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Log Néron Models over Surfaces

By Chikara Nakayama

Abstract. We prove that admissible normal functions over sur-
faces extend to sections of log Néron models.
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Introduction

To study admissible normal functions, various analytic Néron models

have been introduced by several authors (Green-Griffiths-Kerr [4], Brosnan-

Pearlstein-Saito [2], Schnell [14],...). Log Néron models ([10], [12]) are

among them. They have geometric structures and, via the work of Hayama

([6]), in case of the 1-dimensional base, they are homeomorphic to the ones

of Green-Griffiths-Kerr.

In this paper, we study the problem to construct a log Néron model for

each admissible normal function ν, that is, a log Néron model JΣ which

“graphs” ν in the sense that ν extends to a section of JΣ (cf. the paragraph

before 1.8). Over the 1-dimensional base, it is relatively easy to see that

there is the log Néron model which graphs any admissible normal function

(cf. [10] §7 and [12] 6.1.8). But, over a general base of any dimension, we
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cannot expect that there is such a nice model which graphs any ν simulta-

neously. Instead, we hope that there is a nice model for each ν. We call

such a model a log Néron model for ν. This model depends on ν.

More precisely, as is explained in [10] and in [12] §5 respectively, there

are two ways to formulate log Néron models, i.e., the absolute formulation

and the relative formulation. Roughly speaking, in the former, we use cones

in the Lie algebra, while, in the latter, we use cones in the fiber product of

the cone of the log structure of the base and the Lie algebra. The absolute

one is more understandable and is studied earlier from the pioneer work

[10], whereas the relative one has some advantages, and, in [12], we adopted

the relative formulation to define some log Néron models (see ibid. 5.5 for

a comparison of both methods).

As is said in the above, over the 1-dimensional base, both formulations

(the absolute one [10] and the relative one [12]) works well and yield the

best model. Over the higher dimensional base, there are some results in

the relative formulation so far. First, the log Néron model in the rela-

tive formulation ([12]) graphs the admissible normal functions with torsion

singularities, i.e., the admissible normal functions whose associated local

systems are Q-split. Further, it is not very hard to see that, for each admis-

sible normal function ν with any singularity (not necessarily with torsion

singularity), there is a model in the relative formulation which graphs it. On

the other hand, we have studied the problem little in the absolute setting.

In this paper, we return to the absolute setting and find it an interesting

problem to construct a log Néron model in the absolute formulation for each

admissible normal function ν over the base of any dimension. The main

result in this paper is to carry it out in the surface base case. Since the

machinery is already established in [12] §2 to associate a nice model to a

weak fan, the problem is in essence to construct an appropriate weak fan for

ν, whose proof we will outline soon. (Here “weak fan” is a relaxed concept

of fan, which admits some overlappings of cones.)

Another problem is to construct a model which graphs given two or

more admissible normal functions simultaneously, which has not yet been

studied well for neither context (absolute nor relative). We will investigate

this problem in a forthcoming paper.

In Section 1, we formulate the problem, state the main results, and

deduce some corollaries.
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The proofs start in Section 2. Roughly speaking, the idea is as follows.

(See 1.17 for a more precise outline.) Let σ be the admissible nilpotent cone

associated to ν. The problem is to subdivide σ into a finite set of cones such

that each cone of this set generates a weak fan, that is, we have to prove

that, after replacing σ by each member of a finite subdivision of σ, all the

translations g(σ) (g ∈ GZ) of σ make a weak fan, where GZ is the group of

automorphisms of the lattice.

Generally, the given σ and its translation g(σ) are overlapped, that is,

the intersection g(σ) ∩ σ is not necessarily a face of σ. Sometimes, we see

that, after a finite subdivision, the intersection g(σ) ∩ σ becomes a face of

σ. Sometimes, it is not the case, but still we can prove that after a finite

subdivision, σ generates a weak fan. In this introduction, we temporarily

call the former case (A) and the latter case (B).

In case (A), we subdivide σ in a careful way: First, in Section 2, we

prove some lemmas in an abstract setting which provide several methods

to subdivide cones. In Section 3, we prove some properties of polarized

nilpotent orbits, which are necessary to apply the methods in Section 2 to

our situation.

Next, in Section 4, we add more lemmas in an abstract setting to subdi-

vide cones suitably in the case (B). After reviewing some basic consequences

of admissibility in Section 5, we prove the main results in the final section

6 by combining the propositions in the preceding sections.

Acknowledgments. The author is thankful to K. Kato and S. Usui for

collaboration for log intermediate Jacobians, from which this subject arose.

The author thanks J. C. for suggesting this work. He also thanks the referee

for the careful reading and pointing out some unclear points in 6.2 and in

6.5.

Notation and Terminology . All combinatorial notions are the rational

ones, i.e., are considered over Q, unless explicitly stated otherwise. For

example, a polyhedral cone is a finitely generated and integral (i.e., can-

cellative) Q≥0-monoid. A fan in a Q-vector space V is a set Σ of strictly

convex polyhedral cones in V satisfying: (1) A face of a member of Σ also

belongs to Σ; (2) For σ, σ′ ∈ Σ, the intersection σ∩σ′ is a face of σ. A finite

subdivision of a polyhedral cone σ is a finite fan Σ whose support coincides

with σ.
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Let N : V → V ′ be a map of sets. For a subset A of V and a subset A′ of

V ′, we write NA for N(A) and N−1A′ for N−1(A′). For example, for maps

N1, N2 : V → V ′, the symbol (N2N
−1
1 )2A′ means N2(N

−1
1 (N2(N

−1
1 (A′)))).

1. Main Results

1.1. First we review the definition of weak fans. The weak fan is the

relaxed concept of fan introduced in [11]. We follow the formulation in [12].

For a slight (inessential) difference between the formulations [11] and [12],

see [12] 2.2.5 Remark 2.

As is explained in [12] §2 and in ibid. §5 respectively, there are the

absolute formulation and the relative formulation of weak fans. In this

paper, we study weak fans in the absolute setting, i.e., the one in [12] §2.

Thus the following definition is the same as that in [12] §2 except that

we work over Q, which yields no difference in essence.

1.2. In this section, we fix a free Z-module H ′
Z of finite rank and

define HZ := H ′
Z⊕Z. Let W be the increasing filtration on HQ := HZ⊗Q

characterized by grW−1(HQ) = H ′
Q and grW0 (HQ) = Q. Let 〈 , 〉0 be the

pairing Z × Z → Q; (a, b) 
→ ab. Let 〈 , 〉−1 : H ′
Z × H ′

Z → Q be a non-

degenerate anti-symmetric pairing. Let (hp,q)p,q are non-negative integers

given for each integers p, q satisfying the following conditions (1)–(4).

(1) hp,q = 0 unless p + q = −1 or p = q = 0.

(2) h0,0 = 1.

(3)
∑

p+q=−1 h
p,q = rank ZH

′
Z.

(4) hp,q = hq,p for any p, q.

1.3. Let D′ := D(H ′
Z, (h

p,q)p+q=−1, 〈 , 〉−1) be the classifying space

of polarized Hodge structures of weight −1 defined by P. A. Griffiths in

[5]. Let D := D(HZ,W, (hp,q)p,q, 〈 , 〉−1, 〈 , 〉0) be the classifying space of

gradedly polarized mixed Hodge structures introduced by S. Usui in [16].

For A = Z,Q, let G′
A be the group of the A-automorphisms of

(H ′
A, 〈 , 〉−1). Let GA be the group of the A-automorphisms of (HA,W ∩

HA, 〈 , 〉−1, 〈 , 〉0).
Let g′Q be the Lie algebra associated to G′

Q. Let gQ be the Lie algebra

associated to GQ.
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1.4. A nilpotent cone is a polyhedral cone σ in the Q-vector space gQ

whose elements are all nilpotent and mutually commutative, i.e., NN ′ =

N ′N for any N,N ′ ∈ σ.

A nilpotent cone σ is said to be sharp if it is strictly convex, i.e., σ ∩
(−σ) = {0}.

Let σ be a nilpotent cone and let F be an element of the “compact dual”

Ď of D. We say that (σ, F ) generates a nilpotent orbit if the following three

conditions (1)–(3) are satisfied.

(1) The adjoint action of σ on HQ is admissible. (For the definition of

the admissibility, see below.)

(2) NF p ⊂ F p−1 for any N ∈ σ and p ∈ Z.

(3) For a set N1, . . . , Nn of generators of σ, we have exp(
∑n

j=1 iyjNj)F

belongs to D for any yj � 0.

The important concept of admissibility, which appears in the above (1),

was introduced and studied in [15] and [8]. Its definition was reviewed in

[12] 1.2.2, where the formulation is over R. To define the admissibility over

Q, read R there as Q, or, equivalently, define the admissibility of the action

of σ on HQ by that of σ ⊗Q≥0
R≥0 on HR. Because of its importance, we

repeat the definition here: We say that the action of σ on HQ is admissible

if there exists a family (M(τ,W ))τ of finite rational increasing filtrations

M(τ,W ) on HQ given for each face τ of σ satisfying the following conditions

(1)–(4).

(1) M(σ ∩ (−σ),W ) = W .

(2) For any face τ of σ, any N ∈ σ and any w ∈ Z, we have

N(M(τ,W )w) ⊂M(τ,W )w.

(3) For any face τ of σ, any N ∈ τ and any w ∈ Z, we have

N(M(τ,W )w) ⊂M(τ,W )w−2.

(4) For any faces τ , τ ′ of σ and for any N ∈ σ such that τ ′ is the smallest

face of σ containing τ and N , M(τ ′,W ) is the relative monodromy filtration

of N with respect to M(τ,W ).

1.5. A weak fan Σ in gQ is a non-empty set of sharp nilpotent cones

satisfying the following conditions (1) and (2).
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(1) Any face of an element of Σ also belongs to Σ.

(2) Let σ1, σ2 ∈ Σ. Assume that they have a common interior point.

Assume also that there is an F ∈ Ď such that (σ1, F ) and (σ2, F ) generate

nilpotent orbits. Then σ1 = σ2.

A fan in gQ is defined, as usual, by replacing (2) with the condition: If

σ1, σ2 ∈ Σ, then σ1 ∩ σ2 is a face of σ1.

Any fan is a weak fan ([12] 2.2.4, cf. [11] 1.7), but the converse does not

hold, that is, σ1 ∩ σ2 is not necessarily a face of σ1 in a weak fan. See [11]

4.13 and [12] 7.2 for examples and the necessity of weak fans.

1.6. Next we review log Néron models and their variants.

Let σ′ ⊂ g′Q be a sharp nilpotent cone.

Let Γ′ := exp(σ′gp)∩G′
Z, where σ′gp = σ′+(−σ′). Let Γ be the subgroup

of GZ consisting of all the elements whose restrictions to H ′
Z belong to Γ′

and which induce 1 on grW0 (HZ) = Z.

Let Σ′ be the fan consisting of all faces of σ′. Let Σ be a weak fan which

is strongly compatible with Γ ([12] 2.2.6).

Let D′
Σ′ and DΣ be the sets of nilpotent orbits. The quotients Γ′ \D′

Σ′

and Γ \DΣ are endowed with the structures of the objects in the category

B(log) ([13] 3.2.4).

Assume the following condition on Σ:

(∗) The image in g′Q of any cone in Σ is contained in σ′.

Then, we have the natural map

grW−1 : Γ \DΣ → Γ′ \D′
Σ′

induced by the natural map Ď → Ď′;F 
→ grW−1(F ).

Let

ϕ : S → Γ′ \D′
Σ′

be a strict morphism in the category B(log), where a morphism is said

to be strict if the pullback of the log structure on the target is naturally

isomorphic to that on the source.

Let JΣ be the fiber product of

S → Γ′ \D′
Σ′ ← Γ \DΣ.

Then, a series of main results in [12] say that JΣ is a nice space in various

senses; for instance, by 2.5.5 of [12], JΣ is Hausdorff if S is Hausdorff.
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1.7. By another main theorem 2.6.6 of [12], JΣ represents the following

functor.

Let H ′ be a polarized log Hodge structure on S endowed with a Γ′-level

structure µ′ of type (−1, (hp,q)p+q=−1, H
′
Z, 〈 , 〉−1,Γ

′,Σ′) corresponding to

ϕ : S → Γ′ \D′
Σ′ by the main theorem B in [13] 4.2.1.

Then, the functor represented by JΣ associates to T ∈ B(log)/S the set

of isomorphism classes of a log mixed Hodge structure (LMH, for short)

H on T with polarized graded quotients endowed with a Γ-level structure

µ ([12] 2.6.2) satisfying the following conditions (1) and (2) (see [13] 2.6,

[7] 2.3, 2.5, [12] 1.3 for the definition of LMH; recall that, roughly speak-

ing, an LMH is a pre-LMH satisfying the following three conditions point-

wise, i.e., the admissibility, the Griffiths transversality, and that it yields a

mixed Hodge structure in the usual sense after a sufficiently twisted spe-

cialization).

(1) grWw (H) is isomorphic to the pullback of H ′, Z (unit Hodge struc-

ture), and 0 if w = −1, w = 0, and w �= 0,−1, respectively.

