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Another Direct Proof of Oka’s Theorem (Oka IX)∗

By Junjiro Noguchi

Abstract. In 1953 K. Oka IX solved in first and in a final form
Levi’s problem (Hartogs’ inverse problem) for domains or Riemann do-
mains over Cn of arbitrary dimension. Later on a number of the proofs
were given; cf. e.g., Docquier-Grauert’s paper in 1960, R. Narasimhan’s
paper in 1961/62, Gunning-Rossi’s book, and Hörmander’s book (in
which the holomorphic separability is pre-assumed in the definition of
Riemann domains and thus the assumption is stronger than the one in
the present paper). Here we will give another direct elementary proof
of Oka’s Theorem, relying only on Grauert’s finiteness theorem by the
induction on the dimension and the jets over Riemann domains; here
we do not use even Behnke-Stein’s theorem on the Steiness of an open
Riemann surface. Hopefully, the proof is the easiest.

1. Introduction

In 1953 K. Oka [10] IX solved in first and in a final form Levi’s problem

(Hartogs’ inverse problem) for domains or Riemann domains over Cn of

arbitrary dimension (cf. below for notation):

Theorem 1.1 (Oka [10] IX, (’43)/’531). Let π : X → Cn be a Rie-

mann domain, and let δP∆(x, ∂X) denote the boundary distance function

with respect to a polydisc P∆. If − log δP∆(x, ∂X) is plurisubharmonic,

then X is Stein.

Besides Oka’s original proof there are known a number of the proofs

in generalized forms; e.g., Docquier-Grauert [2], Narasimhan [8], Gunning-

Rossi [6], and Hörmander [7] (in which the holomorphic separability is pre-

∗Research supported in part by Grant-in-Aid for Scientific Research (B) 23340029.
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1It is now possible to confirm that Oka IX published in 1953 was written in French

from his report in Japanese dated 1943 and addressed to Teiji Takagi. Cf. the introduc-
tions of Oka IX and VIII, and also Oka VI published in 1942; see http://www.lib.nara-
wu.ac.jp/oka/index eng.html.
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assumed in the definition of Riemann domains and thus the assumption is

stronger than the one in the present paper).

Here we will give another direct elementary proof of Oka’s Theorem 1.1

by making use of the followings in an essential way, and it is new in this

sense (see the proof of Lemma 3.2).

(i) The induction on the dimension n = dimX.

(ii) The jets over X.

(iii) Grauert’s Finiteness Theorem 2.10 over a strongly pseudoconvex do-

main Ω of a complex manifold applied not only for the structure sheaf

OΩ, but also for a coherent ideal sheaf I ⊂ OΩ (cf. Narasimhan [8],

Docquier-Grauert [2], Gunning-Rossi [6]).

The others are the vanishing of higher cohomologies of coherent sheaves

on polydiscs and on Stein manifolds, and a sort of ε-δ arguments, to say, a

content presented in Chap. 2 of Hörmander [7] (see, e.g. the proof of Lemma

3.7). Thus, the proof is elementary, self-contained and hopefully simplest.

To be precise we give the exact definitions of notions we will use.

Definition 1.2 (Stein manifold). A connected complex manifold M

with the second countability axiom is called a Stein manifold if it satisfies the

following three conditions. Here, O(M) denotes the set of all holomorphic

functions on M .

(i) (Holomorphic separability) For distinct two points x, y ∈ M there

exists an elementf ∈ O(M) such that f(x) �= f(y).

(ii) (Holomorphic local coordinates) For an arbitrary point x ∈ M there

are n (= dimM) elements fj ∈ O(M)A 1 ≤ j ≤ n such that (fj)1≤j≤n

gives rise to a holomorphic local coordinate system in a neighborhood

of x.

(iii) (Holomorphic convexity) For a compact subset K � M its holomor-

phic convex hull

K̂M = {x ∈ M ; |f(x)| ≤ max
K

|f |, ∀f ∈ O(M)}

is also compact in M .
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N.B. In a number of references the definition of Stein manifolds con-

sists of the above (iii) and the following K-completeness due to Grauert

[3]:

(K) “For every point x ∈ M there exist finitely many fj ∈ O(M), 1 ≤
j ≤ l such that all fj(x) = 0 and x is isolated in the analytic subset

{fj = 0; 1 ≤ j ≤ l}.”

