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A Rigidity Theorem and a Stability Theorem for

Two-step Nilpotent Lie Groups

By Ali Baklouti, Nasreddine ElAloui and Imed Kédim

Abstract. Let G be a Lie group and H a connected Lie subgroup
of G. Given any discontinuous subgroup Γ for the homogeneous space
� = G/H and any deformation of Γ, the deformed discrete subgroup
may fail to be discontinuous for �. To understand this phenomenon
in the case when G is a two-step nilpotent Lie group, we provide a
stratification of the deformation space of the action of Γ on �, which
depends upon the dimensions of G−adjoint orbits. As a direct conse-
quence, a rigidity Theorem is given and a certain sufficient condition
for the stability property is derived. We also discuss the Hausdorff
property of the associated deformation space.

1. Introduction

We focus attention in this paper on some geometric and topological

features of the deformation space of a discontinuous group acting on some

nilpotent homogeneous spaces for which, the underlying group in question

is two-step nilpotent. The problem of describing explicitly deformations for

Clifford-Klein forms for the general non-Riemannian setting was initiated

and formalized in [13], Problem C by T. Kobayashi, where he formalized

this problem from a theoretic point of view. See [9, 12, 13, 14] for further

perspectives and basic examples.

As an application of the general theory, T. Kobayashi and S. Nasrin

studied in [14] the setup of a properly discontinuous action of a discrete

subgroup Γ � Zk which acts on Rk+1 � G/H through a certain two-step

nilpotent affine transformation group G of dimension 2k + 1 when the con-

nected subgroup H in question is Rk. In these circumstances, the authors
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gave a complete description of the parameter space

�(Γ, G,H)(1)

:=


ϕ ∈ Hom(Γ, G)

∣∣∣∣∣∣
ϕ is injective, ϕ(Γ) is discrete and

acts properly and fixed point freely

on G/H




which is introduced in [9] for general contexts. On the basis of this de-

scription, they determine explicitly the deformation space �(Zk, G,H) by

building up an accurate cross-section of the adjoint orbits of the elements

of �(Γ, G,H).

In this paper, we generalize the above context and tackle the setting

where the underlying group G is two-step nilpotent. We will provide a

stratification of both the parameter and deformation spaces based on the

dimensions of the adjoint action of G on the homomorphisms set Hom(l, g),

where l stands for the Lie algebra of the syndetic hull of Γ (Theorems 3.3

and 3.6). The algebraic interpretation of these spaces given in Theorem 2.1

appears as a fundamental ingredient in this respect. We also show that the

rigidity property fails to hold (Theorem 4.2) and a stability theorem is es-

tablished (Theorem 5.6). In addition, we prove that whenever the G-orbits

in �(l, g, h) have a common dimension, the deformation space �(l, g, h) is

a Hausdorff space (Theorem 6.2). This is also the case where for instance

the syndetic hull of Γ is abelian and maximal as in Corollary 6.3. A context

where �(l, g, h) fails to be a Hausdorff space is considered as well (Propo-

sition 6.4). This leads to investigate about several kinds of questions of

geometric nature related to the structure of the deformation space.

In [3], the authors studied the situation when G stands for the Heisen-

berg group and showed that the Hausdorff property of the deformation

space is equivalent to the fact that �(Γ, G,H) is open in Hom(Γ, G) (which

means that the stability property holds). In this context they also provide

a description of the spaces �(Γ, G,H) and �(Γ, G,H). Heisenberg groups

appear therefore as a special setting, where also the Hausdorff property of

the deformation space is equivalent to the fact that the adjoint orbits of the

parameter space have a common dimension. We show in Example 5 that

this phenomenon fails to hold in general two-step contexts.

The outline of the paper is as follows. The next section is devoted

to record some basic properties of Clifford−Klein forms and introduce the
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parameter and deformation spaces of the action of a discontinuous group on

exponential homogeneous spaces for two-step nilpotent Lie groups. A result

about the structure of the parameter space is also proved in this section. In

section 3, we describe a layering of the parameter and deformation spaces.

Section 4 is devoted to prove the local rigidity conjecture 4.1 and section 5

to establish some stability results. We close the paper with a study of the

Hausdorff property of the deformation space. We do hope that our study

could go farther to encompass other more general nilpotent contexts.

2. Backgrounds and Notations

We begin this section with fixing some notations, terminologies and

recording some basic facts about deformations. The readers could consult

the references [8, 9, 11, 12, 13] and some references therein for broader

information about the subject. Concerning the entire subject, we strongly

recommend the papers [8] and [13].

2.1. Proper and fixed point actions

Let � be a locally compact space and K a locally compact topological

group. The continuous action of the group K on � is said to be:

(1) Proper if, for each compact subset S ⊂ � the set KS = {k ∈ K :

k · S ∩ S �= ∅} is compact.

(2) Fixed point free (or merely free) if, for each m ∈ �, the isotropy

group Km = {k ∈ K : k ·m = m} is trivial.

(3) (CI) if for any m ∈ �, Km is compact. (cf. [8]).

(4) Properly discontinuous if, K is discrete and the action of K on � is

proper.

(5) The group K is said to be discontinuous, if it is discrete and it acts

on � properly and fixed point freely.

In the case where � = G/H is a homogeneous space and K is a closed

subgroup of G, then it is well known that the action of K on � is proper if

SHS−1 ∩K is compact for any compact set S in G. Likewise the action of

K on � is free if for every g ∈ G, K ∩ gHg−1 = {e}.
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2.2. Clifford-Klein forms

For any given discontinuous subgroup Γ of a Lie group G for the homo-

geneous space G/H, the quotient space Γ\G/H is said to be a Clifford-Klein

form for the homogeneous space G/H. The following point was emphasized

by Kobayashi. Any Clifford-Klein form is endowed with a smooth manifold

structure for which the quotient canonical surjection π : G/H → Γ\G/H
turns out to be an open covering and particularly a local diffeomorphism.

On the other hand, any Clifford-Klein form Γ\G/H inherits any G-invariant

geometric structure (e.g. complex structure, pseudo-Riemanian structure,

conformal structure, symplectic structure,...) on the homogeneous space

G/H through the covering map π.