(2) For any t ∈ T log, if µ̃t : Ht
∼→ HZ (H here denotes the lattice of

H by abuse of notation) is a representative of the germ of µ at t, then

there exists a σ ∈ Σ such that exp(σ) contains the image of the induced

map π+
1 (τ−1τ(t)) → Aut(Ht)

by µ̃t→ Aut(HZ), and such that (σ, µ̃t(C ⊗ Ft))

generates a nilpotent orbit.

Here π+
1 (τ−1τ(t)) := Hom((MT /OT )×τ(t),N) ⊂ Hom((MT /OT )×τ(t),Z) =

π1(τ
−1τ(t)) and F is the Hodge filtration of H.

We have an embedding

Mor(−, JΣ) ⊂ Ext1(Z, H ′)

of functors from the category B(log)/S to the category of sets. Here Ext1 is

the sheaf T 
→ Ext1T (Z, H ′|T ) in the category of log mixed Hodge structures

with polarized graded quotients (cf. [7] 3.1.4). The image of this embedding

consists of H satisfying the following (3).

(3) For any t ∈ T log, if µ̃′
t : H

′
t

∼→ H ′
Z (H ′ here denotes the lattice of H ′

by abuse of notation) is a representative of the germ of µ′ at t, then there

exists a σ ∈ Σ such that exp(σ) contains the image of the induced map

π+
1 (τ−1τ(t)) → Aut(Ht)

by µ̃′
t⊕id→ Aut(HZ), and such that (σ, (µ̃′

t ⊕ id)(C ⊗
Ft)) generates a nilpotent orbit.
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Now we proceed to state the results. Fix a σ′ and let Γ′,Γ, and Σ′ be

as in 1.6. Let ϕ be as in 1.6 and H ′ as in 1.7.

We first state results in 1-dimensional base case for the reader’s conve-

nience, though they are essentially included in those in 2-dimensional base

case (cf. [10] §7, [12] 7.5.3 (3)).

We say that, for any object T ∈ B(log), JΣ graphs an extension a ∈
Ext1T (Z, H ′) if a belongs to Mor(T, JΣ) ⊂ Ext1T (Z, H ′).

Proposition 1.8. Assume that dimσ′ � 1. Let σ be a nilpotent cone

in gQ whose image in g′Q is σ′. Assume that σ is admissible, i.e., its action

on HQ is admissible. Then, there is a finite subdivision of σ such that, for

each member τ of this subdivision, the translations Ad(γ)(υ) of all the faces

υ of τ by all the elements γ of Γ (the translations by Γ, for short) form a

fan.

We prove this proposition in the last section after preparations.

Remark 1.9. The main theorem in [10] essentially claims more

strongly as follows. (For its proof, see also [12] 7.4.) Let σ′ be as in 1.8.

Then, there is a fan Σ in gQ which is strongly compatible with Γ, and all of

whose cones are admissible and have the images σ′ or {0} in g′Q, satisfying

the condition that, for any σ as in 1.8, there is a finite subdivision of σ such

that each member of this subdivision is contained in some cone in Σ.

Corollary 1.10. Assume that dimσ′ � 1. For any object T of B(log)

over S and any a ∈ Ext1T (Z, H ′), locally on T , there is a log modification

T ′ → T ([13] 3.6) and, locally on T ′, there is a fan Σ (being strongly com-

patible with Γ and satisfying (∗) in 1.6) such that JΣ graphs a, which means

that the restriction of a in Ext1T ′(Z, H ′) belongs to Mor(T ′, JΣ) ⊂
Ext1T ′(Z, H ′).

We call such JΣ a log Néron model for a.

Proof. Let H be the LMH corresponding to a. Let t ∈ T log, and we

work around τ(t). Let µ̃′
t be as in 1.7 (3). Then, via µ̃′

t⊕id, the monoid

π+
1 (τ−1τ(t)) acts on HZ.

Let σ be the local monodromy cone of H at τ(t), that is, the cone in gQ

generated by the logarithms of the actions of the elements of π+
1 (τ−1τ(t))
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(cf. [13] 2.5.11). This is determined up to the translation by an element of

Γ. Clearly, the image of σ in g′Q is contained in σ′.
By localizing T and taking a chart around τ(t), we may assume that

there is a chart P → Γ(T,MT ) with a sharp fs monoid P such that P →
(MT /O×

T )t is bijective. Then, for any t′ ∈ T log, the monoid π+
1 (τ−1τ(t′))

is regarded as a face of π+
1 (τ−1τ(t)), and the action of π+

1 (τ−1τ(t′)) on HZ

factors through the action of π+
1 (τ−1τ(t)) on HZ modulo the translation by

an element of Γ.

Now we apply 1.8 and make a log modification T ′ of T according to the

finite subdivision of Hom(P,Q≥0) induced by that of σ in 1.8. Let τ ⊂ σ

be a member of this subdivision. Then, all the translations of τ with their

faces form a fan Σ by 1.8, which is easily seen to be strongly compatible

with Γ. By localizing T ′, we may assume that Σ contains the set of the local

monodromy cones of H|T ′ .

We will show that JΣ graphs a. For this, it suffices to verify the condition

(3) in 1.7. But, since the set of the local monodromy cones of H is now

contained in Σ, we can take the local monodromy cone itself as the desired

cone σ in the condition (3) in 1.7. �

Corollary 1.11. Assume that dimσ′ � 1. For an fs log analytic

space T over S which is log smooth over C ([13] 2.1.11), let U be the open

subspace of T where the log structure is trivial. Let a ∈ Ext1U (Z, H ′) be an

extension of gradedly polarized variations of MHS, which is admissible with

respect to T . Then, locally on T , there is a log modification T ′ → T and,

locally on T ′, there is a fan Σ (being strongly compatible with Γ and satisfying

(∗) in 1.6) such that the morphism U
a→ JΣ extends to a morphism T ′ → JΣ.

(Note that, by the definition of a log modification, the open subspace U of

T can be regarded also as an open subspace of T ′.)

Proof. By the assumption of the admissibility, a extends to an

element of Ext1T (Z, H ′). Hence this corollary is reduced to the previous

one. �

Corollary 1.12. Assume that dimσ′ � 1 and that S is a complex

analytic manifold endowed with the log structure defined by a smooth divisor

Z. Then any normal function on S − Z which is admissible with respect to

S, locally on S, extends to a section of JΣ for a fan Σ which is strongly

compatible with Γ and satisfies (∗) in 1.6.
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Proof. Let U = S − Z. A normal function on U is nothing but an

element of Ext1U (Z, H ′). Since, in this case, a log modification over S have

to be trivial, this corollary is reduced to the previous one. �

We remark that in the last case 1.12, the log Néron model in the sense

of [12] exists as a best model and satisfies the same conclusion. See [12]

6.1.8.

1.13. We proceed to the surface base case.

We introduce some terms to state the result. Let Σ be a finite set of

nilpotent cones in gQ (not necessarily a fan). Let {fan} be the set of the

fans in gQ. A map s : Σ→ {fan} is a finite multi-subdivision of Σ of length

one if for any σ ∈ Σ, the image of σ by s is a finite subdivision of σ. Let

Σs be the union of s(σ) for all σ ∈ Σ. A finite multi-subdivision of Σ is a

sequence s1, . . . , sn of finite multi-subdivisions of length one such that s1 is

a finite multi-subdivision of Σ of length one, and for any j with 2 � j � n,

sj is a finite multi-subdivision of Σsj−1 of length one.

We call an element of Σsn a member of this finite multi-subdivision.

A finite multi-subdivision of a nilpotent cone σ is a finite multi-subdi-

vision of the set of all faces of σ.

The next is the main theorem in this paper, which is proved in Section

6 after the necessary preparations.

Theorem 1.14. Assume that dimσ′ = 2. Let σ be a nilpotent cone in

gQ whose image in g′Q is σ′. Assume that σ is admissible. Then, there is

a finite multi-subdivision of σ such that, for each member τ of this multi-

subdivision, the translations Ad(γ)(υ) of all the faces υ of τ by all the ele-

ments γ of Γ form a weak fan.

We expect that the conclusion in 1.14 would hold without the assump-

tion dimσ′ = 2. Another problem is whether we can find a finite subdivision

instead of a finite multi-subdivision.

Corollary 1.15. Assume that dimσ′ = 2. For any object T of B(log)

over S and any a ∈ Ext1T (Z, H ′), there is a finite set of surjective, strict

(1.6), local isomorphisms T ′
j → Tj (0 � j � n − 1) with T0 = T and a set

of log modifications Tj → T ′
j−1 (1 � j � n) such that, locally on Tn, there
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is a weak fan Σ (being strongly compatible with Γ and satisfying (∗) in 1.6)

such that JΣ graphs the restriction of a.

We call such JΣ a log Néron model for a.

Proof. The proof is parallel to that of 1.10.

Let H be the LMH corresponding to a. Let t ∈ T log. The monoid

π+
1 (τ−1τ(t)) acts on HZ via µ̃′

t⊕id, where µ̃′
t is as in 1.7 (3).

Let σ be the local monodromy cone of H at τ(t).

In the same way as in 1.10, we may assume that there is a chart P →
Γ(T,MT ) such that P → (MT /O×

T )t is bijective. Then, for any t′ ∈ T log,

the action of π+
1 (τ−1τ(t′)) on HZ factors through the action of π+

1 (τ−1τ(t))

on HZ modulo the translation by Γ.

We apply 1.14 and have a sequence

Tn → T ′
n−1 → Tn−1 → T ′

n−2 → · · · → T1 → T ′
0 → T0 = T

as in the statement according to the finite multi-subdivision in 1.14. By

further localization of Tn, we may assume that n = 0 and that all the

translations of σ with their faces form a weak fan Σ, which is strongly

compatible with Γ.

Then, JΣ graphs a, as is seen in the same way as in 1.10. �

Corollary 1.16. Assume that dimσ′ = 2. For an fs log analytic

space T over S which is log smooth over C, let U be the open subspace of

T where the log structure is trivial. Let a ∈ Ext1U (Z, H ′) be an extension of

gradedly polarized variations of MHS, which is admissible with respect to T .

Then, there is a finite set of surjective, strict, local isomorphisms T ′
j → Tj

(0 � j � n − 1) with T0 = T and a set of log modifications Tj → T ′
j−1

(1 � j � n) such that, locally on Tn, a weak fan Σ (being strongly compatible

with Γ and satisfying (∗) in 1.6) exists and the morphism Un → U
a→ JΣ

extends to a morphism Tn → JΣ. Here Un is the inverse image of U in

Tn.

Proof. Similarly to 1.11, this is reduced to the previous corollary. �

1.17. Here we explain the idea of the proof of the main theorem 1.14.

The full proof will be given in Section 6.



624 Chikara Nakayama

Consider the following three toy models (A1), (A2), and (B). Notation

here is temporary.

Let H ′ = Q. Let Γ = Z. Let N ′
1, N

′
2 ∈ Hom(Γ, H ′). Let σ′ = Q2

≥0. Let

g = σ′×H ′. Let Γ act on g by γ : (a1, a2, h
′) 
→ (a1, a2, h

′+(a1N
′
1+a2N

′
2)(γ))

(γ ∈ Γ). Let σ ⊂ g be a finitely generated sharp cone. Assume that the

projection σ ↪→ g→ σ′ is surjective and that σ ∩ ({(0, 0)} ×H ′) = {0}.
We consider the following three conditions.

(A1) N ′
1 = N ′

2 = 1. (Here we naturally identify Hom(Γ, H ′) with Q.)

(A2) N ′
1 = 0, N ′

2 = 1 and σ∩({(1, 0)}×H ′) is a singleton, say, {(1, 0, h′1)}.
(B) N ′

1 = 0, N ′
2 = 1 and σ ∩ ({(1, 0)} × H ′) is not a singleton but is

1-dimensional.

In each case, we ask if there exists a finite subdivision of σ such that, for

each member τ of this subdivision generates a fan, i.e., all the translations

of τ by Γ with their faces form a fan. We observe that it is affirmative only

in the first two cases:

In (A1), we subdivide σ into the set Σ of all faces of σj (j ∈ 1
2Z), where

σj = {(a1, a2, h
′) ∈ σ | j(a1 + a2) � h′ � (j + 1

2)(a1 + a2)}.

Then, for any γ �= 0 and any j, we have γ(σj) ∩ σj = {0}. Hence any

τ ∈ Σ generates a fan.

In (A2), we subdivide σ into the set Σ of all faces of σj (j ∈ 1
2Z), where

σj = {(a1, a2, h
′) ∈ σ | a1h

′
1 + a2j � h′ � a1h

′
1 + a2(j + 1

2)}.

Then, again, for any γ �= 0 and any j, we have γ(σj) ∩ σj = {0}. Hence

any τ ∈ Σ generates a fan.

In (B), we cannot resolve the overlapping, i.e., for any finite subdivision

Σ of σ, there exists a τ ∈ Σ which does not generate a fan. In fact, there ex-

ists a 3-dimensional τ whose intersection with {(1, 0)}×H ′ is 1-dimensional.

Then, for any γ ∈ Γ− {0}, the intersection γ(τ) ∩ τ is not a face of τ .

Now we return from toy models to the explanation of the idea of the

proof of 1.14. Let H ′ be the polarized nilpotent orbit of weight −1 as in

1.7.

