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On the Spectrum of the Operator of Inner Waves

in a Viscous Compressible Stratified Fluid

By Andrei Giniatoulline and Tovias Castro

Abstract. We study the structure of the spectrum of differen-
tial operators which arise in the problems modelling the inner oscilla-
tions of viscous compressible barotropic exponentially stratified three-
dimensional fluid. For Dirichlet problem, we prove that the essential
spectrum consists of three real points. We find the sector of the com-
plex plane to which all the eigenvalues belong.

1. Viscous Stratified Compressible Fluid

Let us consider a bounded domain Ω ⊂ R3 with the boundary ∂Ω of the

class C∞ and the following system of fluid dynamics

∂u1
∂t − ν∆u1 − νβ ∂

∂x1
(div−→u ) + ∂p

∂x1
= 0

∂u2
∂t − ν∆u2 − νβ ∂

∂x2
(div−→u ) + ∂p

∂x2
= 0

∂u3
∂t − ν∆u3 − νβ ∂

∂x3
(div−→u ) + ρ+ ∂p

∂x3
= 0

∂ρ
∂t −N2u3 = 0

α2 ∂p
∂t + div−→u = 0 x ∈ Ω, t ≥ 0.

(1.1)

Here x = (x1, x2, x3) is the space variable, −→u (x, t) = (u1 (x, t) , u2 (x, t) ,

u3 (x, t)) is the velocity field, p (x, t) is the scalar field of the dynamic pres-

sure and ρ (x, t) is the dynamic density. In this model, the stationary distri-

bution of density is described by the function e−Nx3 , where N is a positive

constant. For the compressibility coefficient α, the kinematic viscosity co-

efficient ν, and the volume (bulk) viscosity coefficient β we assume α > 0,

ν > 0, β ≥ 0.
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For inviscid case, the equations 1.1 are deduced in [3], [11] , [17]. For

viscous compressible fluid, the system 1.1 is deduced, for example, in [12].

We may observe that, despite an extensive study of stratified flows from

the physical point of view (see, for example, [2], [4], [5], [13], [14], [16]),

there have been relatively few works considering the mathematical aspect

of the problem.

We associate system 1.1 to Dirichlet boundary condition

−→u |∂Ω = 0.

Let us consider the following problem of normal vibrations

−→u (x, t) = −→v (x) e−λt

ρ (x, t) = Nv4 (x) e−λt

p (x, t) = 1
αv5 (x) e−λt , λ ∈ C.

(1.2)

We denote ṽ = (−→v , v4, v5) and write the system 1.1 in the matrix form

Lṽ = 0(1.3)

where

L = M − λI

and

M =


−ν∆ − νβ ∂2

∂x2
1

−νβ ∂2

∂x1∂x2
−νβ ∂2

∂x1∂x3
0 1

α
∂

∂x1

−νβ ∂2

∂x1∂x2
−ν∆ − νβ ∂2

∂x2
2

−νβ ∂2

∂x2∂x3
0 1

α
∂

∂x2

−νβ ∂2

∂x1∂x3
−νβ ∂2

∂x2∂x3
−ν∆ − νβ ∂2

∂x2
3

N 1
α

∂
∂x3

0 0 −N 0 0
1
α

∂
∂x1

1
α

∂
∂x2

1
α

∂
∂x3

0 0

 .(1.4)

We define the domain of the operator M as follows.

D (M) =

=

−→v ∈
(

0

W 1
2 (Ω)

)3

, v4 ∈ L2 (Ω) , v5 ∈ L2 (Ω) : Mṽ ∈ (L2 (Ω))5

 ,
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where
0

W 1
2 (Ω) is a closure of the functional space C∞

0 (Ω) in the norm

‖f‖ =

∫
Ω

[
|∇f |2 + f2

]
dx

 1
2

.

In this paper, we will study the spectrum of the operator M .

From the point of view of applications, the separation of variables 1.2

serves as a tool to describe every non-stationary motion modelled by 1.1

as a linear superposition of the stationary modes. The knowledge of the

spectrum of normal vibrations may be very useful for studying the stability

of the flows. Additionally, the spectrum of operator M plays an important

role in the investigation of weakly non-linear flows, since the bifurcation

points where the small non-linear solutions arise, belong to the spectrum of

linear normal vibrations, i.e., to the spectrum of operator M .

