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On Foliated Characteristic Classes of Transversely

Symplectic Foliations

By Jonathan Bowden

Abstract. Kotschick and Morita recently discovered factorisa-
tions of characteristic classes of transversely symplectic foliations that
yield new characteristic classes in foliated cohomology. We describe an
alternative construction of such factorisations and construct examples
of topologically trivial foliated R

2n-bundles for which these character-
istic classes are non-trivial. This shows that the foliated cohomology
classes of Kotschick and Morita carry information that is not merely
topological.

1. Introduction

In [KM] Kotschick and Morita defined foliated characteristic classes of

transversely symplectic foliations in terms of factorisations of certain com-

binations of Pontryagin classes. Motivated by this we show that similar

factorisations also exist for foliations that admit smooth invariant trans-

verse volume forms.

Proposition 2.2. Let F be a foliation of codimension 2n on a mani-

fold M . Assume that F has a smooth invariant transverse volume form Ω

and let P be any polynomial of cohomological degree 4n in the Pontryagin

classes of the normal bundle. Then there is a factorisation

P (F∇) = Ω ∧ γP

for a well-defined foliated class γP ∈ H2n
F (M).

The factorisations in [KM] were obtained by calculations involving the

Gelfand-Fuks cohomology of formal Hamiltonian vector fields. We argue

2010 Mathematics Subject Classification. Primary 57R32, 57R17, 57R20; Secondary
57R50.

263



264 Jonathan Bowden

more directly using Chern-Weil theory for Bott connections, which in par-

ticular gives an alternative approach to the factorisations of Kotschick and

Morita (cf. Propositions 2.3 and 3.1).

The foliated cohomology classes γP determine genuine characteristic

classes of leaves by means of restriction. By using results on normal forms

for germs of Hamiltonian diffeomorphisms we show the existence of folia-

tions for which the restrictions of the classes γpn1 are non-trivial.

Corollary 5.10. There exist topologically trivial foliated R
2n-bundles

such that the restriction of γn = γpn1 to some closed leaf L is non-trivial. In

particular, the class γn is non-trivial in the foliated cohomology of the total

space.

These examples show that the classes γP carry information that is sen-

sitive to the geometry of the foliation and that they do not merely depend

on the homotopy class of the underlying distribution as is the case for the

ordinary Pontryagin classes. In the special case of codimension 2 foliations

the characteristic class given by restricting γ1 to a leaf L is trivial under

the assumption that L has no linear holonomy (cf. Remark 5.9). Thus γ1 is

an obstruction to leaves having trivial linear holonomy, even if their normal

bundles are a priori topologically trivial.

Acknowledgments. The main motivation and impetus for this article

were given by the stimulating questions and continued encouragement of

Prof. D. Kotschick during the course of the author’s doctoral studies, from

which the results of this article are taken.

We also thank the referee for the numerous suggestions that signifi-

cantly improved the exposition of this article. The financial support of the

Deutsche Forschungsgemeinschaft is also gratefully acknowledged.

Notation and Conventions . All manifolds and foliations will be as-

sumed to be oriented. Unless otherwise stated all homology groups will

be taken with integral coefficients. Finally a topological group will be dec-

orated with a δ when it is to be considered as a discrete group.
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2. Factorisations of Pontryagin Classes

We first recall the definitions of Bott connections and foliated cohomol-

ogy. For a foliation F we let I∗(F) denote the ideal of forms that vanish on

F . The Frobenius Theorem implies that I∗(F) is closed under the exterior

differential. The foliated cohomology is then defined as the cohomology of

this quotient complex:

H∗
F (M) = H∗(Ω∗(M)/I∗(F)).

A Bott connection on the normal bundle νF = TM/TF is a connection ∇
such that for X ∈ Γ(TF) and Y ∈ Γ(νF )

∇X Y = [X, Ỹ ],

where Ỹ denotes any lift of Y to TM . The most important properties of

Bott connections are that they are flat when restricted to the leaves of F
and that they are canonically defined along any leaf by the formula above

(cf. [Bott1]). Conversely, to define a Bott connection for a given foliation

one chooses a splitting

TM ∼= TF ⊕ νF .