To prove 1.14, roughly, we carefully choose a decreasing filtration (J j)j
of the unipotent part (cf. 6.1) Γu = H ′

Z of Γ such that for any j and for any

γ ∈ J j
� J j+1, the action of γ modulo J j+1 looks like either that of γ in
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(A1), (A2), or (B). The existence of such a nice filtration is proved in 3.21

below, based on a property 3.15 of the polarized nilpotent orbit H ′.
We subdivide σ according to the above nice filtration.

In the case (A1) or (A2), we subdivide the given cone to resolve the

overlapping by generalizing the procedures in the above toy models. The

precise procedures for (A1) and (A2) are provided in 2.3 and 2.8 below,

respectively.

In the case (B), we cannot resolve the overlapping. Instead, we prove

that the given cone generates a weak fan after a finite subdivision. The key

observation in this step is 4.3 below; the other lemmas in Sections 4–5 are

rather standard.

2. Subdivision of Cones

In this section, we prepare the lemmas of type (A1) and of type (A2) (see

1.17), which show how to subdivide cones according to the nice filtration

explained in 1.17.

2.1. Let H be a finite dimensional Q-vector space. Let

X = Q2
≥0 ×H.

Let σ ⊂ X be a finitely generated sharp cone. Assume the following condi-

tion:

σ ∩ ({(0, 0)} ×H) = {0}.(1)

Let L be a finitely generated free Z-module. Let N1, N2 ∈ Hom(L,H). Let

L act on X by

l : (a1, a2, h) 
→ (a1, a2, h + (a1N1 + a2N2)(l)) (l ∈ L).

Note that, in applying the results in this section to the proof of the main

theorem, we take H ′
Q in the main theorem as the H here.

We introduce the following notation. For a rational number ε with

0 � ε � 1, let

H1+ε = Q≥0(1− ε, ε)×H.
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In particular,

H1 = Q≥0 × {0} ×H, and

H2 = {0} ×Q≥0 ×H.

Lemma 2.2. Let the notation and the assumption be as in 2.1. Let

b1, b2 ∈ Q>0. Then, the subset

Sb1,b2 := σ ∩ ({(a1, a2) | a1b1 + a2b2 = 1} ×H)

of X is bounded. In particular, each fiber of the projection σ ↪→ X → Q2
≥0

is bounded.

Proof. First we show that

M := {(a1, a2) ∈ Q2 | a1b1 + a2b2 = 0} ×H ⊂ Q2 ×H

is a supporting hyperplane of {0} of the cone σ ⊂ X ⊂ Q2 × H. Let

(a1, a2, h) ∈ M ∩ σ. Then, (a1, a2) is in the image of σ ⊂ X, so a1, a2 � 0.

Since b1, b2 > 0, we have a1 = a2 = 0. Hence, (0, 0, h) = (a1, a2, h) belongs

to σ. By the condition 2.1 (1), we have h = 0. Thus, M ∩ σ = {0}, i.e., M

is a supporting hyperplane of {0} of σ.

Since our set Sb1,b2 is the intersection of σ and the translation of M by

a vector in Q2 ×H, it is bounded. �

The next is the lemma for the situation of type (A1).

Lemma 2.3. Let the notation and the assumption be as in 2.1. Then

we have the following.

(1) Assume that a1N1 + a2N2 : L → H is injective for any (a1, a2) ∈
Q2

≥0 − {(0, 0)}. Then, there is a finite subdivision of σ such that, for each

member τ of this subdivision and for any l ∈ L−{0}, we have l(τ)∩τ = {0}.
(2) Assume that N1 is injective. Then there is a positive ε0 � 1 such

that for any positive rational number ε � ε0, there is a finite subdivision of

σ ∩ (H1 + H1+ε) = σ ∩
((

Q≥0(1, 0) + Q≥0(1− ε, ε)
)
×H

)
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such that, for each member τ of this subdivision and for any l ∈ L − {0},
we have l(τ) ∩ τ = {0}.

(3) Assume that we are given an identification L ⊗Q = H. We regard

N1 and N2 as elements of End(H) via this identification. Let J ⊂ H be a

Q-subspace satisfying N−1
1 N2J ⊂ J (cf. Notation and Terminology). Then

there is a positive ε0 � 1 such that for any positive rational number ε � ε0,

there is a finite subdivision of

σ ∩ (H1 + H1+ε) = σ ∩
((

Q≥0(1, 0) + Q≥0(1− ε, ε)
)
×H

)
such that, for each member τ of this subdivision and for any l ∈ L � J , we

have l(τ) ∩ τ = {0}.

Before the proof, we briefly review the pullback of the subdivision. The

next fact is well-known and is seen by considering the dual statement.

Lemma 2.4. Let σ, τ be two polyhedral cones in a vector space. Let υ

be a face of the cone σ ∩ τ . Let σ1 and τ1 be the faces of σ and τ spanned

by υ, respectively. Then, we have υ = σ1 ∩ τ1.

2.5. Let Σ be a fan in a vector space V . Let σ be a polyhedral cone.

Let p : σ → V be a map induced by a linear map. Assume that for each

τ ∈ Σ, the pullback p−1(τ) is sharp. (This holds, for example, when σ is

sharp or when p is injective.)

Then, it is easily seen from 2.4 that the set Σ′ of the cones of the form

σ1 ∩ p−1(τ1), where σ1 is a face of σ and τ1 is an element of Σ, makes a fan.

We call Σ′ the pullback of Σ by p.

Proof of 2.3. To prove (1), we may replace σ with a larger finitely

generated sharp cone containing σ and satisfying 2.1 (1). Hence, by 2.2, we

may assume that there is a convex polytope C in H such that σ is generated

(as a cone) by the set {(1, 0, h) |h ∈ C} ∪ {(0, 1, h) |h ∈ C}. (Concretely,

we can take as C the image in H of the subset S1,1 in 2.2 for the original

σ.) Then, a subdivision Σ of C naturally induces a subdivision of σ. That

is, for each C ′ ∈ Σ, the set {(1, 0, h) |h ∈ C ′} ∪ {(0, 1, h) |h ∈ C ′} generates

a subcone of σ and these cones together with their faces form a subdivision

of σ.
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On the other hand, by the assumption of the injectivity, we have

inf
a1+a2=1

inf
l∈L−{0}

|(a1N1 + a2N2)l| > 0,

where we fix a metric |−| on H. Hence, by subdividing the polytope C

sufficiently finely, we may assume that (C + (a1N1 + a2N2)l) ∩ C is empty

for any a1, a2 > 0 with a1 + a2 = 1 and any l ∈ L−{0}. The last condition

implies the desired property l(σ) ∩ σ = {0}, which completes the proof of

(1). See the remark 2.6 below for an alternative proof of (1).

(2) Since N1 is injective, there is a positive ε0 � 1 such that for any

positive rational ε � ε0, the operator (1 − ε)N1 + εN2 is injective. Hence,

by replacing N2 by (1 − ε)N1 + εN2, and X by H1 + H1+ε, (2) is reduced

to (1).

(3) Let A := N1J +N2J . Then, the action of L on X induces the action

of L/(J ∩ L) on

X := Q2
≥0 × (H/A)

because we have a1N1l + a2N2l ∈ A for a1, a2 ∈ Q≥0 if l ∈ J . Further, we

have the operators

Nj : L/(J ∩ L)→ H/A

induced by Nj for j = 1, 2.

Let σ be the image of σ in X. Then, σ ∩ ({(0, 0)} × (H/A)) is trivial

and we are in the situation in 2.1 with H/A, L/(J ∩ L), N1, N2, X, and σ

for H, L,N1, N2, X, and σ there.

We prove that N1 is injective. Let l ∈ L and assume N1(l) ∈ A. Since

A = N1J + N2J , there are j1, j2 ∈ J such that N1(l) = N1(j1) + N2(j2).

From this, N1(l − j1) ∈ N2J , so l − j1 ∈ N−1
1 N2J ⊂ J by the assumption.

Hence l ∈ J , and N1 is injective.

Therefore, by (2), there is a positive ε0 � 1 such that for any positive

rational ε � ε0, there is a finite subdivision of σ ∩
((

Q≥0(1, 0) + Q≥0(1 −

ε, ε)
)
× (H/A)

)
such that, for each member τ of this subdivision and for

any l ∈ (L/(J ∩ L)) − {0}, we have l(τ) ∩ τ = {0}. To pull back this

subdivision (2.5) gives a subdivision of σ∩ (H1 +H1+ε). Let τ be a member

of it and l ∈ L � J . By construction, l(τ) ∩ τ ⊂ {(0, 0)} × A. Together

with the condition 2.1 (1), we have l(τ) ∩ τ = {0}. Hence, this is a desired

subdivision. �
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Remark 2.6. We sketch another proof for 2.3 (1). In general, the

following holds. Let an abstract group G act linearly on a Q-vector space

V of finite dimension. Let V ′ be a G-stable Q≥0-submonoid of V . Assume

that the action of G on V ′ − {0} is proper and free. Let σ be a finitely

generated sharp cone contained in V ′. Then, there is a finite subdivision of

σ such that, for each member τ of this subdivision and for any g ∈ G−{1},
we have g(τ) ∩ τ = {0}.

This is seen by considering the projection p : V ′ − {0} → G \(V ′ − {0})
and observing that any x ∈ σ−{0} admits a neighborhood S satisfying that

S → p(S) is a homeomorphism and that p−1p(S) is isomorphic to G× p(S)

as G-torsors over p(S).

We apply this with G = L, V = Q2×H, and V ′ = X − ({(0, 0)}×H)∪
{0}. The freeness is direct by the injectivity assumption. The properness is

deduced from the fact that if Nλ (λ runs over a directed set) converges in

the space of the injective homomorphisms from L to V , and if Nλlλ (lλ ∈ L)

converges, then lλ converges, that is, eventually is constant.

The next is a 1-dimensional variant of 2.3.

Lemma 2.7. Let the notation and the assumption be as in 2.1. Let

Y = Q≥0 ×H. Let L act on Y by l : (a, h) 
→ (a, h + aN1(l)) (l ∈ L). Let

τ ⊂ Y be a finitely generated sharp cone. Assume that τ ∩ ({0}×H) = {0}.
Then, there is a finite subdivision of τ such that, for each member υ of this

subdivision, we have that l(υ) ∩ υ = {0} in the case l ∈ L � N−1
1 (0), and

that l acts trivially on υ in the case l ∈ L ∩N−1
1 (0).

Proof. Let C := τ∩({1}×H). Then, similarly to 2.2, the assumption

τ ∩ ({0} ×H) = {0} implies that C is bounded. Further, τ is spanned by

C, and a subdivision of C naturally induces a subdivision of τ .

We regard C as a subset of H. Fix a metric on H. Since the image

N1L is discrete in H, we have inf
x∈N1L−{0}

|x| > 0. Hence, we can take a finite

subdivision of C such that each member C ′ of this subdivision satisfies the

condition that (C ′ + N1l) ∩ C ′ is empty for any l ∈ L � N−1
1 (0).

It is clear that the subdivision of τ induced by this subdivision of C

satisfies the desired condition. �

The next is the lemma of type (A2).
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Lemma 2.8. Let the notation and the assumption be as in 2.1. Then

we have the following.

(1) Assume that the dimension of σ∩H1 is 0 or 1. Assume also N1L = 0.

Then, there is a finite subdivision of σ such that, for each member τ of this

subdivision and for any l ∈ L � N−1
2 (0), we have l(τ) ∩ τ ⊂ H1.

(2) Assume that we are given an identification L ⊗Q = H. We regard

N1 and N2 as elements of End(H) via this identification. Let J, V be two

Q-subspaces of H. Assume that there is an h ∈ H such that σ ∩ H1 is

contained in the cone generated by (1, 0, h + V ). Then there is a finite

subdivision of σ such that, for each member τ of this subdivision and for

any l ∈ (J ∩L)�N−1
2 (N1J +V ), we have either l(τ)∩τ = {0} or l(τ)∩τ =

τ ∩H1.

Proof. To prove (1), we may replace σ with a larger finitely gen-

erated sharp cone containing σ satisfying the same condition in (1) and

the condition 2.1 (1). Hence, we may assume that there are a vector

v ∈ H and a convex polytope C in H such that σ is generated by the

set {(1, 0, v)} ∪ {(0, 1, h) |h ∈ C}.
Since the image N2L is discrete in H, there is a finite subdivision {Cj}j

of C such that for any j and any l ∈ N2L−{0}, the intersection Cj∩(Cj+ l)

is empty. This subdivision of C naturally induces a subdivision of σ, that

is, the cones σj generated by the set {(1, 0, v)}∪{(0, 1, h) |h ∈ Cj} together

with their faces form a subdivision of σ.

We prove that this is the desired one. Take an element x of σj , which

we can write x = (a, b, av + bh) with a, b ∈ Q≥0, h ∈ Cj . Let l ∈ L act on x

and we have l(x) = (a, b, av+bh+aN1(l)+bN2(l)) = (a, b, av+bh+bN2(l))

by the assumption N1L = 0. Hence, if an element of l(σj) ∩ σj does not

belong to H1, there are b > 0 and h, h′ ∈ Cj such that bh = bh′ + bN2(l) so

h = h′ + N2(l). By the choice of the subdivision {Cj}j , we have N2(l) = 0.

Hence, l(σj) ∩ σj ⊂ H1 for any l ∈ L � N−1
2 (0), which means that our

subdivision satisfies the desired condition.

