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Large Deviation Principle for the Pinned Motion of

Random Walks

By Taizo Chiyonobu and Kanji Ichihara

Abstract. The large deviation principle is proved for the long
time asymptotic of empirical measures associated with the pinned mo-
tions of random walks on the square lattice. Random walks are not
reversible Markov chains in general, and thus nice property such as the
Gaussian bounds on the transition probabilities, which was one of the
key tools for proving the large deviations for periodic and reversible
Markov chains in [1], are no longer available. For this reason the spec-
tral radius of transition probabilities of random walk comes into play.
With the help of Salvatori’s theorem, a sufficient condition is given
so that the spectral radius is held to be equal to 1 by certain gauge
transform of the transition probabilities, and then the large deviation
will be proved under the condition.

1. Introduction

In this paper we will prove the large deviation principle for the long

time asymptotic of empirical measures associated with the pinned motions

of random walks on the square lattice.

In [1], the large deviation principle has been discussed for the pinned

motions of periodic and reversible Markov chains on the square lattice. We

have shown that the corresponding rate function is associated with a new

Markov chain constructed from the original one through harmonic transform

based on a principal eigenfunction for the generator of the chain. Thus the

generalized principal eigenfunction has played the special role there. An-

other key point in [1] has been that the transition probabilities of a reversible

Markov chain on Z
d with an uniform invariant measure have Gaussian up-

per and lower bounds and that such a property is preserved by a kind of

gauge transform. This offers the nice pointwise asymptotic of the transition

probabilities as time goes to infinity, and based on this fact essentially, the

uniform large deviation principle for the original chains has been established.

2010 Mathematics Subject Classification. Primary 60F10; Secondary 60G50, 60B12.

677



678 Taizo Chiyonobu and Kanji Ichihara

In this paper we will be concerned with i.i.d. random walks on the square

lattice where the reversibility cannot generally be expected any more and

thus nice properties such as Gaussian estimates are no longer available. So

we will compensate the lack of the Gaussian estimate with the estimate on

the spectral radius of the transition probabilities of the walk. However a

difficulty arises in this approach since, due to the lack of reversibility, we do

not have the invariance of the spectral radius under the gauge transform,

namely, there are random walks with spectral radii 1 for which the trans-

formed walks have spectral radii strictly less than 1. Thus in order to obtain

uniform large deviations as in [1], we must first clarify under what condi-

tions the invariance under the gauge transform is guaranteed. With the help

of Salvatori’s Theorem (See [6]), a sufficient condition for the invariance of

spectral radius will be given. Once this is done, under the condition we

are able to show the large deviation principle with some modification of the

arguments in [1].

In concluding the introduction we point out that this type of large devi-

ations have been also carried out for covering diffusions and random walks

on homogeneous trees [3, 4] by one of the authors.

2. Notations and Statements of Main Results

Let {ξk}, k = 1, 2, · · · be i.i.d. random variables on Z
d and let {Xn}, n =

0, 1, 2, · · · be the random walk on Z
d given byXn = X0+

∑n
k=1 ξk.We denote

by (pz)z∈Zd the probability law of {ξk}. In other words, the Markov chain

{Xn} has the one-step transition probability p(x, y) = py−x. We assume the

following conditions on the transition probabilities {p(x, y)}x,y∈Zd of the

random walk {Xn} :

(A.1) There is a positive constant r0 such that{
z ∈ Z

d; pz �= 0
}
⊆ B1(0, r0),

where B1(x, r0) =
{
y; ‖x− y‖ < r0

}
, ‖x‖ =

∑d
i=1 |xi|.

(A.2) {Xn} is irreducible and aperiodic as a Markov chain on Z
d.

Under these assumptions let

φ(λ) = logZλ = log


∑

z∈Zd

eλ·zpz


 , λ ∈ R

d,
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and

h(x) = sup{x · λ− φ(λ), λ ∈ R
d}, x ∈ R

d.

Then, ∇h(x) = λ if and only if

∇φ(λ) =
1

Zλ

∑
z∈Zd

zeλ·zpz = x,

and thus the new probability measure (p0z)z∈Zd defined by

p0z =
1

Zλ0

eλ0·zpz(1)

with the choice of λ0 = ∇h(0) satisfies that∑
z∈Zd

zp0z = 0.

We assume another condition on the transition probabilities {p(x, y)}x,y∈Zd :

(A.3) Either the following (i) or (ii) is satisfied:

(i) The random walk {Xn} with the transition probabilities given

by p(x, y) = py−x is a reversible Markov chain.

(ii) There is a m0 ∈ N, m0 ≥ 2, such that

∑
k∈Zd

(x+m0k)p
0
x+m0k = 0(2)

for every x ∈ (Z/m0Z)d.