If X = XF + Xν is the decomposition of a vector X with respect to this

splitting, then after choosing a connection ∇ on νF , one may define a Bott

connection ∇ as follows:

∇X Y = [XF , Ỹ ] + ∇Xν Y.

We also note the following standard lemma about differential forms (cf.

[Pit]).

Lemma 2.1. Let α ∈ Ωk(M × [0, 1]) be a k-form and let ι0, ι1 be the

inclusions of M × {0} resp. M × {1} in M × [0, 1] and π the projection to

M . Then the following relation holds

π! dα− d π!α = ι∗1α− ι∗0α.



266 Jonathan Bowden

We now come to the main result of this section.

Proposition 2.2. Let F be a foliation of codimension 2n on a mani-

fold M . Assume that F has a smooth invariant transverse volume form Ω

and let P be any polynomial of cohomological degree 4n in the Pontryagin

classes of the normal bundle. Then there is a factorisation

P (F∇) = Ω ∧ γP

for a well-defined foliated class γP ∈ H2n
F (M).

Proof. Let ∇ be a Bott connection on the normal bundle νF of F .

Since a Bott connection is flat along leaves, the components F∇
ij of the

curvature matrix vanish on F . We choose a local frame θ1, ... , θ2n of I1(F)

such that

θ1 ∧ θ2 ∧ ... ∧ θ2n = Ω.

With respect to this basis the curvature forms F∇
ij ∈ I2(F) can locally be

expressed as

F∇
ij =

2n∑
k=1

θk ∧ αk.

Since the Chern-Weil representative for P is given by a symmetric polyno-

mial of degree 2n in the entries of F∇, the following holds locally:

P (F∇) = θ1 ∧ θ2 ∧ ... ∧ θ2n ∧ γP = Ω ∧ γP .

Let Ann(Ω) be the subbundle of 2n-forms annihilated by Ω under the wedge

product and let Ann(Ω)⊥ be a choice of complement so that

Ann(Ω) ⊕ Ann(Ω)⊥ ∼= Λ2n(M).

Then on the level of forms the equation

P (F∇) = Ω ∧ γP

has a unique global solution γP ∈ Γ(Ann(Ω)⊥), which is well-defined modulo

elements in Γ(Ann(Ω)) = I2n(F). Next, since Ω and P (F∇) are closed we

compute

0 = d(Ω ∧ γP ) = Ω ∧ dγP
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and dγP ∈ I∗(F). Thus γP determines a class in H2n
F (M) that is indepen-

dent of the choice of complement.

We must now show that the class we obtain in foliated cohomology

does not depend on the choice of Bott connection. Let ∇0,∇1 be two Bott

connections on νF and let π denote the projection M × [0, 1] → M . We

then define a connection on π∗νF by setting

∇ = t π∗∇1 + (1 − t)π∗∇0.

This is a Bott connection for the foliation π∗F that is obtained as the

preimage of F under the projection π. Now π∗Ω is a defining form for π∗F
and, as above, after the choice of a splitting Λ2n(M × [0, 1]) ∼= Ann(π∗Ω)⊕
Ann(π∗Ω)⊥, there is a unique form γP ∈ Γ(Ann(π∗Ω)⊥) so that

P (F∇) = π∗Ω ∧ γP .

Since the form P (F∇) is closed, Lemma 2.1 yields

−d π!P (F∇) = ι∗1P (F∇) − ι∗0P (F∇)

= P (F∇1) − P (F∇0).

Hence, one has

Ω ∧ (−d π!γP ) = Ω ∧ γ1
P − Ω ∧ γ0

P

or equivalently

γ1
P − γ0

P ≡ −d(π!γP ) mod I∗(F).