(2) Let τ := σ ∩ H1. First we prove this (2) under the additional as-

sumption that for any l ∈ (J ∩L) �N−1
1 (0), we have l(τ)∩ τ = {0}. In this

case, let A := N1J + V . Apply (1) with H/A for H, with L for J ∩L, with

the induced operators J ∩ L → H/A by N1, N2 for N1, N2, and with the

image σ of σ in Q2
≥0× (H/A) for σ. Note that N1 sends J ∩L to A so that

the operator induced by N1 is zero. Then, (1) gives a finite subdivision Σ′
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of σ such that for any υ′ ∈ Σ′ and l ∈ (J ∩ L) � N−1
2 (A), the intersection

l(υ′) ∩ υ′ is contained in Q≥0 × {0} × (H/A).

To pull back this subdivision gives a subdivision Σ of σ. For any υ ∈ Σ,

we have l(υ)∩υ ⊂ H1 for any l ∈ (J ∩L)�N−1
2 (A). We prove that the last

inclusion implies that l(υ) ∩ υ coincides with either {0} or υ ∩H1. In fact,

by this inclusion, we have l(υ)∩ υ = l(υ ∩H1)∩ (υ ∩H1) ⊂ l(τ)∩ τ . Hence,

if N1(l) �= 0, the assumption l(τ)∩ τ = {0} gives l(υ)∩υ = {0}. Otherwise,

l acts trivially on H1 and l(υ ∩H1) = υ ∩H1, which coincides with l(υ)∩ υ.

In the general case, we first apply 2.7 to the cone τ with H1 as Y

there and subdivide τ . Take any finite subdivision Σ = {σj} of σ which

induces this subdivision of τ . Then, we can apply the above proof for the

special case to each σj because for any j and any l ∈ L � N−1
1 (0), we have

l(σj ∩H1) ∩ (σj ∩H1) = {0}. We denote by Σj the resulting subdivision of

σj for each j. (We remark that these Σj already give a multi-subdivision

of σ satisfying the desired condition. Actually, it will suffice for the main

theorem in this paper.) Take a finite subdivision Σ′ of the fan Σ which

induces a finite subdivision of Σj on each σj . Then, it is clear that this Σ′

satisfies the desired condition. �

3. Polarized Nilpotent Orbits

One of the key facts which we will use later in the proof of the main

theorem is the following proposition 3.2 on a pure nilpotent orbit. This

might be known, but we include a proof for completeness.

3.1. Let HZ be a free Z-module of finite rank, let w be an integer,

and let 〈 , 〉 be a non-degenerate (−1)w-symmetric pairing on HZ. Let

(hp,q)p+q=w be non-negative integers satisfying hp,q = hq,p and such that

almost all of them are zero. Let D = D(HZ, (h
p,q), 〈 , 〉) be the classifying

space of polarized Hodge structures, and Ď its compact dual.

Let GQ be the group of the Q-automorphisms of (HQ, 〈 , 〉), and gQ

the associated Lie algebra.

Let N1, N2 ∈ gQ ⊂ End(HQ) be mutually commutative nilpotent ele-

ments. Let F ∈ Ď. Assume that (N1, N2, F ) generates a nilpotent orbit

([13] 5.4.1).

Note that, in applying the results in this section to the main theorem in

Section 6, HQ here is H ′
Q in the main theorem. Note also that we will use
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only the case w = −1 in Section 6.

We assume that the associated weight filtrations W (N1 + N2)[−w] and

W (N2)[−w] coincide. We denote by M this filtration.

The main result in this section is the following, which will be proved in

3.5–3.14 below after preparations.

Proposition 3.2. Let the notation and the assumption be as in 3.1.

For any n � 0, we have

Mw−1 ∩
∞⋂
j=0

(
Mw−2 + (N j

2 )−1(ImN j+1
1 )

)
∩ (N2N

−1
1 )n(Mw−2) ⊂Mw−2.

3.3. For the proof, first we review the direct sum decomposition of

HR = HQ ⊗Q R associated to (N1, N2, F ).

Though this direct sum decomposition can be described in terms of the

associated SL(2)-orbit (see 3.4 below), we define it here without that theory

as follows (cf. [9] 2.5).

Let (M, F̂(2)) be the R-split mixed Hodge structure associated to the

mixed Hodge structure (M,F ). Let s(2) : grM → HR be the splitting of M

by (M, F̂(2)). Next, let (M(N1), F̂(1)) be the R-split mixed Hodge structure

associated to the mixed Hodge structure (M, exp(iN2)F̂(2)). Then M(N1)

coincides with W (N1)[−w]. Let s(1) : grM(N1) → HR be the splitting of

M(N1) by (M(N1), F̂(1)).

For any j, k ∈ Z, let H
[j,k]
R = s(1)(gr

M(N1)
j )∩ s(2)(grMk ). Then, we have a

direct sum decomposition

HR =
⊕
j,k∈Z

H
[j,k]
R .

In particular, for any j, k ∈ Z,

M(N1)j =
⊕

k∈Z,j′ � j

H
[j′,k]
R and Mk =

⊕
j∈Z,k′ � k

H
[j,k′]
R .

In the following, we denote by h[j,k] the [j, k]-component of an element

h of HR.
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Further, this direct sum decomposition naturally induces that of gR

as follows. Let g
[j,k]
R be the subspace of gR consisting of the operators N

satisfying N(H
[j′,k′]
R ) ⊂ H

[j+j′,k+k′]
R for any j′, k′ ∈ Z. Then, we have a

direct sum decomposition

gR =
⊕
j,k∈Z

g
[j,k]
R .

We denote by N [j,k] the [j, k]-component of an element N of gR.

By [3] 4.20 (cf. [9] 2.7), we know that

N1 ∈ g
[−2,−2]
R , and N2 ∈

⊕
j � 0

g
[j,−2]
R .

We define

N̂2 := N
[0,−2]
2 .

3.4. As mentioned in the above, these all are incorporated into the

theory of the associated SL(2)-orbit ([3] 4.20). Though it is not necessary

in the sequel, we explain it briefly, basing on the formulation in [9] §2.

Let (ρ, ϕ) be the SL(2)-orbit in two variables associated to (N1, N2, F ),

where ρ is a homomorphism of algebraic groups SL(2,C)2 → GC and ϕ is

a holomorphic map P1(C)2 → Ď.

Then, H
[j,k]
R is the part of HR on which ρ

((
1/λ 0
0 λ

)
, ( 1 0

0 1 )
)

(λ ∈ R×)

acts via the multiplication by λj−w and ρ
((

1/λ 0
0 λ

)
,
(

1/λ 0
0 λ

))
(λ ∈ R×)

acts via the multiplication by λk−w.

Similarly, g
[j,k]
R is the part of gR on which Ad

(
ρ
((

1/λ 0
0 λ

)
, ( 1 0

0 1 )
))

(λ ∈

R×) acts via the multiplication by λj and Ad
(
ρ
((

1/λ 0
0 λ

)
,
(

1/λ 0
0 λ

)))
(λ ∈

R×) acts via the multiplication by λk.

Finally, N̂2 is the image of (( 0 0
0 0 ) , ( 0 1

0 0 )) by the homomorphism of Lie

algebras sl(2,R)2 → gR induced by ρ.

3.5. We begin the proof of 3.2. The proof goes through several re-

duction steps, which completes in 3.14. We work over R and prove the

inclusion in 3.2 after tensoring R. We regard N1 and N2 as elements of
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End(HR) and, for a subspace V of HQ, we use the same symbol to denote

the subspace V ⊗Q R of HR.

First we have

N−1
1 Mw−2 ⊂Mw + KerN1.(1)

In fact, let h be any element of HR. Then, we can write it as h =

h1 + h2 ∈ HR, where h1 ∈ Mw and h2 ∈
⊕

j∈Z,w+1� k H
[j,k]
R . Assume

N1(h) ∈Mw−2. Since N1 ∈ g
[−2,−2]
R , we have N1(h1) ∈Mw−2 and N1(h2) ∈⊕

j∈Z,w−1� k H
[j,k]
R . Hence N1(h2) = N1(h) − N1(h1) ∈ Mw−2 and N1(h2)

must be 0, which implies h ∈Mw + KerN1, and (1) is proved.

Hence, for 3.2, it is enough to prove a slightly stronger statement as

follows.

Mw−1 ∩
∞⋂
j=0

(
Mw−2 + (N j

2 )−1(ImN j+1
1 )

)
(2)

∩N2(N
−1
1 N2)

n(Mw + KerN1) ⊂Mw−2.

Lemma 3.6. Let xj , yj be elements of HR (0 � j � k). Assume

N1(yj) = xj−1 (j > 0), N2(yj) = xj (j � 0), and xk ∈Mw−1, that is,

y0
N2
→ x0

N1 
→y1
N2
→ · · · N2
→ xk−1

N1 
→yk N2
→ xk ∈Mw−1.

Then, for any j, we have xj ∈Mw−1 and yj ∈Mw+1.

Proof. We prove this by downward induction on j. First, xk ∈Mw−1

by assumption. Hence, it is enough to prove the following two implications

(i) for any j and (ii) for j > 0.

(i) xj ∈Mw−1 ⇒ yj ∈Mw+1.

(ii) yj ∈Mw+1 ⇒ xj−1 ∈Mw−1.

We prove (i). Suppose xj ∈Mw−1. Since N2(yj) = xj , we see that yj be-

longs to N−1
2 Mw−1, which coincides with Mw+1 because M = W (N2)[−w].

We prove (ii). Let j > 0. Suppose yj ∈ Mw+1. Since xj−1 = N1(yj),

we see that xj−1 belongs to N1(Mw+1), which is included in Mw−1 because

N1 ∈ g
[−2,−2]
R . �

3.7. We reduce (2) in 3.5 to the following statement for all k with

0 � k � n:
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(3)k Let xj , yj be elements of HR (0 � j � k). Assume the following (∗).
(∗) N1(yj) = xj−1 (j > 0), N2(yj) = xj (j � 0), and xk ∈ Mw−1 ∩⋂∞

j=0

(
Mw−2 + (N j

2 )−1(ImN j+1
1 )

)
, that is,

y0
N2
→ x0

N1 
→y1
N2
→ · · · N2
→ xk−1

N1 
→yk N2
→ xk ∈ Mw−1 ∩
⋂∞

j=0

(
Mw−2 +

(N j
2 )−1(ImN j+1

1 )
)
.

The claim is this: if y0 ∈Mw + KerN1, then, y0 ∈Mw.

We prove this reduction of (2) in 3.5 to (3)k. Let xn be an element of

the left hand side of (2) in 3.5. Then, there are xj (0 � j < n) and yj
(0 � j � n) together with xn satisfying all the assumptions in (3)n. (In

particular, y0 ∈Mw +KerN1.) Hence y0 ∈Mw by (3)n. Then, N2(y0) = x0

belongs to Mw−2 because N2(Mw) ⊂Mw−2.

We have to show xn ∈Mw−2, which is the right hand side of (2) in 3.5.

If n = 0, we have already proved it. If n > 0, we note N1(y1) = x0 ∈Mw−2.

By this and by (1) in 3.5, we see y1 ∈Mw+KerN1. Hence, by (3)n−1 in this

time, we have y1 ∈ Mw, which implies in the same way that N2(y1) = x1

belongs to Mw−2. If n > 1, again by (1) in 3.5 and by N1(y2) = x1 ∈
Mw−2, we have y2 ∈ Mw + KerN1. By (3)n−2, we have y2 ∈ Mw. Thus,

inductively, we show that all yj ’s belong to Mw and all xj ’s belong to Mw−2.

In particular, xn ∈Mw−2.

Therefore, it is enough to show (3)k.

3.8. Further, we reduce (3)k in 3.7 to the following statement (4)k. In

the following, we denote y[j] for y[j,w+1] for simplicity.

(4)k Let l ∈ Z. Let xj , yj be elements of HR (0 � j � k). Assume (∗)
in 3.7 (3)k. Assume that for each j with 0 � j � k, the component y

[a]
j is

zero whenever a > l + 2j. The claim is this: if y
[l]
0 ∈ KerN1, then y

[l]
0 = 0.

We prove the reduction of (3)k in 3.7 to (4)k. Assume (∗) in 3.7 (3)k.

Then, by 3.6, all yj ’s belong to Mw+1 and all xj ’s belong to Mw−1. In

particular, y0 ∈Mw+1.

Therefore, under the assumption (∗) in 3.7 (3)k, y0 ∈ Mw + KerN1 if

and only if y
[a]
0 ∈ KerN1 for all a ∈ Z, and y0 ∈ Mw if and only if y

[a]
0 = 0

for all a ∈ Z. Hence the claim in 3.7 (3)k is equivalent to the following one:

if y
[a]
0 ∈ KerN1 for all a ∈ Z, then, y

[a]
0 = 0 for all a ∈ Z.

We prove the following slightly stronger claim than this one by using

(4)k′ for k′ � k. Let l be an integer.
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Claim (3)k,l. Let xj , yj be elements of HR (0 � j � k). Assume (∗)
in 3.7 (3)k. If y

[a]
0 ∈ KerN1 for a � l, then, y

[a]
0 = 0 for a � l.

To prove (3)k in 3.7, it is enough to prove this for all l (under the

assumption (∗) in 3.7 (3)k).

