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The Permanence of R-boundedness and

Property(α) Under Interpolation and

Applications to Parabolic Systems

By Mario Kaip and Jürgen Saal

Abstract. This note consists of two parts. In the first part we
consider the behavior of R-boundedness, R-sectoriality, and prop-
erty(α) under the interpolation of Banach spaces. In a general setting
we prove that for interpolation functors of type h the R-boundedness,
the R-sectoriality, and the property(α) preserve under interpolation.
In particular, this is true for the standard real and complex interpo-
lation methods. (Partly, these results were indicated in [12], however,
with just a very brief outline of their proofs.) The second part rep-
resents an application of the first part. We prove R-sectoriality, or
equivalently, maximal Lp-regularity for a general class of parabolic
systems on interpolation spaces including scales of Besov- and Bessel-
potential spaces over R

n.

1. Introduction

The concept of R-bounded operator families nowadays plays an impor-

tant role in the treatment of linear and nonlinear problems. By the cele-

brated result of L. Weis [21], it is known that R-boundedness of the resol-

vent family λ(λ+A)−1 for λ in a complex sector with opening angle greater

that π/2 implies maximal regularity for a linear operator A. The maximal

regularity, in turn, is fundamental in the treatment of linear and nonlinear

PDEs for various reasons: the construction of local-in-time strong solutions,

of global weak solutions, of real analytic solutions, uniqueness proofs, and

so on.

Also, in combination with a holomorphic functional calculus, a so-called

H∞-calculus, the concept of R-boundedness turned out to be very valu-

able. It allows for the introduction of a joint H∞-calculus of two closed

2010 Mathematics Subject Classification. Primary 46B70, 47F05; Secondary 35K41,
35K46.

Key words: Interpolation, R-boundedness, maximal regularity, parabolic systems.

359



360 Mario Kaip and Jürgen Saal

linear operators A,B, cf. [14]. In particular, it gives an answer to the ques-

tion under what circumstances f(A,B) gives rise to a bounded operator for

bounded real analytic functions f(λ, z). In the simplest case we might have

f(λ, z) = (λ+ z)−1, A = d/dt, and B = −∆, for instance. The full strength

of such a joint H∞-calculus reveals in the treatment of free boundary value

problems, see e.g. [7], [17]. This type problems often can be reduced to the

boundary, on which, however, one is faced to a mixed order system. The

associated matrix symbols (Lopatinskii matrix) not seldom have a compli-

cated structure, but still are real analytic functions and therefore fit into

the framework of the joint H∞-calculus developed in [14] or [11].

In this context also a geometric property of a Banach space (besides

the property ’of class HT ’) comes into play: the so-called ’property(α)’.

In many situations it represents the crucial ingredient for the step from

uniform boundedness to R-boundedness. For instance, if property(α) for a

Banach space X is assumed, the standard multiplier results, if applicable,

yield R-boundedness of an operator family (Mλ)λ in a parameter λ, instead

of uniform boundedness only. ForMλ = λ(λ+A)−1 this leads directly to the

R-sectoriality of A or, equivalently, to the maximal Lp-regularity. We refer

to [15, Theorem 5.2 b)] for a multiplier result of this type. If an operator

has a bounded H∞-calculus on X, it automatically admits the stronger

property of an R-bounded H∞-calculus, provided X has property(α). This

is another significant consequence of property(α). This fact particularly

matters for the initialization and the application of a joint H∞-calculus, cf.

[14].

For all these reasons, it is important to know about the behavior of the

notions of R-boundedness and property(α) with respect to other functional

analytic operations, such as the interpolation of Banach spaces, for instance.

In the first part of this paper we clarify this behavior. In fact, we will

show that both properties preserve under interpolation. These results are

indicated in [12]. However, their proofs are just outlined and for readers

not so experienced in this topic it might be hard to follow the very brief

argumentation given in [12]. It also seems that a rigorous proof so far is not

contained anywhere else in the available literature, although the results are

not seldom used in other works. With the aim to apply them in order to

prove R-sectoriality for a class of parameter-elliptic systems on Besov and

Bessel-potential spaces, here we give a rigorous proof of the results on the
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interpolation of R-boundedness and property(α) indicated in [12]. Indeed,

we prove the preservation of these two properties in a very general setting

for exact interpolation functors of type θ. This covers the cases of real and

complex interpolation and also generalizes the results indicated in [12].

The proof of the permanence results under discussion is based on the

characterization of R-boundedness in terms of boundedness in Rademacher

spaces. The Rademacher spaces are complementary in Lp([0, 1], X) if X is

K-convex. By these facts the interpolation of R-boundedness is reduced to

the interpolation of X-valued Lp-spaces and to general facts concerning the

interpolation of complementary subspaces. The preservation of property(α)

under interpolation then can be reduced to the obtained results on the

interpolation of R-boundedness. Indeed, property(α) can be regarded as a

special form of R-boundedness on Rademacher spaces. Therefore the results

on R-boundedness apply.

This is also the reason, why we give the proof of the preservation of

property(α) under interpolation here, although this result is not directly

applied in this note. In a forthcoming work it will be applied in order to

prove an R-bounded H∞-calculus for a certain class of elliptic operators on

scales of Besov and Bessel-potential spaces.

In the second part of this note we will apply the results obtained in the

first part in order to prove R-sectoriality for a class of parameter-elliptic

systems realized on interpolation spaces. For classical works on parameter-

elliptic systems we refer to [2] and [19]. Particularly, we will apply the

obtained permanence results to real and complex interpolation functors.

This yields the R-sectoriality on scales of Besov and Bessel-potential spaces.

For this purpose, we first establish the corresponding result for the model

problem (i.e., constant coefficients) in Sobolev spaces W k,p(Rn,Cn) (see

Proposition 5.12). This will be based on a multiplier theorem. Employing a

localization procedure and perturbation arguments, the result generalizes to

a class of variable coefficients (see Theorem 5.28). This result can be found

in [15] for the special case k = 0. Interpolation and the outcome of the first

part of this note then imply the R-sectoriality on scales of interpolation

spaces (see Theorem 5.29).

We remark that the results in the second part seem to be available also

by combining deep results from known literature. For instance, employing

results on R-sectoriality on Lp for higher order operators with top order
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coefficients in BUC achieved in [6] and classical results on elliptic regularity,

via interpolation one might be able to derive R-sectoriality of elliptic higher

order operators in W k,p without localizing. Moreover, classical results of [5]

or results obtained in [11] show that a sectorial operator always admits

maximal regularity or a bounded H∞-calculus in real interpolation spaces

(however, at first with no explicit information on its domain). Since we want

to keep our approach as selfcontained as possible, however, we give a direct

and elementary proof of R-sectoriality for a class of parabolic problems,

which even works for general Lp-compatible interpolation scales.

The paper is organized as follows. The first part includes Section 2

to 4. In Section 2 we clarify the notation. Section 3 includes the in-

troduction of R-bounded families, the characterization via Rademacher

spaces, and the result on the permanence of R-boundedness under inter-

polation (Theorem 3.19). The introduction, the characterization in terms

of R-boundedness, and the corresponding results on the interpolation of

property(α) are the content of Section 4. In the second part, i.e. in Sec-

tion 5, we prove the mentioned R-sectoriality for a class of parameter-elliptic

systems realized on scales of interpolation spaces. The main results here are

Theorem 5.29 and Corollary 5.31.

2. Notation

Definition 2.1. In the sequel we use the following notation:

• The set {X0, X1} is said to be an interpolation couple, if X0 and

X1 are Banach spaces, which are embedded in a Hausdorff topolog-

ical vector space X . On X0 + X1 we define the norm ‖x‖X0+X1 :=

infxk∈Xk:x0+x1=x(‖x0‖X0 + ‖x1‖X1) for x ∈ X0 +X1.

• Let {X0, X1}, {Y0, Y1} be interpolation couples, then we define

L({X0, X1},{Y0, Y1}) := {T : X0 +X1 → Y0 + Y1|
T linear and T|Xk

∈ L(Xk, Yk), k = 0, 1}

and L({X0, X1}) := L({X0, X1}, {X0, X1}).

• For normed spaces X and Y we denote the existence of an injective

continuous linear mapping from Y to X by Y ↪→ X. By L(Y,X) we

denote the space of all linear and bounded operators from Y into X.
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• By Y ↪→d X we denote the existence of an injective continuous linear

mapping from Y to X with dense image in X.

• Let X and Y be normed spaces. The equality X = Y is used with

the meaning that there exists an isomorphism between X and Y . In

particular we have equivalence of the norms in this case.

• By virtue of the appearance of various spaces we often want to make

clear in which space an integral or a series converges. Hence we write

“
∫
. . . dx[X]” and “[X]

∑
. . . ” to indicate the convergence in X.

For the definition of an interpolation functor F we follow [20, 1.2.2].

Particularly we make use of interpolation functors of type h, which means

that we have an estimate as

‖T|F({X0,X1})‖L(F({X0,X1}),F({Y0,Y1}))

≤ Ch · h(‖T|X0
‖L(X0,Y0), ‖T|X1

‖L(X1,Y1))

with a constant Ch > 0. An interpolation functor is called exact of type

θ, if it is of type h(t0, t1) := t1−θ0 tθ1 with Ch = 1. Important examples of

exact interpolation functors of type θ are given by the real and complex

interpolation methods, which are defined as in [1, 7.9/7.51]. The proof of

the exactness for these two methods can be found e.g. in [20, 1.3.3 (a)/1.9.3

(a)]. As usually, we denote the real interpolation space by (X0, X1)θ,p and

the complex interpolation space by [X0, X1]θ. We want to mention that in

this note we only use the K-method for real interpolation.

Let (Ω,�, µ) be a measure space with a σ-finite measure µ on �. For a

Banach spaceX we denote the Banach space valued Lp-space Lp(Ω,�, µ,X)

by Lp(X). For a domain Ω ⊂ R
n we denote the Sobolev space of order m ∈

N0 by Wm,p(Ω, X) or Wm,p(X). Here and in the following we always con-

sider the case p ∈ (1,∞) except in Section 3.1. An interpolation functor F is

called Lp-compatible, if we have F({Lp(X0), L
p(X1)}) = Lp(F({X0, X1}))

for all interpolation couples {X0, X1}. In [20] it is proved that real and com-

plex interpolation methods are Lp-compatible interpolation functors such

that

C(1)
p ‖ · ‖(Lp(X0),Lp(X1))θ,p ≤ ‖ · ‖Lp((X0,X1)θ,p)
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≤ C(2)
p ‖ · ‖(Lp(X0),Lp(X1))θ,p ,(1)

‖ · ‖[Lp(X0),Lp(X1)]θ = ‖ · ‖Lp([X0,X1]θ)

where the constants C
(1)
p > 0 and C

(2)
p > 0 are independent of the spaces

X0 and X1.

To avoid confusion with different definitions of the resolvent set, we

give it here. Under the resolvent set ρ(A) of a linear and densely defined

operator A : D(A) ⊂ X → X we understand the set of all λ ∈ C such that

(λ−A) : D(A) → X is bijective and (λ−A)−1 ∈ L(X).

3. R-boundedness and Rademacher Spaces

3.1. Basic properties and definitions

The following definitions and basic consequences can be found in detail

in [15, Section 2] or [9, Section 11].

Definition 3.1. Let X,Y be Banach spaces, T ⊂ L(X,Y ), and p ∈
[1,∞). Then T is said to be R-bounded, if there exists a constant C > 0

such that for all m ∈ N, (Tk)k=1,... ,m ⊂ T , and all (xk)k=1,... ,m ⊂ X we have∥∥∥∥∥
m∑
k=1

rkTkxk

∥∥∥∥∥
Lp([0,1],Y )

≤ C
∥∥∥∥∥

m∑
k=1

rkxk

∥∥∥∥∥
Lp([0,1],X)

.(2)

Then Rp(T ) := min{C > 0 : (2) is satisfied } is called R-bound of T . For

k ∈ N the functions rk : [0, 1] → {−1, 1}, t �→ sign(sin(2kπt)) are called

Rademacher functions.

Next we introduce the Rademacher spaces. With their help the intricate

definition of R-boundedness can be characterized in a convenient way.