We remark that, in the case of (i) in the assumption (A.3), {Xn} should

be reversible with respect to the constant weight on Z
d.

In the case (i) of (A.3) is satisfied, let m0 be the arbitrary natural

number greater than or equal to 2, and in the case (ii) of (A.3) is satisfied,

let m0 be the one in (ii). Denote by c the covering map from Z onto

T = Z/m0Z = {0, 1, 2, · · · ,m0 − 1}, i.e.,

c(x) = x (modm0)
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and set

c0(x) = (c(x1), · · · , c(xd)), x = (x1, · · · , xd) ∈ Z
d.

Let M(Td) be the set of probability measures on T
d endowed with the

topology induced by the metric

ρ(µ, λ) =

√∑
x∈Td

|µ(x) − λ(x)|2, µ, λ ∈ M(Td).(3)

Evidently (M(Td), ρ) is a compactmetric space. For each positive integer

n, we define the empirical measure Ln on T
d of the random walk {c0(Xk)}

by

Ln

(
{x}
)

=
1

n

n−1∑
k=0

χ{x}(c0(Xk))

for all x ∈ T
d, where χ{x} is the indicator of x ∈ T

d. Let P
(n,y)
(0,x) denotes

the probability law of the random walk {Xn} pinned as X0 = x ∈ Z
d and

Xn = y ∈ Z
d, and let Q

(n,y)
(0,x) be the law of Ln under P

(n,y)
(0,x) , namely

Q
(n,y)
(0,x)(B) = P

(n,y)
(0,x)

(
Ln ∈ B

)
for every Borel subset B in M(Td). In this paper a large deviation principle

for Q
(n,y)
(0,x) will be investigated. For this purpose we will first define the rate

function. Making use of the new probability measure (p0z)z∈Zd defined in

(1), a new transition probability measure p0(x, y) is defined by

p0(x, y) = p0y−x =
1

Zλ0

eλ0·(y−x)p(x, y), x, y ∈ Z
d.(4)

Let us denote by U0 the set of positive periodic functions of period m0 on

Z
d and set for u ∈ U0,

π0u(x) =
∑
y∈Zd

p0(x, y)u(y).(5)

Note that π0u ∈ U0 for all u ∈ U0. The rate function I0 on M(Td) is defined

by

I0(µ) = − inf
u∈U0

∑
x∈Td

log
(π0u

u

)
(x)µ(x).
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Note that this is the rate function for the large deviation principle for the

empirical measures of the Markov chain {X̃0
n} on T

d with the transition

probability

p̃0(x, y) =
∑
k∈Zd

p0(x, y +m0k),

see [2] and [5].

Now we are able to state our main result:

Theorem 1. Under the assumption (A.1), (A.2) and (A.3) on the

transition probability {p(x, y)}x,y∈Zd of the random walk {Xn}, for all x, y ∈
Z
d, the large deviation principle for Q

(n,y)
(0,x) holds with the rate function I0,

i.e.,

(i) For any closed F ⊆ M(Td),

lim sup
n→∞

1

n
logQ

(n,y)
(0,x)(F ) ≤ − inf

µ∈F
I0(µ).

(ii) For any open G ⊆ M(Td),

lim inf
n→∞

1

n
logQ

(n,y)
(0,x)(G) ≥ − inf

µ∈G
I0(µ).

A corollary of the above theorem is stated as follows.

Corollary 1. If Φ is a real-valued weakly continuous functional on

M(Td), then

lim
n→∞

1

n
logE

Q
(n,y)
(0,x) [e−nΦ(·)] = − inf

µ∈M(Td)
[Φ(µ) + I0(µ)]

for any x, y ∈ Z
d.

The remainder of the paper is organized as follows. In section 3, for

a given probability measure µ on T
d whose support coincides with it, we

first construct the transition probabilities of a Markov chain from

{p0(x, y)}x,y∈Zd via a gauge transform such that the invariant measures

of the chain is µ. Then we show that under our assumption (A.1)-(A.3), the

spectral radius of each of the Markov chain is 1 for every such µ. In section

4 and section 5, we prove the large deviation principle, the upper bound

and lower bound respectively. In section 6 we give the examples of random

walks for which our assumption of (A.1)-(A.3) are satisfied.
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3. Spectral Radius

Let us denote by Mc(T
d) the set of probability measures µ whose sup-

port coincide with T
d. The following lemma has already been given and

proved in [1] as Lemma 1.