2.3. Parameter and deformation spaces

The material dealt with in this subsection comes from [13]. The reader

could also consult the references [12] and [9] for precise definitions. As in

the first introductory section, we designate by Hom(Γ, G) the set of group

homomorphisms from Γ to G endowed with the point wise convergence

topology. The same topology is obtained by taking generators γ1, . . . , γk of

Γ, then using the injective map

Hom(Γ, G) → G× · · · ×G, ϕ �→ (ϕ(γ1), ..., ϕ(γk))

to equip Hom(Γ, G) with the relative topology induced from the direct prod-

uct G×· · ·×G. For each ϕ ∈ �(Γ, G,H), the space ϕ(Γ)\G/H is a Clifford-

Klein form which is a Hausdorff topological space and even equipped with a

structure of a smooth manifold for which, the quotient canonical map is an

open covering. Let now ϕ ∈ �(Γ, G,H) and g ∈ G, we consider the element

ϕg of Hom(Γ, G) defined by ϕg(γ) = gϕ(γ)g−1, γ ∈ Γ. It is then clear that

the element ϕg ∈ �(Γ, G,H) and that the map:

ϕ(Γ)\G/H −→ ϕg(Γ)\G/H, ϕ(Γ)xH �→ ϕg(Γ)g−1xH

is a natural diffeomorphism. Following ([13], (5.3.1)), we consider then the

orbits space

�(Γ, G,H) = �(Γ, G,H)/G

instead of �(Γ, G,H) in order to avoid the unessential part of deformations

arising inner automorphisms and to be quite precise on parameters. The

quotient space �(Γ, G,H) is called the deformation space of the discontin-

uous action of Γ on the homogeneous space G/H.
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2.4. Algebraic description of the parameter and deformation

spaces

Let g be a finite dimensional real exponential solvable Lie algebra and G

its associated Lie group. This means that the exponential map exp : g → G

is a global C∞-diffeomorphism from g into G. That is, G is connected

and simply connected. Let log denote the inverse map of exp. The Lie

algebra g acts on g by the adjoint representation ad, that is adT (Y ) =

[T, Y ], T, Y ∈ g. The group G acts on g by the adjoint representation Ad,

defined by Adg = exp(adT ), g = expT ∈ G. Let H = exp h be a closed

connected subgroup of G. Let Γ be an discrete subgroup of G of rank k

and define the parameter space �(Γ, G,H) as given in (1). Let L be the

syndetic hull of Γ which is the smallest (and hence the unique) connected

Lie subgroup of G which contains Γ co-compactly (see [2]). Recall that the

Lie subalgebra l of L is the real span of the lattice log Γ, which is generated

by {log γ1, . . . , log γk} where {γ1, . . . , γk} is a set of generators of Γ. The

group G also acts on Hom(l, g) by:

g · ψ = Adg ◦ψ.(2)

Let Hominj(l, g) be the set of injective homomorphisms from l to g. The

following useful result was originated in [14] and obtained in [2].

Theorem 2.1. Let G = exp g be a completely solvable Lie group, H =

exp h a closed connected subgroup of G, Γ a discontinuous subgroup for the

homogeneous space G/H and L = exp l its syndetic hull. Then up to a

homeomorphism, the parameter space �(Γ, G,H) is given by:

�(l, g, h) = {ψ ∈ Hominj(l, g) : exp(ψ(l)) acts properly on G/H}.

The deformation space �(Γ, G,H) is likewise homeomorphic to the space

�(l, g, h) = �(l, g, h)/Ad, where the action Ad of G is given as in (2).

Furthermore, when G is completely solvable, the assumption on Γ to be

abelian can be removed.

2.5. On the structure of the parameter space

Definition 2.2. Let G be an exponential solvable Lie group and H

a connected and closed subgroup of G. A pair (G,H) is said to have the
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Lipsman property if for any connected subgroup L of G, there is equivalence

between proper and (CI) for the triple (L,G,H).

Definition 2.3 (cf.[5]).

1. A subset V of Rn is called semi-algebraic if it admits some represen-

tation of the form

V =

s⋃
i=1

ri⋂
j=1

{x ∈ Rn : Pi,j(x) sij 0},

where for each i = 1, ..., s and j = 1, ..., ri, Pi,j are some polynomials on Rn

and sij ∈ {>,=, <}.
2. Let X ⊂ Rn and Y ⊂ Rm be semi-algebraic sets. A map f : X → Y

is called semi-algebraic if its graph is a semi-algebraic set of Rn+m.

Any information concerning the spaces Hom(Γ, G) and R(Γ, G,H) may

help to understand the properties and the structure of the deformation space

�(Γ, G,H). The sets Hom(Γ, G) and R(Γ, G,H) may have some singulari-

ties and there is no clear raison, to say that the parameter space R(Γ, G,H)

is an analytic or algebraic or smooth manifold. For instance, when the pa-

rameter space is a semi-algebraic set, it has certainly a finite number of

connected components, which means in turn, that the deformation space

itself enjoys this feature. The following proposition, will be of use in the

sequel and shows that the parameter space is semi-algebraic whenever the

pair (G,H) has the Lipsman property with G a connected simply connected

nilpotent Lie group.

Proposition 2.4. Let (G,H) be a pair having the Lipsman property

with G a connected simply connected nilpotent Lie group, Γ a discontinuous

subgroup for G/H, and l the Lie algebra of the syndetic hull of Γ. Then the

parameter space �(l, g, h) is semi-algebraic.

Proof. Note that the action of exp(ϕ(l)) on G/H is free if and only

if Adg ϕ(l) ∩ h = {0} for all g ∈ G. Let L(l, g) be the set of linear map of l

into g. Consider the maps

i : g × L(l, g) −→ L(l, g)

(X,ϕ) �−→ Adexp(X) ϕ
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and define the semi-algebraic set

S =

{
(X,ϕ)

∣∣∣∣∣ ϕ ∈ Hominj(l, g)

Adexp(X) ϕ(l) ∩ h �= {0}

}
⊂ g × L(l, g).