Thus [γ1
P ] = [γ0

P ] as classes in H2n
F (M). �

If one further assumes that the foliation F is transversely symplectic

with defining form ω, then one obtains a similar factorisation for any poly-

nomial of the form ωk ∧P (F∇), where P is a polynomial in the Pontryagin

classes of cohomological degree 4(n − k). By applying the proof of Propo-

sition 2.2 mutatis mutandis we obtain the following, which was proven in

[KM] by using Gelfand-Fuks cohomology.

Proposition 2.3 ([KM], Th. 4). Let F be a transversely symplectic

foliation of codimension 2n on a manifold M with defining form ω and let
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P be any polynomial of total degree 4(n − k) in the Pontryagin classes of

the normal bundle. Then there is a factorisation

ωk ∧ P (F∇) = ωn ∧ γP

for a well-defined foliated class γP ∈ H2n
F (M).

For certain polynomials it is easy to show that the class ωk ∧ P (F∇) =

ωn ∧ γP is non-trivial and, hence, that the class γP is non-trivial in foli-

ated cohomology. In particular, this was shown in [KM] for polynomials of

the form P = pq−k
1 . This leaves open the question of the non-triviality of

the classes γP for foliations whose normal bundles are topologically trivial,

which we shall consider in greater detail below.

3. Gelfand-Fuks Cohomology

In this section we clarify the relationship between the foliated classes

given in Proposition 2.3 and those defined in [KM]. In particular, we show

that both descriptions agree under the assumption that the normal bundle

of F is trivial.

We begin by recalling the construction of Gelfand-Fuks cohomology for

the Lie algebra ham2n of formal Hamiltonian vector fields (cf. [GKF]). Let

H2n
R

denote the standard Sp(2n,R)-representation and consider the ring of

polynomials on H2n
R

with trivial constant term

R[x1, ..., xn, y1, ..., yn]/R = ⊕∞
k=1S

kH2n
R ,

where SkH2n
R

is identified with the space of homogeneous polynomials of

degree k. The completion of R[x1, ..., xn, y1, ..., yn]/R to the ring of formal

power series with trivial constant term can be identified with ham2n by

associating to each series its formal Hamiltonian vector field:

R[[x1, ..., xn, y1, ..., yn]]/R 
 H �−→
n∑

i=1

(
∂H

∂xi

∂

∂yi
− ∂H

∂yi

∂

∂xi

)
∈ ham2n.

Under this correspondence the bracket of formal vector fields corresponds

to the Poisson bracket:

{f, g} =
n∑

i=1

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
.
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Note that if f ∈ SkH2n
R
, g ∈ SlH2n

R
then the bracket {f, g} lies in

Sk+l−2H2n
R

.

The Lie algebra ham2n has a natural filtration

ham2n ⊃ ham
0
2n ⊃ ham

1
2n... ⊃ ham

k
2n ⊃ ... ,

where ham
k
2n denotes those formal power series that are trivial up to order

k+1. The subalgebras ham
k
2n are actually ideals in ham

0
2n and the quotient

gkham = ham
0
2n/ham

k
2n is the Lie algebra of the group of k-jets of Hamiltonian

maps that fix 0, which will be denoted by Jk
ham. Moreover, the Lie algebra

sp2n = S2H2n
R

embeds naturally in ham2n.

The Gelfand-Fuks cochain complex is then defined as

C∗
GF(ham2n) = lim−→Λ∗(ham2n/ham

k
2n)∗,

which is naturally a subspace of Λ∗(ham
∗
2n) and the differential on n-forms is

given in terms of the Poisson bracket using the usual formula for Lie algebra

cohomology:

(dα)(f0, ..., fn) =
∑
i<j

(−1)i+jα({fi, fj}, f0, ..., f̂i, ..., f̂j , ..., fn),

∀ f0, ..., fn ∈ ham2n.