In fact, they are equivalent: it is trivial that the present definition 1.2 implies

the above (K), but the converse is not trivial at all (cf. Grauert [55], and

Andreotti-Narasimhan [1] Introduction).

Let X be a complex manifold and let π : X → Cn be a holomorphic

map.

Definition 1.3 (Riemann domain). π : X → Cn or simply X is called

a Riemann domain if the following properties are satisfied:

(i) X is connected.

(ii) For every point x ∈ X there are neighborhoods U � x in X and V �
π(x) in Cn such that the restriction π|U : U → V is biholomorphic.

N.B. (i) A Riemann domain X is metrizable and hence X satisfies the

second countability axiom.

(ii) In the above definition we do not assume the holomorphic separa-

bility for a Riemann domain.

A Riemann domain π̂ : X̂ → Cn is called a holomorphic extension of a

Riemann domain π : X → Cn if there is a holomorphic injection ι : X → X̂

satisfying

(i) π = π̂ ◦ ι;
(ii) every holomorphic function f ∈ O(X) is analytically continued to an

element f̂ ∈ O(X̂).

A Riemann domain X is called a domain of holomorphy if there exists

no holomorphic extension of X other than X itself.

In this paper X denotes always a Riemann domain. We take a polydisc

P∆ = P∆(0; r0) (r0 = (r0j)) with center at the origin 0 ∈ Cn. Then by
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definition there are ρ > 0 and a neighborhood Uρ(x) � x for every x ∈ X

such that

π|Uρ(x) : Uρ(x) → π(x) + ρP∆

is biholomorphic. The supremum of such ρ > 0

δP∆(x, ∂X) = sup{ρ > 0; ∃Uρ(x)} ≤ ∞

is called the boundary distance function of X to the relative boundary.

If δP∆(x, ∂X) = ∞, then π is a holomorphic isomorphism, and thus

there is nothing to discuss more. Henceforth we assume δP∆(x, ∂X) < ∞
in what follows.

For a subdomain Ω ⊂ X we define similarly

δP∆(x, ∂Ω) = sup{ρ > 0; ∃Uρ(x) ⊂ Ω}.

The boundary distance functions δP∆(x, ∂X) and δP∆(x, ∂Ω) are continuous

with Lipschitz’ condition. For a subset set A ⊂ X (resp. A ⊂ Ω) we set

δP∆(A, ∂X) = inf
x∈A

δP∆(x, ∂X)

(resp. δP∆(A, ∂Ω) = inf
x∈A

δP∆(x, ∂Ω)).

Acknowledgment . During the preparation of this paper the author had

a number of discussions on K. Oka’s works with Professors K. Kazama, H.

Yamaguchi, and S. Hamano, which were very helpful and of pleasure. The

author would like to express sincere gratitude to all of them.

2. Preliminaries

Here we list up the lemmas and theorems we will use.

Lemma 2.1. Let π : X → Cn be a domain of holomorphy, let K � X

be a compact subset, and let f ∈ O(X). If

δP∆(x, ∂X) ≥ |f(x)|, x ∈ K,

then

δP∆(x, ∂X) ≥ |f(x)|, x ∈ K̂X .
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In particular, taking f to be constant we have

δP∆(K, ∂X) = δP∆(K̂X , ∂X).(2.2)

The proof is the same as in the case of univalent domains. This lemma

implies the following as well:

Theorem 2.3. If X is a domain of holomorphy, then − log δP∆(x, ∂X)

is plurisubharmonic.

Definition 2.4. In general, a complex manifold M is said to be pseu-

doconvex if M carries a continuous plurisubharmonic exhaustion function.

The following is not trivial, but elementary due to Oka [10] IX (cf.

Nishino [9], p. 350):

Lemma 2.5. If − log δP∆(x, ∂X) is plurisubharmonic (for one fixed

P∆), then X is pseudoconvex.

Theorem 2.6 (Oka’s Fundamental Theorem, I∼II, VII). Let P∆(0; r)

be an arbitrary polydisc, and let I ⊂ ON
Ω be a coherent sheaf of submodules.

Then

Hq(P∆(0; r), I) = 0, q ≥ 1.

This theorem over polydiscs together with Oka’s Jôkûiko2 leads to the

following:

Theorem 2.7 (Oka-Cartan). Let M be a Stein manifold, and let S →
M be a coherent sheaf. Then

Hq(M,S) = 0, q ≥ 1.