The map Pr2 : g × L(l, g) −→ L(l, g); (X,ϕ) �−→ ϕ is semi-algebraic, then

the set

Pr2(S) =

{
ϕ ∈ Hom0(l, g) : there exists X ∈ g such that

Adexp(X) ϕ(l) ∩ h �= {0}

}

is semi-algebraic and its complement

�(l, g, h) = Pr2(S)c

=
{
ϕ ∈ Hominj(l, g) : Adexp(X) ϕ(l) ∩ h = {0}, ∀X ∈ g

}
is also semi-algebraic. �

3. The Deformation Space for Two-step Nilpotent Lie Groups

We assume henceforth that g is a two-step nilpotent Lie algebra, l a

subalgebra of g and z the (non-trivial) center of g. We consider the decom-

positions

g = z ⊕ g
′ and l = [l, l] ⊕ l

′(3)

where g′ (respectively l′) designates a subspace of g (of l respectively). Any

ϕ ∈ L(l, g) can be written as

ϕ =

(
Aϕ Bϕ
Cϕ Dϕ

)
,(4)

where Aϕ ∈ L([l, l], z), Bϕ ∈ L(l′, z), Cϕ ∈ L([l, l], g′) and Dϕ ∈ L(l′, g′). Let

ϕ′ =

(
Aϕ 0

0 Dϕ

)
.(5)

We first remark the following assertion.

Lemma 3.1. Any element ϕ ∈ L(l, g) is a Lie algebra homomorphism

if and only if Cϕ = 0 and ϕ′ ∈ Hom(l, g).
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Proof. We point out first that if ϕ ∈ Hom(l, g), then ϕ([l, l]) =

[ϕ(l), ϕ(l)] ⊂ z, in particular Cϕ = 0 and ϕ =

(
Aϕ Bϕ
0 Dϕ

)
. Let x = x1+y1

and x′ = x2 + y2 ∈ l where xi ∈ [l, l] and yi ∈ l′, then

ϕ ∈ Hom(l, g) ⇔ [ϕ(x), ϕ(x′)] = ϕ([x, x′])

⇔ [Aϕ(x1) +Bϕ(y1) +Dϕ(y1), Aϕ(x2)

+Bϕ(y2) +Dϕ(y2)]

= ϕ([x1 + y1, x2 + y2])

⇔ [Dϕ(y1), Dϕ(y2)] = ϕ([y1, y2]) = Aϕ([y1, y2])

⇔ [Dϕ(y1), Dϕ(y2)] = Aϕ([y1, y2])

⇔ ϕ′ ∈ Hom(l, g). �

For any g ∈ G, let as earlier Adg designate the adjoint representation

which can be written making use the decomposition (3) as

Adg =

(
Iz σ(g)

0 Ig′

)
(6)

for some map σ : G→ L(g′, z). Here Iz and Ig′ denote the identity maps of

z and g′ respectively.

Lemma 3.2. The map σ is a group homomorphism. In particular the

range of σ is a linear subspace of L(g′, z).

Proof. Clearly Ad : G → GL(g) is a group homomorphism. Then

for g and g′ ∈ G

Adgg′ = Adg Adg′ ⇔
(
Iz σ(gg′)
0 Ig′

)
=

(
Iz σ(g)

0 Ig′

)(
Iz σ(g′)
0 Ig′

)

⇔
(
Iz σ(gg′)
0 Ig′

)
=

(
Iz σ(g) + σ(g′)
0 Ig′

)
⇔ σ(gg′) = σ(g) + σ(g′).

In particular σ is continuous and G is connected which means therefore that

Im(σ) is a connected (linear) subgroup of the linear space L(g′, z). �
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Let h be a subalgebra of g and consider the decompositions

g = (z ∩ h) ⊕ z
′ ⊕ h

′ ⊕ V and l = [l, l] ⊕ l
′,(7)

where z = (z∩h)⊕z′, h = (z∩h)⊕h′ and V is a linear subspace supplementary

to (z∩h)⊕z′⊕h′ in g. Then with respect to these decompositions, the adjoint

representation Adg, g ∈ G can once again written down as

Adg =



I1 0 σ1(g) δ1(g)

0 I2 σ2(g) δ2(g)

0 0 I3 0

0 0 0 I4


 ,

where σ(g) =

(
σ1(g) δ1(g)

σ2(g) δ2(g)

)
, σ1(g) ∈ L(h′, z ∩ h), δ1(g) ∈ L(V, z ∩ h),

σ2(g) ∈ L(h′, z′) and δ2(g) ∈ L(V, z′)( here I1, I2, I3 and I4 designate the

identity maps of z∩h, z′, h′ and V respectively). This leads to the fact that

any element of Hom(l, g) can be written accordingly, as a matrix

ϕ(A,B) =



A1 B1

A2 B2

0 B3

0 B4


 ,

where A =

(
A1

A2

)
and B =



B1

B2

B3

B4


. Here A1 ∈ L([l, l], z ∩ h), A2 ∈

L([l, l], z′), B1 ∈ L(l′, z ∩ h), B2 ∈ L(l′, z′), B3 ∈ L(l′, h′) and B4 ∈ L(l′, V ).

We can now state our first result.

Theorem 3.3. Let G be a two-step nilpotent Lie group, H a connected

subgroup of G and Γ a discontinuous subgroup for G/H. Then the parameter

space �(l, g, h) splits into the disjoint union �1
⊔

�2, where

�1 :=

{
ϕ(A,B) ∈ Hom(l, g)

∣∣∣∣ rk(B4) = dim(l′)
and rk(A2) = dim([l, l])

}
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and

�2 :=


ϕ(A,B) ∈ Hom(l, g)

∣∣∣∣∣∣∣∣
rk(B4) < dim(l′) and for all g ∈ G

rk

(
A2 B2 + σ2(g)B3 + δ2(g)B4

0 B4

)
= dim(l)


 .

Proof. As the pair (G,H) has the Lipsman property ([1] and [16]),

Theorem 2.1 enables us to state that

�(l, g, h) =


ϕ(A,B) ∈ Hom(l, g)

∣∣∣∣∣∣
dimϕ(A,B)(l) = dim(l)

Adg ϕ(A,B)(l) ∩ h = {0}
for all g ∈ G


 .