Finally recall that for a subalgebra g ⊂ ham
k
2n, the relative complex is by

definition the subcomplex of g-basic forms:

C∗
GF(ham

k
2n, g) = {α ∈ C∗

GF(ham
k
2n) | ιXα = 0 = ιXdα, ∀ X ∈ g}.

We shall next recall the construction of the natural map from the

Gelfand-Fuks cohomology of formal Hamiltonian vector fields to foliated

cohomology following [BH]:

H∗
GF(ham

0
2n, sp2n)

Φ−→ H∗
F (M).

Let Γham
2n denote the Lie pseudogroup of Hamiltonian diffeomorphisms of

open sets in R
2n and let P k(Γham

2n ) denote the principal Jk
ham-bundle of k-

jets of elements in Γham
2n at 0, which is naturally a bundle over R

2n. Note

that the pseudogroup Γham
2n acts transitively on P k(Γham

2n ) from the left.
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More generally, if M carries a transversely symplectic foliation F , then we

let

P k
ham(F)

πk−→ M

be the principal Jk
ham-bundle whose fibre at x consists of the k-jets of local

F-projections that preserve the transverse structure and map x to 0. Note

that the natural action of Jk
ham on P k

ham(F) is from the left, so to obtain

a right action on the fibres of the principal bundle P k
ham(F) one must first

precompose with the inversion map on the structure group.

Any element γ in C∗
GF(ham2n) lies in Λ∗(ham2n/ham

k
2n)∗ for a sufficiently

large k. Furthermore, the cochain γ determines a Γham
2n -equivariant differen-

tial form Φloc
γ on P k(Γham

2n ) given as a combination of tautological 1-forms (cf.

[Bott2]). The bundle P k
ham(F) is locally the pullback of the bundle P k(Γham

2n )

under a local F-projection: for a given F-projection fU : U → R
2n, one

maps an element in the fibre product (g, x) ∈ f−1
U (Γham

2n ) ⊆ Γham
2n × M to

the k-jet of g−1fU . Since the form Φloc
γ is Γham

2n -equivariant, one checks that

the induced form is independent of the choice of F-projection and thus the

pullbacks of these locally defined forms glue together to give a well-defined

differential form Φγ on the total space. In this way we obtain a chain map

C∗
GF(ham2n) −→ Λ∗(P k

ham(F)).

Let γ be a representative of a given class in Hm
GF(ham

0
2n, sp2n) and consider

the pullback of γ to the chain complex Cm
GF(ham2n, sp2n) induced by the

projection

H2n
R −→ ham2n

p−→ ham
0
2n.

Note that this map is not a map of Lie algebras so that the pullback p∗γ
may not be closed. However, since ham

0
2n is a subalgebra and p∗γ vanishes

on H2n
R

, the pullback p∗γ is sp2n-basic and closed modulo elements in the

differential ideal generated by (H2n
R

)∗.
We then apply the construction described above to obtain a differential

form Φγ on the Jk
ham-principal bundle P k

ham(F) over M . Since γ was as-

sumed to be sp2n-basic, the form Φγ descends to a form Φ̂γ on the quotient

bundle

P̂ k
ham(F) = P k

ham(F)/Sp(2n,R)
π̂k−→ M.

Moreover, the elements associated to the ideal generated by (H2n
R

)∗ vanish

on the pullback foliation π∗
kF on P k

ham(F). Thus after quotienting out by
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Sp(2n,R) we deduce that Φ̂γ defines an element in the foliated cohomology

of the pullback foliation π̂∗
kF on P̂ k

ham(F). Since the fibres of the quotient

bundle are contractible, the map π̂k then induces an isomorphism

H∗
π̂∗
kF (P k

ham(F))
∼=−→ Hk

F (M),

and we define Φ(γ) = (π̂∗
k)

−1(Φ̂γ). If the bundle P k
ham(F) is itself trivial

and s is any section, then we have Φ(γ) = s∗Φγ as classes in Hk
F (M).