Lemma 1. For each µ ∈ Mc(T
d), there exists a V0 ∈ U0 such that

I0(µ) = −
∑
z∈Td

log

(
π0V0

V0

)
µ(z).(6)

Now, with the help of V0 in Lemma 1, let a new transition probability

p1 on Z
d be defined by

p1(x, y) =
p0(x, y)V0(y)

π0V0(x)
(7)

for x ∈ Z
d and y ∈ Z

d, where π0V0(x) is defined by (5), and let us denote by

{X1
n} the Markov chain with the transition probabilities {p1(x, y)}x,y∈Zd .

Moreover, a transition probability on T
d is defined by

p̃1(x, y) =
∑
k∈Zd

p1(x, y +m0k) =
p̃0(x, y)V0(y)

π0V0(x)
, x, y ∈ T

d.(8)

We denote by {X̃1
n} the Markov chain on T

d with the transition probabilities

{p̃1(x, y)}x,y∈Td . Notice that p1(x, y) and p̃1(x, y) are functionals of µ in

Lemma 1.

The next lemma has also been given in [1] as Lemma 2.

Lemma 2.
{
p̃1(x, y)

}
x,y∈Td constitutes the system of one-step transi-

tion probabilities of a Markov chain on T
d having µ as its unique invariant

probability measure.

For any µ ∈ Mc(T
d), let ϑ(µ) ∈ R

d be defined by

ϑ(µ) =
∑

x,y∈Td

µ(x)
∑
k∈Zd

k · p1(x, y +m0k),
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where the system of the transition probabilities {p1(x, y)}x,y∈Zd is defined

by (7) with V0 so chosen as described in Lemma 1.

Proposition 1. Assume (A.1), (A.2) and (A.3) on the transition

probabilities {p(x, y)}x,y∈Zd of our original random walk. Then for all µ ∈
Mc(T

d),

ϑ(µ) = 0.

Let us now recall the definition of the spectral radius of a Markov chain.

For the irreducible Markov chain on Z
d with the n-step transition probabil-

ities {pn(x, y)}x,y∈Zd , it is known that if

ρ(x, y) = lim
n→∞

pn(x, y)1/n

exists for some (x, y) ∈ Z
d×Z

d, then it exists for all x, y ∈ Z
d and does not

depend on the choice of (x, y). This ρ = ρ(x, y) is called the spectral radius

of the Markov chain.

We denote by ρ(µ) the spectral radius of the Markov chain given by the

transition probabilities {p1(x, y)}x,y∈Zd defined by (7), since {p1(x, y)}x,y∈Zd

are defined given µ ∈ T
d. As a result of Proposition 1, combined with

Salvatori’s theorem (see [6]), we obtain the following.

Theorem 2. Assume (A.1), (A.2) and (A.3) on the transition prob-

abilities {p(x, y)}x,y∈Zd of our original Markov chain. Then for all µ ∈
Mc(T

d), we have

ρ(µ) = 1.

Proof of Theorem 2. Under our assumption, by Proposition 1, we

have ϑ(µ) = 0, and thus by Theorem(6.7) and Theorem(8.14) in [6], we have

lim sup
n→∞

p1n(x, y)1/n = 1.

Since the Markov chain with the transition probability {p1(x, y)} is irre-

ducible and aperiodic by our assumption (A.1) and (A.2), by Lemma(1.9)

of [6], limn→∞ p1n(x, y)1/n exists, and thus the theorem follows. �
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Proof of Proposition 1. For each µ ∈ Mc(T
d), let the transition

probability {p1(x, y)}x,y∈Zd be defined by (7) with V0 so chosen as described

in Lemma 1.

Step 1. In the first step, we show the result under the assumption

(A.1), (A.2) and (i) of (A.3). We first remark that under the assumption,

{p0(x, y)}x,y∈Zd is reversible with respect to the constant measure and thus

p0(x, y) = p0(y, x) for all x and y. Thus, by (7),

V0(x)π0V0(x)p
1(x, y) = V0(y)π0V0(y)p

1(y, x), x, y ∈ Z
d

and so p1(x, y) is reversible with respect to

µ′(x) =
V0(x)π0V0(x)∑

z∈Td V0(z)π0V0(z).

This implies that µ = µ′ and {p1(x, y)}x,y∈Zd is reversible with respect to

µ, namely

µ(x)p1(x, y) = µ(y)p1(y, x)(9)

for all x, y ∈ Z
d. We notice also that p1 is periodic in the sense that

p1(x+m0k, y +m0k) = p1(x, y)(10)

for all x, y ∈ Z
d and k ∈ Z

d, since V0 and π0V0 are periodic with period m0

and p0 is also periodic in the same sense as above. Hence, by (9) and (10),

ϑ(µ) =
∑

x,y∈Td

µ(x)
∑
k∈Zd

k · p1(x, y +m0k)

=
∑

x,y∈Td

µ(y +m0k)
∑
k∈Zd

k · p1(y +m0k, x)

=
∑

x,y∈Td

µ(y)
∑
k∈Zd

k · p1(y +m0k, x)

=
∑

x,y∈Td

µ(y)
∑
k∈Zd

k · p1(y, x−m0k)

= −
∑

x,y∈Td

µ(y)
∑
k∈Zd

(−k) · p1(y, x+m0(−k)) = −ϑ(µ),
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and thus ϑ(µ) = 0.