Definition 3.2. For a Banach space X, p ∈ [1,∞), and m ∈ N the

spaces

Radp(X) :=

{
(xk)k∈N ⊂ X :

∞∑
k=1

rkxk convergent in Lp([0, 1], X)

}
Radmp (X) := {(xk)k=1,... ,m ⊂ X},
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equipped with the norms

‖(xk)k‖Radp(X) := ‖
∞∑
k=1

rkxk‖Lp([0,1],X),

‖(xk)k=1,... ,m‖Radm
p (X) := ‖

m∑
k=1

rkxk‖Lp([0,1],X)

respectively, are called Rademacher spaces.

Remark 3.3.

(i) The spaces Radp(X) and Radmp (X) are Banach spaces and⋃∞
m=1 Radmp (X) is dense in Radp(X).

(ii) Let X be a Banach space, p ∈ [1,∞), and m ∈ N. Then we have the

following norm preserving embeddings

Radp(X) ↪→ Lp([0, 1], X), (xk)k �→
∑∞

k=1 rkxk,

Radmp (X) ↪→ Lp([0, 1], X), (xk)k=1,... ,m �→
∑m

k=1 rkxk.

Theorem 3.4. Let X be a Banach space and p ∈ [1,∞). Then there

exists a constant C
(K)
p > 0, such that for all (xk)k∈N ⊂ X we have

1

C
(K)
p

∥∥∥∥∥
∞∑
k=1

rkxk

∥∥∥∥∥
L1([0,1],X)

≤
∥∥∥∥∥

∞∑
k=1

rkxk

∥∥∥∥∥
Lp([0,1],X)

≤ C(K)
p

∥∥∥∥∥
∞∑
k=1

rkxk

∥∥∥∥∥
L1([0,1],X)

.

Theorem 3.5. Let X be a Banach space and p ∈ [1,∞). Then we

have ∥∥∥∥∥∥
n∑

j=1

rjajxj

∥∥∥∥∥∥
Lp([0,1],X)

≤ 2

∥∥∥∥∥∥
n∑

j=1

rjbjxj

∥∥∥∥∥∥
Lp([0,1],X)

for all n ∈ N, all (aj)j=1,... ,n, (bj)j=1,... ,n ⊂ C with |aj | ≤ |bj |, and all

(xj)j=1,... ,n ⊂ X.

Remark 3.6. The proof of the following results can be found in [6].
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(i) If T ⊂ L(X,Y ) is R-bounded for one p ∈ [1,∞), then we have an

estimate as (2) for all p ∈ [1,∞). The R-bounds can be estimated as

[C
(K)
p ]−2R1(T ) ≤ Rp(T ) ≤ [C

(K)
p ]2R1(T ).

(ii) If T ,S ⊂ L(X,Y ) are R-bounded, then T +S := {T +S : T ∈ T , S ∈
S} is also R-bounded with Rp(T + S) ≤ Rp(R) + Rp(S).

(iii) For two given R-bounded families T1 ⊂ L(Z, Y ) and T2 ⊂ L(X,Z) we

obtain the R-boundedness of T1T2 := {T1T2 : Tk ∈ Tk, k = 1, 2} ⊂
L(X,Y ) with Rp(T1T2) ≤ Rp(T1) · Rp(T2).

(iv) If T ⊂ L(X,Y ) is R-bounded, then T is also uniformly bounded. The

converse, in general, is only true if X and Y are both Hilbert spaces.

Remark 3.7. For a given C > 0 we have the equivalence of the fol-

lowing three statements:

(i) For all m ∈ N and (Tk)k=1,... ,m ⊂ T we have that

‖Tm‖L(Radm
p (X),Radm

p (Y )) ≤ C,

where Tm is defined by

Tm : Radmp (X) → Radmp (Y ),

m∑
k=1

rkxk �→
m∑
k=1

rkTkxk.

(ii) For all (Tk)k∈N ⊂ T the operator

T : Radp(X) −→ Radp(Y ),
∞∑
k=1

rkxk �→
∞∑
k=1

rkTkxk

is well-defined and ‖T‖L(Radp(X),Radp(Y )) ≤ C.

(iii) T ⊂ L(X,Y ) is R-bounded with Rp(T ) ≤ C.

Proof. This is obtained as an easy consequence of Remark 3.3. �

Thanks to Remark 3.7 the behavior of R-boundedness under interpola-

tion is completely reduced to the investigation of the interpolation of the
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Rademacher spaces. Having this in mind, we next analyze the correspond-

ing properties of these spaces. To this end, the existence of projections onto

Radmp (X) and Radp(X) will turn out to be helpful. For the space Radmp (X)

we easily obtain the following result:

Theorem 3.8. Let X be a Banach space. Then the operator

RX
m : Lp([0, 1], X) −→ Lp([0, 1], X), f �→

m∑
k=1

rk

∫ 1

0
rk(u)f(u)du

is continuous and even a projection onto Radmp (X).

The existence of a projection onto Radp(X) is a more involved issue.

The study of this problem requires some knowledge on the geometry of

Banach spaces.

Definition 3.9. A Banach space X is called K-convex if

RX : Lp([0, 1], X) → Lp([0, 1], X), f �→
∞∑
k=1

rk

(∫ 1

0
rk(u)f(u)du

)

defines a bounded operator. In this case the operator RX is a projection

onto Radp(X).

Remark 3.10.

(i) One can show that K-convexity is equivalent to ’B-convexity’ and

’non-trivial type’, see for example in [9].

(ii) It can be shown directly that K-convexity preserves under interpola-

tion by Lp-compatible interpolation functors. See for example in [13,

Proposition 5.1] for the real and complex interpolation.

(iii) Under use of Fubini’s Theorem it is easy to show that Lp(Ω, X) is

K-convex if X is K-convex. In particular this yields the K-convexity

of Radp(X) and Radmp (X) since they are closed subspaces of

Lp([0, 1], X).
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Another important property of a Banach space X is the continuity of

the Hilbert transform H = �−1[iξ/|ξ|]� on Lp(R, X). If this is satisfied,

X is said to be of class HT (or equivalently UMD), cf. [3, Theorem 4.4.1].

Here we just cite the following result which is obtained as a corollary of [18,

Remark 3.1.] and [9, Section 13].

Theorem 3.11. Let X be a Banach space of class HT . Then X is

K-convex.

3.2. Interpolation of Radp(X) and Radmp (X)

To obtain a suitable characterization of the interpolation spaces

(Radp(X),Radp(Y ))θ,p and [Radp(X),Radp(Y )]θ we will apply the abstract

isomorphism result derived in [20, 1.2.4]. The idea to use this isomorphism

result is taken from [12, Prop. 3.7].

Definition 3.12. Let X and Y be Banach spaces. The operator R ∈
L(X,Y ) is said to be a retraction if there exists an S ∈ L(Y,X) with

RS = idY . In this case S is said to be the coretraction belonging to R.

Remark 3.13. Let X be a Banach space and U ⊂ X be a closed

subspace with the standard subspace topology. If there exists a projection

P ∈ L(X) with range(P ) = U then it is easy to see, that P is a retraction

with coretraction S : U → X,x �→ x.

Theorem 3.14 (see [20], Theorem 1.2.4). Let {A0, A1}, {B0, B1} be

two interpolation couples and let

R ∈ L({A0, A1}, {B0, B1}), S ∈ L({B0, B1}, {A0, A1})

such that R|Ak
∈ L(Ak, Bk) and S|Bk

∈ L(Bk, Ak) are retraction and core-

traction (k = 0, 1). Then for an arbitrary interpolation functor F we

have that (SR)|F({A0,A1}) ∈ L(F({A0, A1})) is a projection onto W :=

range((SR)|F({A0,A1})) ⊂ F({A0, A1}), where the topology on W is given

by the subspace topology relative to F({A0, A1}). In particular, the map-

ping S|F({B0,B1}) yields an isomorphism between F({B0, B1}) and W .

Proposition 3.15. Assume {X0, X1} to be an interpolation couple of

K-convex Banach spaces. For p ∈ (1,∞) and an Lp-compatible interpolation
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functor F of type h with Ch ≥ 1 we have

F({Radp(X0),Radp(X1)}) = Radp(F({X0, X1}),

where the equivalence of the norms is given by

1

ChC2
‖f‖Radp(F({X0,X1})) ≤ ‖f‖F({Radp(X0),Radp(X1)})

≤ Ch
C1

· h
(
‖RX0‖, ‖RX1‖

)
‖f‖Radp(F({X0,X1})),

the constants C1, C2 > 0 come from the assumed equivalence

C1‖ · ‖F({Lp([0,1],X0),Lp([0,1],X1)}) ≤ ‖ · ‖Lp([0,1],F({X0,X1}))

≤ C2‖ · ‖F({Lp([0,1],X0),Lp([0,1],X1)}).

Proof. The aim is, of course, to apply Theorem 3.14. Therefore we de-

fine the spaces Ak := Lp([0, 1], Xk) and Bk := Radp(Xk). Let Rk := RXk ∈
L(Lp([0, 1], Xk),Radp(Xk)) be the projection given through K-convexity

and let Sk ∈ L(Radp(Xk), L
p([0, 1], Xk)) be the embedding that exists ac-

cording to Remark 3.13 and Remark 3.3 (ii). On E := Lp([0, 1], X0 + X1)

we define the operators

R : (A0 +A1) → (B0 +B1), f �→ [E]

∞∑
k=1

rk

∫ 1

0
rk(u)f(u)du[X0+X1]

S : (B0 +B1) → (A0 +A1), g �→ g.

It can be easily seen that R and S are well-defined and that we have

R|Lp([0,1],Xk) = Rk and S|Radp(Xk) = Sk. It is also clear that S is norm

preserving. Thus we can apply Theorem 3.14. At first this implies that

W := range
(
(SR)|F({A0,A1})

)
= range

(
R|F({Lp([0,1],X0),Lp([0,1],X1)})

)
is well-defined. Due to Remark 3.10 (ii) we see that F({X0, X1}) is also K-

convex. Therefore we obtain the existence of the projection RF({X0,X1}) onto

Radp(F({X0, X1})). Employing the embedding Lp([0, 1],F({X0, X1})) ↪→
E and the Lp-compatibility of F we obtain

W = range
(
R|Lp([0,1],F({X0,X1}))

)
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= range
(
RF({X0,X1})

)
= Radp(F({X0, X1})).

So far these equalities are only equalities of sets by the fact that on W

we have the relative topology with respect to the interpolation space

F({Lp([0, 1], X0), L
p([0, 1], X1)}). However, the Lp-compatibility of F

yields the topological equality of W and Radp(F({X0, X1})). So we have

F({Radp(X0),Radp(X1)}) =W thanks to Theorem 3.14.

It remains to determine the constants which are involved in the equiv-

alence of the norms. The Lp-compatibility of F and the definition of

‖ · ‖Radp(F({X0,X1})) yield

‖f‖Radp(F({X0,X1})) = ‖f‖Lp([0,1],F({X0,X1}))
≤ C2‖f‖F({Lp([0,1],X0),Lp([0,1],X1)})
≤ C2Ch‖f‖F({Radp(X0),Radp(X1)}) (f ∈W ).

In the last estimate we used the fact that the Sk’s are norm preserving. In

view of R|F({A0,A1})f = f for all f ∈ W and again by the Lp-compatibility

we obtain

‖f‖F({Radp(X0),Radp(X1)})
≤ Ch · h (‖R0‖, ‖R1‖) · ‖f‖F({Lp([0,1],X0),Lp([0,1],X1)})

≤ Ch
C1
h (‖R0‖, ‖R1‖) · ‖f‖Lp([0,1],F({X0,X1})) (f ∈W ).

This implies the claimed equivalence of the norms and therefore the assertion

is proved. �

Completely analogous we can obtain the following interpolation result

for the space Radmp (X).

Proposition 3.16. Assume {X0, X1} to be an interpolation couple,

p ∈ (1,∞), and m ∈ N. If F is an Lp-compatible interpolation functor of

type h with Ch ≥ 1, then we have

F({Radmp (X0),Radmp (X1)}) = Radmp (F({X0, X1}),

where the equivalence of the norms is given by

1

ChC2
‖f‖Radm

p (F({X0,X1})) ≤ ‖f‖F({Radm
p (X0),Radm

p (X1)})
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≤ Ch
C1
h
(
‖RX0

m ‖, ‖RX1
m ‖
)
‖f‖Radm

p (F({X0,X1})).