In the case of trivial normal bundles, it follows easily that the foliated

classes γKM
P defined via factorisations in the Gelfand-Fuks cohomology of

formal Hamiltonian vector fields in [KM] coincide with the classes γP as

given by Proposition 2.3.

Proposition 3.1. Let F be a transversely symplectic foliation of codi-

mension 2n and assume that its normal bundle is trivial. Then for any

polynomial P as in Proposition 2.3 we have γKM
P = γP .

Proof. Let P be a polynomial as in Proposition 2.3. Then the class

γKM
P determines a factorisation

ωk ∧ P (Ωi
j) = ωn ∧ γKM

P

in Gelfand-Fuks cohomology, where Ωi
j denotes the curvature of the univer-

sal Bott connection ([KM], p. 13 ff.). Under the map H∗
GF(ham

0
2n, sp2n) →

H∗
F (M) described above, this decomposition then becomes a factorisation of

ωk∧P (Ωi
j) for the universal Bott connection on P 3

ham(F). More specifically,

if ω is a transverse symplectic form for F and π3 is the bundle projection

of P 3
ham(F), then π∗

3 ω is a transverse symplectic form for π∗
3F and

ωk ∧ P (Ωi
j) = (π∗

3 ω)n ∧ γKM
P (π∗

3F).

By assumption the bundle P 3
ham(F) → M has a section s. Applying s∗ to

both sides of this equation, we conclude that

ωn ∧ γP (F) = ωn ∧ γKM
P (F) =⇒ γKM

P (F) = γP (F) in H∗
F (M). �
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4. Leaf Invariants and Reinhart’s Construction

As in the previous section, we let P k
ham(F) be the principal Jk

ham-bundle

of k-jets of local F-projections that preserve the transverse symplectic struc-

ture of a foliation F . If L is a leaf of F , then the restriction of the bundle

P k
ham(F) to L is a flat principal Jk

ham-bundle. An analogous construction

to that given in Section 3, associates to any class in H∗
GF(ham

0
2n, sp2n) a

class in H∗(L,R). Here the space P k(Γham
2n ) is replaced by the Lie group

Jk
ham and the forms Φγ are just left invariant forms associated to elements

in Λ∗(gkham)∗. Moreover, one has the following commutative diagram, where

the arrow on the left is induced by the quotient map and the arrow on the

right is given by restriction

H∗
GF(ham

0
2n, sp2n)

Φ �� H∗
F (M)

��
H∗(gkham, sp2n)

��

Φ �� H∗(L,R).

The characteristic classes of the individual leaves that are defined via this

method are called leaf invariants and were first considered by Reinhart (see

[STi]). Since leaf invariants are in particular characteristic classes of flat

principal Jk
ham-bundles they determine elements in group cohomology and

we obtain the following Reinhart map:

H∗(gkham, sp2n) −→ H∗((Jk
ham)δ,R).

5. Non-Triviality of Leafwise Characteristic Classes

The aim of this section is to prove the non-triviality of the leaf invariant

associated to the class γ1 = γKM
p1

and we begin with a short summary of the

steps involved in the proof.

Step 1. Show that γ1 is non-trivial in H∗((Jm
ham)δ,R) for all m.

Step 2. Show non-triviality in H∗(Gk
ham,R) for germs of differentiabil-

ity class Ck.

Step 3. Show non-triviality for flat R
2-bundles with holonomy of class

Ck.
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We first turn to step 1. The class γ1 in H2
GF(ham

0
2, sp2) is defined via

the explicit cocycle representative ([KM], p. 11)

(x3 ∧ y3)∗ − 1

3
(x2y ∧ xy2)∗ ∈ Λ2(S3H2

R)∗.

Here we have identified S3H2
R

with the space of homogeneous degree 3 poly-

nomials and the vectors (x3 ∧ y3)∗, (x2y ∧ xy2)∗ are elements of the basis of

Λ2(S3H2
R
)∗ induced by the standard basis

{(x3)∗, (x2y)∗, (xy2)∗, (y3)∗} ⊂ (S3H2
R)∗

under wedge products. We claim that the cohomology class γ1 ∈
H2((J2

ham)δ,R) given by Reinhart’s construction is non-trivial. Let K2
∼=

S3H2
R
∼= R

4 be the kernel of the natural map

J2
ham → J1

ham.