It can be easily seen that the operator M is a closed operator, and its

domain is dense in (L2 (Ω))5.

Let is denote by σess (M) the essential spectrum of operator M . We

recall that the essential spectrum

σess (M) = {λ ∈ C : (M − λI) is not of Fredholm type} ,

is composed of the points belonging to the continuous spectrum, limit points

of the point spectrum and the eigenvalues of infinite multiplicity ([10], [15]).

To find the essential spectrum of the operator M , we will use the fol-

lowing property ([9]):

σess (M) = Q ∪ S,

where

Q = {λ ∈ C : (M − λI) is not elliptic in sense of Douglis-Nirenberg}

and

S =

{
λ ∈ C \Q : the boundary conditions for the operator (M − λI)

do not satisfy Lopatinski conditions

}
.

We recall the following two definitions.
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Definition 1. Let us consider a differential matrix operator

L =

 l11 ... l1N
... ... ...

lN1 ... lNN

 , lij =
∑

|α|≤nij

a
(α)
ij Dα, α = (α1, ..., αn) ,

|α| = α1 + ...+ αn, Dj =
∂

∂xj
, Dα = Dα1

1 ...Dαn
n =

∂|α|

∂xα1
1 ...∂xαn

n
.

Let {si}Ni=1 , {tj}
N
j=1 be two sets of integer numbers such that, if lij = 0,

then nij = deg lij ≤ si + tj . In case lij = 0, we do not require any condition

for the sum si + tj . Now, we construct the main symbol of L (D) as follows.

L̃ (D) =

 l̃11 (D) ... l̃1N (D)

... ... ...

l̃N1 (D) ... l̃NN (D)

 ,

l̃ij =

 0 if lij (D) = 0 or deg lij (D) < si + tj∑
|α|=si+tj

a
(α)
ij Dα if deg lij (D) = si + tj .

If there exist the sets s and t which satisfy the above conditions and, addi-

tionally, if the following condition holds,

det L̃ (ξ) = 0 for all ξ ∈ Rn \ {0} ,

then the operator L (D) is called elliptic in sense of Douglis-Nirenberg

(see[1]).

Definition 2. Let us consider ξ = (ξ1, ξ2, ξ3) , ξ̃ = (ξ1, ξ2) , L̂ (ξ)−the

matrix of the algebraic complements of the main symbol matrix L̃ (ξ) , G (ξ)

is the main symbol of the matrix G (D) which defines the boundary condi-

tions, M+
(
ξ̃, τ

)
=
∏(

τ − τj

(
ξ̃
))

, τj

(
ξ̃
)

are the roots of the equation

det L̃
(
ξ̃, τ

)
= 0 with positive imaginary part. If the rows of the ma-

trix G
(
ξ̃, τ

)
L̂
(
ξ̃, τ

)
are linearly independent with respect to the module
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M+
(
ξ̃, τ

)
for

∣∣∣ξ̃∣∣∣ = 0, then we will say that the conditions of Lopatinski

are satisfied (see[9]).

Now we establish the following main result.

Theorem 1. The essential spectrum of operator M is composed of

three real points

σess (M) =

{
0,

1

να2 (β + 1)
,

1

να2 (β + 2)

}
.

Proof. We observe that the main symbol of the operator L = M−λI

is:

L̃ (ξ) =


−ν |ξ|2 − νβξ2

1 −νβξ1ξ2 −νβξ1ξ3 0 1
αξ1

−νβξ1ξ2 −ν |ξ|2 − νβξ2
2 −νβξ2ξ3 0 1

αξ2
−νβξ1ξ3 −νβξ2ξ3 −ν |ξ|2 − νβξ2

3 0 1
αξ3

0 0 0 −λ 0
1
αξ1

1
αξ2

1
αξ3 0 −λ

 .

We calculate the determinant of the last matrix

det
(
M̃ − λI

)
(ξ) =

λν2

α2
|ξ|6

(
νλα2 (β + 1) − 1

)
,

and thus we can see that for two points λ = 0 and λ = 1
να2(β+1)

the operator

L = M − λI is not elliptic in sense of Douglis-Nirenberg. We will show,

additionally, that for the point λ = 1
να2(β+2)

the condition of Lopatinski is

not satisfied.