Step 2. In the remainder of the proof we show the result under the

assumption (A.1), (A.2) and (ii) of (A.3). For x ∈ T
d, we denote x = (x1, x

′)
with x1 ∈ T and x′ ∈ T

d−1. Let µ̃ be the probability measure on T given by

µ̃(x1) =
∑

x′∈Td−1

µ(x).

Another system of transition probabilities q̃(x1, y1) on T is given by

q̃1(x1, y1) =
1

µ̃(x1)

∑
x′,y′∈Td−1

p̃1(x, y)µ(x).(11)

Here, notice that

∑
y1∈T

q̃1(x1, y1) =
1

µ̃(x1)

∑
x′∈Td−1

µ(x)
∑
y∈Td

p̃1(x, y) =
1

µ̃(x1)

∑
x′∈Td−1

µ(x) = 1.

Now, since µ is the invariant measure for the transition probability p̃1,∑
x1∈T

µ̃(x1)q̃
1(x1, y1) =

∑
x1∈T

∑
x′∈Td−1,y′∈Td−1

µ(x)p̃1(x, y)(12)

=
∑

y′∈Td−1

∑
x∈T d

µ(x)p̃1(x, y) =
∑

y′∈Td−1

µ(y) = µ̃(y1),

meaning that µ̃ is a invariant probability measure for the transition proba-

bility q̃1.

We denote T = {0, 1, · · · ,m0−1} and µ̃ = (µ̃(0), · · · , µ̃(m0−1)). Notice

that (12) is a system of homogeneous equations for (µ̃(0), · · · , µ̃(m0−1)).

Let ũ = (ũ(0), · · · , ũ(m0−1)) be the solution of the equation (12) with

ũ(m0−1) = 1. Namely, (ũ(0), · · · , ũ(m0 − 2)) is a solution of

m0−2∑
x=0,x �=z

q̃1(x, z)ũ(x) + {−1 + q̃1(z, z)}ũ(z) = −q̃1(m0−1, z)

for z = 0, 1, · · · ,m0 − 2. This system of equations can be written as

Aũt = −b
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with (m0 − 1) × (m0 − 1) matrix

A = [a0, · · · am0−2]

=



q̃1(0, 0) − 1 q̃1(1, 0) · · · q̃1(m0−2, 0)

q̃1(0, 1) q̃1(1, 1) − 1 · · · q̃1(m0−2, 1)
...

...
. . .

...

q̃1(0,m0−2) q̃1(1,m0−2) · · · q̃1(m0−2,m0−2) − 1




and

b =




q̃1(m0−1, 0)

q̃1(m0−1, 1)
...

q̃1(m0−1,m0−2)


 .

Thus we have

ũ(x) =
det[a0, · · · , ax−1,−b, ax+1, · · · , am0−2]

det(A)

=
(−1)m0−x−1det[a0, · · · , ax−1, ax+1, · · · , am0−2, b]

det(A)

for every x ∈ {0, 1, · · · ,m0−2}. Therefore, since µ̃ is a solution of (12) with∑
x∈T µ̃(x) = 1, if we set

C = det(A) +
∑
x∈T

(−1)m0−x−1det[a0, · · · , ax−1, ax+1, · · · , am0−2, b],

then we have

µ̃x =




(−1)m0−x−1

C
det[a0, · · · , ax−1, ax+1, · · · , am0−2, b],

x = 0, 1, · · · ,m0−2

det(A)

C
, x = m0−1.

(13)

Hence, the first coordinate ϑ(µ)1 of ϑ(µ) ∈ R
d is, with k = (k1, · · · , kd),

ϑ(µ)1 =
∑

x,y∈Td

µ(x)
∑
k∈Zd

k1 · p1(x, y +m0k)



Large Deviation Principle for the Pinned Motion of Random Walks 687

=
∑
x1∈T

µ̃(x1)


 1

µ̃(x1)

∑
x′∈Td−1

µ(x)
∑
y∈Td

∑
k∈Zd

k1 · p1(x, y +m0k)




=
∑
x1∈T

µ̃(x1)Bx1 , say.