The constants C1, C2 > 0 are the same as in Proposition 3.15.

Corollary 3.17. The results of Proposition 3.15 and Proposition

3.16 in particular hold for the real and the complex interpolation functors.

Let {X0, X1} be an interpolation couple of K-convex Banach spaces. Then

we have

(Radp(X0),Radp(X1))θ,p = Radp((X0, X1)θ,p),

[Radp(X0),Radp(X1)]θ = Radp([X0, X1]θ)

for p ∈ (1,∞) and 0 < θ < 1.

3.3. R-boundedness and interpolation

Definition 3.18. Let {X0, X1} and {Y0, Y1} be interpolation couples

and T ⊂ L({X0, X1}, {Y0, Y1}). Then we define

T|Xk
:=
{
T|Xk

: T ∈ T
}
⊂ L(Xk, Yk)

for k = 0, 1.

Notation. In the following we set Lp(X) := Lp([0, 1], X).

Theorem 3.19. Let {X0, X1} and {Y0, Y1} be interpolation couples of

K-convex Banach spaces. Assume that T ⊂ L({X0, X1}, {Y0, Y1}) and that

F is an Lp-compatible interpolation functor of type h with Ch ≥ 1 for p ∈
(1,∞). If T|Xk

⊂ L(Xk, Yk) is R-bounded with R-bound Rp(T|Xk
) for k =

0, 1 then

T|F({X0,X1}) ⊂ L(F({X0, X1}),F({Y0, Y1}))

is also R-bounded with

Rp

(
T|F({X0,X1})

)
≤ C0 · h

(
‖RX0‖, ‖RX1‖

)
· h
(
Rp(T|X0

),Rp(T|X1
)
)
,

where C0 :=
C2C3

h
C1

and where C1, C2 > 0 come from Proposition 3.15.
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Proof. We use the characterization of R-boundedness given in Re-

mark 3.7 (ii). Let (Tj)j∈N ⊂ T be an arbitrary series of operators. We have

to show that

T : Radp(F({X0, X1})) −→ Radp(F({Y0, Y1})),

[Lp(F({X0,X1}))]

∞∑
j=1

rjxj �→ [Lp(F({Y0,Y1}))]

∞∑
j=1

rjTjxj

is a well-defined operator satisfying

‖T‖L(Radp(F({X0,X1})),Radp(F{(Y0,Y1)}))

≤ C0 · h
(
‖RX0‖, ‖RX1‖

)
· h
(
Rp(T|X0

),Rp(T|X1
)
)

with C0 as given in the statement of the theorem. We define the operator

S : Radp(X0) + Radp(X1) → Radp(Y0) + Radp(Y1)

f = f0 + f1 �→ T0f0 + T1f1,

with

Tk : Radp(Xk) −→ Radp(Yk), [Lp(Xk)]

∞∑
j=1

rjxj �→[Lp(Yk)]

∞∑
j=1

rjTjxj .

So we get

S̃ := S|F({Radp(X0),Radp(X1)})

∈ L(F({Radp(X0),Radp(X1)}),F({Radp(Y0),Radp(Y1)}))

with

‖S̃‖L(F({Radp(X0),Radp(X1)}),F({Radp(Y0),Radp(Y1)}))
≤ Ch · h (‖T0‖, ‖T1‖)
≤ Ch · h

(
Rp(T|X0

),Rp(T|X1
)
)
.

In the last estimate we already used that ‖Tk‖L(Radp(Xk),Radp(Yk)) ≤
Rp(T|Xk

) for k = 0, 1. Hence we have

‖S̃‖L(Radp(F({X0,X1})),Radp(F({Y0,Y1})))
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≤
[
C2C

3
h

C1
h
(
‖RX0‖, ‖RX1‖

)]
· h
(
Rp(T|X0

),Rp(T|X1
)
)

by Proposition 3.15. Pick

f :=[Lp(F(X0,X1))]

∞∑
j=1

rjxj ∈ Radp(F({X0, X1})).

Then we have f =[Lp(X0+X1)]

∑∞
j=1 rjxj ∈ Radp(X0 +X1). In view of

Radp(F({X0, X1})) = F({Radp(X0),Radp(X1)})
⊂ Radp(X0) + Radp(X1)

we also have

f = f0 + f1 = [Lp(X0)]

∞∑
j=1

rj(xj)0 +[Lp(X1)]

∞∑
j=1

rj(xj)1

= [Lp(X0+X1)]

∞∑
j=1

rj [(xj)0 + (xj)1] ∈ Radp(X0 +X1)

with xj = (xj)0 + (xj)1 and (xj)k ∈ Xk (k = 0, 1). Furthermore, we obtain

S̃f = T0f0 + T1f1 = [Lp(Y0)]

∞∑
j=1

rjTj(xj)0 +[Lp(Y1)]

∞∑
j=1

rjTj(xj)1

= [Lp(F({Y0,Y1}))]

∞∑
j=1

rjTj [(xj)0 + (xj)1︸ ︷︷ ︸
=xj

]

= Tf.

This yields T = S̃ which completes the proof. �

Corollary 3.20. Let {X0, X1} and {Y0, Y1} be interpolation couples

of K-convex Banach spaces. For given T ⊂ L({X0, X1}, {Y0, Y1}), p ∈
(1,∞), and 0 < θ < 1 we have:

If T|Xk
⊂ L(Xk, Yk) is R-bounded with R-bound Rp(T|Xk

), k = 0, 1, then

T|(X0,X1)θ,p ⊂ L((X0, X1)θ,p, (Y0, Y1)θ,p),
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T|[X0,X1]θ ⊂ L([X0, X1]θ, [Y0, Y1]θ)

are also R-bounded with

Rp

(
T|(X0,X1)θ,p

)
≤ C · [Rp(T|X0

)]1−θ[Rp(T|X1
)]θ,

Rp(T|[X0,X1]θ) ≤ C ′ · [Rp(T|X0
)]1−θ[Rp(T|X1

)]θ,

and with C :=
C

(2)
p

C
(1)
p

‖RX0‖1−θ‖RX1‖θ and C ′ := ‖RX0‖1−θ‖RX1‖θ. The

constants C
(k)
p are the same as in (2).

3.4. Maximal Lp-regularity, R-sectoriality, and interpolation

Definition 3.21. A linear densely defined operator A : D(A) ⊂
X → X is called sectorial, if there exists a θ ∈ (0, π] such that Σθ ⊂ ρ(A)

and

sup
λ∈Σθ

‖λ(λ−A)−1‖L(X) <∞.

Here we define Σθ := {z ∈ C \ {0} : |arg(z)| < θ} as an open sector.

The number

ϕ(A) := sup

{
θ ∈ (0, π] : Σθ ⊂ ρ(A) ∧ sup

λ∈Σθ

‖λ(λ−A)−1‖L(X) <∞
}

is called spectral angle of A.

Definition 3.22. A linear densely defined operator A :D(A) ⊂ X →
X is called R-sectorial, if there exists a θ ∈ (0, π] such that Σθ ⊂ ρ(A) and

such that

{λ(λ−A)−1 : λ ∈ Σθ} ⊂ L(X)

is R-bounded. The number ϕR(A) is defined as the supremum of all angles

θ ∈ (0, π] such that we have Σθ ⊂ ρ(A) and the R-boundedness of {λ(λ −
A)−1 : λ ∈ Σθ}.

Observe that in view of Remark 3.6 R-sectorality implies sectoriality

and we always have ϕR(A) ≥ ϕ(A). We can now apply the results obtained
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in the previous sections to conclude that R-sectoriality is preserved under

interpolation.

Theorem 3.23. Let p ∈ (1,∞) and F be an arbitrary Lp-compatible

interpolation functor of type h. Let X0, X1 be K-convex Banach spaces such

that X0 ∩X1 ↪→d F({X0, X1}). Furthermore, let

A0 : D(A1) ⊂ X0 → X0,

A1 : D(A2) ⊂ X1 → X1,

be linear operators with the compatibility conditions A0u = A1u for all u ∈
D(A0) ∩D(A1) ↪→d X0 ∩X1 and

(λ−A0)
−1u = (λ−A1)

−1u, λ ∈ ρ(A0) ∩ ρ(A1), u ∈ X0 ∩X1.(3)

If A0 and A1 are R-sectorial, then the operator

B : D(B) ⊂ F({X0, X1}) → F({X0, X1}),
D(B) := F({D(A0), D(A1)})

with Bu := A0u0 + A1u1 for u = u0 + u1 ∈ D(B) ↪→ D(A0) + D(A1) is

also R-sectorial. Note, that D(Ak) is equipped with the graph norm ‖ · ‖Ak
.

Moreover, we have ϕR(B) ≥ min
k=0,1

ϕR(Ak).

Proof. The operator B is densely defined in view of

D(A0) ∩D(A1) ↪→d X0 ∩X1 ↪→d F({X0, X1})

and since

D(A0) ∩D(A1) ↪→ F({D(A0), D(A1)}) ↪→ F({X0, X1}).

First we consider the relation of the resolvents of A0, A1, and B. Let

λ ∈ ρ(A0) ∩ ρ(A1) then we can define

Rλ : X0 +X1 → D(A0) +D(A1),

x0 + x1 �→ (λ−A0)
−1x0 + (λ−A1)

−1x1

due to (3) and get

[Rλ]Xk
= (λ−Ak)−1,
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[Rλ]|F({X0,X1}) ∈ L(F({X0, X1}),F({D(A0), D(A1)})).

With this we can prove λ ∈ ρ(B) and (λ − B)−1 = [Rλ]|F({X0,X1}). For

0 < θ < min
k=1,2

ϕR(Ak) we have Σθ ⊂ ρ(A1) ∩ ρ(A2) and therefore also

Σθ ⊂ ρ(B).

By assumption the families

T0 := {[Rλ]X0 : λ ∈ Σθ} ⊂ L(X0),

T1 := {[Rλ]X1 : λ ∈ Σθ} ⊂ L(X1)

are R-bounded. Thus Theorem 3.19 yields the R-boundedness of

{λ(λ−B)−1 : λ ∈ Σθ} =
{
[Rλ]|F({X0,X1}) : λ ∈ Σθ

}
⊂ L(F({X,Y })).

This proves the R-sectoriality of B with ϕR(B) ≥ min
k=1,2

ϕR(Ak). �

Remark 3.24. Let {X0, X1} be a couple of Banach space of class HT
(cf. Theorem 3.11). Then the characterization of maximal Lp-regularity by

R-sectoriality with R-angle bigger than π
2 allows for corresponding results

on maximal Lp-regularity. The characterization mentioned above can e.g.

be found in [15].

Remark 3.25. The results of Theorem 3.23 hold for interpolation

functors of the real and the complex method, by the fact that they are

Lp-compatible and since we always have X0∩X1 ↪→d F({X0, X1}). A proof

of the density of the last embedding can be found in [20, 1.6.2,1.9.3], for

example.

4. Property (α)

Our first aim in this section is to interpret property(α) as a special

form of R-boundedness. With the help of this interpretation we will show

that also property(α) carries over to interpolation spaces provided that the

interpolated Banach spaces are K-convex.

4.1. Fundamental facts about property(α)

First we recall the definition of property(α) from [15, Section 4.9]. This

property is important in the context of an operator valued Fourier-multiplier
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theorem proved by L. Weis, cf. [15, Section 5.2 or Theorem 4.13]. Another

application can be found in [15, Theorem 12.8] and [14, Theorem 5.3], where

the authors proved, that the bounded H∞-calculus is equivalent to the a

priori stronger property of an R-bounded H∞-calculus, if the underlying

Banach space has property(α). The H∞-calculus is a powerful tool in the

treatment of parabolic and elliptic partial differential equations. For more

information on this topic we refer to [6] and [10], for instance.

Definition 4.1. A Banach space X has property (α) if there exists a

constant C > 0 such that for all n ∈ N, (αij)i,j=1,... ,n ⊂ C, |αij | ≤ 1, and

all (xij)i,j=1,... ,n ⊂ X we have that

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
n∑

i,j=1

ri(u)rj(v)αijxij

∥∥∥∥∥∥
X

dudv

≤ C
∫ 1

0

∫ 1

0

∥∥∥∥∥∥
n∑

i,j=1

ri(u)rj(v)xij

∥∥∥∥∥∥
X

dudv.(4)

In this case we set Cα := min{C > 0 : estimate (4) holds}.