The Dirichlet boundary condition can be written in a matrix form

Gṽ|∂Ω = 0 , G =

 1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 .

If we denote ξ̃ = (ξ1, ξ2) , ξ3 = τ, then

det
(
M̃ − λI

)(
ξ̃, τ

)
=
λν2

α2

(∣∣∣ξ̃∣∣∣2 + τ2

)3 (
νλα2 (β + 1) − 1

)
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and thus the equation det
(
M̃ − λI

)(
ξ̃, τ

)
= 0 for λ = 0, 1

να2(β+1)
has one

root τ = i
∣∣∣ξ̃∣∣∣ of triple multiplicity in the upper half of the complex plane.

In this way, M+
(
ξ̃, τ

)
=
(
τ − i

∣∣∣ξ̃∣∣∣)3
. Since the elements of the matrices

M̃ − λI and G are homogeneous functions with respect to ξ̃, τ, then it is

sufficient to verify the Lopatinski condition for unitary vectors ξ̃. Let us

choose a local system of coordinates so that ξ1 = 1, ξ2 = 0. Then, we have

M+
(
ξ̃, τ

)
= (τ − i)3

and (
M̃ − λI

)
(τ) =

=


−ν (β + 1) − ντ2 0 −νβτ 0 1

α

0 −ν
(
1 + τ2

)
0 0 0

−νβτ 0 −ν − ν (β + 1) τ2 0 τ
α

0 0 0 −λ 0
1
α 0 τ

α 0 −λ

 .

For the matrix
(
M̃ − λI

)
we construct first the adjoint matrix

(
M̂ − λI

)
(which is composed of algebraic complements of the original matrix), then

we multiply
(
M̂ − λI

)
by the boundary conditions matrixG, after which we

divide G
(
M̂ − λI

)
by the polynomial (τ − i)3, and, finally, we consider the

matrix M1 which is composed of the residues of that division. After some

elementary transformations of the rows of M1 and making the notation

η = β − 1
νλα2 , we obtain the following matrix M2 :

M2 = −ν2λ (τ − i) ×

×
(

(4 + 3η) i− (5η + 4) τ 0 −η (1 + 3τi) 0 0
0 −4 (1 + η) (τ − i) 0 0 0

−η (1 + 3τi) 0 (4 + η) i+ (η − 4) τ 0 0

)
.

If we define as M3 the 3rd order square minor of M2 without the last two

columns, then the linear independence of the rows of the matrices M2, M1

can be verified by calculating the determinant of the matrix M3.
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We observe that

detM3 = 16 (η + 1) (η + 2)2
(
ν2λ

)3
(τ − i)6 =

= 16

(
(β + 1) − 1

να2λ

)(
(β + 2) − 1

να2λ

)2 (
ν2λ

)3
(τ − i)6 .

As we can see, for λ = 0, 1
να2(β+1)

, 1
να2(β+2)

the rows of the matrix M1

are linearly independent. We have already proved that the first two points

belong to the essential spectrum of the operator M . In this way, due to the

verification of Lopatinski condition, we have that the point λ = 1
να2(β+2)

also belongs to the essential spectrum of the operator M and thus

σess (M) =

{
0,

1

να2 (β + 1)
,

1

να2 (β + 2)

}
,

which concludes the proof of the Theorem. �

Theorem 2. The spectrum of operator M is symmetrical with respect

to the real axis, and all the eigenvalues of operator M are in the following

sector of the complex plane:

Z =

{
λ ∈ C : Reλ ≥ 0, |Imλ| ≤ N +

(Reλ)

να2βN

}
.

Proof. Let us denote v∗ = (v1, v2, v3, v4) and Sv∗ =
0 0 0 0

0 0 0 0

0 0 0 N

0 0 −N 0




v1

v2

v3

v4

 .

Then, the system (M − λI) {v∗, v5} = 0 can be written in the form{
−λv∗ + Sv∗ − ν∆−→v − νβ div−→v + 1

α∇v5 = 0

−λv5 + 1
α div−→v = 0

.

Now we multiply this system by {v∗, v5} and then integrate by parts in Ω.