By (13), we have

ϑ(µ)1 =
1

C

{
m0−2∑
x=0

(−1)m0−x−1det[a0, · · · , ax−1, ax+1 · · · , am0−2, b]Bx

+det(A)Bm0−1

}

=
1

C
det

[
a0 a1 · · · am0−2 b

B0 B1 · · · Bm0−2 Bm0−1

]
(14)

=
1

C
det




q̃1(0, 0) − 1 q̃1(1, 0) · · · q̃1(m0−2, 0) q̃1(m0−1, 0)

q̃1(0, 1) q̃1(1, 1)−1 · · · q̃1(m0−2, 1) q̃1(m0−1, 1)
...

...
. . .

...
...

q̃1(0,m0−2) q̃1(1,m0−2) · · · q̃1(m0−2,m0−2) − 1 q̃1(m0−1,m0−2)

B0 B1 · · · Bm0−2 Bm0−1




=
det(M)

C
, say.

Since given y1 ∈ T of y = (y1, y
′) ∈ T

d,∑
y′∈Td−1

p̃1(x, y) − 1 =
∑

y′∈Td−1

p̃1(x, y) −
∑
y∈Td

p̃1(x, y) = −
∑

z∈Td,z1 �=y1

p̃1(x, z),

we have

q̃1(x1, y1) − 1 =
1

µ̃(x1)


 ∑

x′,y′∈Td−1

p̃1(x, y)µ(x) −
∑

x′∈Td−1

µ(x)




=
1

µ̃(x1)

∑
x′∈Td−1

µ(x)


 ∑

y′∈Td−1

p̃1(x, y) − 1




= − 1

µ̃(x1)

∑
x′∈Td−1

µ(x)
∑

z∈Td,z1 �=y1

p̃1(x, z).



688 Taizo Chiyonobu and Kanji Ichihara

Hence, for x1 ∈ T = {0, 1, · · · ,m0 − 1}, the (x1 +1)-th column Mx1+1 of M

is 


q̃1(x1, 0)

q̃1(x1, 1)
...

q̃1(x1, x1 − 1)

q̃1(x1, x1) − 1

q̃1(x1, x1 + 1)
...

q̃1(x1,m0 − 2)

B(x1)




=
1

µ̃(x1)

∑
x′∈Td−1

µ(x)
∑

y′∈Td−1




p̃1((x1, x
′), (0, y′))

p̃1((x1, x
′), (1, y′))
...

p̃1((x1, x
′), (x1 − 1, y′))

−
∑

y1∈T,y1 �=x1

p̃1((x1, x
′), (y1, y

′))

p̃1((x1, x
′), (x1 + 1, y′))

...

p̃1((x1, x
′), (m0 − 2, y′))∑

y1∈T

∑
k∈Zd

k1p
1(x, y +m0k)




=
1

µ̃(x1)

∑
x′∈Td−1

µ(x)
∑

y′∈Td−1




N0,x1+1

N1,x1+1
...

Nm0−1,x1+1


 , say.

Now, recalling (7) and (8), for every x1 ∈ T,

m0 ·Nm0,x1+1 −
m0−1∑
y1=0

(m0 − y1)Ny1,x1+1

=

m0−1∑
y1=0

∑
k∈Zd

{m0k1 − (m0 − y1) + (m0 − x1)}p1((x1, x
′), (y1, y

′) +m0k)
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=

m0−1∑
y1=0

∑
k∈Zd

(m0k1 + y1 − x1)p
1((x1, x

′), (y1, y
′) +m0k)

=

m0−1∑
y1=0

V (y)

πV0(x)

∑
k∈Zd

(m0k1 + y1 − x1)p
0((x1, x

′), (y1, y
′) +m0k)

= 0,

where the last equality follows from our assumption (2). Hence, we get

m0Mm0,x1+1 −
m0−1∑
y1=0

(m0 − y1)My1,x1+1 = 0

for every (x1 + 1)-th column of M . Therefore we see that det(M) = 0,

and so by (14), we have ϑ(µ)1 = 0. Obviously, the same argument as above

works for other coordinates of ϑ(µ), and thus our assertion follows. �

4. Proof of Upper Bounds

We will first prove (i) of the Theorem 1. We denote by (X0
n, P

0
x ) the

Markov chain on Z
d induced by the system of transition probabilities

{p0(x, y)}x,y∈Zd . By (4), the n-step transition probability p0n(x, y) of

(X0
n, P

0
x ) and the n-step transition probability pn(x, y) of (Xn, Px) have

the relation

p0n(x, y) =
eλ0y

Zn
λ0
eλ0x

· pn(x, y)(15)

for every n. Set, for u ∈ U0,

V (x) = π0u(x) and W (x) = log
(V (x)

u(x)