Proof of Claim (3)k,l. We prove this by induction on k. First note

that the claim trivially holds if l is sufficiently large so that H
[a,w+1]
R = 0

for a � l.

Let k = 0. Then, (4)0 says that, for any l ∈ Z, if y
[l+a]
0 = 0 (a > 0) and

y
[l]
0 ∈ KerN1, then y

[l]
0 = 0. Hence, by downward induction on a, the claim

(3)0,l holds for any l.

Next, let k > 0. Assume that the claim holds for any (k′, l) with k′ < k

and for (k, l + 1). Then, we can show (3)k,l by using (4)k as follows.

By assumption, y
[a]
0 ∈ KerN1 (a > l). Then, by the induction hypothesis

(3)k,l+1, we have y
[a]
0 = 0 (a > l). So x

[a,w−1]
0 = 0 (a > l) and y

[a]
1 ∈ KerN1

(a > l + 2). By the induction hypothesis (3)k−1,l+3, the last fact implies

y
[a]
1 = 0 (a > l+2). So x

[a,w−1]
1 = 0 (a > l+2) and y

[a]
2 ∈ KerN1 (a > l+4)

if k > 1. By (3)k−2,l+5, we can deduce y
[a]
2 = 0 (a > l+4), and, inductively,

y
[a]
j = 0 (a > l+2j) for all 0 � j � k. Further, y

[l]
0 ∈ KerN1 by assumption.

Therefore, (4)k shows y
[l]
0 = 0. The claim follows. �

It remains to show (4)k.

3.9. First, the case l > w of 3.8 (4)k is easy. In fact, the homomorphism

gr
M(N1)
l → gr

M(N1)
l−2 induced by N1 is injective if l > w. Hence the kernel of

N1 on H
[l,w+1]
R is zero for any l > w. This proves the case l > w.

3.10. We reduce (4)k with l � w to the following (5)k,l. Let k � 0 and

l � w.

(5)k,l Let xj , yj be elements of HR (0 � j � k). Assume yj ∈ H
[l+2j,w+1]
R

(0 � j � k). Assume the following condition (∗)′, which is similar to (∗) in

3.7 (3)k.

(∗)′ N1(yj) = xj−1 (j > 0), N̂2(yj) = xj (j � 0), and xk ∈⋂∞
j=0

(
N̂ j

2 )−1(ImN j+1
1 ), that is,
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y0
N̂2
→ x0

N1 
→y1
N̂2
→ · · · N̂2
→ xk−1

N1 
→yk N̂2
→ xk ∈
⋂∞

j=0(N̂
j
2 )−1(ImN j+1

1 ).

The claim is this: if y0 ∈ KerN1, then y0 = 0.

The proof of the reduction is as follows. In the following, we denote x
[a]
j

for x
[a,w−1]
j (0 � j � k, a ∈ Z) for simplicity. Let xj , yj be as in 3.8 (4)k.

Take the components x
[l+2j]
j and y

[l+2j]
j as new xj , yj (0 � j � k). Then,

the assumptions in (5)k,l are satisfied, that is,

N1(y
[l+2j]
j ) = x

[l+2j−2]
j−1 for j > 0.(6)

N̂2(y
[l+2j]
j ) = x

[l+2j]
j for j � 0.(7)

x
[l+2k]
k ∈

∞⋂
j=0

(N̂ j
2 )−1(ImN j+1

1 ).(8)

y
[l]
0 ∈ KerN1.(9)

We check them. First, (9) is a part of the assumption in (4)k. The re-

maining ones are deduced from the corresponding assumption in (∗) in

3.7 (3)k, respectively. In fact, (6) is by N1(yj) = xj−1 and by the fact

N1 ∈ g
[−2,−2]
R . Next, (7) is by N2(yj) = xj and by the assumption y

[a]
j = 0

for a > l + 2j in 3.8 (4)k. Finally, we verify (8). Let j � 0. Since

xk ∈Mw−2 + (N j
2 )−1(ImN j+1

1 ), the element N j
2 (xk) belongs to Mw−2−2j +

ImN j+1
1 . We consider the [l + 2k,w − 1 − 2j]-component of this element.

Since N j+1
1 ∈ g

[−2j−2,−2j−2]
R , this component is in the image of N j+1

1 . On

the other hand, since y
[a]
k = 0 for a > l+2k, we have x

[a]
k = 0 for a > l+2k.

Hence the concerned component is N̂ j
2 (x

[l+2k]
k ). Thus, N̂ j

2 (x
[l+2k]
k ) belongs

to Im (N j+1
1 ), which completes the verification of (8).

Now, (5)k,l implies y
[l]
0 = 0, and 3.8 (4)k follows.

3.11. We prove 3.10 (5)k,l (k � 0, l � w).

First, by the assumption in 3.10 (∗)′, for any a � 0, we have

N̂a
2 (xk) ∈ ImNa+1

1 .(10)
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Take a sufficiently large m such that N̂m
2 (xk) = 0.

We divide into three cases: (i) l � w−m−k; (ii) w−m−k < l � w−k;

(iii) w − k < l � w, and prove them one by one.

3.12. We prove the case 3.11 (i) l � w −m− k.

This case is easy. First we prove by downward induction on j that for

any j with 0 � j � k,

N̂m+k−j
2 (xj) = 0, and(11)

N̂m+k−j+1
2 (yj) = 0.(12)

In fact, (11) for j = k holds by the choice of m. Next, (11) and (12) are

equivalent because N̂2(yj) = xj . Finally, assume (12) for j > 0. Then,

N̂m+k−j+1
2 (xj−1) = N̂m+k−j+1

2 N1(yj) = N1N̂
m+k−j+1
2 (yj) = N1(0) = 0.

Thus we proved (11) and (12). In particular, N̂m+k+1
2 y0 = 0. Recall that

y0 belongs to H
[l,w+1]
R . Since

N̂m+k+1
2 : H

[l,w+1]
R → H

[l,w−2m−2k−1]
R

is injective because (w + 1) + (w − 2m − 2k − 1) = 2(w −m − k) � 2l, we

have y0 = 0.

3.13. We proceed to the case 3.11 (ii) w −m− k < l � w − k.

In this case, we use the full assumptions. First we prove

Claim. N̂w−l
2 (x0) ∈ ImNw−l+1

1 .

Proof of Claim. We prove N̂w−l−j
2 (xj) ∈ ImNw−l−j+1

1 (0 � j � k)

by the downward induction on j. The case j = 0 is our claim. First, by 3.11

(10) with a = w − l − k � 0, the case for j = k follows. Let j > 0. Assume

that the case for j holds. Then, N1(N̂
w−l−j
2 (xj)) belongs to ImNw−l−j+2

1 ,

and this element coincides with

N̂w−l−j
2 N1(xj) = N̂w−l−j

2 N1N̂2(yj) = N̂w−l−j+1
2 N1(yj) = N̂w−l−j+1

2 (xj−1),

which completes the proof of Claim. �



Log Néron Models over Surfaces 639

In the following, we prove y0 = 0 by using Claim. Note that N1-

weight of N̂w−l
2 (x0) is the same as that of y0, which is l: N̂w−l

2 (x0) =

(N̂w−l
2 (x0))

[l,2l−w−1].

On the other hand, since y0 ∈ KerN1, we see that x0 and hence N̂w−l
2 (x0)

also belong to KerN1. Since KerN1 ∩ ImNw−l+1
1 ⊂M(N1)l−1, the element

N̂w−l
2 (x0) = (N̂w−l

2 (x0))
[l,2l−w−1] belongs to M(N1)l−1 by Claim. Hence,

this is zero. Then, N̂w−l+1
2 (y0) = N̂w−l

2 (N̂2(y0)) = N̂w−l
2 (x0) = 0.

Recall that y0 belongs to H
[l,w+1]
R . Since N̂w−l+1

2 : H
[l,w+1]
R → H

[l,2l−w−1]
R

is injective because (w + 1) + (2l − w − 1) = 2l, we have y0 = 0.

3.14. Finally, we prove the case 3.11 (iii) w − k < l � w.

This case is similarly treated in the previous case. In fact, since the

argument of the reduction to Claim in 3.13 does not use the assumption

w−m−k < l � w−k, it is enough to show the statement of Claim in 3.13,

that is, N̂w−l
2 (x0) ∈ ImNw−l+1

1 .

To see it, we prove the equality

N̂ j
2 (x0) = N j+1

1 (yj+1) (0 � j � w − l).(13)

(Note that w − l + 1 � k.) The case for j = w − l is what we need. The

case for j = 0 is by assumption. Assume (13) for some j < w − l. Then,

sending (13) by N̂2, we see

N̂ j+1
2 (x0) = N̂2N

j+1
1 (yj+1) = N j+1

1 N̂2(yj+1) = N j+1
1 (xj+1) = N j+2

1 (yj+2),

which is (13) for j + 1. This completes the proof of 3.2. �

In the rest of this section, we discuss several consequences of 3.2. For the

main theorem, actually we use only the following corollary, which is proved

in 3.16–3.20. We return to the convention that we work over Q unless stated

otherwise (cf. Notation and Terminology).

Corollary 3.15. Let the notation and the assumption be as in 3.1.

Let V := KerN1 ∩ ImN1 ∩KerN2. Then, we have the following.

(1) Let Yj be the increasing filtration defined by Y0 = 0 and Yj+1 =

N1N
−1
2 (Yj + V ). Then, for any n � 0, we have

( ∞⋃
j=0

Yj
)
∩ (N2N

−1
1 )n(0) ⊂Mw−2.
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(2) Let Xj be the increasing filtration defined by X0 = 0 and Xj+1 =

N−1
2 (N1Xj + V ). Then, for any n � 0, we have

( ∞⋃
j=0

Xj

)
∩ (N−1

1 N2)
n(0) ⊂ N−1

1 Mw−2.

The Yj and the Xj are actually increasing. This is shown by the in-

duction on j. In fact, Y0 ⊂ Y1 is trivial, and the correspondence Y 
→
N1N

−1
2 (Y + V ) from the set of the subspaces of HQ to itself is order-

preserving. Hence Yj ⊂ Yj+1 implies Yj+1 ⊂ Yj+2. Similarly, X 
→
N−1

2 (N1X + V ) is order-preserving so that the Xj is increasing.

Before starting the proof of the corollary, we prove some lemmas.

Lemma 3.16. Let V be a Q-vector space of finite dimension. Let W be

an increasing filtration of subspaces. Let N be a nilpotent endomorphism of

V preserving W . Assume that the relative monodromy filtration M(N,W )

exists. Then we have Ker (N) ∩Ww ⊂M(N,W )w for any w ∈ Z.

This is well-known. For the proof, see, for instance, [12] 1.2.1.3.

Lemma 3.17. Nk
2 Yj ⊂ Nk

1 Yj−k for any j � k � 0.

Proof. If k = 0, then this is trivial. Assume that the case for k holds.

Let j � k + 1. Then,

Nk+1
2 Yj ⊂ N2N

k
1 Yj−k = Nk

1N2Yj−k

= Nk
1N2N1N

−1
2 (Yj−k−1 + V )

= Nk+1
1 N2N

−1
2 (Yj−k−1 + V )

⊂ Nk+1
1 (Yj−k−1 + V ) = Nk+1

1 (Yj−k−1),

where the last equality is by V ⊂ KerN1. Hence, the case for k+1 holds. �

Lemma 3.18. N j
2Yj = 0 for any j � 0.
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Proof. The case j = 0 is trivial. Assume that the case for j holds.

Then,

N j+1
2 Yj+1 = N j+1

2 (N1N
−1
2 (Yj + V ))

= N j
2 (N1N2N

−1
2 (Yj + V ))

⊂ N j
2N1(Yj + V ) = N j

2N1Yj (by V ⊂ KerN1)

= N1N
j
2Yj = N1(0) = 0,

which is the case for j + 1. �

3.19. We prove 3.15 (1).

By 3.2, it is enough to show the following two inclusions for any j.

(∗) Yj ⊂Mw−1.

(∗∗) Yj ⊂ (Nk
2 )−1(ImNk+1

1 ) for any k � 0.

We prove (∗) by induction on j. The case j = 0 is trivial. Assume that

Yj ⊂Mw−1. By the inclusion KerN1 ∩ ImN1 ⊂M(N1)w−1 and by the fact

that M = M(N1 +N2) is the relative monodromy filtration M(N2,M(N1)),

the lemma 3.16 shows that

V = (KerN1 ∩ ImN1) ∩KerN2 ⊂M(N1)w−1 ∩KerN2 ⊂Mw−1.

Together with the induction hypothesis, we have Yj + V ⊂ Mw−1. Hence

N−1
2 (Yj + V ) ⊂ Mw+1, and N1N

−1
2 (Yj + V ) ⊂ N1Mw+1 ⊂ Mw−1, which is

(∗) for j + 1.

We prove (∗∗). First assume j > k. Then, by the lemma 3.17, Nk
2 Yj ⊂

Nk
1 Yj−k ⊂ Nk

1 (ImN1) = ImNk+1
1 .

Next assume j � k. Then, by the lemma 3.18, Nk
2 Yj ⊂ Nk

2 Yk = 0.

Hence, in any case, (∗∗) holds.

3.20. We prove 3.15 (2). The case n = 0 is trivial. Assume n > 0.

First we show Yj = N1Xj by induction on j. The case j = 0 is trivial.

