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Corrigendum to “Tame-blind Extension of Morphisms

of Truncated Barsotti-Tate Group Schemes”

By Yuichiro Hoshi

The author discovered an error in the discussion of Step 6 in the proof of

[1], Lemma 3.3, that is applied in the proof of the main results of [1]. (The

error in question is as follows: In the discussion of Step 6, the author stated

that it follows from Step 4, (4-iii), that the Ker(f∗
G:MX → MG)-part of ω1 is

equal to 0. However, in general, Step 4, (4-iii), does not imply it.) Therefore,

the author would like to replace [1], Theorem 3.4 [hence also [1], Theorem

0.1] (respectively, [1], Corollary 3.6) by Theorem A below, which is a tame-

blind criterion for a homomorphism between the generic fibers of finite flat

commutative group schemes to extend to a homomorphism between the

original group schemes (respectively, Theorem B below). Moreover, the

author would like to withdraw [1], Corollary 3.5 [hence also [1], Corollary

0.2]; [1], Remark 3.7; [1], Corollary 3.8 [hence also [1], Corollary 0.3].

In the remainder of the present paper, let p be a prime number, R a

complete discrete valuation ring, K the field of fractions of R, K an algebraic

closure of K, and Ktm ⊆ K the maximal tamely ramified extension of K.

Suppose that K is of characteristic 0, and that the residue field of R is of

characteristic p. Write vp for the p-adic valuation of K such that vp(p) = 1,

eK for the absolute ramification index of K, and εFon
K

def
= 2 + vp(eK) (cf. [1],

Definition 2.4).

Theorem A (Tame-blind criterion for a homomorphism between the

generic fibers to extend to a homomorphism between the original group

schemes). Let G be a truncated p-Barsotti-Tate group scheme over R (cf.

[1], Definition 2.12), H a finite flat commutative group scheme over R, and

fK :GK
def
= G⊗R K → HK

def
= H ⊗R K a homomorphism of group schemes

over K. Write X ⊆ G×RH for the scheme-theoretic image of the composite

GK
(id,fK)−→ GK ×K HK

⊆−→ G×R H
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(thus, one verifies easily that the structure of group scheme of G ×R H

determines a natural structure of [necessarily finite flat commutative] group

scheme of X) and XD for the Cartier dual of X over R (cf. the discussion

entitled “Group schemes” in [1], §0). Suppose that G is of level (cf. [1],

Definition 2.1, (ii); [1], Remark 2.13, (i)) ≥ 3εFon
K . Then the following

conditions are equivalent:

(i) The homomorphism fK uniquely extends to a homomorphism of group

schemes G → H over R.

(ii) The R-valued cotangent space t∗
XD(R) of XD (cf. the discussion en-

titled “Group schemes” in [1], §0) has no εFon
K -primitive element (cf.

[1], Definition 2.8, (ii)), i.e., for any ω ∈ t∗
XD(R), if pε

Fon
K ω = 0, then

ω ∈ p · t∗
XD(R).

Proof. One verifies easily that condition (i) is equvalent to condition

(i′): The composite X ↪→ G×RH
pr1→ G is an isomorphism. Moreover, since

G is of level ≥ 3εFon
K , the implication (i′) ⇒ (ii) follows immediately from

[1], Lemma 2.15, together with [1], Remark 2.13, (ii). Thus, it remains to

verify the implication (ii) ⇒ (i′). To this end, suppose that condition (ii)

is satisfied. Let R′ be a complete discrete valuation ring which is faithfully

flat over R such that its residue field is perfect, and, moreover, its absolute

ramification index is equal to eK (cf. the second paragraph of the proof of

[1], Theorem 3.4). Then one verifies easily that the scheme-theoretic image

of the base-change of the displayed composite in the statement of Theorem A

by R ↪→ R′ is naturally isomorphic to X ⊗R R′; moreover, the composite

X ↪→ G ×R H
pr1→ G is an isomorphism if and only if the composite X ⊗R

R′ ↪→ (G×R H) ⊗R R′ pr1→ G⊗R R′ is an isomorphism. Now let us observe

that since there exists a natural isomorphism of R′-modules t∗
XD(R) ⊗R

R′ ∼→ t∗
XD⊗RR′(R

′), it follows from condition (ii) that t∗
XD⊗RR′(R

′) has

no εFon
K -primitive element. Thus, since there exists a natural isomorphism

(X ⊗R R′)D
∼→ XD ⊗R R′ over R′, to verify the implication (ii) ⇒ (i′),

by replacing R by R′, we may assume without loss of generality that the

residue field of R is perfect. Then since t∗
XD(R) has no εFon

K -primitive element

(cf. condition (ii)), and G, hence also GD (cf. [1], Remark 2.13, (ii)),

is truncated p-Barsotti-Tate, it follows immediately from [1], Lemma 2.11,

together with [1], Lemma 2.15, that the Cartier dual GD → XD of the
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composite of condition (i′), hence also the composite of condition (i′) itself,

is an isomorphism. This completes the proof of the implication (ii) ⇒ (i′),
hence also of Theorem A. �

Theorem B (Points of truncated Barsotti-Tate group schemes). Let

G be a truncated p-Barsotti-Tate group scheme over R (cf. [1], Definition

2.12). Suppose that G is of level (cf. [1], Definition 2.1, (ii); [1], Remark

2.13, (i)) ≥ 3εFon
K . Then G is étale over R if and only if G(Ktm) = G(K).

Proof. Necessity is immediate. Thus, it remains to verify sufficiency.

Now let us observe that it follows from a similar argument to the argument

used in the proof of Theorem A concerning “R′” that, to verify sufficiency,

we may assume without loss of generality that the residue field of R is perfect.

Moreover, it follows immediately from the definition of “εFon
K ” that, to verify

sufficiency, by replacing R by the normalization of R in a suitably tamely

ramified finite extension of K, we may assume without loss of generality

that G(K) = G(K). Then since G(K) = G(K), and G is finite over R, one

verifies easily that there exist a finite étale commutative group scheme H

over R and a homomorphism of group schemes H → G over R which induces

an isomorphism between their generic fibers. On the other hand, since H

is étale over R, one verifies easily that t∗H(R) = {0} (cf. the discussion

entitled “Group schemes” in [1], §0), hence also that d◦H = 0 (cf. [1],

Definition 2.8, (i)). Thus, it follows from [1], Lemma 2.10, (ii), together

with our assumption that G is of level ≥ 3εFon
K , that the existence of such

a homomorphism H → G implies that d◦G = 0. In particular, since G is

truncated p-Barsotti-Tate and of level ≥ 3εFon
K , it follows immediately from

[1], Lemma 2.15, that t∗G(R) = {0}, i.e., G is étale over R. This completes

the proof of sufficiency, hence also of Theorem B. �
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