Vigy + 10V(ay 4 10V + 6V(g) + 3Vi10y + Viaay
+3Viy) +5Vigg) +12Vig 1) +6Viga) + 15V 9) + 5Vig g
+16Vi51y + 13Vi53) + 3Vi5 5 + 15Vig 0y + 8Vi6 ) + Vie,6)
+12Vig1) +10Viz3) + 3Virs) + WVig o) + 4Vis )
+6Vig,1y +4Vig 3y + 3Vino2) +2Vi1,1))

+(2Vig) +3Viz ) + Vig gy + Vigy + 4Via2) +3Vis 1) +3Vis )
+3Vis0) +2Vie2) +2Vig) +2Vizy) +2Vigs) + Virs)
+2Vig2y + Vig,1y + Vig.s) + Vi)

=Vio) +8Vig) + 12Viy) + 16Vie) + 8Vig) +5Viig) + Vi)
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+ 4V 1y +2Vig) + 6Vigg) + 18Vi3 1y + Vi3 3) + Vigy
+24Viy 0y + 6Vig 4y + 25V(5 1y + 20Vi5 3y + 4Vi5 5y + 3Vig)
+ 22Vig 2y + 13Vig 4y + Vig6) + 20Vi7 1y + 16Vi7 3y + 5Vi7 5
+ 16V 2) + 5Vig 4y + 10Vig 1y + TVig 3y + Viroy + 4Vi10,2)
+ 3V

For degree 4, since
rabi 1\~ (A3 2 2
Caor(bamy)s = (A°G3 ® 65) @ (A°G3 ® A°6y),
we shall decompose two kinds of tensor products: The first one is

A’G; ® &5 =Vio,1y +3Viz0) + Vizay +2Via 1y + Viggy + 2Vis 2
+Vieay + Vies) + Vizoy) ® Vi)

Z9Vig) + 13Viy + 13Vig + 10Vig) + 2V]u0) + Vi + Vi
+6Vig o) + 18Viz 1y + 8Viz3) + 23Vig9) + TViga) + 22Vi5 )
+22Vis3) +4Vis5) + 24Vie2) + 13Vi6a) + 2Vis6) + 19Vir )
+15Vi7 3y + 6Vi7 5 + 13Vig oy + TVig 4y + Vig ey + 8Vig 1)

+ TWVi93) + Viosy +5Vin0,2)y + Vino,ay +2Viar 1y + Vi s)-

Concerning A265®A%G,, by using the Littlewood-Richardson rule as usual,
we have a decomposition into terms which include a term of partition length

4. By an easy observation, V; ;1 1y = —V{ and we see

i)
NG5 @ A*6,y LgRlsvm + 22V, + 26Vig) + 12Vigy 4 5Vi10y + Virgy + 6Vi1 1)
+12Vig.2) +34Vis 1) + 15V(5 ) + 45Via ) + 13Via g
+41Vis1) +39Vi53) + TVis5) +40Vi6 ) +25Vi6 )
+ 3Vis,6) + 32Vi7 1y + 26V(7 3y + 11V(7 5y + 24Vg 9
+12Vig.a) + 3Vigs) + 12Vig 1) + 12Vi95) + 2Vi9 5
+ TVio,2) +3Vino,ay + 4V + Vs + Vi)
+8Viso21y + Vizs22) +4Viss31) +3Viu222)

1494y

+12Viu32.1) +2Viu33.2) + Vida2,2) +3Viwa3)
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+8Vis221) +4Vis 322 +4Vis331) + Vis333) +8Vis421)
+ V5432 +2Viss531) + Vie222 +Weszn + Viesse)
+ Viea,22) +2Viea31) +2Vie521) +5Vir221)

+3Vizsany +2Vizaony +2Vigs 21y

Next, we use Vi; ;1. 1y = 0 and V{; ;. 9) = 0 where ¢ > j > k > 1, and have

A?G3 @ A*6y 18V)g) + 22Vyy + 26Vie) + 12V(gy + 5Viigy + Viag) + 6Vi1 1)
+12Vig ) + 34Vi51) + 15V(55) + 45Via ) + 13Via g
+41Vi5 1y + 39Vi5 3y + TVi5 5 + 40V 2y + 25V6 4y
+3Vige) +32Vir1) +26Vizs) + LVizs) + 24Vis o)
+12Vig 0y + 3Vigg) + 12Vig 1) +12Vig ) + 2Vig 5)