If k2 denotes the Lie algebra of K2, we have the following commutative

diagram:

H∗(g2
ham, sp2) ��

��

H2((J2
ham)δ,R)

��
H∗(k∗2) = Λ2(R4)∗ �� H2(R4

δ ,R).

The image of γ1 in Λ2(R4)∗ is non-zero and the Reinhart map is injective

for any vector space. We conclude that γ1 is non-trivial in H2((J2
ham)δ,R).

Remark 5.1. Note that γ1 and the Euler class are linearly indepen-

dent, since the Euler class restricts trivially to the kernel of the map J2
ham →

J1
ham.

The following proposition then completes Step 1.

Proposition 5.2. For all m ≥ 3 the natural map Jm
ham → J2

ham in-

duces an injection

H2((J2
ham)δ) → H2((Jm

ham)δ).
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Proof. We first note that the map Jm
ham → J2

ham factors as

Jm
ham → Jm−1

ham → ... → J2
ham.

Thus it suffices to show that the map Jm
ham → Jm−1

ham induces an injection

on second cohomology for all m ≥ 3. The kernel of this map can be identi-

fied with the additive group of homogeneous polynomials Sm+1H2
R

of degree

m+ 1 and the conjugation action of Jm−1
ham is given by precomposition. Fur-

thermore, the conjugation action factors through the natural map

Jm−1
ham → J1

ham = SL(2,R).

We consider the five-term exact sequence associated to the extension

1 → Sm+1H2
R → Jm

ham → Jm−1
ham → 1.

Then since the SL(2,R)-representation Sm+1H2
R

is irreducible, the group of

co-invariants H1((S
m+1H2

R
)δ)Jm−1

ham
is trivial. Thus by exactness, the injec-

tivity of the map in second cohomology follows. �

Remark 5.3. An explicit computation shows that

1

9
d(x2y2)∗ = (x3 ∧ y3) − 1

3
(x2y ∧ xy2)∗ in C∗

GF(ham
1
2),

which in particular implies that γ1 is a cocycle. This, however, does not

hold in the SL(2,R)-equivariant subcomplex

C∗
GF(ham

0
2, sp2) = C∗

GF(ham
1
2)

SL(2,R) ⊂ C∗
GF(ham

1
2),

since (x2y2)∗ is not SL(2,R)-equivariant. The above computation also holds

in the Lie algebra cohomology H∗(gmham,Id) of the group Jm
ham,Id of jets with

trivial linear part for all m ≥ 3. In particular, if γ1 is non-trivial for a

particular Jm
ham-bundle, then the image of the holonomy map cannot lie in

the kernel of the map Jm
ham → J1

ham = SL(2,R).

In order to extend our results from jets to actual germs we shall need

a normal form theorem for Hamiltonian germs. This is provided by the

following result of Banyaga, de la Llave and Wayne.
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Theorem 5.4 ([BLW], Th. 1.1). Let φ be the germ of a Cr-

Hamiltonian diffeomorphism fixing the origin, whose m-jet is linear and

hyperbolic. Then there exists a C l-Hamiltonian germ ψ with D0ψ = Id so

that

ψ−1φψ = D0φ,

provided that r > 2m + 8 and 1 ≤ l ≤ (m + 2)A − B, where A,B are

constants depending only on the eigenvalues of D0φ.

This is the main tool needed to show that the class γ1 induces a non-

trivial class in the cohomology of the group Gk
ham of Hamiltonian germs that

have differentiability class Ck, thus concluding Step 2.

Theorem 5.5. The class γ1 is non-trivial in H2(Gk
ham) for all 2 ≤ k <

∞.