)
where π0 is given by (5). Note that V ∈ U0, i.e., periodic and positive. From

the definition of the pinned process, noting (4) and (15), we have

E
P

(n,y)
(0,x)
[
V (Xn−1) exp

(
−

n−1∑
k=0

W (Xk)
)]
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=
1

pn(x, y)
EPx
[
V (Xn−1) exp

(
−

n−1∑
k=0

W (Xk)
)
p(Xn−1, y)

]

=
1

pn(x, y)

∑
x1,··· ,xn−1∈Zd

V (xn−1)

× exp
(
−

n−1∑
k=0

W (xk)
)
p(xn−1, y)p(x, x1)p(x1, x2) · · · p(xn−2, xn−1)

=
eλ0y

Zλ0 · p0n(x, y)
EP 0

x
[
V (X0

n−1) exp
(
−

n−1∑
k=0

W (X0
k)
)p(X0

n−1, y)

eλ0X0
n−1

]
.

Hence, since x �→ p(x, y)/eλ0x is bounded in x for every y ∈ Z
d in view of

our assumption (A.1), we have

E
P

(n,y)
(0,x)
[
V (Xn−1) exp

(
−

n−1∑
k=0

W (Xk)
)]

≤ C1
eλ0y

Zλ0 · p0n(x, y)
EP 0

x
[
V (X0

n−1) exp
(
−

n−1∑
k=0

W (X0
k)
)]

=
C1e

λ0y

Zλ0 · p0n(x, y)
u(x)

for some C1 > 0. Here, the last equality can easily be checked inductively

in n. Thus we have obtained

E
P

(n,y)
(0,x)
[
exp
(
−

n−1∑
k=0

W (Xk)
)]

≤ C1e
λ0yu(x)

Zλ0 · p0n(x, y) · infx∈Zd V (x)
.(16)

Thus, for every closed set F in M(Td),

Q
(n,y)
(0,x)(F ) ≤ exp

(
n sup

µ∈F

∑
z∈Zd

W (z)µ(z)
)
E

Q
(n,y)
(0,x)

×
[
exp
(
−n
∑
z∈Zd

W (z)µ(z)
)
, µ ∈ F

]

≤ exp
(
n sup

µ∈F

∑
z∈Zd

W (z)µ(z)
)
E

P
(n,y)
(0,x)
[
exp
(
−

n−1∑
k=0

W (Xk)
)]
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≤ C1e
λ0yu(x)

Zλ0 · p0n(x, y) · infx∈Zd V (x)

× exp
(
n sup

µ∈F

∑
z∈Td

log
(π0u

u

)
(z)µ(z)

)
,

and hence, by reminding that

lim
n→∞

1

n
log p0n(x, y) = 0(17)

as a result of Theorem 2, we have

lim sup
n→∞

1

n
logQ

(n,y)
(0,x)(F ) ≤ sup

µ∈F

∑
z∈Td

log
(π0u

u

)
(z)µ(z)

for all u ∈ U0, and hence

lim sup
n→∞

1

n
logQ

(n,y)
(0,x)(F ) ≤ inf

u∈U0

sup
µ∈F

∑
z∈Td

log
(π0u

u

)
(z)µ(z).(18)

Now we are able to follow the standard argument in the theory of large

deviations, see [2], to get (18) with the order of infimum and supremum in

the RHS altered. Since

sup
µ∈F

inf
u∈U0

∑
z∈Td

log
(π0u

u

)
(z)µ(z) = − inf

µ∈F

(
− inf

u∈U0

∑
z∈Td

log
(π0u

u

)
(z)µ(z)

)
= − inf

µ∈F
I0(µ),

we see that (i) of Theorem 1 follows.

5. Proof of Lower Bounds

In this section we will prove (ii) of Theorem 1. Let S(µ, ε) = {ν ∈
M(Td); ρ(ν, µ) ≤ ε}. It suffices to verify

lim inf
n→∞

1

n
logP

(n,y)
(0,x)

(
ω;Ln(ω, ·) ∈ S(µ, ε)

)
≥ −I0(µ)(19)

for any ε > 0. From the definition of the pinned process and the relation

(15), we have

P
(n,y)
(0,x) ( Ln ∈ S(µ, ε)) =

1

pn(x, y)
EPx
[
p(Xn−1, y); Ln ∈ S(µ, ε)

]
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=
Zn−1
λ0

· eλ0x

pn(x, y)
EP 0

x
[p(X0

n−1, y)

eλ0X0
n−1

; Ln ∈ S(µ, ε)
]

=
eλ0y

Zλ0 · p0n(x, y)
EP 0

x
[p(X0

n−1, y)

eλ0X0
n−1

; Ln ∈ S(µ, ε)
]
.