Now,

Adg ϕ(A,B) =



A1 B1 + σ1(g)B3 + δ1(g)B4

A2 B2 + σ2(g)B3 + δ2(g)B4

0 B3

0 B4


 ,(8)

which means that the condition [Adg ϕ(A,B)](l) ∩ h = {0} is equivalent

to the fact that rk

(
A2 B2 + σ2(g)B3 + δ2(g)B4

0 B4

)
= dim(l), which is in

turn equivalent to

rk(B4) = dim(l′) and rk(A2) = dim([l, l])

or

rk(B4) < dim(l′) and rk

(
A2 B2 + σ2(g)B3 + δ2(g)B4

0 B4

)
= dim(l). �

3.1. Description of the deformation space �(l, g, h)

We fix in this section our objects and we keep the same notation. Let g

and l be as above and

Hom1(l, g) :=
{
ϕ′ : ϕ ∈ Hom(l, g)

}
,

where ϕ′ is as in (5). The group G acts on Hom1(l, g)×L(l, g) through the

following law

g · (ϕ′, Bϕ) = (ϕ′, Bϕ + σ(g)Dϕ).
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where Bϕ and Dϕ are as in formula (4) and σ is as in (6).

Lemma 3.4. The map

ψ : Hom(l, g) −→ Hom1(l, g) × L(l′, z)

ϕ �−→
(
ϕ′, Bϕ

)
is a G-equivariant homeomorphism.

Proof. The fact that ψ is a well defined homeomorphism comes di-

rectly from Lemma 3.1. Let g ∈ G and ϕ ∈ Hom(l, g), then

ψ (g · ϕ) = ψ (Adg ϕ)

=
(
ϕ′, Bϕ + σ(g)Dϕ

)
= g · ψ (ϕ) ,

which proves the lemma. �

3.2. Decomposition of Hom1(l, g).

As in Lemma 3.2, the group σ(G) is a linear space. For any ϕ ∈
Hom(l, g), let lϕ be the linear map defined by

lϕ : σ(G) −→ L(l′, z)

σ(g) �−→ σ(g)Dϕ.

The range of lϕ is a linear subspace of L(l′, z) and the orbit G · (ϕ′, Bϕ) =

(ϕ′, Bϕ + Im(lϕ)). Let m = dim(L(l′, z)) and q = dim(σ(G)). For t =

0, 1, . . . , q, we define the sets

Homt
1(l, g) :=

{
ϕ′ ∈ Hom1(l, g) : rk(lϕ) = t

}
.

Then clearly,

Hom1(l, g) =

q⊔
t=0

Homt
1(l, g).

We fix a basis {e1, . . . , em} of L(l′, z) and let

I(m,m− t) = {(i1, . . . , im−t); 1 ≤ i1 < · · · < im−t ≤ m}.
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For β = (i1, . . . , im−t) ∈ I(m,m − t), we consider the subspace Vβ :=

⊕m−t
j=1 Reij .

Proposition 3.5. For any ϕ ∈ Homt
1(l, g), let Pϕ : L(l′, z) →

L(l′, z)/ Im(lϕ) and Homt
1,β(l, g) := {ϕ ∈ Homt

1(l, g) : det(Pϕ(ei1), . . . ,

Pϕ(eim−t)) �= 0}. Then

Homt
1(l, g) =

⋃
β∈I(m,m−t)

Homt
1,β(l, g)

as a union of open subsets.

Proof. We know that for all ϕ ∈ Homt
1(l, g), the set Im(lϕ) is a linear

subspace of L(l′, z) of dimension t. There exists therefore (i1, . . . , im−t) ∈
I(m,m − t) such that the family {Pϕ(ei1), . . . , Pϕ(eim−t)} forms a basis of

L(l′, z)/ Im(lϕ) and consequently

det(Pϕ(ei1), . . . , Pϕ(eim−t)) �= 0. �

We are now ready to prove our main result in this section.

Theorem 3.6. Let G,H and l be as before. The deformation space

reads

�(l, g, h) =
2⊔
i=1

q⊔
t=0

⋃
β∈I(m,m−t)

�t,β,i,

where for β = (i1, . . . , im−t), the set �t,β,1 is homeomorphic to the semi-

algebraic set

Tt,β,1

:=



ϕ(A,B) ∈ Hom(l, g)

∣∣∣∣∣∣∣∣∣∣

(
B1

B2

)
∈ Vβ, rk(lϕ(A,B)) = t

det(Pϕ(A,B)(ei1), . . . , Pϕ(A,B)(eim−t)) �= 0

rk

(
A2 0

0 B4

)
= dim(l)



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and �t,β,2 is homeomorphic to

Tt,β,2

:=



ϕ(A,B) ∈ Hom(l, g)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
B1

B2

)
∈ Vβ, rk(lϕ(A,B)) = t

det(Pϕ(A,B)(ei1), . . . , Pϕ(A,B)(eim−t)) �= 0

rk(B4) < dim(l′)

rk

(
A2 B2 + σ2(g)B3 + δ2(g)B4

0 B4

)
= dim(l) for all g ∈ G



,

which is also semi-algebraic.

Proof. It is easy to see that Dϕ = Dg·ϕ, which means that lϕ = lg.ϕ
and Pϕ′ = Pg·ϕ′ for all ϕ ∈ Hom(l, g) and g ∈ G, then for all β ∈ I(m,m− t)
and 0 ≤ t ≤ q, the set Homt

1,β(l, g) × L(l′, z) is G-stable. Let Homt
β(l, g) =

ψ−1(Homt
1,β(l, g) × L(l′, z)), then

Hom(l, g) =

q⊔
t=0

Homt(l, g),

where

Homt(l, g) :=
⋃

β∈I(m,m−t)
Homt

β(l, g).(9)

Since ψ is G-equivariant, it is clear that for all t ∈ {0, . . . , q} and β ∈
I(m,m− t), the set Homt

β(l, g) is G-stable and by (9), we get:

Homt(l, g)/G =
⋃

β∈I(m,m−t)
Homt

β(l, g)/G,(10)

and then

Hom(l, g)/G =

q⊔
t=0

⋃
β∈I(m,m−t)

Homt
β(l, g)/G.

Whence

�(l, g, h) =
2⊔
i=1

q⊔
t=0

⋃
β∈I(m,m−t)

Homt
β(l, g) ∩ �i.
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We now consider the maps

ψ : Homt
β(l, g)/G →

(
Homt

1,β(l, g) × L(l′, z)
)
/G

G · ϕ �→ G · ψ(ϕ),

πtβ :
(
Homt

1,β(l, g) × L(l′, z)
)
/G → Homt

1,β(l, g) × Vβ(
ϕ′, Bϕ + Im(lϕ)

)
�→

(
ϕ′, P−1

ϕ|Vβ
(Bϕ + Im(lϕ))

)

and εtβ = ψ−1 ◦ πtβ ◦ ψ.