2A direct English translation may be “transformation to the upper space”. It is
a method to imbed the domain under consideration into a higher dimensional polydisc
P∆, to extend the analytic objects over P∆, and to solve the problem over P∆ by the
simplicity of the space P∆. This method was developed by K. Oka [10] I∼III and was a
very key to solve Cousin Problems I and II.
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Lemma 2.8.

(i) Let Ω1 � Ω2 � Ω3 � X be a series of subdomains. Assume that Ω3 is

Stein. If

δP∆(∂Ω1, ∂Ω3) > max
x∈∂Ω2

δP∆(x, ∂Ω3),

then there is an O(Ω3)-analytic polyhedron P such that

Ω1 � P � Ω2.

(ii) An arbitrary holomorphic function f ∈ O(P ) can be approximated

uniformly on compact subsets by elements of O(Ω3); that is, (P,Ω3)

is a Runge pair.

Proof. (i) The assumption and (2.2) imply that (̂Ω̄1)Ω3
� Ω2, and

hence such P exists.

(ii) By Theorem 2.6 we can apply Oka’s Jôkûiko to reduce the domain

to a polydisc, and the statement is proved. �

Let Ω � M be a relatively compact domain.

Definition 2.9. Ω is said to be strongly pseudoconvex if there are a

neighborhood U(⊂ M) of the boundary ∂Ω of Ω, and a real valued C2

function φ : U → R satisfying the conditions

(i) {x ∈ U : φ(x) < 0} = Ω ∩ U ,

(ii) i∂∂̄φ(x) > 0 (x ∈ U).

Theorem 2.10 (Grauert [4], [5]). Let Ω � M be a strongly pseudo-

convex domain. Let F be a coherent sheaf defined over a neighborhood of

the closure Ω̄. Then we have

dimHq(Ω,F) < ∞, q ≥ 1.

We will use this theorem for the structure sheaf and an ideal sheaf of

a closed complex submanifold. In the first, we apply this for F = OM to

deduce
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Theorem 2.11. Let Ω be as in Theorem 2.10. Then Ω is holomorphi-

cally convex.

N.B. The above described was the circumstance just after Grauert [4]

(’58), or Docquier-Grauert [2] (’60) and Narasimhan [8] (’61/’62).

3. A Proof of Oka’s Theorem 1.1

By Lemma 2.5 it suffices to show the following for the proof.

Theorem 3.1. A pseudoconvex Riemann domain is Stein.

The following lemma is our key in the proof.

Lemma 3.2. If Ω � X is a strongly pseudoconvex domain, then Ω is

Stein.

Proof. We use the induction on the dimension n ≥ 1.

(a) n = 1: In this case Ω is an open Riemann surface and hence by

Behnke-Stein’s Theorem it is Stein. For the completeness we show this with

the preparation in §2. The holomorphic convexity is finished by Theorem

2.11. The holomorphic local coordinates follow just from the definition of

Riemann domain. It is remaining to show the holomorphic separability.

Take two distinct points a, b ∈ Ω. If π(a) �= π(b), the proof is done.

Suppose that π(a) = π(b). By a translation of C we may assume that

π(a) = π(b) = 0 ∈ C. Let U0 � a be a neighborhood such that U0 �� b and

π|U0 : U0 → ∆(0; δ) with δ > 0 is biholomorphic. Put U1 = Ω \ {a}. Then

U = {U0, U1} is an open covering of Ω. For each k ∈ N we set

γk(x) =
1

π(x)k
, x ∈ U0 ∩ U1.

Then γk defines an element of H1(U ,OΩ). It is noted that H1(U ,OΩ) ↪→
H1(Ω,OΩ) is injective. By Theorem 2.10 there is a non-trivial linear relation

h∑
k=1

ckγk = 0, ck ∈ C, ch �= 0.
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Therefore there are elements fj ∈ O(Uj), j = 0, 1 such that

f1(x) − f0(x) =
h∑

k=1

ck
1

π(x)k
, x ∈ U0 ∩ U1.

Thus we obtain a meromorphic function in Ω with a pole only at a,

F = f1 = f0 +
h∑

k=1

ck
1

πk
.

From the construction we get

π(x)hF (x) ∈ O(Ω),

π(a)hF (a) = ch �= 0,

π(b)hF (b) = 0.

Therefore a and b are separated by an element of O(Ω).