Assume Yj = N1Xj . Then, N1Xj+1 = N1N
−1
2 (N1Xj + V ) = N1N

−1
2 (Yj +

V ) = Yj+1.

Using this, we see

N1(Xj ∩ (N−1
1 N2)

n(0)) = N1(Xj ∩N−1
1 (N2N

−1
1 )n−1(0))

⊂ N1Xj ∩ (N2N
−1
1 )n−1(0)

= Yj ∩ (N2N
−1
1 )n−1(0) ⊂Mw−2.
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Here the last inclusion is by 3.15 (1) already proved. Hence, Xj ∩
(N−1

1 N2)
n(0) ⊂ N−1

1 Mw−2. This completes the proof of 3.15. �

Now, using 3.15 just proved, we get a nice filtration on HQ as follows.

Proposition 3.21. Let the notation and the assumption be as in 3.1.

Let V := KerN1 ∩ ImN1 ∩ KerN2 as in 3.15. Then there are subspaces

J0, J1, . . . , Jn of HQ satisfying the following two conditions:

(i) N−1
1 N2J

0 ⊂ J0.

(ii) HQ = (HQ �J0)∪
⋃n

j=0

(
J j

�N−1
2 (N1J

j +V )
)
∪ (N−1

1 Mw−2∩Mw).

Proof. Consider the sequence of subspaces {0}, (N−1
1 N2)(0),

(N−1
1 N2)

2(0), (N−1
1 N2)

3(0), . . . . This sequence is increasing, which is seen

as in the same way as we saw right after 3.15 that the Yj is increasing. Since

the whole space HQ is finite dimensional, the sequence is eventually stable.

We take as J0 the stable subspace:

J0 = (N−1
1 N2)

k(0)

with a sufficiently large k > 0. Then, N−1
1 N2J

0 = (N−1
1 N2)

k+1(0) = J0,

and (i) is satisfied.

Next we define a decreasing sequence J1, J2, J3, . . . of subspaces induc-

tively by the formula

J j+1 = J j ∩N−1
2 (N1J

j + V ).

This sequence is eventually stable again, and we take an n � k such that

Jn = Jn+1.

To prove (ii), which is equivalent to HQ = (HQ � J0) ∪
⋃n

i=0(J
j

�

J j+1) ∪ (N−1
1 Mw−2 ∩ Mw), it is enough to show that Jn is contained in

N−1
1 Mw−2 ∩Mw, that is,

Jn ⊂ N−1
1 Mw−2, and(1)

Jn ⊂Mw.(2)

First we prove

J j ⊂ (N−1
1 N2)

k−j(0) + Xj(3)
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for any j � k.

The case j = 0 of (3) holds by the definition of J0. We assume (3) for

j. Then, for k � j + 1,

N1J
j + V ⊂ N1((N

−1
1 N2)

k−j(0) + Xj) + V

⊂ N2(N
−1
1 N2)

k−j−1(0) + N1Xj + V.

By pulling it back by N2, we see

N−1
2 (N1J

j + V ) ⊂ (N−1
1 N2)

k−j−1(0) + N−1
2 (N1Xj + V )

= (N−1
1 N2)

k−j−1(0) + Xj+1.

Since J j+1 is contained in N−1
2 (N1J

j + V ), the inclusion (3) for j + 1 is

proved. Hence, (3) for any j � k is proved.

We prove (1). We have Jk ⊂ Xk by (3) for j = k. Hence,

Jn ⊂ Jk = J0 ∩ Jk

⊂ (N−1
1 N2)

k(0) ∩Xk

⊂ N−1
1 Mw−2

by 3.15 (2). The inclusion (1) is proved.

To see (2), first, by the choice of n and by (1) just proved, we have

Jn = Jn ∩N−1
2 (N1J

n + V )

⊂ N−1
1 Mw−2 ∩N−1

2 (Mw−2 + V ).

Hence, (2) is reduced to the inclusion

N−1
1 Mw−2 ∩N−1

2 (Mw−2 + V ) ⊂ N−1
2 Mw−2 = Mw,

which is still reduced to

N2(N
−1
1 Mw−2) ∩ (Mw−2 + V ) ⊂Mw−2.(4)

We prove (4). By 3.2, it suffices to show that

(5) Mw−2 + V is contained in Mw−1, and

(6) V is contained in (N j
2 )−1(ImN1

j+1) for any j � 0.

First, we already saw V ⊂Mw−1 in 3.19. Hence (5) follows.
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Next, V ⊂ ImN1 by definition. This is the case j = 0 of (6). Further, if

j � 1, (N j
2 )−1(ImN j+1

1 ) contains (N j
2 )−1(0), which contains KerN2. Hence

it also contains V . Thus (6) follows, and (4) is proved. �

The next is not indispensable to prove the main theorem, but enable us

to simplify the construction; see 3.24 below.

Proposition 3.22. Under the same assumption as in 3.15, let J =

(N−1
1 N2)

k(0) (k � 0). Then, we have the following.

(1) KerN2 ⊂ J .

(2) Let A = N1J + N2J . Then, A = N2J . Further, for any a1, a2 ∈
Q2

≥0−{(0, 0)}, the homomorphism HQ/J → HQ/A induced by a1N1+a2N2

is injective.

Proof. We continue to work over Q.

(1) Take an element x1 ∈ KerN2. Since KerN2 ⊂Mw, we have N1(x1) ∈
N1(Mw) ⊂Mw−2 ⊂ N2(Mw). Hence, there is an element x2 ∈Mw such that

N1(x1) = N2(x2). Similarly, N1(x2) ∈ N1(Mw) ⊂ N2(Mw). Hence, there is

an element x3 ∈ Mw such that N1(x2) = N2(x3). Inductively, we can take

a sequence x2, x3, . . . of elements of HQ such that N1(xj) = N2(xj+1) for

any j � 1.

Since HQ is finite dimensional, there is an n � 1 and c1, . . . , cn−1 ∈ Q

such that

xn = c1x1 + · · ·+ cn−1xn−1.

We may assume xn = 0. In fact, for j = 1, 2, . . . , n, let

x′j = xj − cn−1xj−1 − · · · − cn−j+1x1.

In particular, x′1 = x1 and x′n = 0.

Then, since N2(x1) = 0, we have

N2(x
′
j) = N2(xj)− cn−1N2(xj−1)− · · · − cn−j+1N2(x1)

= N1(xj−1)− cn−1N1(xj−2)− · · · − cn−j+2N1(x1)− cn−j+1 · 0
= N1(xj−1 − cn−1xj−2 − · · · − cn−j+2x1)

= N1(x
′
j−1)

for any j = 2, . . . , n. Hence, we can replace xj by x′j , and we may assume

xn = 0.
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Then, N1(xn−1) = N2(xn) = 0, and xn−1 ∈ N−1
1 (0). Similarly,

N1(xn−2) = N2(xn−1) ∈ N2N
−1
1 (0), and xn−2 ∈ N−1

1 N2N
−1
1 (0) =

(N−1
1 N2)

2(0). Inductively, we see x1 ∈ (N−1
1 N2)

n−1(0), which is contained

in J .

(2) First, we prove the equality N1J +N2J = N2J . Since J = N−1
1 N2J ,

we have N1J = N1(N
−1
1 N2J) ⊂ N2J . From this, the equality follows.

We prove that the homomorphism HQ/J → HQ/A induced by a1N1 +

a2N2 is injective. First we assume a2 = 0. Then, (a1N1)
−1(A) = N−1

1 N2J =

J , and the concerned map is injective. Next, the case where (a1, a2) = (0, 1)

is reduced to (1) because N−1
2 A = N−1

2 N2J = J + KerN2 ⊂ J by (1).

To reduce the other case to the case where (a1, a2) = (0, 1), let N ′
2 :=

a1N1 + a2N2. It is enough to show

J = J ′ := (N−1
1 N ′

2)
k(0) (k � 0) , and(3)

A = A′ := N ′
2J

′.(4)

To see (3), we prove

(5)k Jk := (N−1
1 N2)

k(0) = J ′
k := (N−1

1 N ′
2)

k(0)

by induction on k. The case k = 0 is trivial. We assume (5)k. Then,

J ′
k+1 = N−1

1 N ′
2J

′
k = N−1

1 (a1N1 + a2N2)Jk by the definition of N ′
2 and (5)k,

and it is contained in N−1
1 (N1Jk + N2Jk) = Jk + N−1

1 N2Jk = Jk + Jk+1 ⊂
Jk+1 because (Jk)k is increasing. By symmetry, Jk+1 ⊂ J ′

k+1. Hence (5)k+1

follows.

Finally, we prove (4). By (3), A′ = N ′
2J

′ = (a1N1 + a2N2)J , which is

contained in N1J + N2J = A. Thus A′ ⊂ A. By symmetry, A ⊂ A′(=
N1J + N ′

2J). Hence (4) follows, and (2) is proved. �

Together with the results in the previous section, we obtain

Proposition 3.23. Let the notation and the assumption be as in 3.1.

Let L = HZ, H = HQ, and regard N1, N2 as elements of End(H) =

Hom(L,H). Let X be as in 2.1 on which L acts. Let σ, H1, and H1+ε

be also as in 2.1. Let V := KerN1 ∩ ImN1 ∩KerN2. Assume that there is

an h ∈ H such that σ∩H1 is contained in the cone generated by (1, 0, h+V ).
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Then there is a positive ε0 � 1 such that for any positive rational number

ε � ε0, there is a finite subdivision of

σ ∩ (H1 + H1+ε) = σ ∩
((

Q≥0(1, 0) + Q≥0(1− ε, ε)
)
×H

)
such that, for each member τ of this subdivision and for any l ∈ L �

(N−1
1 Mw−2 ∩ Mw), we have either l(τ) ∩ τ = {0} or l(τ) ∩ τ = τ ∩

H1.

Proof. Take a sequence of subspaces J0, J1, . . . , Jn of H as in 3.21.

Apply 2.3 (3) with J = J0. Then we see that there is a positive ε0 � 1 such

that for any positive rational number ε � ε0, there is a finite subdivision Σ

of σ∩ (H1 +H1+ε) such that, for any member τ of Σ and for any l ∈ L�J0,

we have l(τ) ∩ τ = {0}. Fix such an ε.

Next, take an index j with 0 � j � n. Apply 2.8 (2) with J = J j .

Then we see that there is a finite subdivision Σj of σ such that, for any

member τ of Σj and for any l ∈ (J j ∩L) �N−1
2 (N1J

j + V ), we have either

l(τ) ∩ τ = {0} or l(τ) ∩ τ = τ ∩H1.

Considering a common subdivision of Σ and the pullbacks of Σj ’s (0 �
j � n) to H1 +H1+ε, we see that there is a finite subdivision Υ of σ∩ (H1 +

H1+ε) such that for any member τ of Υ and for any l ∈ (L�J0)∪
⋃n

j=0

(
(J j∩

L) � N−1
2 (N1J

j + V )
)
, we have either l(τ) ∩ τ = {0} or l(τ) ∩ τ = τ ∩H1.

By the condition 3.21 (ii), (L� J0)∪
⋃n

j=0

(
(J j ∩L) �N−1

2 (N1J
j + V )

)
contains L � (N−1

1 Mw−2 ∩Mw).

Hence, for any l ∈ L� (N−1
1 Mw−2 ∩Mw), we have either l(τ)∩ τ = {0}

or l(τ) ∩ τ = τ ∩H1. �

Remark 3.24. In this proposition, actually, we can take ε0 = 1 by

3.22.

4. Combinatorial Lemmas

In this section, we add more lemmas to be used to care for the situation

of type (B) (cf. 1.17).

The first is well-known.

Recall that a cone σ is said to be simplicial if it is spanned by dimσ

vectors. A subdivision of a cone or a fan is said to be simplicial if it consists

of simplicial cones.
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Lemma 4.1. Let Σ be a finite fan in a vector space. Then there is a

finite subdivision Σ′ of Σ consisting of simplicial cones such that the set of

1-faces of Σ′ coincides with that of Σ.

For the proof, see, for example, [1].

Lemma 4.2. Let the notation and the assumption be as in 2.5. Assume

the following two conditions.

(1) The image of p : σ → V coincides with the support of Σ.

(2) For any face σ1 of σ and for any element τ of Σ, the intersection

p(σ1) ∩ τ is a face of τ .

Then, Σ coincides with the set of the cones of the form p(σ′), where σ′

is an element of Σ′.

Proof. Let τ ∈ Σ. By the assumption (1), τ = p(p−1(τ)). Since

p−1(τ) is an element of Σ′, we have one inclusion. To see the other inclusion,

let σ′ ∈ Σ′, and it is enough to show that p(σ′) ∈ Σ. By definition of Σ′,
there are a face σ1 of σ and an element τ of Σ such that σ′ = σ1 ∩ p−1(τ).

Then, p(σ′) = p(σ1) ∩ τ . By the assumption (2), the right hand side of the

last equality is a face of τ so that it belongs to Σ. �

The next is a key observation. The proof is also not hard.

Lemma 4.3. Let the situation be as in 2.1. Let M ⊂ H be a subspace

of H.