We now show that for all t ∈ {0, . . . , q}, the collection(
εtβ,Homt

β(l, g)/G
)
β∈I(m,m−t)

is a family of local sections of the canonical

surjection πt : Homt(l, g) −→ Homt(l, g)/G. Indeed, we have to show that

πt ◦ εtβ = IdHomt
β(l,g)/G. Let ϕ ∈ Hom(l, g) such that the orbit(

Aϕ Bϕ + Im(lϕ)

0 Dϕ

)
∈ Homt

β(l, g)/G, then

πt ◦ εtβ
(
Aϕ Bϕ + Im(lϕ)

0 Dϕ

)

= πt

(
Aϕ P−1

ϕ′|Vβ (Bϕ + Im(lϕ))

0 Dϕ

)

=

(
Aϕ P−1

ϕ′|Vβ (Bϕ + Im(lϕ)) + Im(lϕ)

0 Dϕ

)

=

(
Aϕ Bϕ + Im(lϕ)

0 Dϕ

)
.

In particular

εtβ(Homt
β(l, g)/G) =

{
ϕ ∈ Hom(l, g)

∣∣∣∣ ϕ′ ∈ Homt
1,β(l, g)

Bϕ ∈ Vβ

}
.(11)

Now

�(l, g, h) = {[ϕ] ∈ Hom(l, g)/G : exp(ϕ(l)) acts properly on G/H}

=

q⊔
t=0

⋃
β∈I(m,m−t)

{
[ϕ] ∈ Homt

β(l, g)/G
}
∩ �(l, g, h). �
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4. A Proof of the Local Rigidity Conjecture of Two-step Nilpo-

tent Lie Groups

4.1. Local geometrical proprieties of deformations

We keep the same notation and hypotheses. A. Weil [17] introduced the

notions of local rigidity of homomorphisms in the case where the subgroup

H is compact. T. Kobayashi [9] generalized it in the case where H is not

compact. For non-Riemannian setting G/H with H non-compact, the lo-

cal rigidity does not hold in general. In the reductive case, Kobayashi first

proved in [12] that local rigidity may fail even for irreducible symmetric

space of high dimensions. For non-compact setting, the local rigidity does

not hold in general in the non-Riemannian case and has been studied in

[9, 13, 14]. We briefly recall here some details. For a comprehensible in-

formation, we refer the readers to the references [7, 8, 9, 11, 12, 13, 14].

For ϕ ∈ �(Γ, G,H), the discontinuous subgroup ϕ(Γ) for the homogeneous

space G/H is said to be locally rigid ([9]) as a discontinuous group of G/H

if the orbit of ϕ through the inner conjugation is open in �(Γ, G,H). This

means equivalently that any point sufficiently close to ϕ should be conjugate

to ϕ under an inner automorphism of G. So, the homomorphisms which are

locally rigid are those which correspond to those which are isolated points

in the deformation space �(Γ, G,H). When every point in �(Γ, G,H) is

locally rigid, the deformation space turns out to be discrete and then we say

that the Clifford-Klein form Γ\G/H can not deform continuously through

the deformation of Γ in G. If a given ϕ ∈ �(Γ, G,H) is not locally rigid, we

say that it admits a continuous deformation and that the related Clifford-

Klein form is continuously deformable.

As a direct consequence from Theorem 3.6, we prove that the rigidity

property fails to hold. This gives therefore a positive answer to the following

conjecture substantiated in [4]:

Conjecture 4.1. Let G be a connected simply connected nilpotent Lie

group, H a connected subgroup of G and Γ a non-trivial discontinuous sub-

group for G/H. Then, the local rigidity fails to hold.

We will prove the following:

Theorem 4.2. Let G be a connected and simply connected two-step

nilpotent Lie group. Then conjecture 4.1 holds.
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Proof. Note first that R×
+ acts on Tt,β,i, i = 1, 2, by left multiplication

R×
+ × Tt,β,i −→ Tt,β,i

(λ, ϕ(A,B)) �−→ λ · ϕ = ϕ(λ2A, λB).

Then this action is well defined. Indeed, we define an R�
+-action ρ on l =

[l, l] ⊕ l′ by

ρ(λ)(X) :=

{
λ2X for X ∈ [l, l]

λX for X ∈ l′.

Since l is 2-step nilpotent, this action preserves the Lie algebra structure of l.

Therefore, this induces an R�
+-action on L(l, g). Its restriction is nothing but

the R�
+-action on Tt,β,i. Suppose that there is a local rigid homomorphism

ϕ(A,B) ∈ �(l, g, h), then its class [ϕ(A,B)] is an open point in �(l, g, h)

and there exists β and t such that [ϕ(A,B)] ∈ Tt,β,i for some i ∈ {1, 2}. It

follows that the image of [ϕ(A,B)] denoted also by [ϕ(A,B)], in the semi-

algebraic set Tt,β,i is an isolated point. Therefore, any continuous action

of R×
+ on Tt,β,i fixes [ϕ(A,B)]. This means that for any λ ∈ R×

+, there is

g(λ) ∈ G such that

λ · ϕ(A,B) = g(λ) · ϕ(A,B) = Adg(λ) ϕ(A,B),

for some g(λ) ∈ G where Adg(λ) is defined as in (8). This is equivalent to

λ · ϕ(A,B) =



A1 B1 + σ1(g(λ))B3 + δ1(g(λ))B4

A2 B2 + σ2(g(λ))B3 + δ2(g(λ))B4

0 B3

0 B4




for any λ ∈ R×
+, and this implies that

(
B3

B4

)
= 0,

(
A1

A2

)
= 0 and(

B1

B2

)
= 0, which is a contradiction with the injectivity of ϕ(A,B). �

5. A Stability Theorem

5.1. The notion of stability

Let (G,H,Γ) be as in the second section. The homomorphism ϕ is

said to be topologically stable or merely stable in the sense of Kobayashi-

Nasrin ([14]), if there is an open set in Hom(Γ, G) which contains ϕ and
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is contained in �(Γ, G,H). When the set �(Γ, G,H) is an open subset of

Hom(Γ, G), then obviously each of its elements is stable which is the case

for any irreducible Riemannian symmetric spaces with the assumption that

Γ is torsion free uniform lattice of G ([14] and [17]). Furthermore, we point

out in this setting that the concept of stability may be one fundamental

genesis to understand the local structure of the deformation space.