Now for each µ ∈ Mc(T
d), by Lemma 1 and Lemma 2, there is a V0 ∈ U0

such that I(µ) is given via V0 by (6), and {c(X1
n)} of the Markov chain

(X1
n, P

1
x ) on Z

d associated with the transition probability p1(x, y) given by

(7) has µ as its invariant measure. Since

p0(x, y) =
p1(x, y)π0V0(x)

V0(y)

by (7), we have

EP 0
x
[p(X0

n−1, y)

eλ0X0
n−1

; Ln ∈ S(µ, ε)
]

=
∑

x1,··· ,xn−1∈Zd

p(xn−1, y)

eλ0xn−1
χ{Ln∈S(µ,ε)}p

0(x, x1)p
0(x1, x2) · · · p0(xn−2, xn−1)

= EP 1
x
[p(X1

n−1, y)

eλ0X1
n−1

(n−1∏
k=0

π0V0(X
1
k)

V0(X1
k)

) V0(x)

π0V0(X1
n−1)

; Ln ∈ S(µ, ε)
]
,

and thus we see that

P
(n,y)
(0,x) (Ln ∈ S(µ, ε))(20)

≥ eλ0y

Zλ0 · p0n(x, y)

V0(x)

supx∈Zd π0V0(x)
EP 1

x

×
[p(X1

n−1, y)

eλ0X1
n−1

exp
(n−1∑
k=0

log
π0V0(X

1
k)

V0(X1
k)

)
; Ln ∈ S(µ, ε)

]
.

We introduce, for ε′ > 0,

S1(n, µ, ε
′)

=
{
ω;
∣∣∑
x∈Td

log
(π0V0

V0

)
(x)Ln(ω, {x}) −

∑
x∈Td

log
(π0V0

V0

)
(x)µ(x)

∣∣ < ε′},
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and

S2(n, µ, ε
′) = {ω; Ln(ω, ·) ∈ S(µ, ε)} ∩ S1(n, µ, ε

′).

Then, by Lemma 1,

EP 1
x
[p(X1

n−1, y)

eλ0X1
n−1

exp
(n−1∑
k=0

log
π0V0(X

1
k)

V0(X1
k)

)
; Ln ∈ S(µ, ε)

]

≥ exp
{
n
(∑
x∈Td

log
(π0V0

V0

)
(x)µ(x) − ε′

)}
EP 1

x
[p(X1

n−1, y)

eλ0X1
n−1

;S2(n, µ, ε
′)
]

(21)

= exp(−nI0(µ) − nε′)EP 1
x
[p(X1

n−1, y)

eλ0X1
n−1

;S2(n, µ, ε
′)
]
.

From the assumption (A.1), the set {x ∈ Z
d; p(x, y) > 0} is finite for every

y. Denote this set by {x1, · · · , xm} and set α = inf1≤j≤m
p(xj ,y)

eλ0xj
. Then,

EP 1
x
[p(X1

n−1, y)

eλ0X1
n−1

;S2(n, µ, ε
′)
]

=
m∑
j=1

EP 1
x
[p(X1

n−1, y)

eλ0X1
n−1

;S2(n, µ, ε
′) ∩ {X1

n−1 = xj}
]

≥ α
m∑
j=1

P 1
x (S2(n, µ, ε

′) ∩ {X1
n−1 = xj})

≥ α
m∑
j=1

P 1
x (X1

n−1 = xj) − αmP 1
x (Ω \ S2(n, µ, ε

′)).

Now, since the large deviation principle for the empirical measures of the

irreducible Markov chain{c0(X1
n)} on T

d holds, P 1
x (Ω \ S2(n, µ, ε

′)) decays

exponentially fast in n as n gets large. On the other hand, in view of

Theorem 2, for any 0 < δ < 1

P 1
x (X1

n−1 = xj) = p1n−1(x, xj) ≥ (1 − δ)n

for sufficiently large n. Thus we have

lim inf
n→∞

1

n
logEP 1

x
[p(X1

n−1, y)

eλ0X1
n−1

;S2(n, µ, ε
′)
]
≥ 0.(22)
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Combining (17), (20), (21) and (22), it follows that

lim inf
n→∞

1

n
logP

(n,y)
(0,x) (ω; Ln(ω, ·) ∈ S(µ, ε)) ≥ −I0(µ) − ε′.

Since ε′ is arbitrary, this implies (19) for µ ∈ Mc(T
d). Noting that I0 is

lower semi-continuous on M(Td), this can immediately be extended to hold

for all µ ∈ M(Td), and this completes the proof of Theorem 1.