By virtue of the following Lemma 4.3 (ii) with p = 2 and the or-

thogonality of the Rademacher functions we see that Hilbert spaces have

property(α). Let X be a Banach space with property(α) then every closed

subspace Y ⊂ X has property(α). The cartesian product of Banach spaces

with property(α) has also property(α). These results can be used to show

that the Sobolev space Wm,p(Ω, X) has property(α) for 1 ≤ p < ∞ and

m ∈ N0 if X possess property(α). This follows easily from the theorem

of Tonelli for m = 0 and the fact that Wm,p(Ω, X) (m > 0) is isometric

isomorphic to a closed subspace of (Lp(Ω, X))N .

Definition 4.2. We set

Tmα : Radmp (X) → Radmp (X)

(xi)i=1,... ,m �→ (αixi)i=1,... ,m

for m ∈ N and α ∈ C
m. Additionally, we define the family

T m := {Tmα : α ∈ C
m, |αi| ≤ 1, i = 1, . . . ,m}.
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Lemma 4.3. Let X be a Banach space. We have the following equiva-

lences:

(i) X has property (α).

(ii) (p-independence) For all p ∈ [1,∞) there exists a constant C̃ > 0 such

that for all n ∈ N,(αij)i,j=1,... ,n ⊂ C, |αij | ≤ 1 and all (xij)i,j=1,... ,n ⊂
X we have∫ 1

0

∫ 1

0

∥∥∥∥∥∥
n∑

i,j=1

ri(u)rj(v)αijxij

∥∥∥∥∥∥
p

X

dudv

1/p

≤ C̃

∫ 1

0

∫ 1

0

∥∥∥∥∥∥
n∑

i,j=1

ri(u)rj(v)xij

∥∥∥∥∥∥
p

X

dudv

1/p

.(5)

(iii) For all p ∈ [1,∞) there exists a C > 0 such that we have Rp(T m) ≤ C
in L(Radmp (X)) for all m ∈ N.

Proof. The equivalence of (i) and (ii) is an immediate consequence

of the inequality of Kahane (Theorem 3.4). In fact, it yields[
C(K)
p

]−2
‖(ξk)k‖Radm

1 (Radm
1 (X)) ≤ ‖(ξk)k‖Radm

p (Radm
p (X))

≤
[
C(K)
p

]2
‖(ξk)k‖Radm

1 (Radm
1 (X))

for (ξk)k ∈ Radm1 (Radm1 (X)).

“(ii)⇒(iii)”: Here we can use the characterization of R-boundedness by

Remark 3.7 (i). For this purpose, we set Ym := Radmp (X) (m ∈ N), choose

arbitrary
(
Tm
α(j)

)
j∈N

⊂ T m, and define the operator

Tn : Radnp (Ym) → Radnp (Ym), (xj)j=1,... ,n �→
(
Tm
α(j)xj

)
j=1,... ,n

with α(j) = (αij)i=1,... ,m ∈ C
m, xj = (xij)i=1,... ,m ∈ Ym. Under use of (ii)

we get

‖Tn(xj)j‖Radn
p (Ym) ≤ C̃‖(xj)j‖Radn

p (Ym)

for all n,m ∈ N and (xj)j ∈ Radnp (Ym). So, we have ‖Tn‖L(Radn
p (Ym)) ≤ C̃

for all n,m ∈ N. Now Remark 3.7 implies (iii).

“(iii)⇒(ii)”: Can be done in an analogous way. �
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4.2. Property (α) and interpolation

Lemma 4.4. Let X be a K-convex Banach space and let Y ⊂ X be a

Banach space such that ‖.‖Y = ‖.‖X on Y . Then we have

(i) ‖RX
m‖L(Lp([0,1],X)) ≤ 2‖RX‖L(Lp([0,1],X)), m ∈ N,

(ii) ‖RY ‖L(Lp([0,1],Y )) ≤ ‖RX‖L(Lp([0,1],X))

for all p ∈ (1,∞).

Proof. This follows easily by the contraction principle of Kahane

(Theorem 3.5). �

Theorem 4.5. Let {X,Y } be an interpolation couple of K-convex Ba-

nach spaces, p ∈ (1,∞), and let F be an Lp-compatible interpolation functor

of type h. If X and Y have property (α) with constants CX
α > 0 and CY

α > 0,

then also the interpolation space F({X,Y }) has property(α) with

CF({X,Y })
α ≤M0 · h

(
M1C

X
α ,M1C

Y
α

)
for some constants M0,M1 > 0.

Proof. The family T m := {Tmα : α ∈ C
m, |αi| ≤ 1, i = 1, . . . ,m}

can easily be interpreted as an subset of L({Radmp (X),Radmp (Y )}). Then

we define T m
Z := T m

|Radm
p (Z) for Z ∈ {X,Y,F({X,Y })}. Thanks to Lemma

4.3 we already know, that the families T m
X ⊂ L(Radmp (X)) and T m

Y ⊂
L(Radmp (Y )) are R-bounded uniformly in m ∈ N with

Rp(T m
X ) ≤

[
C(K)
p

]4
CX
α and Rp(T m

Y ) ≤
[
C(K)
p

]4
CY
α .

Therefore we obtain the R-boundedness of

[T m]|F({Radm
p (X),Radm

p (Y )}) ⊂ L(F({Radmp (X),Radmp (Y )}))

by Theorem 3.19 and Remark 3.10 (iii). Additionally, this leads to an

estimate of the R-bound

Rp

(
[T m]|F({Radm

p (X),Radm
p (Y )})

)
≤ C(m) · h (Rp(T m

X ),Rp(T m
Y ))
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with C(m) :=
C2C3

h
C1

· h
(
‖RRadm

p (X)‖, ‖RRadm
p (Y )‖

)
. Proposition 3.16 yields

[T m]|F({Radm
p (X),Radm

p (Y )}) = [T m]|Radm
p (F({X,Y }))

⊂ L(Radmp (F({X,Y }))).

Thus we can consider the R-bound of T m in L(Radmp (F({X,Y }))) and

obtain

Rp

(
[T m]|Radm

p (F({X,Y }))

)
≤
[
C2C

2
h

C1
h
(
‖RX

m‖, ‖RY
m‖
)]

· Rp

(
[T m]|F({Radm

p (X),Radm
p (Y )})

)
≤
[
C2C

2
h

C1
h
(
2‖RX‖, 2‖RY ‖

)]
︸ ︷︷ ︸

=:C′

·Rp

(
[T m]|F({Radm

p (X),Radm
p (Y )})

)

by Lemma 4.4 (i). Due to Radmp (X) ⊂ Radp(X), Radmp (Y ) ⊂ Radp(Y ),

Remark 3.3 and Lemma 4.4 (ii) we have

‖RRadm
p (Z)‖L(Lp([0,1],Radm

p (Z))) ≤ ‖RRadp(Z)‖L(Lp([0,1],Radp(Z)))

<∞ (m ∈ N)

for Z ∈ {X,Y }. Hence there exists an upper bound for (C(m))m∈N:

C(m) =
C2C

3
h

C1
h
(
‖RRadm

p (X)‖, ‖RRadm
p (Y )‖

)
≤ C2C

3
h

C1
h
(
‖RRadp(X)‖, ‖RRadp(Y )‖

)
=: C ′′ (m ∈ N).

Summarizing results in

Rp([T m]|Radm
p (F({X,Y }))) ≤M0 · h

(
M1C

X
α ,M1C

Y
α

)
with M0 := C ′C ′′

[
C

(K)
p

]4
and M1 :=

[
C

(K)
p

]4
. Due to Lemma 4.3 the

assertion follows by the proved R-boundedness in Radmp (F({X,Y })). �

Corollary 4.6. Let {X,Y } be an interpolation couple of K-convex

Banach spaces. If X and Y have property (α) with CX
α > 0 and CY

α > 0,
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then the real and complex interpolation spaces (X,Y )θ,p and [X,Y ]θ also

have property(α) for p ∈ (1,∞), θ ∈ (0, 1). In this case we have

C
(X,Y )θ,p
α ≤ M ′ [CX

α

]1−θ [
CY
α

]θ
,

C [X,Y ]θ
α ≤ M ′′ [CX

α

]1−θ [
CY
α

]θ
for some constants M ′,M ′′ > 0.

5. Application to Parabolic Systems

In this chapter we consider realizations of parabolic differential equation

systems in higher order spaces over R
n. For example we define the Laplace

operator on Sobolev spaces as

Ak,p : D(Ak,p) ⊂W k,p(Rn) →W k,p(Rn), f �→ ∆f,

with D(Ak,p) :=W k+2,p(Rn) (k ∈ N0). Similarly, we can define realizations

on interpolation spaces such as Besov and Bessel-potential spaces. In the

following we show that the realizations of parabolic systems on Sobolev

spaces are R-sectorial. The case k = 0 is proved in [15]. Here we generalize

this result to the case k ∈ N. Basically we follow the proof given in [15]

for the case k = 0. However, due to the lack of differentiability of some

cut-off functions used in [15], here we are forced to adapt the localization

procedure at some places suitably. Applying the interpolation results of

the previous chapters, we then will obtain R-sectoriality for realizations on

certain scales of interpolation spaces. To handle the parabolic problems

under consideration we make use of Fourier multiplier methods. For this

purpose and for the definition of Bessel-potential-spaces, here we recall the

notion of a Fourier multiplier.

Definition 5.1. Let X,Y be Banach spaces, 1 < p < ∞, and m ∈
L∞(Rn, L(X,Y )). Then we define

Tm : �(Rn, X) → L∞(Rn, Y )

f �→ �−1m�f.

The symbol m is said to be an Lp-Fourier-multiplier, if there exists a Cp > 0

such that
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(i) Tmf ∈ Lp(Rn, Y ) for all f ∈ �(Rn, X),

(ii) ‖Tmf‖Lp(Rn,Y ) ≤ Cp‖f‖Lp(Rn,X) for all f ∈ �(Rn, X).

In this case there exists a unique continuous extension of Tm from Lp(Rn, X)

to Lp(Rn, Y ) which, for simplicity, is also denoted by Tm.

Remark 5.2. Let X be a Banach space of class HT and k ∈ N. We

define 〈ξ〉 := (1 + |ξ|2)1/2 and

Λ−k : Lp(Rn, X) →W k,p(Rn, X); f �→ T〈ξ〉−kidX
f

Λk :W k,p(Rn, X) → Lp(Rn, X); f �→ �−1
[
〈ξ〉k idX

]
�f.

By standard arguments we get

[Λ−k]|W j,p(Rn,X) ∈ L(W j,p(Rn, X),W j+k,p(Rn, X))

for j ∈ N0 and (Λ−k)
−1 = Λk.

5.1. Besov- and Bessel-potential-spaces

Next we recall some basic facts on Besov- and Bessel-potential spaces,

which can be found e.g. in [1, 7.30-7.34] and [20, 2.3-2.4]. The Banach

space-valued case can be found in [4].

Definition and Remark 5.3. Let X be a Banach space and 1 <

p, q <∞. Then

(i) Bs
p,q(R

n, X) := (Lp(Rn, X),W k,p(Rn, X)) s
k
,q with s ∈ (0,∞)∩[k−1, k)

and equipped with the interpolation norm is called Besov space,

(ii) Hs,p(Rn, X) := {u ∈ �′(Rn, X) : �−1 〈ξ〉s �u ∈ Lp(Rn, X)} with

s ∈ R≥0 is called Bessel-potential space, where the norm is given by

‖u‖Hs,p(Rn,X) := ‖�−1 〈ξ〉s �u‖Lp(Rn,X).

Note that we also have the following representations.

(iii) Let m, s, j ∈ N0 with 0 ≤ m < s < j and λ ∈ (0, 1) such that

s = (1 − λ)m+ λj. Then we have

Bs
p,q(R

n, X) = (Wm,p(Rn, X),W j,p(Rn, X))λ,q.
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(iv) Let X be of class HT and m, j ∈ N0 with 0 ≤ m < s < j and

s = (1 − θ)m+ θj for a θ ∈ (0, 1). Then we have:

Hs,p(Rn, X) = [Wm,p(Rn, X),W j,p(Rn, X)]θ

W k,p(Rn, X) = Hk,p(Rn, X), (k ∈ N0).