Coming back to our setting where G is nilpotent and two-step. From

the fact that the pair (G,H) have the Lipsman property, if l is an ideal of

g then exp(l) acts properly on G/H if and only if l ∩ h = {0}.

Definition 5.1. Let g be a Lie algebra. A maximal abelian subal-

gebra of g is an abelian subalgebra of g of maximal dimension. Maximal

subalgebras are not unique and contain obviously the center of g.

As a consequence of this observation, we get the following result con-

cerning the case where l is a maximal subalgebra of g.

Proposition 5.2. If l is a maximal abelian subalgebra of g, then the

stability property holds.

Proof. As l is maximal and abelian, then ϕ(l) is also maximal and

abelian for any ϕ ∈ Hominj(l, g). It follows that z ⊂ ϕ(l) for all ϕ ∈
Hominj(l, g) and therefore

�(l, g, h) =
{
ϕ ∈ Hominj(l, g) : Adg ϕ(l) ∩ h = {0}

}
=

{
ϕ ∈ Hominj(l, g) : ϕ(l) ∩ h = {0}

}
,

which is an open set of Hom(l, g). �

As a direct consequence of Theorem 3.3, we get the following corollary.

Corollary 5.3. If dim z′ = dim[l, l], then the stability property holds.

Proof. Put s = dim([l, l]), then we have A2 ∈ Ms(R). Thus the

inequation rk(B4) < dim l′ implies

rk

(
A2 0

0 B4

)
≤ s+ rk(B4) < dim l.
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This means �2 is empty and �(l, g, h) = �1, which is open in Hom(l, g). �

Remark 5.4. Note that when l is abelian, the hypothesis of Corollary

5.3 holds if and only if z ⊂ h, which means in particular that h is an ideal

of g. So the corollary is a consequence of a more general result: If h is an

ideal of g, then the parameter space is open in Hom(l, g).

5.2. A stability Theorem

In the rest of this section, we give a new sufficient criterion of stability,

which is useful when Γ is abelian as we show in some examples.

Definition 5.5. Let l, g and h be as above, the subalgebra l is said to

satisfy (0) for g/h if there is a decomposition of h = (z ∩ h) ⊕ h′ ⊕ h
′′

and

g = (z∩h)⊕ z′⊕h′⊕h
′′ ⊕V = h⊕ z′⊕V . Here h

′′
and V are some subspaces

of g such that:

(01) (z ∩ h) ⊕ h′ is an ideal of g.

(02) rk

(
B

′′
3

B4

)
= rk(B4) or B4 = 0, where B3 =

(
B′

3

B
′′
3

)
.

Example 1. Let g = R-span{X,Y1, . . . , Yn, Z1, . . . , Zn} such that

[X,Yi] = Zi for 1 ≤ i ≤ n. For all r > 0 and t ≥ 0, let h = hr,t = R-

span{X,Y1, . . . , Yr−t−1, Z1, . . . , Zr−1} and l = lr,t,q = R-span{Yr+t+q, . . . ,
Yn, Zr, . . . , Zn} with 0 ≤ q ≤ n− r − t. Then hr,t and lr,t,q are subalgebras

of g and the subalgebras (z∩h)⊕h′ = R-span{Y1, . . . , Yr+t−1, Z1, . . . , Zr−1}
of h is an ideal of g and h

′′
= R-span{X}.

B1 = (ui,j) 1≤i≤r−1
1≤j≤k

, B2 = (ui,j) r≤i≤n
1≤j≤k

, B′
3 = (vi,j) 1≤i≤r+t−1

1≤j≤k
,

B
′′
3 = (x1, . . . , xk) and B4 = (vi,j) r+t≤i≤n

1≤j≤k
.



Rigidity and Stability Theorems 299

Then,

Hom(l, g)

=







(ui,j)1≤i≤n,1≤j≤k
(vi,j)1≤i≤r+t−1,1≤j≤k

(xj)1≤j≤k
(vi,j)r+t≤i≤n,1≤j≤k



∣∣∣∣ xivl,j − xjvl,i = 0, 1 ≤ l, i ≤ n

and 1 ≤ j ≤ k




=
{
ϕ(B) ∈M2n+1,k(R) : B

′′
3 = 0

}⋃
{
ϕ(B) ∈M2n+1,k(R) : rk

(
B

′′
3

B4

)
≤ 1

}
,

and l satisfies (0) for g/h.

Example 2. Let g = R-span{X1, . . . , Xn, (Zi,j)1≤i<j≤n} such that

[Xi, Xj ] = Zi,j for i �= j. Let h = R-span{X1, . . . , Xq, (Zi,j)1≤i<j≤q}, h
′′

=

R-span{X1, . . . , Xq}, h′ = {0}, z ∩ h = R-span{(Zi,j)1≤i<j≤q} of dimension

r, l = z′ ⊕ RXn an abelian subalgebra of g with z′ = R-span{(Zi,j)q≤i<j≤n}
and V = R-span{Xq+1, . . . , Xn}. Then we have

Hom(l, g) =

{
ϕ(B) ∈Mr+m′+n,k(R) : rk

(
B

′′
3

B4

)
≤ 1

}
,

and l satisfies (0) for g/h.

Example 3. Let g be a two-step nilpotent Lie group, l an subalgebra

of g and h an ideal of g, then we can write h = (z ∩ h) ⊕ h′ and therefore

h′′ = {0}, so as in Definition 5.5, for all ϕ(A,B) ∈ Hom(l, g) we have B′′
3 is

a trivial matrix, then l satisfies the property (0) for g/h.

Example 4. Let g = R-span{X,T, Y1, . . . , Y4, Z1, . . . , Z4, U0, U3, U4}
such that [X,Yi] = Zi, i = 1, . . . , 4, [X,T ] = U0, [T, Y3] = U3 and [T, Y4] =

U4. Take h = R-span{X,Y4, Z4, U4} and l = R-span{Y1, Y2, Y3, Z1, Z2, Z3}.
Let B = {Z4, U0, U3, U4, Z1, Z2, Z3, Y4, X, T, Y1, Y2, Y3} be a basis of g and

ϕ =



B1

B2

B′
3

B
′′
3

B4



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with B1 =



z4,1 · · · z4,6
u0,1 · · · u0,6

u3,1 · · · u3,6

u4,1 · · · u4,6


, B2 =


 z1,1 · · · z1,6
z2,1 · · · z2,6
z3,1 · · · z3,6


, B′

3 =

(y4,1, . . . , y4,6), B
′′
3 = (x1, . . . , x6) and B4 =




t1 · · · t6
y1,1 · · · y1,6
y2,1 · · · y2,6
y3,1 · · · y3,6


.