Then there is a positive ε0 � 1 such that for any positive rational number

ε � ε0, there is a finite subdivision Σ of the cone

σ ∩ (H1 + H1+ε) = σ ∩
((

Q≥0(1, 0) + Q≥0(1− ε, ε)
)
×H

)
satisfying the following two conditions.

(a) Any 1-cone in Σ is contained either in H1 or in H1+ε.

(b) For any element of Σ, its image in Q2
≥0 × (H/M) is simplicial.

Proof. Consider the projection

p : Q2
≥0 ×H → Q2

≥0 × (H/M) =: X.
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The first step of the proof is similar to the proof of 4.3.8 of [13]: For

each face σ1 of σ, subdivide its image p(σ1) in X into finitely many sharp

cones. Let B be the set of all these sharp cones. For each τ ∈ B, take a

finite fan Στ in X such that
⋃

τ ′∈Στ
τ ′ = X and τ ∈ Στ . Consider the set

Σ0 of all cones of the form
⋂

τ∈B σ(τ), where σ(τ) is an element of Στ for

each τ ∈ B. Let Σ′ be the set of the elements of Σ0 which are contained in

some element of B. Then Σ′ is a fan whose support is p(σ). For each face

σ1 of σ, there is a subfan of Σ′ whose support coincides with p(σ1).

This fan Σ′ satisfies the following property.

(1) For any element σ′ ∈ Σ′ and any face σ1 of σ, the intersection

σ′ ∩ p(σ1) is a face of σ′.

In fact, since p(σ1) is the union of some elements σ′
j of Σ′, the cone

σ′ ∩ p(σ1) is the union of faces σ′ ∩ σ′
j of σ′, so σ′ ∩ p(σ1) itself is a face of

σ′.
Note that any subdivision of Σ′ still satisfies (1). This is easily seen from

the fact that for any subcone σ′′ of σ′, the subset σ′′ ∩ p(σ1) of σ′′ is the

intersection of the face σ′ ∩ p(σ1) of σ′ and σ′′.
Note also that for any positive rational number ε � 1, the pullback Σ′

ε

of Σ′ to C :=
(
Q≥0(1, 0) + Q≥0(1 − ε, ε)

)
× (H/M) satisfies a similar con-

dition:

(1)ε For any element σ′ ∈ Σ′
ε and any face σ1 of σ ∩ (H1 + H1+ε), the

intersection σ′ ∩ p(σ1) is a face of σ′.

This is seen as follows. By 2.4, σ1 is the intersection of a face σ2 of σ

and a face c of H1 +H1+ε. We have p−1p(c) = c. On the other hand, by the

definition of Σ′
ε, the cone σ′ is the intersection of an element τ of Σ′ and a

face c′ of C. Then, the concerned set σ′ ∩ p(σ1) coincides with

τ ∩ c′ ∩ p(σ2 ∩ c) =τ ∩ c′ ∩ p(σ2 ∩ p−1(p(c)))

=τ ∩ c′ ∩ p(σ2) ∩ p(c)
=(τ ∩ p(σ2)) ∩ (c′ ∩ p(c)).

Since τ ∩ p(σ2) is a face of τ by (1), and since c′ ∩ p(c) is a face of c′, its

intersection is a face of τ ∩ c′ = σ′.
Since there are only finitely many 1-cones in Σ′, we can take a positive

ε0 � 1 such that for any positive rational number ε � ε0, the pullback Σ′
ε

additionally satisfies the following condition:
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(a)′ Any 1-cone in Σ′
ε is contained either in Q≥0(1, 0) × (H/M) or in

Q≥0(1− ε, ε)× (H/M).

Further, for each ε, by 4.1, there is a finite simplicial subdivision Σ′′
ε of

Σ′
ε which still satisfies (1)ε and (a)′ (with Σ′

ε replaced by Σ′′
ε).

We prove that the pullback Σ of Σ′′
ε to σ ∩ (H1 +H1+ε) satisfies (a) and

(b).

First, by 4.2, (1)ε implies the following (2).

(2) The set of the images in C of all cones of Σ coincides with Σ′′
ε .

Together with (a)′, we get (a).

Second, again by (2), the image in C of each cone in Σ belongs to Σ′′
ε ,

and simplicial. Thus (b) is satisfied, which proves the lemma. �

The next is also for the situation of type (B).

Lemma 4.4. Let H be a finite dimensional vector space. Let V1, V2 be

two subspaces. Let Cj be a polytope in Vj (j = 1, 2). Let σj be the cone in

Q2×H generated by (ej , Cj), where ej is the j-th unit vector (j = 1, 2). Let

σ = σ1 + σ2.

(1) Assume that Vj is generated by the set {c− d | c, d ∈ Cj} as a vector

space (j = 1, 2) and that σ is simplicial. Then, we have V1 ∩ V2 = {0}.
(2) Assume that V1 ∩ V2 = {0}. Let Σj be a finite subdivision of σj for

j = 1, 2. Then,

Σ := {τ1 + τ2 | τ1 ∈ Σ1, τ2 ∈ Σ2}

is a subdivision of σ1 + σ2. All the 1-faces of Σ are contained either in σ1

or in σ2.

Proof. (1) Let v1, . . . , vm and w1, . . . , wn be the vertices of C1 and of

C2 respectively. Then, (1, 0, v1), . . . , (1, 0, vm), (0, 1, w1), . . . , (0, 1, wn) are

vertices of the simplicial cone σ1 + σ2, and hence, are linearly independent.

Let v ∈ V1 ∩ V2. Then, by assumption, v is written as v =
∑m

j=1 cjvj
with cj ∈ Q and

∑m
j=1 cj = 0, and also written as v =

∑n
j=1 djwj with

dj ∈ Q and
∑n

j=1 dj = 0. Hence,

m∑
j=1

cjvj =
n∑

j=1

djwj .
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From this, we have

m∑
j=1

cj(1, 0, vj) =
n∑

j=1

dj(0, 1, wj).

By the linear independency, all cj and dj are zero so that v = 0. Therefore,

V1 ∩ V2 = {0}.
(2) We may assume that V1 + V2 = H. Then, the natural isomorphism

(Q× {0} × V1)× ({0} ×Q× V2)
�→ Q2 ×H; (x1, x2) 
→ x1 + x2

induces an isomorphism from the product cone σ1× σ2 to σ1 + σ2, and Σ is

nothing but the image by this map of the product fan Σ1×Σ2. This proves

the first assertion.

For the second assertion, note that any 1-face of Σ is either a 1-face of

Σ1 or that of Σ2. Hence it is contained in σ1 ∪ σ2, which completes the

proof. �

5. Admissibility

In this section, we return to the mixed situation in Section 1. We gather

in this section a few consequences of admissibility to be used in the proof

of the main results.

Let the situation be as in 1.6. Let σ be an admissible nilpotent cone in

gQ.

Convention. Below, we adopt the following general convention: For

any element N ∈ gQ, we denote its image in g′Q with the prime: N ′.

We identify gQ with g′Q ×H ′
Q as a Q-vector space.

Proposition 5.1. σ ∩ ({0} ×H ′
Q) = {0}.

Proof. Let e be the standard generator 1 of Q ⊂ H ′
Q ⊕Q = HQ of

weight 0. In general, N ∈ gQ is zero if and only if N ′ = 0 and N(e) = 0.

Let N ∈ σ ∩ ({0} ×H ′
Q). Since N ′ is already zero, it is enough to show

that N(e) is zero. By the admissibility (1.4), N(e) ∈M(0)−2 = W−2 = {0}.
(See 3.3 for M(−).) Hence N(e) = 0 and N = 0. �
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Proposition 5.2. Let N ′ be an element of σ′. Let H ′
1 be the fiber of

the projection gQ → g′Q over N ′, which we identify with H ′
Q via N ↔ N(e)

(e as in the proof of 5.1). Let τ be the polytope σ ∩H ′
1. Then, we have the

following.

(1) For N1, N2 ∈ τ , the difference of N1 and N2 regarded as an element

of H ′
Q belongs to KerN ′.

(2) τ is contained in ImN ′.

Proof. (1) Let N1, N2 ∈ τ . Since N1N2 = N2N1, we have

N ′(N2(e)) = N ′(N1(e)).

Hence N2(e)−N1(e) ∈ KerN ′.
(2) Let N ∈ τ . Take an element e + h (h ∈ H ′

Q) of M(N,W )0. By the

admissibility (1.4), N(e) + N(h) ∈ M(N,W )−2 ∩W−1 = (W (N ′)[1])−1 ⊂
ImN ′. Hence, N(e) ∈ ImN ′ and τ ⊂ ImN ′. �

In the rest of this section, we assume that dimσ′ = 2. Fix a set of

generators N ′
1, N

′
2 of σ′. Let H ′

(1,0) be the fiber of the projection gQ → g′Q
over N ′

1, which we identify with H ′
Q via N ↔ N(e). Let τ be the polytope

σ ∩H ′
(1,0).

Proposition 5.3. Assume that σ is not contained in τ . Then, the

subset S = {t1− t2 | t1, t2 ∈ τ} of H ′
Q is contained in V := KerN ′

1∩ ImN ′
1∩

KerN ′
2.

Proof. First, by 5.2 (1), we have S ⊂ KerN ′
1.

Similarly, by 5.2 (2), we have τ ⊂ ImN ′
1. Hence, S ⊂ ImN ′

1.

Let N1, L1 ∈ τ . Recall that e is the standard generator 1 of Q of weight

0. We show L1(e)−N1(e) ∈ KerN ′
2, which completes the proof. Since σ is

not contained in τ , there is an N whose image in σ′ is of the form aN ′
1 +bN ′

2

with b �= 0. Since NL1 = L1N , we have N(L1(e)) = L1(N(e)), and

(aN ′
1 + bN ′

2)(L1(e)) = N ′
1(N(e)).

Similarly, since NN1 = N1N , we have

(aN ′
1 + bN ′

2)(N1(e)) = N ′
1(N(e)).



652 Chikara Nakayama

Hence, (aN ′
1 + bN ′

2)(L1(e)) = (aN ′
1 + bN ′

2)(N1(e)), which implies

L1(e)−N1(e) ∈ Ker (aN ′
1 + bN ′

2).

Since we already know that L1(e) − N1(e) ∈ KerN ′
1, we deduce L1(e) −

N1(e) ∈ KerN ′
2. Thus, we proved S ⊂ KerN ′

2. �

6. Proofs of Main Results

Here we prove 1.8 and 1.14.

6.1. Let Γu be the kernel of the natural projection Γ → Γ′. Then Γu

is naturally isomorphic to the additive group H ′
Z, via the correspondence

γ ↔ γ(e). Here e is the standard generator 1 ∈ Z ⊂ H ′
Z ⊕ Z = HZ. We

identify Γu and H ′
Z via this isomorphism. The group Γ is isomorphic to a

semi-direct product of Γu and Γ′.

We begin the proof of 1.8.

6.2. First we claim that, in the statement of 1.8, we can replace “Γ”

with “Γu”.

We prove this claim till the end of this paragraph 6.2. We may assume

dimσ′ = 1. Let N ′ be the generator of the monoid {N ′′ ∈ σ′ | exp(N ′′) ∈
Γ′}, which is isomorphic to N. Fix a point N of σ whose image in g′Q is N ′

and let h := N(e).

Since N ′ is nilpotent, there is an integer M > 0 such that all the elements

h, N
′h
2 , N

′2h
6 , . . . , N

′k−1h
k! , . . . belong to the lattice 1

MH ′
Z.

Thus, we have

(∗) N ′k−1h
k! ∈ 1

MH ′
Z for any k � 1.

If we replace the lattice H ′
Z with 1

MH ′
Z, the groups Γ and Γu become

larger. We may assume that the (larger) Γu-version of 1.8 for 1
MH ′

Z holds.

Hence, it is enough to show that the action on σ of any element of the

original Γ coincides with that of some element of the larger Γu because a

subset of a fan is a fan if it is closed under the operation of taking a face.

Because the original Γ is a semi-direct product of Γu and Γ′, it is enough

to prove that the action on σ of any element of the original Γ′ coincides with

that of some element of the larger Γu.
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We identify the fiber of σ ↪→ gQ → g′Q over N ′ with a subset of H ′
Q via

N ↔ N(e). Then the action of any element exp(nN ′) (n ∈ Z) of Γ′ is

h+x 
→ enN
′
(h+x) = h+x+(enN

′−1)(h) = h+x+N ′
(∑

k� 1
nk N

′k−1h
k!

)
,

where h + x (x ∈ H ′
Q) is any element of the concerned fiber. Here we use

the fact that N ′(x) = 0, which is by 5.2 (1).

Since
∑

k� 1 n
k N ′k−1h

k! is in 1
MH ′

Z by (∗), this action is certainly realized

by that of the corresponding element of the larger Γu, which completes the

proof of our claim.

Remark 6.3. Here we explain another proof of the claim in 6.2. (This

may be simpler, but we prefer the above because it is easier to be general-

ized.) We use the above notation. Instead of 5.2 (1), we use 5.2 (2). By 5.2

(2), there is an h′ ∈ H ′
Q such that h = N ′h′. Take an integer M > 0 such

that h′ ∈ 1
MH ′

Z. Let γ be the element of the larger Γu corresponding to h′.
Then, replacing σ by γ−1σ, we may assume that h′ = h = 0. In this case,

the action of Γ′ is trivial, and our claim follows.