Remark 5.4. Let s ∈ R>0, 1 < p, q < ∞, and X be a Banach space

of class HT .

(i) The spaces Bs
p,q(R

n, X) and Hs,p(Rn, X) are of class HT , too.

(ii) If X has property(α), then Bs
p,q(R

n, X) and Hs,p(Rn, X) have prop-

erty(α), too.

The last statement can be seen easily by a retraction argument.

5.2. Parabolic systems of differential equations

In the following we always assume that 1 < p < ∞. Furthermore, we

set

A(x,D) :=
∑

|α|≤m
aα(x)Dα,

for aα : R
n → C

N×N , m,N ∈ N, and for Dα := (−i)|α|∂α. We define the

“W k,p-realization” of the formal differential operator A(x,D) by

Ak,p : D(Ak,p) ⊂W k,p(Rn,CN ) →W k,p(Rn,CN )

with D(Ak,p) := W k+m,p(Rn,CN ) and Ak,pf := A(x,D)f for all f ∈
W k+m,p(Rn,CN ). For an interpolation functor F the “(F , k, p)-realization”

of A(x,D) is defined by

AF ,k,p : D(AF ,k,p) ⊂ F(Lp,W k,p) → F(Lp,W k,p)(6)

with

F(Lp,W k,p) := F({Lp(Rn,CN ),W k,p(Rn,CN )}),
D(AF ,k,p) := F({Wm,p(Rn,CN ),W k+m,p(Rn,CN )})
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and AF ,k,pg := A(x,D)g for all g ∈ D(AF ,k,p). In particular, we define the

“Lp-realization” of A(x,D) by Ap := A0,p.

In order to obtain well-defined operators we need to assume some reg-

ularity for the coefficients. For the well-definedness of the W k,p-realization

it is sufficient to assume that

aα ∈W k,p∞(Rn,CN×N ), p∞ :=

{
p, kp > n,

∞, otherwise
(7)

for all α ∈ N
n
0 with |α| ≤ m. Here we define W k,∞(Rn,CN×N ) := {f ∈

L∞(Rn,CN×N ) : Dβf ∈ L∞(Rn,CN×N ), |β| ≤ k}. As in [1, Theorem 4.39]

the Sobolev space W k,p has the algebra property in case of kp > n. Let

K∗ > 0 such that

‖uv‖Wk,p(Rn,CN ) ≤ K∗‖u‖Wk,p∞ (Rn,CN )‖v‖Wk,p(Rn,CN )

for all u ∈W k,p∞(Rn,CN ) and v ∈W k,p(Rn,CN ).

Remark 5.5. Let s ∈ (0,∞) ∩ [k − 1, k), k ∈ N, and 1 < q <∞. If F
is the real or the complex interpolation functor, AF ,k,p represents the Besov

or Bessel-potential realization of A(x,D):

(i) For “F = (., .) s
k
,q” we have

AB
s,p,q : D(AB

s,p,q) ⊂ Bs
p,q(R

n,CN ) → Bs
p,q(R

n,CN ),

D(AB
s,p,q) = Bs+m

p,q (Rn,CN ), AB
s,p,q := AF ,k,p.

(ii) For “F = [., .] s
k
” we have

AH
s,p : D(AH

s,p) ⊂ Hs,p(Rn,CN ) → Hs,p(Rn,CN ),

D(AH
s,p) = Hs+m,p(Rn,CN ), AH

s,p := AF ,k,p.

Remark 5.6. Our approach to obtain R-sectoriality for Besov- and

Bessel-potential space realizations is a sort of ’decent method’. The regu-

larity assumption W k,p∞ for the coefficients, of course, is not optimal for

the interpolated operators. On the other hand, notice that by a standard

perturbation argument the regularity for the coefficients of the interpolated
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operators can always be reduced to close to optimal. In [8, Section 5], for

instance, this argument is used for a reduction from smooth to Hölder con-

tinuous coefficients. However, optimal conditions on the coefficients is none

of our purposes here. Therefore we will not carry out this argument in what

follows.

Definition 5.7. The symbol of A(x,D) is defined by

a(x, ξ) :=
∑

|α|≤m
aα(x)ξα (x, ξ ∈ R

n).

The principal part of A(x,D) is defined as

A0(x,D) :=
∑

|α|=m
aα(x)Dα.

The principal symbol of A(x,D) is then given by the symbol of the principal

part, i.e. by a0(x, ξ) :=
∑

|α|=m aα(x)ξα for (x, ξ) ∈ R
n × R

n.

Definition 5.8. Let A(x,D) be the formal differential operator given

above.

(i) The operator A(x,D) is said to be parameter-elliptic in Σθ, if there

exists a constant CP > 0 such that we have

|det(a0(x, ξ) − λ)| ≥ CP (|ξ|m + |λ|)N

for all x ∈ R
n and (ξ, λ) ∈ (Rn × Σθ) \ {0}.

(ii) The operator A(x,D) is called parabolic, if A(x,D) is parameter-

elliptic in Σπ/2.

Remark 5.9. If we consider a parabolic A(x,D) with bounded coeffi-

cients aα (|α| = m), then there exists a θ ∈
(
π
2 , π
)

such that A(x,D) is even

parameter-elliptic in Σθ.
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5.2.1 The model-problem

In this section we consider the model problem, i.e., we assume the

matrix-valued coefficients of A(x,D) to be constant and that A(x,D) is

just a principal part, that is A(x,D) = A0(x,D). Hence the formal differ-

ential operator is of the form

A(D) :=
∑

|α|=m
aαD

α, with aα ∈ C
N×N .(8)

Lemma 5.10. Let v : R
n → C be a function such that 1

v ∈ C |α|(Rn)

and α ∈ {0, 1}n. We set

M(α) :=

(β1, . . . , β|α|) ∈ (Nn
0 )|α| :

|α|∑
k=1

βk = α

 .
Then it is easily seen, that there are constants C(β1, . . . , β|α|) ∈ Z for

(β1, . . . , β|α|) ∈ M(α) satisfying |C(β1, . . . , β|α|)| ≤ |α|! and such that we

have

Dα 1

v
=

1

v|α|+1

∑
(β1,... ,β|α|)∈M(α)

C(β1, . . . , β|α|)
|α|∏
k=1

(Dβkv).

Proof. This result follows by induction over |α|. �

The next result is proved in [15, Theorem 6.2] for the case |β| = m.

We need the following extension in order to handle diagonal operators in a

suitable way.

Lemma 5.11. Let A(D) be given as in (8) and assume that it is param-

eter-elliptic in Σθ for a θ ∈ (0, π) and a constant CP > 0. Furthermore, let

M > 0 such that
∑

|α|=m ‖aα‖CN×N ≤M , and for |β| ≤ m let

mβ : (Rn × Σθ) \ {0} → C
N×N , (ξ, λ) �→ ξβλ

m−|β|
m (λ− a0(ξ))−1.

Then we have

(i) that mβ(·, λ) is a Fourier multiplier for all λ ∈ Σθ \ {0},
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(ii) that the families

Tβ := {Tmβ(·,λ) : λ ∈ Σθ \ {0}} ⊂ L(Lp(Rn,CN ))

Tβ,0 := {Tmβ(·,λ) : λ ∈ Σθ} ⊂ L(Lp(Rn,CN ))

are R-bounded. Moreover, the Rp-bounds of Tβ and Tβ,0 can be esti-

mated from above by a constant only depending on p, n, m, N , M ,

and CP .

(iii) For every k ∈ N we also have the R-boundedness of

T k
β :=

{
[Tmβ(·,λ)]|Wk,p(Rn,CN ) : λ ∈ Σθ \ {0}

}
⊂ L(W k,p(Rn,CN )),

and again Rp(T k
β ) is bounded from above by a constant only depending

on k, p, n, m, N , M , and CP .

Proof. Let β ∈ N
n
0 , |β| ≤ m, and define the function

m̃β : (Rn × Σθ/m) \ {0} → C
N×N , (ξ, q) �→ ξβqm−|β|(qm − a0(ξ))−1.

By the homogeneity of m̃β and the version of Michlins multiplier theorem

given by [15, Theorem 5.2 b)], we obtain the R-boundedness of {Tm̃β(·,q) :

q ∈ Σθ/m} ⊂ L(Lp(Rn,CN )). Thus, it remains to prove an estimate for

the R-bound as asserted. To this end, we derive explicit estimates for

ξαDαmβ,λ(ξ), α ∈ {0, 1}n, and where mβ,λ := m̃β(·, λ1/m). Here we use

the representation of the inverse matrix (λ− a0(ξ))−1 by the adjugate (λ−
a0(ξ))

# := ((−1)i+j · det(λ − a0(ξ))+j,i)i,j=1,... ,N , where (λ − a0(ξ))+j,i is the

(N − 1) × (N − 1)-matrix that results from deleting row j and column i in

(λ− a0(ξ)). Then we obtain

ξαDαmβ,λ(ξ)

= λ
m−|β|

m

∑
γ≤α

(
ξα−γDα−γ ξβ

det(λ− a0(ξ))

)(
ξγDγ(λ− a0(ξ))#

)
(9)

by the Leibniz rule. The equivalence of norms in C
N×N yields

‖ξγDγ(λ− a0(ξ))#‖CN×N ≤ C(N) ·
N∑

i,j=1

|ξγDγ det(λ− a0(ξ))+j,i|.
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For every 1 ≤ i, j ≤ N the Leibniz formula for the determinant implies

|ξγDγ det(λ− a0(ξ))+j,i| ≤
∑

σ∈SN−1

∣∣∣∣∣ξγDγ
N−1∏
k=1

[(λ− a0(ξ))+j,i]k,σ(k)

∣∣∣∣∣ .
Since [(λ − a0(ξ))+j,i]k,σ(k) is just a component of the matrix λ − a0(ξ) and

by |ξβDβξα| ≤ |ξα| and |ξβDβλ| ≤ |λ|, we obtain

|ξβDβ[(λ− a0(ξ))+j,i]k,σ(k)| ≤ C(N,M)(|ξ|m + |λ|) (β ≤ γ).

Altogether we therefore have

‖ξγDγ(λ− a0(ξ))#‖CN×N ≤ C(N,M,n) · (|ξ|m + |λ|)N−1(10)

for γ ∈ {0, 1}n. In order to estimate ξα−γDα−γ ξβ

det(λ−a0(ξ)) , we apply Lemma

5.10, the parabolicity condition, and again the Leibniz rule to obtain∣∣∣∣ξα−γDα−γ ξβ

det(λ− a0(ξ))

∣∣∣∣
≤
∑

δ≤α−γ

∣∣∣ξ(α−γ)−δD(α−γ)−δξβ
∣∣∣ ∣∣∣∣ξδDδ 1

det(λ− a0(ξ))

∣∣∣∣(11)

≤ C(m,n,N,M,CP )
|ξ||β|

(|ξ|m + |λ|)N .

Now (9), (10), and (11) imply

‖ξαDαmβ,λ(ξ)‖CN×N

≤ C(n,m,N,M,CP )
(|λ|1/m)m−|β||ξ||β|

(|ξ|m + |λ|)

≤ C(n,m,N,M,CP )
(|ξ| + |λ|1/m)m

(|ξ|m + |λ|) ≤ C(n,m,N,M,CP ).

Note that the operator Tmβ(·,λ) commutes with Λk and therefore

[Tmβ(·,λ)]|Wk,p(Rn,CN ) = Λ−kTmβ(·,λ)Λk.

Assertion (iii) now follows immediately from (ii). �
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Proposition 5.12. Let A(D) be given as in (8) and assume that it is

parameter-elliptic in Σθ for a θ ∈ (0, π) and a constant CP > 0. Further-

more, assume that we have
∑

|α|=m ‖aα‖CN×N ≤ M for an M > 0. Then,

there hold the following assertions for the W k,p- realization Ak,p (k ∈ N0)

of A(D):

(i) Σθ \ {0} ⊂ ρ(Ak,p).