Then

Hom(l, g) =






B1

B2

B′
3

B
′′
3

B4


 ∈M13,6(R)

∣∣∣∣∣∣∣∣
xjtk − xktj = 0

xjyi,k − xkyi,j = 0, i = 1, . . . , 4

tjyi,k − tkyi,j = 0, i = 3, 4

1 ≤ j, k ≤ 6




=






B1

B2

B′
3

B
′′
3

B4


 ∈M13,6(R)

∣∣∣∣rk
(
B

′′
3

B4

)
≤ 1




∪






B1

B2

B′
3

0

B4


 ∈M13,6(R)

∣∣∣∣ tjyi,k − tkyi,j = 0, i = 3, 4

1 ≤ j, k ≤ 6



.

Therefore l satisfies (0) for g/h.

We now state the main result of this section.

Theorem 5.6. Let g be a two-step nilpotent Lie algebra, h and l some

subalgebras of g. Assume that l satisfies the property (0) for g/h and that

dim(z′) < dim(l). Then the stability property holds. More precisely:

�(l, g, h) =

{
ϕ(A,B) ∈ Hom(l, g) : rk

(
A2 B2

0 B4

)
= dim(l)

}
,

where ϕ(A,B) is as in definition (5.5).
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Proof. For a n× k matrix X, we have

rkX = k ⇐⇒ kerX = {0}.

Thus, it is sufficient to show

ker

(
A2 B2

0 B4

)
= {0} ⇐⇒ (∀g ∈ G) ker

(
A2 B2 + σ′(g)B′

0 B4

)
= {0}.

Thus, it is enough to show

ker

(
A2 B2 + σ′(g)B′

0 B4

)
= ker

(
A2 B2

0 B4

)

for any g ∈ G. Here, fix g ∈ G. Then this equation follows from

kerB4 ⊂ kerσ′(g)B′.(12)

Here, we decompose

σ′(g) =
(
σ′2(g) σ′′2(g) δ2(g)

)
, B′ =


 B′

3

B′′
3

B4




To show the inclusion (12), we use two claims.

Claim 1. σ′2(g) = 0.

Proof of Claim 1. By the assumption that I := (z ∩ h) ⊕ h′ is an

ideal of g, we obtain

[g, I] ⊂ z ∩ h(13)

because we have

[g, I] ⊂ [g, g] ⊂ z, and [g, I] ⊂ I ⊂ h.

The inclusion (13) means that ad(X)Y ∈ z∩h for any X ∈ g and any Y ∈ I.
Thus, σ′2(g) = 0.

Claim 2. kerB4 ⊂ kerB′′
3 .



302 Ali Baklouti, Nasreddine ElAloui and Imed Kédim

Proof of Claim 2. By the assumption dim(z′) < dim(l), the condi-

tion

rk

(
A2 B2 + σ(g)B′

0 B4

)
= k

implies B4 �= 0. Thus, as l satisfies the property (0) for g/h, we obtain

rk

(
B′′

3

B4

)
= rk(B4).

This means:

kerB4 ⊂ kerB′′
3 .

Thus, Claim 1 and Claim 2 imply the inclusion (12). �

6. On the Hausdorff Property

This section aims to study the Hausdorffness of the deformation space

T (l, g, h) in the setting where g is two-step nilpotent. We first prove the

following:

Lemma 6.1. For all ϕ ∈ Hom(l, g), we have

dim(G · ϕ) = dim(g) − dim(ϕ(l)⊥),

where ϕ(l)⊥ = {X ∈ g : [X,Y ] = 0, ∀ Y ∈ ϕ(l)}.

Proof. Recall that the map σ : G → L(l′, z) is a group homomor-

phism and it is clear that ker(σ) = Z(G) where Z(G) is the center of G.

Then σ factors via the projection map G→ G/Z(G) to obtain an injective

homomorphism σ̃ : G/Z(G) → L(l′, z) such that σ̃(G) = σ(G).

Let now ϕ ∈ Hom(l, g), then ker(lϕ) = {σ̃(eX) : [X,Y ] = 0 ∀ Y ∈ ϕ(l)}.
Thus,

dim(G · ϕ) = dim(σ(G)) − dim(eϕ(l)⊥)

= dim(g) − dim(z) − (dim(ϕ(l)⊥) − dim(z))

= dim(g) − dim(ϕ(l)⊥). �

We now prove the main result of this section.
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Theorem 6.2. Let g be a two-step nilpotent Lie algebra, if all G-orbits

in �(l, g, h) have a common dimension, then the deformation space �(l, g, h)

is a Hausdorff space.

Proof. In such a situation, there is t ∈ {0, . . . , q} such that

�(l, g, h) ⊂ Homt(l, g), where Homt(l, g) is as in equation (9) and q =

dimσ(G) as in section 3. Indeed, let ϕ ∈ Homt(l, g) then rk lϕ = t and so

dimG · ϕ = dimψ(G · ϕ)

= dimG · ψ(ϕ)

= dim(ϕ′, Bϕ + σ(G)Dϕ)

= dim(ϕ′, Bϕ + Im lϕ)

= rk lϕ = t.