In this way, we obtain the following equations:

−λ ‖v∗‖2 + (Sv∗, v∗) + ν
3∑

k=1

‖∇vk‖2 + νβ ‖div−→v ‖2 − 1
α (v5,div−→v ) = 0

−λ ‖v5‖2 + 1
α (div−→v , v5) = 0

.
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We sum up these two equations

−λ
(
‖v∗‖2 + ‖v5‖2

)
+ (Sv∗, v∗) + ν

3∑
k=1

‖∇vk‖2 + νβ ‖div−→v ‖2 +

+
1

α
[(div−→v , v5) − (v5,div−→v )] = 0

and then separate the real and the imaginary parts, keeping in mind the

fact that, since S is skew-symmetric matrix, then the expression (Sv∗, v∗)
is imaginary.

Reλ =

ν
3∑

k=1

‖∇vk‖2 + νβ ‖div−→v ‖2

‖v∗‖2 + ‖v5‖2 ≥ 0,

|Imλ| = −i(Sv
∗, v∗) + 1

α [(div−→v , v5) − (v5,div−→v )]

‖v∗‖2 + ‖v5‖2 .

Using the inequalities

(f, g)L2
≤ ‖f‖L2

‖g‖L2
, 2

a√
N
b
√
N ≤ a2

N
+ b2N,

we estimate

|Imλ| ≤ N ‖v∗‖2 + 2
α ‖div−→v ‖ ‖v5‖

‖v∗‖2 + ‖v5‖2 ≤
N ‖v∗‖2 +N ‖v5‖2 + ‖div−→v ‖2

α2N

‖v∗‖2 + ‖v5‖2 .

Since

Reλ

να2βN
=

1
α2βN

3∑
k=1

‖∇vk‖2

‖v∗‖2 + ‖v5‖2 +
1

α2N
‖div−→v ‖2

‖v∗‖2 + ‖v5‖2

and

|Imλ| ≤ N +
1

α2N
‖div−→v ‖2

‖v∗‖2 + ‖v5‖2 ,
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then we finally have

|Imλ| ≤ N +
(Reλ)

να2βN
.

It remains to prove that the spectrum is symmetrical with respect to

the real axis.

For that purpose, we apply the complex-conjugation to the original sys-

tem of (M − λI) {v∗, v5} = 0 :{
−λv∗ + Sv∗ − ν∆−→v − νβ div−→v + 1

α∇v5 = 0

−λv5 + 1
α div−→v = 0

from which we can see that, if λ is an eigenvalue of M , then λ is also an

eigenvalue of operator M, and thus the theorem is proved. �

2. Inviscid Stratified Fluid

For ν = 0 and β = 0, for the case of compressible stratified fluid (α > 0),

in [8] it was proved that the essential spectrum of operator M is the interval

of the imaginary axis [−iN, iN ] .

For non-compressible inviscid stratified fluid (α = β = ν = 0), in [6], [7]

it was proved that the essential spectrum of the operator M is the same

interval of the imaginary axis [−iN, iN ] , outside of which there can be

only the eigenvalues of finite multiplicity.

3. Conclusions

Let us discuss briefly the results obtained in Theorems 1 and 2, compar-

ing them with the corresponding results of the inviscid stratified fluid.

Just as in case of the explicit representations of solutions of Cauchy

problems, where, in most cases, the inviscid solution cannot be obtained

from viscous solutions as a mere limit for vanishing viscosity parameter; the

essential spectrum of normal vibrations for inviscid stratified fluid cannot be

obtained from the essential spectrum for viscous stratified fluid by putting

the viscosity parameters ν and β equal to zero.

Therefore, the considered problems are remarkable and interesting due

to the special property that, for the viscous fluid, the two points of the
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essential spectrum

1

να2 (β + 1)
,

1

να2 (β + 2)

move to infinity for ν, β → 0; while the essential spectrum of the inviscid

fluid contains an interval of the imaginary axis.

Additionally, as we can observe, the previous results obtained for the

inviscid fluid ([−iN, iN ]), correspond, in a certain way, to the statement of

Theorem 2, if we formally put Reλ = 0 :

(
Reλ ≥ 0, |Imλ| ≤ N +

(Reλ)

να2βN

)
, for Reλ = 0 we have |Imλ| ≤ N.
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