(ii) For every β ∈ N
n
0 with 0 ≤ |β| ≤ m we have, that {λ

m−|β|
m Dβ(λ −

Ak,p)
−1 : λ ∈ Σθ\{0}} ⊂ L(W k,p(Rn,CN )) is R-bounded. In addition,

we have λ
m−|β|

m Dβ(λ − Ak,p)−1 = [Tmβ,λ
]|Wk,p(Rn,CN ) for mβ,λ(ξ) :=

λ
m−|β|

m ξβ(λ − a0(ξ))−1 (λ ∈ Σθ \ {0}, ξ ∈ R
n). Furthermore, the

Rp-bound is bounded from above by a constant only depending on

k, p, n,m,N,CP and M . In particular, this yields the R-sectoriality

of Ak,p with ϕR(Ak,p) ≥ θ.

(iii) For all λ ∈ Σθ \ {0} there exists a constant Cλ > 0 depending on

k, p, n,m,N,CP ,M such that

‖(λ−Ak,p)−1‖L(Wk,p(Rn,CN ),Wk+m,p(Rn,CN )) ≤ Cλ.

Proof. For λ ∈ Σθ \ {0} and 0 ≤ |β| ≤ m we define

Tβ,λ := [Tmβ,λ
]|Wk,p(Rn,CN ) ∈ L(W k,p(Rn,CN ),W k+m−|β|,p(Rn,CN )).

Then it follows easily λ(λ−Ak,p)−1 = T0,λ or rather

λ
m−|β|

m Dβ(λ−Ak,p)−1 = Tβ,λ.

Therefore we proved (i) and

{λ
m−|β|

m Dβ(λ−Ak,p)−1 : λ ∈ Σθ \ {0}} = T k
β .

By Lemma 5.11 (iii) assertion (ii) follows.

To prove (iii), we use λ(λ−Ak,p)−1 = T0,λ and (ii) to obtain the estimate

‖(λ−Ak,p)−1‖L(Wk,p(Rn,CN ),Wk+m,p(Rn,CN ))
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≤ C

|λ| max
|β|≤m

‖Tξβm0,λ
‖L(Lp(Rn,CN ))

≤ C(λ)C(p, n,m,N,CP ,M) =: Cλ.

Hence the assertion is proved. �

By means of interpolation this results extends to the model-problem of

the (F , k, p)-realization of A(D).

Corollary 5.13. Let p, q ∈ (1,∞) and let F be an Lq-compatible

interpolation functor of type h. If A(D) is parameter-elliptic in Σθ (θ ∈
(0, π)) with constant CP > 0, then the (F , k, p)-realization of A(D) is R-

sectorial with ϕR(AF ,k,p) ≥ θ, provided that

W k,p(Rn,CN ) ↪→d F({Lp(Rn,CN ),W k,p(Rn,CN )}).

Proof. For simplicity we set

X0 := Lp(Rn,CN ), D(A0) :=Wm,p(Rn,CN ),

X1 :=W k,p(Rn,CN ), D(A1) :=W k+m,p(Rn,CN ).

According to Remark 5.4 the spaces X0 and X1 are of class HT . Setting

A0 := Ap and A1 := Ak,p, Proposition 5.12 yields the R-sectoriality of A0

and A1 with minj=0,1 ϕR(Aj) ≥ θ. Hence we obtain the R-sectoriality of

the (F , k, p)-realization by Theorem 3.23. Note that we use graph norms

on D(Aj) in Theorem 3.23. On the other hand, we have the equivalence

of the graph norms and the Sobolev norms by the fact that

A0 ∈ L(Wm,p(Rn,CN ), Lp(Rn,CN )) and A1 ∈ L(W k+m,p(Rn,CN ),

W k,p(Rn,CN )). Theorem 3.23 also yields the relation ϕR(AF ,k,p) ≥ θ. �

Remark 5.14. In particular, Corollary 5.13 holds for the real and the

complex interpolation method. This follows directly from Remark 3.25.

Corollary 5.15. The result of Proposition 5.12 and Corollary 5.13

is also true for a θ > π
2 , if we regard parabolic model problems. This follows

immediately from Remark 5.9.
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Example 5.16. Let Xs ∈ {Bs
p,q(R

n), Hs,p(Rn)}. For all s ∈ (0,∞), 1 <

p, q <∞ the Laplace operator ∆ : D(∆) ⊂ Xs −→ Xs with D(∆) := Xs+2

is R-sectorial on Xs, and we have ϕR(∆) = π.

5.2.2 Perturbation results

To handle the case of slightly varying coefficients we provide suitable

perturbation results for R-sectorial operators. The following notation as

well as Theorem 5.20 are taken from [15].

Definition 5.17. Let A : D(A) ⊂ X → X be an operator on a Banach

space X. For 1 < p <∞ we define

ΘR(A) :={
θ ∈ (0, π) : Σθ ⊂ ρ(A) ∧Rp({λ(λ−A)−1 ⊂ L(X) : λ ∈ Σθ}) <∞

}
.

It is obvious that A is R-sectorial with ϕR(A) = sup ΘR(A) provided that

ΘR(A) �= ∅. For θ ∈ ΘR(A) we define

Nθ(A) := sup{‖λ(λ−A)−1‖L(X) : λ ∈ Σθ},
Rθ,p(A) := Rp({λ(λ−A)−1 : λ ∈ Σθ}),
Ñθ(A) := sup{‖A(λ−A)−1‖L(X) : λ ∈ Σθ},
R̃θ,p(A) := Rp({A(λ−A)−1 : λ ∈ Σθ}).

Of course (0, ϕR(A)) ⊂ ΘR(A), but ϕR(A) �∈ ΘR(A) in general.

Remark 5.18. It can be easily seen that R̃θ,p(A) ≤ 1 + Rθ,p(A),

Rθ,p(A) ≤ 1 + R̃θ,p(A), Nθ(A) ≤ Rθ,p(A) and Ñθ(A) ≤ R̃θ,p(A).

The next lemma is an obvious consequence of the definition of R-sec-

toriality.

Lemma 5.19. Let A : D(A) ⊂ X → X be an R-sectorial operator and

θ ∈ ΘR(A), µ > 0 be arbitrary. Then we have R̃θ,p(A−µ) ≤ C ′
θ+CθR̃θ,p(A)

and therefore the R-sectoriality of A − µ : D(A) ⊂ X → X with constants

Cθ, C
′
θ > 0 only depending on θ. Furthermore, θ ∈ ΘR(A− µ) and ϕR(A−

µ) ≥ θ.
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Theorem 5.20. Let X be a Banach space, A : D(A) ⊂ X → X be

an R-sectorial operator, and suppose that θ ∈ ΘR(A). Assume that B :

D(B) ⊂ X → X is an operator satisfying D(A) ⊂ D(B) and

‖Bx‖X ≤ a‖Ax‖X + b‖x‖X (x ∈ D(A))

for some a, b ≥ 0 such that a <
(
Ñθ(A)(C ′

θ + CθR̃θ,p(A))
)−1

(C ′
θ, Cθ from

Lemma 5.19). Then there is a constant

C(a, b, θ, A) :=
bNθ(Ak,p)(C

′
θ + CθR̃θ,p(Ak,p))

1 − aÑθ(Ak,p)(C
′
θ + CθR̃θ,p(Ak,p))

> 0

such that for all µ > C(a, b, θ, A) the operator A+B − µ : D(A) ⊂ X → X

is R-sectorial with θ ∈ ΘR(A+B − µ) and ϕR(A+B − µ) ≥ θ. Moreover,

for all λ ∈ Σθ the resolvent is represented through

(λ− (A− µ+B))−1 = (λ+ µ−A)−1(1 −B(λ+ µ−A)−1)−1(12)

and we have

‖(1 −B(λ+ µ−A)−1)−1‖L(X)

≤
(

1 −
[
aÑθ(A) + b

1

µ
Nθ(A)

]
R̃θ,p(A− µ)

)−1

.

Lemma 5.21. Let k ∈ N (k �= 0) and A(D) =
∑

|α|=m aαD
α be pa-

rameter-elliptic in Σθ with constant CP > 0 and constant coefficients aα ∈
C
N×N such that

∑
|α|=m ‖aα‖CN×N ≤ M . Then there exists a constant

C = C(k,m, n, p,N,M,CP ) > 0 such that

‖Dαf‖Wk−1,p(Rn,CN )

≤ C|λ|− 1
m ‖Ak,pf‖Wk,p(Rn,CN ) + C|λ|1− 1

m ‖f‖Wk,p(Rn,CN )

for all f ∈W k+m,p(Rn,CN ), |α| = m, and λ ∈ Σθ \ {0}.

Proof. Let f ∈ W k+m,p(Rn,CN ), |α| = m, and λ ∈ Σθ \ {0} be

arbitrary. Choose any β ∈ N
n
0 with |β| = m − 1 and βi ≤ αi for all

i = 1, . . . , n. Proposition 5.12 yields λ ∈ ρ(Ak,p) and therefore

Dαf = λ
|β|−m

m Dα−β
[
λ

m−|β|
m Dβ(λ−Ak,p)−1

]
(λ−Ak,p)f.
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According to Proposition 5.12 (ii) there exists a constant C > 0 only de-

pending on p, n,m,N,M, k and CP such that max|β|=m−1 Rp(T k
β ) ≤ C. In

view of |β| = m− 1 and the triangle inequality we then deduce

‖Dαf‖Wk−1,p(Rn,CN )

≤ C|λ|
|β|−m

m (|λ|‖f‖Wk,p(Rn,CN ) + ‖Ak,pf‖Wk,p(Rn,CN )). �

We are now in position to handle perturbations of the principal part of

a parameter-elliptic differential operator with constant coefficients.

Notation. In the following context the constants k,m, n, p,N are al-

ways fixed. So, we do not mention the dependence of them explicitly.

Proposition 5.22. Let M,CP , τ > 0, k ∈ N0, 1 < p < ∞, and

θ ∈ (0, π). There exist constants ε(M,CP , θ) > 0, K(M,CP , θ) > 0, and

µ(M,CP , τ, θ) > 0 such that for all A(D) :=
∑

|α|=m aαD
α and S(x,D) :=∑

|α|=m sα(x)Dα with

(i) A(D) parameter-elliptic in Σθ with constant CP and aα ∈ C
N×N such

that
∑

|α|=m ‖aα‖CN×N ≤M ,

(ii) sα ∈ W k,∞(Rn,CN×N ) satisfying
∑

|α|=m ‖sα‖∞ < ε and in the case

of k �= 0 additionally that

max
0<|γ|≤k,|α|=m

‖Dγsα‖∞ ≤ τ

we have that

Rθ,p(Ak,p + Sk,p − µ) ≤ K.

Thus the W k,p-realization Ak,p + Sk,p − µ is R-sectorial and we have θ ∈
ΘR(Ak,p + Sk,p − µ), i.e., in particular that ϕR(Ap,k + Sp,k − µ) ≥ θ. Fur-

thermore, for all λ ∈ Σθ there exists a constant Cλ(M,CP , µ) > 0 such

that

‖(λ− (Ak,p − µ+ Sk,p))
−1‖L(Wk,p(Rn,CN ),Wk+m,p(RN ,CN )) ≤ Cλ.(13)
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Proof. We define mα(ξ) := ξαa(ξ)−1 with |α| = m. Due to the

homogeneity of mα this symbol is a Fourier multiplier. Note that

TmαA(D)g = Tmα�−1a�g = �−1ξα�g = Dαg.(14)

Thanks to Tmα ∈ Tα,0 Lemma 5.11 (ii) yields

max
|α|=m

‖Tmα‖L(Lp(Rn,CN )) ≤ η(15)

for a constant η(M,Cp) > 0 that does not depend explicitly on the coeffi-

cients aα.

According to Proposition 5.12 we have the R-sectoriality of Ak,p with

θ ∈ ΘR(Ak,p) and a constant K(M,CP ) > 0 with

Ñθ(Ak,p), Nθ(Ak,p), R̃θ,p(Ak,p), Rθ,p(Ak,p) < K/2.