(b) We assume the assertion holds in dimX = n − 1. Let dimX =

n ≥ 2. By the definition of Riemann domain it is sufficient to prove the

holomorphic convexity and the holomorphic separability; the first is finished

by Theorem 2.11, and the latter remains to be shown.

(1) We take arbitrary distinct points a, b ∈ Ω. As in (a) we may

assume that π(a) = π(b) = 0. Taking a hyperplane L = {zn = 0}, we

consider the restriction

πX′ : X ′ = π−1L → L.

Since L ∼= Cn−1 (biholomorphic), every connected component X ′′ of X ′ is

(n− 1) dimensional Riemann domain. Put

Ω′ = X ′ ∩ Ω.

Then every connected component Ω′′ of Ω′ is a strongly pseudoconvex do-

main of a connected component of X ′. By the induction hypothesis Ω′′ is

Stein.

(2) Let m〈a〉 ⊂ OX′,a be the maximal ideal of the local ring OX′,a and

let mk〈a〉 denote its k-th power. Set

m
k〈a, b〉 = m

k〈a〉⊗m
k〈b〉 ⊂ OX′ .
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This is a coherent ideal sheaf of OX′ .

Since every connected component of Ω′ is Stein, Theorem 2.7 implies

the existence of gk ∈ O(Ω′) for each k ∈ N such that

gka ≡ 0 (mod m
k−1〈a, b〉a),(3.3)

gka �≡ 0 (mod m
k〈a, b〉a),

gkb ≡ 0 (mod m
k〈a, b〉b),

where gka stands for a germ of gk at a.

(3) Let I be the ideal sheaf of the analytic subset X ′ ⊂ X. By Oka’s

Second Coherence Theorem ([10] VII, VIII) I is coherent.3 Restricting this

to Ω, we have a short exact sequence:

0 → I → OΩ → OΩ′ → 0.

This implies the following exact sequence,

O(Ω) → O(Ω′)
δ→ H1(Ω, I).(3.4)

We write gk for the restriction of gk to Ω′ by the same letter. We have that

{δ(gk)}k∈N ⊂ H1(Ω, I). By Theorem 2.10 H1(Ω, I) is finite dimensional,

3There seems to be a confusion in the historical comprehension of the development
of the “coherence theorems”. In Oka VII and VIII K. Oka proved three fundamental
coherence theorems. Firstly in Oka VII which was received in 1948 and published in
1950, he proved the coherence of the structure sheaf OCn on Cn (Oka’s First Coherence
Theorem), and he was writing in two places that in the forthcoming paper he would deal
with the coherence of ideal sheaves of analytic subsets, “idéaux géométriques de domaines
indéterminés” he termed, and that one would see it to hold without any assumption; see
1) the last six lines of the paper at p. 27, and 2) the last two lines of p. 7 to the line just
before §3 of p. 8. There he wrote that there are two cases for which the coherence problem
are solvable, the first is that of OCn dealt with in VII, and the second is that of the ideal
sheaf of an analytic subsets (Oka’s Second Coherence Theorem), of which proof appeared
in Oka VIII in 1951, while H. Cartan’s proof appeared in 1950 in the same volume as Oka
VII, to which the theorem is attributed in most references.

For this many refer only to the first point 1), but never to the second point 2) so far by
the knowledge of the present author, where K. Oka was writing more detailed descriptions
what should be done for the Second Coherence Theorem. In VIII he wrote its proof and
moreover proved the coherence of normalizations (Oka’s Third Coherence Theorem). For
a convenience we give a complete list of of K. Oka’s paper at the end of the references,
which is not very long but hard to find a complete correct one.
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and thus there is a non-trivial linear relation

N∑
k=k0

ckδ(gk) = 0, ck ∈ C, N < ∞.

We may assume that ck0 �= 0. It follows from (3.4) that there is an element

f ∈ O(Ω) such that

f |Ω′ =

N∑
k=k0

ckgk.

We use π = (z1, . . . , zn) as a holomorphic local coordinate system in a

sufficiently small neighborhood of a ∈ Ω, z′ = (z1, . . . , zn−1). Then we get

f(z) =
N∑

k=k0

ckgk(z
′) + h(z) · zn,(3.5)

where h(z) is a holomorphic function in a neighborhood of a. It follows

from (3.3) that there is a partial differentiation of order k0 in z′

D =
∂k0

∂zα1
1 · · · ∂zαn−1

n−1

,

n−1∑
j=1

αj = k0

such that

Dgk0(a) �= 0,(3.6)

Dgk(a) = 0, k > k0,

Dgk(b) = 0, k ≥ k0.