+ TVio,2) +3Vio,ay + 4V + Vs + Vi
+ V5,333

Since V(5 333y = 0, we finally have

A?G3 @ A*6y 218V)g) + 22Vyy + 26Vie) + 12V(gy + 5Vi1gy + Viag) + 6Vi1 1)
+12Vig 9y + 34Vi3 1y + 15Vi3 3y + 45V 9y + 13V (4 4y
+41Vi5 1y + 39Vi5 3y + TVi5 5y + 40Vi6 2y + 25V(6 4
+3Vie6) +32Vir1) +26Vig3) + 1Vig5) + 24Vis 9)
+12Vis,0) + 3Vis6) +12Vig ) +12Vig3) + 2Vi9 5
+ Vo2 +3Vioay + 4V + Viarsy + Vizo)-
The decomposition is obtained by a computer program. Validity of our
computation is supported by the following fact: The sum of dimensions of
each components above is 113050. On the other hand, dim(A?G3®A%6,) =

190 x 595. These numbers are equal.
Combining above decompositions, we have

Chp(haml)s 2(A363 ® 65) @ (A265 ® A26))
=2TVig) + 35Vig) + 3Wie) + 22V(g) + TViao) +2V0az) + Wiy
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+63Vi5,1) + 61Vi5 3y + 11Vi5 5) 4+ 64V(6 2) + 38V 4)
+5Vige) +51Viry) + 4Vizg) + 1TVirs5) + 37Vig 9)
+ 19Vig 4y + 4Vig6) + 20Vig 1y + 19Vig 3y + 3Vig 5)
+12Via0,2) + 4Vino,4y + 6Via11y + 2Via1 3y + Vinag)-

For degree 5, applying the Littlewood-Richardson rule to the following
decomposition

—5

Car(hamy)s = A'S3 ® 64 = (3Vg) + 2Vi11) + 4Viag) +3Vis) + 4Vigg)
4V +3Vig oy + 3Vigay + 5Vis 1y +2Vi53) + Vis5) + 2Vig) +4Vi6 2
+ Vieay + Vies) + Vi) +2Vizs) + Vis) + Vig2)) @ Vi

and using the Littlewood-Richardson rule many times, we have

LR
Viy @ Viey = Viy, Vi) @ Vigy = Vigy + Vigay + Vis 1y,
LR
Vigay @ Viay = Viay + Vig oy + Vig 1y + Vigo) + Vis 1) + Vie2)
LR

Visy) ® Vi = Vigy + Vi) + Vie) + Vi) + Vizy +2Vis1) + Visg) + 2V

+2Vis1) + Visg) + Vieo) + Vir)

LR
Vizgy @ Viay = Viay + Vig 1y + Vi) + Vigo) + Vis )y + Vis sy + Viea) + Vizs)

LR
Vigy ® Vigy = Vigy + Vig) + Vigy + Vig) + Vigy + Vi 1y + Vigo) + Vig )

+ Visg) + Viday + Vigay + Vis 1) + Vis sy + Viey + Vir
(decompositions of 12 tensor products are omitted)
LR
Vig2) ® Viay = Vigy + Vigy + Vioy + Via) + Vis 1y + Vis 3y +2Vig ) + Vg
+2Viz 1y +2Viz sy + Vig s +3Vig 2y + 2Vig 4y + Vige)
+2Vig 1y +2Vig 3y + Vig5) + 2Vin0,2) + Vito,g)
+ Vi + Viarsy + Viaz)-

The complete list of decompositions which we need is available in [7].
Gathering above decompositions, we see that

=9
Car(hamy)s =4Vig) + 17Vig) + 41Vi) +29V(g) + 20Vig) + 5Viag) + Virg
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+ 12V 1y + 23Vig 0y + 45V(3 1y + 27V(3 3y + 59V (4 2y
+ 24V<474> + 61V<571> + 55V<573> + 15V<575> + 65‘/(672>
+36Vig 4y +8Vige) +42Vi7 1y +44Vi7 3y + 16Vi7 5y + 2Viz 7y
+31Vig2) + 21Vig .4y + 5Vig ) + 18Vig,1) + 15Vig ) + 6Vig 5
+10Vi0,2) +4Vin0,4y + Vinose) + 3Via1,1y + 3Via3) + Viazo)-

For degree 6, direct computation of maximal weight vectors shows that

Corp(ham})s =63
S4Vig) + 6V1 1y + 2Vig0y + 10V + 10Vig 1y + 12V3.5)
+ 13Vig0) + 14Vig ) + IWVig ) + 19Vi5 1) + 14Vi5 5 + TV5 5
+ TVig.0) + 18Vig ) + V(g0 + 4Vie.gy + 10V 1) + 13Vi7 3
+4Viz5) +4Vigo) + TViga) +5Viga) + Vige) +3Vio )
+ 3Vig,3y + 2Vig 5) + Vino,0) + Vito,2)-

From the observation above, we have the following:

PROPOSITION 5. When the weight = 6, we have

‘degree 0 1
| dim [0 0

2 3 4
1 1 0

5 6
4 4

The Euler characteristic number for weight 6 is (—1)°04 (—=1)?14 (—1)31+
(=1)°4 + (—1)%4 = 0.