6. Examples

Example 1. (Nearest neighbor case) Suppose that px = 0 if ‖x‖ >
1 and that the random walk corresponding to (px)x∈Zd is irreducible and

aperiodic, then the walk is reversible with respect to a measure µ = (µx)x∈Zd

satisfying

µx = µ0

d∏
i=1

(
pei
p−ei

)xi

,

with ei = (0, · · · , 0, 1, 0, · · · , 0). Namely (A.3), (i) holds and hence Theorem

1 is valid with any m0 ∈ N.

The class of reversible, i.i.d. random walks is a slight generalization of

the class of nearest i.i.d. random walks and is very special. Therefore we

omit more discussion here.

Most of i.i.d. random walks are non-reversible and the situation related

to the invariance of spectral radius is complicated as above. Here we only

give some numerical examples.

Example 2. (One dimensional case) Let d = 1 and the probability

measure (px)x∈Z be defined as

p1 =
16

27
, p2 =

8

27
, p−1 =

2

27
, p−2 =

1

27
, px = 0 (otherwise).

Then the corresponding random walk is irreducible and aperiodic.

Minimizing

Zλ =
16

27
eλ +

8

27
e2λ +

2

27
e−λ +

1

27
e−2λ, λ ∈ R,
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we see that its minimum value (which is the spectral radius of (px)) is

equal to
2

3
and that it is attained at λ = − log 2. Making use of these, the

associated unbiased probability measure (p0x)x∈Z is given by

p01 =
4

9
, p02 =

1

9
, p0−1 =

2

9
, p0−2 =

2

9
, p0x = 0 (otherwise).

This probability (p0x)x∈Z satisfies the condition (A.3), (ii) with m0 = 3.

Thus Theorem 1 holds with m0 = 3.

Example 3. (Two dimensional case) Let d = 2 and the probability

measure (p(x,y))(x,y)∈Z2 be defined as

p(0,1) =
8

49
, p(0,−2) =

4

49
, p(2,0) =

16

49
, p(−1,0) =

4

49
,

p(1,1) =
16

49
, p(−2,−2) =

1

49
, p(x,y) = 0 (otherwise).

Then the corresponding random walk is irreducible and aperiodic.

An elementary computation shows that the minimum value of

Z(λ1,λ2) =
8

49
eλ2 +

4

49
e−2λ2 +

16

49
e2λ1 +

4

49
e−λ1 +

16

49
eλ1+λ2 +

1

49
e−2λ1−2λ2 ,

is equal to
36

49
and is attained at λ1 = − log 2, λ2 = 0. Then the unbiased

probability (p0(x,y)) associated with (p(x,y)) is

p0(0,1) =
2

9
, p0(0,−2) =

1

9
, p0(2,0) =

1

9
, p0(−1,0) =

2

9
,

p0(1,1) =
2

9
, p0(−2,−2) =

1

9
, p0(x,y) = 0 (otherwise).

This probability (p0(x,y)) satisfies (A.3),(ii) with m0=3. Thus Theorem 1

holds with m0=3.

Example 4. To conclude the section we present a general result that

the direct product of the 1-dimensional probability measures both of which

satisfy the assumption (A.1), (A.2) and (A.3)(ii) satisfies the same assump-

tion on the multidimensional setting.
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Proposition 2. Assume that p0,i ∈ M(Z), i = 1, 2, · · · , d satisfies

(A.3)(ii), namely; ∑
k∈Z

(xi +m0k)p
0,i
xi+m0k

= 0

for all xi ∈ T, then p0 ∈ M(Zd) defined by

p0x = p0,1x1
· · · p0,dxd

, x = (x1, · · · , xd)

satisfy (A.3)(ii), or

∑
k∈Zd

(x+m0k)p
0
x+m0k = 0

for all x ∈ T
d.

Proof. For x ∈ Z
d, let us denote x = (x1, x

′). Since

∑
k′∈Zd−1

p0x+m0k = p0,1x+m0k

∑
k′∈Zd−1

d∏
i=2

p0,ixi+m0k
,

we have

∑
k∈Zd

(x1 +m0k1)p
0
x+m0k

=
∑
k1∈Z

(x1 +m0k1)
∑

k′∈Zd−1

p0x+m0k

=


∑

k1∈Z
(x1 +m0k1)p

0,1
x+m0k


 ·
∑

k′∈Zd−1

d∏
i=2

p0,ixi+m0k
= 0.

The same argument is valid to show that

∑
k∈Zd

(xi +m0ki)p
0
x+m0k = 0

for every i = 2, · · · , d, and thus the proposition follows. �
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