The definition of D and (3.5) imply that

Df(z) =
N∑

k=k0

ckDgk(z
′) + (Dh(z)) · zn.

Since zn = 0 at a and b, (3.6) leads to

Df(a) �= 0, Df(b) = 0.

Since Df ∈ O(Ω), the holomorphic separability of Ω was proved. �
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Under the assumption we take a plurisubharmonic exhaustion function

φ : X → R. We set

Xc = {x ∈ X;φ(x) < c}, c ∈ R.

For X being Stein it suffices to prove the followings:

Lemma 3.7.

(i) Xc is Stein for an arbitrary c ∈ R:

(ii) For every pair of c < b, (Xc, Xb) is a Runge pair.

Proof. (i) Let K � Xc be a compact subset. We put

η = δP∆(K, ∂Xc) (> 0).

We take b > c so that

max
x∈∂Xc

δP∆(x, ∂Xb) < η.(3.8)

Since ‖π(x)‖2 is strongly plurisubharmonic everywhere and φ is plurisub-

harmonic, there exists a strongly pseudoconvex domain Ω such that

Xc � Ω � Xb.

By Lemma 3.2 Ω is Stein. Therefore conditions (i) and (ii) of Definition 1.2

are satisfied, and there remains (iii) (holomorphic convexity) to be shown.

Claim 3.9. K̂Xc � Xc.

Proof. The application of (2.2) to K � Ω yields

δP∆(K̂Ω, ∂Ω) = δP∆(K, ∂Ω) > η.

On the other hand, from (3.8) it follows that

max
x∈∂Xc

δP∆(x, ∂Ω) < η.

The above two equations imply

K̂Xc ⊂ K̂Ω � Xc .(3.10)
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(ii) We use the same notation as in (i).

(1) We now know that all Xc (c ∈ R) are Stein. Therefore, replacing

Ω by Xb in the above arguments in (i), we see that

K̂Xc ⊂ K̂Xb
� Xc � Xb .(3.11)

Claim 3.12. K̂Xc = K̂Xb
.

Proof. By (3.11) we can take an O(Xb)-analytic polyhedron P such

that

K̂Xc ⊂ K̂Xb
� P � Xc � Xb .

If there is a point ζ ∈ K̂Xb
\ K̂Xc , then there is some g ∈ O(Xc) such that

max
K

|g| < |g(ζ)|.

By Lemma 2.8 (ii) g can be approximated uniformly on K̂Xb
by an element

of O(Xb). Hence there is a holomorphic function f ∈ O(Xb) such that

max
K

|f | < |f(ζ)|.

This is absurd.

(2) It follows from Claim 3.12 that

K̂Xc = K̂Xt , c ≤ ∀t ≤ b.(3.13)

We set

E = {t ≥ c ; K̂Xt = K̂Xc} ⊂ [c,∞).

By definition t ∈ E implies [c, t] ⊂ E. The result of (1) shows that E is an

open subset of [c,∞).

(3) We put a = sup E.

Claim 3.14. a = ∞; i.e., E = [c,∞).

Proof. Suppose that a < ∞. From the definition we obtain

K1 = K̂Xc = K̂Xt , c ≤ ∀t < a.
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Letting t < a sufficiently close to a, we have

δP∆(K1, ∂Xa) > max
x∈∂Xt

δP∆(x, ∂Xa).

Because Xa is Stein,

δP∆(K̂1Xa
, ∂Xa) = δP∆(K1, ∂Xa) > max

x∈∂Xt

δP∆(x, ∂Xa).

Thus, K̂1Xa
� Xt follows. One gets

K̂Xt ⊂ K̂Xa ⊂ K̂1Xa
� Xt � Xa.

In the same way as in (1) we see that K̂Xt = K̂Xa . Therefore, a ∈ E. Since

E is open, there exists a number a′ ∈ E with a′ > a. This contradicts to

the choice of a.

(4) It follows from (2) that for arbitrary c < b and a compact subset

K � Xc,

K̂Xc = K̂Xb
.

Therefore, Oka’s Jôkûiko and Theorem 2.6 imply that (Xc, Xb) is a Runge

pair. �
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