In the following we aim for an application of Theorem 5.20. Thus we have

to show that

‖Sk,pf‖Wk,p(Rn,CN ) ≤ a‖Ak,pf‖Wk,p(Rn,CN ) + b‖f‖Wk,p(Rn,CN )(16)

for

a := a(M,CP , θ) := (K(C ′
θ + CθK))−1

< (Ñθ(Ak,p)(C
′
θ + CθR̃θ,p(Ak,p)))

−1

and a b(M,CP , τ) ≥ 0.

Step 1. Proof of estimate (16).

Here we will only give the proof for the case k ≥ 1, since the case k = 0

is given in [15]:

Let g ∈ W k,p(Rn,CN ) with |α| = m. Then we have thanks to assump-

tion (ii) that

‖sαg‖Wk,p(Rn,CN ) ≤ C

[∑
|β|≤k

‖sα‖∞‖Dβg‖Lp(Rn,CN )
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+
∑
|β|≤k

∑
γ<β

‖Dβ−γsα‖∞‖Dγg‖Lp(Rn,CN )

]
(17)

≤ C‖sα‖∞‖g‖Wk,p(Rn,CN ) + C(τ)‖g‖Wk−1,p(Rn,CN ).

Summing up, we obtain for f ∈W k+m,p(Rn,CN ) that

‖Sk,pf‖Wk,p(Rn,CN ) ≤ C max
|α|=m

‖sα‖∞
∑

|α|=m
‖Dαf‖Wk,p(Rn,CN )

+ C(τ)
∑

|α|=m
‖Dαf‖Wk−1,p(Rn,CN ).

Now we have to find estimates for the expressions ‖Dαf‖Wk−1,p(Rn,CN ) and

‖Dαf‖Wk,p(Rn,CN ). By applying (14) and (15) we can conclude

‖Dαf‖Wk,p(Rn,CN ) ≤ η‖Ak,pf‖Wk,p(Rn,CN ).(18)

For ‖Dαf‖Wk−1,p(Rn,CN ) we have by Lemma 5.21 for λ0 > 0 and a constant

C(M,CP ) > 0 that

‖Dαf‖Wk−1,p(Rn,CN ) ≤ C(M,CP )λ
− 1

m
0 ‖Ak,pf‖Wk,p(Rn,CN )(19)

+ C(M,CP , λ0)‖f‖Wk,p(Rn,CN ).

This results in

‖Sk,pf‖Wk,p(Rn,CN )

≤
[
C(η) max

|α|=m
‖sα‖∞ + C(M,CP , τ, )λ

− 1
m

0

]
‖Ak,pf‖Wk,p(Rn,CN )(20)

+ C(M,CP , τ, λ0) · ‖f‖Wk,p(Rn,CN ).

Step 2. Application of Theorem 5.20.

We set ε(M,CP , θ) := 1
2

a
C(η) > 0 and fix λ0 > 0 such that

C(M,CP , τ)λ
− 1

m
0 <

1

2
a

with a as be given before. Since the choice of λ0 only depends on the

variables M,CP , τ and θ we obtain that b := C(M,CP , τ, λ0) does not
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depend explicitly on the coefficients aα and sα. Since
∑

|α|=m ‖sα‖∞ < ε

we obtain

‖Sk,pf‖Wk,p(Rn,CN ) ≤ a‖Ak,pf‖Wk,p(Rn,CN ) + b‖f‖Wk,p(Rn,CN ).

By the fact that K/2 > Ñθ(Ak,p), K > Nθ(Ak,p), R̃θ(Ak,p) and since

µ(M,CP , τ, θ) :=
bK(C ′

θ + CθK)

1 − aK2 (C ′
θ + CθK)

>
bNθ(Ak,p)(C

′
θ + CθR̃θ,p(Ak,p))

1 − aÑθ(Ak,p)(C
′
θ + CθR̃θ,p(Ak,p))

> 0,

we obtain the R-sectoriality of Ak,p+Sk,p−µ with θ ∈ ΘR(Ak,p+Sk,p−µ).
Observe that we have µ = 2bK(C ′

θ + CθK). Moreover, Theorem 5.20 yields

the estimate

Rθ,p(Ak,p + Sk,p − µ) ≤ Rθ,p(Ak,p − µ)
1 − [aÑθ(Ak,p) + b 1

µNθ(Ak,p)]R̃θ,p(Ak,p − µ)

≤ Rθ,p(Ak,p − µ)
1 − K

2 [a+ b 1
µ ](C ′

θ + CθK)

≤ 4(1 + C ′
θ + CθK) =: K(M,CP , θ),

where we used that R̃θ,p(Ak,p − µ) ≤ C ′
θ + CθR̃θ,p(Ak,p) ≤ C ′

θ + CθK and

Rθ,p(Ak,p − µ) ≤ 1 + R̃θ,p(Ak,p − µ).
The proof of (13) with λ ∈ Σθ follows directly from

‖(1 − Sk,p(λ+ µ−Ak,p)−1)−1‖L(Wk,p(Rn,CN ))

≤
(

1 −
[
aÑθ(Ak,p) + b

1

µ
Nθ(Ak,p)

]
R̃θ,p(Ak,p − µ)

)−1

≤ 4

and the representation of the resolvent in (12) and Proposition 5.12 (iii). �

5.2.3 Some helpful facts on diagonal-operators

To prove our main theorem for parabolic systems we next establish some

facts on diagonal operators. Diagonal operators appear in a natural way

during the process of localization. The proof of the following results is

rather elementary and therefore omitted.
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Lemma 5.23. Let (Tl)l∈N be a sequence of operators on a Banach space

X with D(Tl) := Y for another Banach space Y ↪→ X. If there additionally

hold the conditions

(i) Tl ∈ L(Y,X) for all l ∈ N,

(ii) supl∈N‖Tl‖L(Y,X) <∞,

then the diagonal-operator

A : D(A) ⊂ X → X, (ul)l∈N �→ (Tlul)l∈N

with X := =p(N, X) and D(A) := Y := =p(N, Y ) is well-defined and we have

A ∈ L(Y,X).

If the Tl’s are densely defined, then A is densely defined as well and we

have

ρ(A) =

{
λ ∈

∞⋂
l=1

ρ(Tl) : ∃Cλ > 0 : sup
l∈N

‖(λ− Tl)−1‖L(X,Y ) ≤ Cλ

}
.

Furthermore, we obtain for all λ ∈ ρ(A) and (ul)l∈N ∈ X the representation

(λ− A)−1(ul)l∈N = ((λ− Tl)−1ul)l∈N.

Lemma 5.24. Assume that (Tl)l is a sequence satisfying the condi-

tions of Lemma 5.23. Then the diagonal-operator A is R-sectorial with

θ ∈ ΘR(A), if there exists a θ ∈ (0, π) such that we have:

(i) Tl is R-sectorial with θ ∈ ΘR(Tl) for all l ∈ N.

(ii) There is a 1 < p < ∞ such that there exists a Kp > 0 with

supl∈NRθ,p(Tl) ≤ Kp.

(iii) For all λ ∈ Σθ there exists a Cλ > 0 with

sup
l∈N

‖(λ− Tl)−1‖L(X,Y ) ≤ Cλ.
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In particular, we have ϕR(A) ≥ θ and Rθ,p(A) ≤ Kp in this case.

Proof. Thanks to Lemma 5.23 and condition (iii), we have Σθ ⊂ ρ(A)

and

(λ− A)−1(ul)l∈Γ = ((λ− Tl)−1ul)l∈Γ

for all (ul)l∈Γ ∈ X and λ ∈ Σθ.

It remains to prove the R-boundedness of {λ(λ − A)−1 : λ ∈ Σθ}. Let

M ∈ N, (λk)k=1,... ,M ⊂ Σθ, and let (xk)k=1,... ,M ⊂ X with xk =: (u
(k)
l )l∈N.

Then we obtain∥∥∥∥∥
M∑
k=1

rkλk(λk − A)−1xk

∥∥∥∥∥
Lp([0,1],X)

=

( ∞∑
l∈N

∫ 1

0

∥∥∥∥∥
M∑
k=1

rk(t)λk(λk − Tl)−1u
(k)
l

∥∥∥∥∥
p

X

dt

)1/p

≤
( ∞∑

l∈N
Kp
p

∫ 1

0

∥∥∥∥∥
M∑
k=1

rk(t)u
(k)
l

∥∥∥∥∥
p

X

dt

)1/p

= Kp

∥∥∥∥∥
M∑
k=1

rkxk

∥∥∥∥∥
Lp([0,1],X)

.

This implies Rp({λ(λ− A)−1 : λ ∈ Σθ}) ≤ Kp and ϕR(A) ≥ θ. �

5.2.4 Main result on parabolic systems of differential equations

First we make a preliminary remark on the approach we use in this sec-

tion: our first aim is to prove R-sectoriality of the W k,p-realization of a

parabolic system. To this end, we essentially follow the approach given in

[15, Chapter 6]. However, since we deal with Sobolev spaces of arbitrary

order we need differentiability of the localized coefficients, which is not re-

quired for the localization in Lp as performed in [15, Chapter 6]. Therefore,

we have to slightly modify the method used in [15, Chapter 6] by introduc-

ing a smoother localization that assures the well-definedness of the localized

operators on the Sobolev space W k,p.

Our second aim is the transference of R-sectoriality to the realization

of a parabolic system on certain interpolation spaces. This, in turn, is then

obtained as an easy consequence of Theorem 3.19. As a well-known fact we

first have
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Lemma 5.25. For all r > 0 there exists a ϕ ∈ C∞
0 (Rn) with 0 ≤ ϕ ≤ 1,

suppϕ ⊂ (−r, r)n and ∑
l∈Γ

ϕ2
l (x) = 1 for all x ∈ R

n.

Here we set Γ := rZn and ϕl := ϕ(.− l) for all l ∈ Γ. Additionally, we have

suppϕl ⊂ l + [−3
4r,

3
4r]

n.

Definition and Lemma 5.26. Let

Xk := =p(Γ,W k,p(Rn,CN ))

for 1 < p < ∞, N ∈ N, and k ∈ N0 with Γ = rZ, r > 0. Let the sequence

(ϕl)l∈Γ be as given in Lemma 5.25 and define the ’localization-operator’

J : Lp(Rn,CN ) → X0, f �→ (ϕlf)l∈Γ

and the ’patching-together-operator’

P : X0 → Lp(Rn,CN ), (fl)l∈Γ �→
(
x �→

∑
l∈Γ

ϕl(x)fl(x)

)
.

For k ∈ N0 we have

J|Wk,p(Rn,CN ) ∈ L(W k,p(Rn,CN ),Xk), P|Xk
∈ L(Xk,W

k,p(Rn,CN )),

and PJ = idLp(Rn,CN ).

Proof. Follows easily by the smoothness of ϕ. �

Next we recall an interpolation inequality for C
N -valued functions. The

scalar case is proved in [1, Theorem 5.2], for instance. The C
N -valued case

follows directly from the scalar case. We will apply this inequality later to

verify the conditions of the perturbation result.

Lemma 5.27. For everym ∈ N0 and each ε0 > 0 there exists a constant

K(p, n, k,N, ε0) > 0 such that for all ε ∈ (0, ε0] and j ∈ N0 with 0 ≤ j < k
and u ∈W k,p(Rn,CN ) we have

‖u‖W j,p(Rn,CN ) ≤ K(ε‖u‖Wk,p(Rn,CN ) + ε−j/(k−j)‖u‖Lp(Rn,CN )).
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Theorem 5.28. Let 1 < p < ∞, k ∈ N0, and the differential oper-

ator A(x,D) :=
∑

|α|≤m aα(x)Dα be given. Furthermore, assume that the

coefficients satisfy the following regularities:

aα ∈ BUC(Rn,CN×N ) ∩ Ck
b (Rn,CN×N ) for |α| = m,

aα ∈W k,p∞(Rn,CN×N ) for |α| < m

(see (7) for the definition of p∞). If A(x,D) is parabolic with constant

CP > 0, then there exists a ν > 0 such that the W k,p-realization Ak,p − ν is

R-sectorial with ϕR(Ak,p − ν) > π
2 .

Proof. 1. Localization (“Freezing the coefficients”):

First, Remark 5.9 yields a θ ∈ (π2 , π) such that we even have the pa-

rameter-ellipticity of A(x,D) in Σθ. For M :=
∑

|α|=m ‖aα‖∞ let ε =

ε(M,CP , θ),K = K(M,CP , θ) > 0 be the constants as given in the state-

ment of Proposition 5.22. By the uniform continuity of all aα with |α| = m

there exists a δ > 0 such that∑
|α|=m

‖aα(x) − aα(y)‖CN×N < ε (x, y ∈ R
n, |x− y| < δ).