6.4. Now 1.8 is direct from 2.7. In fact, we take H ′
Q as H there,

Γu
∼= H ′

Z as L, and σ as τ . By 5.1, we have σ ∩ ({0} ×H ′
Q) = {0}. Hence

we can apply 2.7, and we may assume that for any element γ ∈ Γu, either

γ(σ) ∩ σ = {0} or the action of γ on σ is trivial. Then, all the translations

by Γu of all the faces of σ form a fan.

6.5. We prove the main theorem 1.14 in some steps till the end of this

section.

Similarly to the case of 1-dimension in 6.2, we first claim that, in the

statement of 1.14, we can replace “Γ” with “Γu”.

We prove this claim till the end of this paragraph 6.5. Let N ′
1, . . . , N

′
m

be a set of generators of the fs monoid {N ′′ ∈ σ′ | exp(N ′′) ∈ Γ′}. For each

j with 1 � j � m, take a point Nj of σ whose image in g′Q is N ′
j . Let

hj := Nj(e).

Since N ′
j is nilpotent, the set

S :=

{
N ′

j1
···N ′

jk−1
(hjk

)

k!

∣∣∣∣ k � 1, 1 � j1, . . . , jk � m

}



654 Chikara Nakayama

is finite, and there is an integer M > 0 such that the lattice 1
MH ′

Z contains

this finite set.

Thus, we have

(∗) S ⊂ 1
MH ′

Z.

Similarly to 6.2, it is enough to show that the action on σ of any element

of Γ′ coincides with that of some element of the larger Γu because a subset

of a weak fan is a weak fan if it is closed under the operation of taking a

face.

We see that, for any element N of σ, there are non-negative rational

numbers aj (1 � j � m) and x ∈
⋂

Ker (N ′
j) ⊂ H ′

Q such that N ′ =
∑

ajN
′
j

(cf. the Convention in §5) and that N(e) =
∑

ajhj + x. In fact, N ′ is

written as
∑

ajN
′
j . Consider the element

∑
ajNj . This is in σ. Hence, by

5.3, x := N(e)− (
∑

ajNj)(e) = N(e)−
∑

ajhj is annihilated by N ′
k for any

k.

Then the action of any element exp(L′) (L′ =
∑

mlN
′
l ,ml ∈ Z) of Γ′ on

the H ′
Q-component of N is described as

∑
ajhj + x 
→

∑
ajhj + x + (eL

′ − 1)(
∑

ajhj)

=
∑

ajhj + x +
∑

k� 1
L′k−1

k! L′(
∑

ajhj).

But, we have

L′(
∑

j ajhj) = (
∑

lmlN
′
l )(

∑
j ajhj)

=
∑

j,l ajml(N
′
l (hj))

=
∑

j,l ajml(N
′
j(hl)) (by NlNj = NjNl)

= (
∑

j ajN
′
j)(

∑
lmlhl).

Hence the action is∑
ajhj + x 
→

∑
ajhj + x + (

∑
j ajN

′
j)
(∑

k� 1
L′k−1

k! (
∑

lmlhl)
)
.

Since
∑

k� 1
L′k−1

k! (
∑

lmlhl) is in 1
MH ′

Z by (∗), this action is certainly

realized by that of the corresponding element of the larger Γu, which com-

pletes the proof of our claim.

6.6. In the rest, we prove the Γu-version of 1.14. To prove it, we can

replace σ by each member of a finite subdivision of σ and replace σ′ by
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the image of the member. Further, if the image of the member in g′Q is

of one dimension, such a member can be treated by 1.8. Hence, in the

replacement, it is enough to consider only the member whose image in g′Q
is 2-dimensional.

Take a set of generators N ′
1, N

′
2 of σ′. In the following, let H ′

Z act on gQ

via the isomorphism H ′
Z
∼= Γu in 6.1. Let Hj (j = 1, 2) be the pullback of

the cone generated by N ′
j in g′Q by the projection gQ → g′Q.

First we use 3.23, and prove that we may assume

(1) For any l ∈ H ′
Z � (N ′

1
−1M−3 ∩M−1), we have l(σ) ∩ σ ⊂ H1.

We let w = −1, and take H ′ as H in 3.23. Let V = KerN ′
1 ∩ ImN ′

1 ∩
KerN ′

2. By 5.3, there is an h ∈ H ′
Q such that σ ∩ H1 is contained in the

cone generated by (1, 0, h+V ). Hence, we can apply 3.23 and, if we replace

N ′
2 by (1− ε)N ′

1 + εN ′
2 for a sufficiently small ε > 0, we may assume (1).

In general, we can work by a compactness argument as follows. For

each rational number a with 0 � a < 1, take (1 − a)N ′
1 + aN ′

2 as N1 in

3.23 and 1−a
2 N ′

1 + 1+a
2 N ′

2 as N2 in 3.23. (Note that then the condition

W (N1 +N2) = W (N2) in 3.1 is satisfied.) Then we can apply 3.23 in virtue

of 5.3. Apply 3.23, and let ba = (1 − ε0)a + ε0
1+a
2 , where ε0 is what the

proposition gives. Let b1 = 1.

Similarly, for each rational number a with 0 < a � 1, take (1−a)N ′
1+aN ′

2

as N1 there and (1− a
2 )N ′

1 + a
2N

′
2 as N2 there. Apply 5.3 and 3.23, and let

ca = (1− ε0)a + ε0
a
2 . Let c0 = 0.

Consider the set of the intervals Ia := [ca, ba] (a ∈ [0, 1]).

We prove that there is a sequence

e0 = d0 = 0 < e1 < d1 < e2 < · · · < ek < dk = ek+1 = 1

such that for each j = 0, 1, . . . , k, the interval [ej , ej+1] is contained in Idj .

Consider the set S of all sequences e0 = d0 = 0 < e1 < d1 < e2 < · · · <
ek−1 < dk−1 < ek with various k such that for each j = 0, 1, . . . , k − 1, the

interval [ej , ej+1] is contained in Idj . Let e be the supremum of such ek.

Then, since ce < e, there is a sequence e0 = d0 = 0 < e1 < d1 < e2 <

· · · < ek−1 < dk−1 < ek belonging to S with ce < ek. By replacing ek by

max {ce, (dk−1 + ek)/2} and by defining dk = e and ek+1 = be, we obtain

another sequence in S whose largest member ek+1 is strictly larger than e

(a contradiction) unless e = 1. Thus we see e = 1 and dk = ek+1 = 1.
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Subdivide σ′ into the 2k cones with their faces spanned by two elements

(1−dj)N ′
1+djN

′
2 and (1−el)N ′

1+elN
′
2 with l = j or l = j+1. Subdivide σ by

their pullbacks, and replace σ with each pullback and further replace it with

each member of the subdivision which 3.23 gives. Then, by construction,

we see that the condition (1) is satisfied. (We take (1 − dj)N
′
1 + djN

′
2 as

new N ′
1 and (1− el)N

′
1 + elN

′
2 as new N ′

2.)

Note that this property (1) is preserved by further subdivision and by

the replacement of N ′
2.

6.7. Let Cj (j = 1, 2) be the inverse image of N ′
j by σ ↪→ gQ → g′Q,

which we regard as a subset in H ′
Q. Let Vj be the subspace generated by

the set {c− d | c, d ∈ Cj}.
Next we enhance the argument in 6.6 and show that we may assume

further that the following two conditions:

(2) σ is generated by (σ ∩H1) ∪ (σ ∩H2), and

(3) (V1 + M−3) ∩ (V2 + M−3) = M−3.

To see it, by the compactness argument in 6.6, we can work around N ′
1,

that is, it suffices to show that after replacing N ′
2 by (1−ε)N ′

1 +εN ′
2 for any

sufficiently small ε ∈ Q>0, and after subdividing σ, (2) and (3) are satisfied.

We use 4.3. By this lemma with M = M−3, we may assume the above

(2) and the following (∗).
(∗) The image σ of σ in σ′ × (H ′

Q/M−3) is simplicial.

By 4.4 (1), (∗) implies that the intersection of the images of V1 and V2

in H ′
Q/M−3 is {0}, and hence, we get the above (3).

Note that the property (3) is preserved by further subdivision. Hereafter

we always assume (3). (We will not replace N ′
2 any more.)

6.8. Hereafter we always assume 6.6 (1) and 6.7 (3).

Next, by 4.1, without loss of (2) in 6.7, we may assume that σ is simpli-

cial.

Then, by 4.4 (1), the intersection of V1 and V2 is {0}. Hence, by 4.4 (2),

a pair of finite subdivisions of σ ∩H1 and of σ ∩H2 induce a subdivision of

σ.

Apply 2.7 by taking H = H ′
Q, L = H ′

Z, N1 = N ′
1, and τ = σ ∩ H1.

Then, it gives a subdivision of σ ∩H1.
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Apply 2.7 by taking H = H ′
Q, L = H ′

Z, N1 = N ′
2, and τ = σ ∩ H2.

Then, it gives a subdivision of σ ∩H2.

By 4.4 (2), these two subdivisions induce a subdivision of σ, and, after

replacing σ with each member of this subdivision, we may assume further

the following two conditions.

(4) In the case l ∈ H ′
Z � N ′

1
−1(0) we have l(σ ∩H1) ∩ (σ ∩H1) = {0},

and in the case l ∈ H ′
Z ∩N ′

1
−1(0) the action of l is trivial on σ ∩H1, and

(5) In the case l ∈ H ′
Z � N ′

2
−1(0) we have l(σ ∩H2) ∩ (σ ∩H2) = {0},

and in the case l ∈ H ′
Z ∩N ′

2
−1(0) the action of l is trivial on σ ∩H2.

In this process, (2) in 6.7 is still preserved by the last statement of 4.4

(2).

6.9. Thus, we may assume (1)–(5) in 6.6–6.8. Under these assump-

tions, we prove the following (6), which completes the proof of the main

theorem.

(6) Let l ∈ H ′
Z. Let σ1 and σ2 be faces of σ. Assume that l(σ1) and σ2

have a common interior point x and that there is an F ∈ Ď such that both

(l(σ1), F ) and (σ2, F ) generate nilpotent orbits. Then, l(σ1) = σ2.

First assume that l �∈ N ′
1
−1(M−3)∩M−1. Then, by (1) in 6.6, l(σ)∩σ =

l(σ∩H1)∩ (σ∩H1). By (4) in 6.8, this cone coincides with {0} if N ′
1(l) �= 0,

and coincides with σ ∩ H1 if N ′
1(l) = 0. In both cases, this is a common

face of l(σ) and of σ. Hence, l(σ1)∩ σ2 is a common face of l(σ1) and of σ2.

Since l(σ1) and σ2 have a common interior point, l(σ1) = l(σ1) ∩ σ2 = σ2.

Thus we may and will assume l ∈ N ′
1
−1(M−3) ∩M−1 in the following.

For j = 1, 2, let

τj := σj ∩H1 and υj := σj ∩H2.

Then, by (2) in 6.7,

σj = τj + υj .

Further, there are interior points tj of τj and uj of υj such that

x = l(t1 + u1) = t2 + u2.

Since l(t1 + u1) = t1 + u1 + aN ′
1(l) + bN ′

2(l), where aN ′
1 and bN ′

2 are the

images of t1 and u1 in g′Q respectively, we have

t1 − t2 + aN ′
1(l) = u2 − u1 − bN ′

2(l).



658 Chikara Nakayama

Since N ′
1(l) ∈M−3, the left hand side belongs to V1 +M−3. Similarly, since

N ′
2(l) ∈ N ′

2M−1 = M−3, the right hand side belongs to V2+M−3. Hence, (3)

in 6.7 implies that both sides are in M−3. On the other hand, by Griffiths

transversality, both sides are in F−1∩F−1
. In fact, take e+h ∈ F 0 (h ∈ H ′

C).

Since (l(σ1), F ) generates a nilpotent orbit, we have l(t1) + N ′
1(h) ∈ F−1.

Similarly, since (σ2, F ) generates a nilpotent orbit, we have t2 + N ′
1(h) ∈

F−1. Hence, l(t1) − t2 ∈ F−1. Since this element is real, it is also in F
−1

.

This element is the left hand side of the above equality.

Since F−1∩F−1∩M−3 = {0}, both sides are zero. Here we use the fact

that (M,F ) is a mixed Hodge structure.

Now we have the equality

t1 + aN ′
1(l) = t2.

The left hand side of this belongs to l(σ ∩ H1) and the right hand side

belongs to σ ∩ H1. Hence, the condition (4) in 6.8 implies that, if N ′
1(l)

is not zero, then both sides of this equality are zero. Then, t1 is also zero

by 5.1. Since t1 is an interior point of τ1, the cone τ1 is {0} on which l

acts trivially. On the other hand, if N ′
1(l) is zero, then l trivially acts on τ1

again. Thus, in any case, l acts on τ1 trivially. Similarly, the equality

u1 + bN ′
2(l) = u2

and the condition (5) in 6.8 imply that l acts on υ1 trivially. Hence, l

acts on σ1 = τ1 + υ1 trivially, and l(σ1) = σ1. Since l(σ1) = σ1 and σ2

are faces of σ, and since they have a common interior point, they coincide:

l(σ1) = σ1 = σ2, which completes the proof of (6) and hence the proof of

1.14, that is, that all the translations of σ with their faces form a weak

fan. �
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