5. Betti Numbers

In order to get each Betti number, we have to know the image and the
kernel of d itself. For that purpose, we have to fix some bases of cochain
complexes and matrix representation of d by those concrete bases.

5.1. weight = 2

We already see that the Betti numbers of the cohomology group in the
case of weight 2 are the following which is an immediate consequence of
Proposition 3.
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degree |0 1 2
dim |0 0 1
Betti |0 0 1

5.2. weight = 4
In order to know properties of d : C&p(hami,Sp(4,R))y —
C¢.r(ham}, Sp(4,R))4, we prepare a basis, say A of C3p(ham}, Sp(4,R))4:

A= — 4239 A 219 A Zio1 + 22001 A 2300 A 2310 + 42500 A Za01 A 2o
— 22001 A 291 A Za11 + 2001 A 230 N 2302 — 2200 A 2300 A 200
— 42501 A 2301 A Ziag + 42001 A 210 A 211
+ 164 terms
— 22500 /\ #5301 A 2210 + 22000 A Za10 A 2301 + 2000 A Z300 A Z200

3 3 4 3 3 4 3 3 4
+ 2501 A 2010 N 2400 T 22001 A 2011 A 2310 T 2001 A 2012 N\ 2220

The complete expression of all terms in A is available in [7].

We prepare a basis {By, Bo, B3} of C&p(ham}, Sp(4,R)), and we get
dA = —32B; + 32By — 28B3 by using computer programs. The complete
form of its basis is also available in [7]. But we can conclude dA # 0 directly
by an observation of the calculation of the d-image of A. Thus, h® = 0 and
h* = 2, that is, h° = B! = h? = K® = 0. Consequently, h* = 2 and the
others are zero. Therefore, the alternating sum of the Betti numbers, which
is another definition of the Euler characteristic number, is 2.

THEOREM 1. When the weight = 4, we have

degree |0 1 2 3 4
dim |0 0 0 1 3
Betti |[O 0 0 0 2

5.3. weight = 6
As a basis of CZ(hamy, Sp(4,R))g, we can select
1

1
5 5 5 5 5 5
A =62719 A 2191 + 102000 N Z500 + 57004 N 2140 +

1
5 5 5 5
57001 N Zg10 + 2002 N 2320

1 1
5 5 5 5 5 5 5 5
+ Zgo3 N\ 2230 — 22011 N 2311 + 107005 N Zp50 — 57010 N Z401
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1
5 5 5 5 5 5 5 5 5 5
— 32012 A\ 2391 — 22013 N\ 2131 — 57014 A Zoa1 + 2020 N\ 2302 T 32021 N 2212

1

5 5 5 5 5 5 5 5 5 5

+ 32022 A 2122 + 2023 /N 2032 — 2030 /\ #203 — 22031 N\ 2113 T 57040 N 2104
1

5 5 5 5 5 5 5 5
~ 57100 N zZg00 — 22701 N 2310 — 32102 A 2920 — 22703 N 2130

5 5 5 5 5 5 5 5 5 5
+ 22710 A 2501 + 62711 A 2311 — 32720 A\ 2202 + 2200 A\ 2300 T 32201 N 2210-

We can also see dA # 0 by an observation for A. Thus, h? = 0 and
h® = 0. We also prepared a basis B of C%p(ham}, Sp(4,R))s and we got
dA = 12B, the complete expression of B is available in [7].

Concerning the coboundary operator d : Cgp(ham}, Sp(4,R))s —
C% . (ham}, Sp(4,R))s, we have concrete bases Pi, Py, P3, Py of Cp(hamy,
Sp(4,R))s and Q1, Q2,Q3, Q4 of C&p(ham}, Sp(4,R))s. Those have very
long expressions as P; is a sum of 3696 terms, P> of 3358 terms, P; of 1406
terms, Py of 2960 terms, and Q)1 of 120 terms, Q)2 of 466 terms, QY3 of 756
terms, Q4 of 866 terms. Each P; is constructed by the terms of the form
(Agzlzf’ajaka) A Z?sjsks’ and each @); is by the terms of Agzlz'?ajaka. The
complete forms of each P; and Q; are also available in [7].

Using those bases, we have a matrix representation of d:

d(Pr) = —90Q1 — 22Q2 + 5Q3 — 2Q4
d(P) —2—25621 - ng + %Q:& +3Q4

d(Ps) = —%7@1 — %Qz - gQ?)

d(Py) = 6Q1 + ng - %QS —4Q4.

It is non-singular and so h®> = 0 and h® = 0. Namely, »/ = 0 for j =
0,...,6.

THEOREM 2. When the weight = 6, we have

degree [0 1 2 3 4 5 6
dim |0 0 1 1 0 4 4
Betti (O 0 0 0 0 0 O
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