Next, we choose r > 0 such that diam (−r, r)n < δ. For this r we choose

a ϕ ∈ C∞
0 (Rn) as in Lemma 5.25. Furthermore, we choose χ ∈ C∞

0 (Rn)

satisfying χ(x) = 1 for ‖x‖1 :=
∑n

k=1 |xk| ≤ 7
8 , χ(x) = 0 for ‖x‖1 ≥ 1, and

0 ≤ χ(x) ≤ 1 for all x ∈ R
n.

Then we define for l ∈ Γ := rZ the localized differential operator

Al(x,D) :=
∑

|α|=m
alα(x)Dα

with coefficients

alα(x) := aα

(
l + χ

(
x− l
r

)
(x− l)

)

=


aα(x) , ‖x− l‖1 ≤ 7

8r

aα(l) , ‖x− l‖1 ≥ r
aα(x̃) for some x̃ ∈ Ql , otherwise

,
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for |α| = m, l ∈ Γ, and Ql := l + (−r, r)n. Next, we analyze the struc-

ture of these coefficients. For Φl : x �→ l + χ
(
x−l
r

)
(x − l) ∈ Ql we have

Φl ∈ C∞
b (Rn,R) and there exists a constant Cχ(r) > 0 such that for all

l ∈ Γ, γ ∈ N
n
0 with 1 ≤ |γ| ≤ k we have ‖DγΦl‖∞ < Cχ. Thanks to

aα ∈ Ck
b (Rn,Cn×n) (|α| = m) the classical chain rule applies and we obtain

that alα ∈ Ck
b (Rn,CN×N ). Moreover, there exists a constant τ > 0 only

depending on χ, r, and max0≤|γ|≤k

|α|=m
‖Dγaα‖∞ such that

max
0≤|γ|≤k

‖Dγalα‖∞ ≤ τ for all l ∈ Γ, |α| = m.

As before, let Alk,p be the W k,p-realization of Al. Due to Lemma 5.23 we

can form the diagonal-operator

Ak,p : D(Ak,p) ⊂ Xk → Xk, (ul)l∈Γ �→ (Alk,pul)l∈Γ

with D(Ak,p) := Xk+m.

2. R-sectoriality of Ak,p − µ:
For the formal differential operator Al(x,D) we have the decomposition

Al(x,D) =
∑

|α|=m

[
alα(x) − aα(l)

]
Dα

︸ ︷︷ ︸
=:A′(x,D)

+
∑

|α|=m
aα(l)Dα

︸ ︷︷ ︸
=:A′′(D)

.

Note that the second part A′′(D) is parameter-elliptic in Σθ with the same

constant CP . For all l ∈ Γ, we have∑
|α|=m

‖aα(l)‖CN×N ≤M,
∑

|α|=m
‖alα(·) − aα(l)‖∞ < ε,

max
0<|γ|≤k

|α|=m

‖Dγ(alα(·) − aα(l))‖∞ ≤ τ for k �= 0.

Applying Proposition 5.22 yields a constant µ(M,CP , τ, θ) > 0 independent

of l ∈ Γ such that A′′
k,p + A′

k,p − µ = Alk,p − µ is R-sectorial with θ ∈
ΘR(Alk,p−µ) and Rθ,p(A

l
k,p−µ) ≤ K. SinceK according to Proposition 5.22

only depends on CP ,M, and θ and since these constants are uniformly in =,

we obtain

Rθ,p(A
l
k,p − µ) ≤ K (= ∈ Γ).
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Additionally, Proposition 5.22 yields

sup
l∈Γ

‖(λ+ µ−Alk,p)−1‖L(Wk,p(Rn,CN ),Wk+m,p(Rn,CN )) ≤ Cλ,

where the constant Cλ only depends on λ,M,CP und µ. Thus, Lemma 5.24

implies the R-sectoriality of Ak,p − µ with

θ ∈ ΘR(Ak,p − µ) and Rθ,p(Ak,p − µ) ≤ K.

3. Determination of JAk,p − Ak,pJ and Ak,pP − PAk,p:

In essentially the same way as in [15], we obtain

(JAk,p − Ak,pJ)u = Bk,pJu,(21)

(Ak,pP − PAk,p)(ul)l∈Γ = PDk,p(ul)l∈Γ,(22)

where we set D(Bk,p) := Xk+m−1, D(Dk,p) := Xk+m−1, Alow(x,D) :=

A(x,D) −A0(x,D), and where the operators Bk,p and Dk,p are defined as

Bk,p : D(Bk,p) ⊂ Xk → Xk,

(ul)l∈Γ �→

Alow(x,D)ul +
∑
j∈Γ:

Qj∩Ql �=∅

(ϕlA(x,D) −A(x,D)ϕl)(ϕjuj)


l∈Γ

,

Dk,p : D(Dk,p) ⊂ Xk → Xk,

(ul)l∈Γ �→

Alow(x,D)ul +
∑
j∈Γ:

Qj∩Ql �=∅

ϕl(A(x,D)ϕj − ϕjA(x,D))uj


l∈Γ

.

Observe that in Bk,p and Dk,p there appear only derivatives of order less or

equal to m− 1.

4. Perturbation of Ak,p − µ:
Our aim is to apply Theorem 5.20 to the operator A

(µ)
k,p := Ak,p − µ

combined with the perturbation Bk,p and to A
(µ)
k,p combined with Dk,p. At
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first we have 1 ∈ ρ
(
A

(µ)
k,p

)
and

(
1 − A

(µ)
k,p

)−1
∈ L(Xk,Xk+m) due to Lemma

5.23. Next we set ε0 := 1 and choose 0 < ε′ < 1 such that

a := ε′KMB,D ·
∥∥∥∥(1 − A

(µ)
k,p

)−1
∥∥∥∥
L(Xk,Xk+m)

<
(
Ñθ

(
A

(µ)
k,p

)(
C ′
θ + CθR̃θ,p

(
A

(µ)
k,p

)))−1
,

with MB,D := max{‖Bk,p‖L(Xk+m−1,Xk), ‖Dk,p‖L(Xk+m−1,Xk)} and with K > 0

from Lemma 5.27. For (ul)l∈Γ ∈ Xk+m−1, Lemma 5.27 and the boundedness

of Bk,p and Dk,p yield

‖Bk,p(ul)l∈Γ‖Xk

‖Dk,p(ul)l∈Γ‖Xk

}
≤ a′‖(ul)l∈Γ‖Xk+m

+ b′‖(ul)l∈Γ‖X0

≤ a′‖(ul)l∈Γ‖Xk+m
+ b′‖(ul)l∈Γ‖Xk

for a′ := ε′KMB,D and b′ := KMB,D · (ε′)−(k+m−1). By virtue of

‖(ul)l∈Γ‖Xk+m
≤
∥∥∥∥(1 − A

(µ)
k,p

)−1
∥∥∥∥
L(Xk,Xk+m)

·
(∥∥∥A(µ)

k,p(ul)l∈Γ

∥∥∥
Xk

+ ‖(ul)l∈Γ‖Xk

)
we conclude

‖Bk,p(ul)l∈Γ‖Xk

‖Dk,p(ul)l∈Γ‖Xk

}
≤ a
∥∥∥(A(µ)

k,pul

)
l∈Γ

∥∥∥
Xk

+

(
b′ + a′

∥∥∥∥(1 − A
(µ)
k,p

)−1
∥∥∥∥
L(Xk,Xk+m)

)
· ‖(ul)l∈Γ‖Xk

.

Hence, from Theorem 5.20 we infer that there exists an η > 0 such

that A
(µ)
k,p + Bk,p − η and A

(µ)
k,p + Dk,p − η are R-sectorial with θ ∈

ΘR
(
A

(µ)
k,p + Bk,p − η

)
∩ ΘR

(
A

(µ)
k,p + Dk,p − η

)
.

5. Determination of the resolvent (Ak,p − (µ+ η))−1:

Let λ ∈ Σθ and ν := µ + η > 0; Due to (21) and (22) we obtain a left

inverse of λ− (Ak,p − ν)) in form of

P
(
λ+ η −

(
A

(µ)
k,p + Bk,p

))−1
J|Wk,p(Rn,CN )(23)
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and a right inverse given as

P
(
λ+ η −

(
A

(µ)
k,p + Dk,p

))−1
J|Wk,p(Rn,CN ).(24)

Hence (23) and (24) coincide and we have λ ∈ ρ(Ak,p − ν). The R-

boundedness follows directly from

λ (λ− (Ak,p − ν))−1 = P

[
λ
(
λ−

(
A

(µ)
k,p + Dk,p − η

))−1
]
J (λ ∈ Σθ)

and the fact that P|Xk
∈ L(Xk,W

k,p(Rn,CN )) and J|Wk,p(Rn,CN ) ∈
L(W k,p(Rn,CN ),Xk). Consequently,

Rθ,p (Ak,p − ν) ≤ C(P, J)Rθ,p

(
A

(µ)
k,p + Dk,p − η

)
,

which implies Ak,p − ν to be R-sectorial with R-angle ϕR(Ak,p − ν) ≥ θ >
π
2 . �

With the help of Theorem 3.23 the above result generalizes to parabolic

systems realized on interpolation spaces.

Theorem 5.29. Let k ∈ N0 and A(x,D) :=
∑

|α|≤m aα(x)Dα be a

formal differential operator, where we assume the coefficients to have the

following regularities:

aα ∈ BUC(Rn,CN×N ) ∩ Ck
b (Rn,CN×N ) for |α| = m

aα ∈W k,p∞(Rn,CN×N ) for |α| < m.

Let 1 < p, q <∞ and F be an Lq-compatible interpolation functor of type h

such that

W k,p(Rn,CN ) ↪→d F({Lp(Rn,CN ),W k,p(Rn,CN )}),

and let AF ,k,p be the (F , k, p)-realization of A(x,D) as defined in (6). If

A(x,D) is parabolic, then there exists ν > 0 such that AF ,k,p − ν is R-

sectorial with ϕR(AF ,k,p − ν) > π
2 .

Proof. By the assumed regularity of the coefficients the Lp- and

W k,p-realizations Ap and Ak,p are well-defined. Theorem 5.28 yields the
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R-sectoriality of A0 := Ap − ν and A1 := Ak,p − ν for a ν > 0 with

ϕR(Ap − ν) > π
2 and ϕR(Ak,p − ν) > π

2 . We set

X0 := Lp(Rn,CN ), D(A0) :=Wm,p(Rn,CN ),

X1 :=W k,p(Rn,CN ), D(A1) :=W k+m,p(Rn,CN ).

By the same arguments as in Corollary 5.13 we obtain in combination with

Theorem 3.23 the R-sectoriality of the operator

AF ,k,p − ν : D(AF ,k,p) → F({Lp(Rn,CN ),W k,p(Rn,CN )}),
D(AF ,k,p) := F({W k,p(Rn,CN ),W k+m,p(Rn,CN )}),
(AF ,k,p − ν)f := (A(x,D) − ν)f, f ∈ D(AF ,k,p).

Moreover, Theorem 3.23 yields ϕR(AF ,k,p − ν) > π
2 , hence the assertion is

proved. �

Corollary 5.30. The parabolic system described in Theorem 5.29 has

maximal Lp-regularity on the space F({Lp(Rn,CN ),W k,p(Rn,CN )}).

Proof. The characterization of maximal Lp-regularity by R-sectorial-

ity with R-angle bigger then π/2 yields the assertion. This characterization

can be found in [21], [15], or [6]. �

Corollary 5.31. Assume the situation of Theorem 5.29 to be given.

Then the Besov- and Bessel-potential-space realizations AB
s,p,q and AH

s,p as

defined in Remark 5.5 are R-sectorial on the spaces Bs
p,q(R

n,CN ) and

Hs,p(Rn,CN ) with ϕR(AB
s,p,q − ν) > π

2 and ϕR(AH
s,p,q − ν) > π

2 , respec-

tively.

Proof. This follows directly from Theorem 5.29 and Remark 3.25. �
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