The deformation space �(l, g, h) is therefore contained in Homt(l, g)/G, and

it is sufficient to show that Homt(l, g)/G is a Hausdorff space. Let [ϕ] �= [ξ]

be some points in Homt(l, g)/G. Suppose that [ϕ] and [ξ] are not separated,

then there exist (ϕn)n ⊂ Homt(l, g) and gn ∈ G such that ϕn converges

to ϕ and gn · ϕn converges to ξ in Homt(l, g). Using the map ψ defined in

Lemma 3.4, we can see that the sequence (ϕ′
n, Bϕn)n converges to (ϕ′, Bϕ),

(ϕ′
n, Bϕn + σ(gn)Dϕn)n converges to (ϕ′, Bϕ) and (ϕ′

n, Bϕn + σ(gn)Dϕn)n
converges to (ξ′, Bξ). This means that ϕ′ = ξ′ and in particular Dϕ = Dξ

and Pϕ = Pξ. Finally [ϕ] and [ξ] belong to the open set Homt
β(l, g)/G for

some β ∈ I(m,m−t). From (11), Homt
β(l, g)/G is homeomorphic to a semi-

algebraic set. Therefore Homt
β(l, g)/G is a Hausdorff space. This leads thus

to a contradiction. �

Corollary 6.3. Let g be a two-step nilpotent Lie algebra. If l is a

maximal abelian subalgebra of g, then the deformation space �(l, g, h) is a

Hausdorff space.

Proof. If l is a maximal abelian subalgebra then so is ϕ(l) and we

have ϕ(l)⊥ = ϕ(l). Hence from Lemma 6.1

dim(G · ϕ) = dim(g) − dim(ϕ(l)) = dim(g) − dim(l),

which is constant. This achieves the proof. �

Proposition 6.4. Let l and h be two subalgebras of g and suppose that
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(1) There is decomposition g = [l, l] ⊕ z1 ⊕ z2 ⊕ z3 ⊕ h′ ⊕ l′ ⊕ V , where

z ∩ l = [l, l] ⊕ z1, l = [l, l] ⊕ z1 ⊕ l′, z ∩ h = z2 h = h′ ⊕ z2 and

z = [l, l] ⊕ z1 ⊕ z2 ⊕ z3.

(2) There is a codimension one subalgebra l1 of l such that [l⊥1 , l] � l ⊕ h

and z(l) + l1 = l.

Then the deformation space �(l, g, h) fails to be a Hausdorff space.

Proof. Recall that dim([l, l]) = s and set dim(z1) = q, dim(z2) =

p, dim(z3) = r and dim(z) = m. The Lie bracket of g is given by

[X,Y ] =

m∑
i=1

bi(X,Y )Zi

where {Z1, . . . , Zm} is a basis of z passing through the decomposition

z = [l, l] ⊕ z1 ⊕ z2 ⊕ z3. There a basis {L1, . . . , Lk−q−s} of l′ such that

{Z1, . . . , Zs+q, L2, . . . , Lk−q−s} is a basis of the subalgebra l1 satisfying as-

sumption (2). The vector L1 ∈ z(l) and there is X0 ∈ l⊥1 such that the

bracket [X0, L1] /∈ l⊕ h. In particular there is p+ q + s < i0 ≤ m such that

bi0(X0, L1) = α �= 0. If we complete the vectors Z1, . . . , Zm, L1, . . . , Lk−q−s
to a basis of g passing through the decomposition g = [l, l] ⊕ z1 ⊕ z2 ⊕ z3 ⊕
l′ ⊕ h′ ⊕ V , then the matrix

M1 =




Is 0 0

0 Iq 0

0 0 0

0 0 C1

0 0 D

0 0 0

0 0 0




∈ �(l, g, h) with

D =

(
0 0

0 Ik−q−s−1

)
∈Mk−q−s(R),

C1 = (u1 0) ∈ Mr,k−q−s(R), where u1 = t(0, . . . , 0, x1, 0, . . . , 0) ∈ Rr

and x1 is the i0 coordinate. Let Cs = (us 0) ∈ Ms,k−q−s(R) with us =
t(a1, . . . , as) ∈ Rs,

Cq = (uq 0) ∈Mq,k−q−s(R) with uq = t(as+1, . . . , as+q) ∈ Rq
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and

Cp = (up 0) ∈Mp,k−q−s(R) with up = t(aq+s+1, . . . , aq+s+p) ∈ Rp.

Let C2 = (u2 0) ∈ Mm−q−s−p,k−q−s(R), u2 = t(aq+s+p+1, . . . , ai0−1, x2,

ai0+1, . . . , am) ∈ Rm−q−s−p such that x2 �= x1 and ai = x2−x1
α bi(X0, L1).

Then

M2 =




Is 0 Cs
0 Iq Cq
0 0 Cp
0 0 C2

0 0 D

0 0 0

0 0 0




∈ �(l, g, h)

and G ·M1 �= G ·M2.

Let Vi be a neighborhood of Mi for i = 1, 2. For ε > 0 small enough,

the elements

M1,ε =




Is 0 0

0 Iq 0

0 0 0

0 0 C1

0 0 Dε

0 0 0

0 0 0




∈ V1 and M2,ε =




Is 0 Cs
0 Iq Cq
0 0 Cp
0 0 C2

0 0 Dε

0 0 0

0 0 0




∈ V2,

where Dε =

(
ε 0

0 Ik−q−s−1

)
and Ad

exp
x2−x1

αε
X0
M1,ε = M2,ε. This means

that �(l, g, h) is not a Hausdorff space. �

Remark 6.5. In the situation of the Heisenberg group, it is shown in

[3] that the Hausdorff property of the deformation space is equivalent to the

fact that the stability property holds. The following example shows that

such a phenomen may fail for general two-step nilpotent Lie groups.

Example 5. Let us resume Example 4 above. In this situation, we

have z′ = R-span{Z1, Z2, Z3, U0, U3} and dim(z′) < dim(l), so the hy-

pothesis of Theorem 5.6 is satisfied. This shows that �(l, g, h) is open
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in Hom(l, g). We now write g = z1 ⊕ z2 ⊕ z3 ⊕ h′ ⊕ l′ ⊕ V , where z ∩ l = R-

span{Z1, Z2, Z3} = z1, l′ = R-span{Y1, Y2, Y3}, z∩h = z2 = R-span{U4, Z4},
h′ = R-span{X,Y4}, z3 = R-span{U0, U3} and V = R-span{T}. If we

choose l1 = R-span{Y1, Y2, Z1, Z2, Z3} as a subalgebra of l of codimension

one, the we obtain l⊥1 = R-span{T, Y1, Y2, Y3, Y4, Z1, Z2, Z3, Z4, U0, U3, U4},
then [l⊥1 , l] � U3 /∈ h ⊕ l and z(l) = l, which means that l1 + z(l) = l. So by

Proposition 6.4, �(l, g, h) fails to be a Hausdorff space.
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