Proof. By Proposition 5.2 the image of γ1 in H2((Jm
ham)δ,R) is non-

trivial for all m. We let σ be an integral homology class in H2((J
m
ham)δ) that

pairs non-trivially with γ1. Such a class is equivalent to a representation

π1(Σg) → Jm
ham of the fundamental group of a surface of some genus g.

We let ai, bi be standard generators for π1(Σg) and let αi, βi denote their

images in Jm
ham. Then if we consider the m-jets αi, βi as (smooth) germs in

the natural way, we see that the m-jet of

φ =

g∏
i=1

[αi, βi]

is the identity. Thus after multiplying φ with a hyperbolic element M ∈
SL(2,R), Theorem 5.4 implies that we may linearise the resulting germ by

a Hamiltonian diffeomorphism germ ψ of class C l with D0ψ = Id. Since

the value of l grows linearly with m, after taking m large enough we may

assume that l = k and, hence, the following holds in Gk
ham

ψ

g∏
i=1

[αi, βi]Mψ−1 = M, namely,

g∏
i=1

[αi, βi][M,ψ−1] = 1.

We let σ′ denote the homology class in H2(Gk
ham) associated to the repre-

sentation of the surface group π1(Σg+1) given by the above relation. The
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image of σ′ in H2((J
2
ham)δ) then decomposes as σ+τ , where σ is our original

class and τ is the class associated to the representation of the fundamental

group of the 2-torus defined by the 2-jets of the elements ψ−1 and M . Since

D0ψ = Id, the conjugation action of M on ψ−1 is by precomposition in

S3H2
R
, which can only be trivial if ψ−1 = Id. Thus, since the map of the

2-torus given by the 2-jets of the commuting elements ψ and M is induced

by a representation that factors through a cyclic group, we conclude that

τ = 0 and hence γ1(σ
′) = γ1(σ) �= 0. �

To complete the third and final step we must extend classes given by

germs to classes defined by actual Ck-symplectomorphisms. We begin with

the following lemma.

Lemma 5.6. Let φ be an element in the group Hamk
c (R

2 \ {0}) that

consists of Hamiltonian diffeomorphisms of class Ck with compact sup-

port. Then φ can be written as a product of commutators of elements in

Sympk(R2 \ {0}) which are the identity near the origin.

Proof. First of all since φ can be connected to the identity by a path of

Hamiltonian diffeomorphisms with compact support, the standard fragmen-

tation argument given in the smooth case applies and we may assume that

φ is a product of elements with support in a ball (cf. [Ban], p. 110). Thus it

suffices to consider the case where φ has support in a ball B that is disjoint

from a closed neighbourhood N about the origin. Let γ ∈ Sympk(R2 \ 0)

be such that the sets γn(B) are pairwise disjoint and are disjoint from N

for all n ≥ 0. By choosing γ appropriately we may further assume that it

fixes a neighbourhood of the origin. We then define

ψ =
∞∏
n=0

γn ◦ φ ◦ γ−n ∈ Sympk(R2 \ {0})

and one computes that φ = [ψ, γ]. �

We will also need an explicit description of the Euler class of an R
2-

bundle in terms of its holonomy representation. Using the fact that the

inclusion of the compactly supported symplectomorphism group

Sympk
c (R

2 \ {0}) in Diffk
c (R

2 \ {0}) is a weak homotopy equivalence, the fol-

lowing is a straight forward application of the methods discussed in [Bow],

and we leave the details to the reader.
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Proposition 5.7. Let h be the natural homomorphism from

Sympkc (R
2 \ {0}) to the compactly supported mapping class group

MCGc(R
2 \ {0}) ∼= Z and consider the following extension of groups

1 → Sympkc (R
2 \ {0}) → Sympkc (R

2, 0) → Gk
ham → 1.

Further let ai, bi be the standard generators of π1(Σg) and consider a repre-

sentation

π1(Σg)
ρ−→ Gk

ham.

If α̃i, β̃i are any lifts of ρ(ai), ρ(bi) to Sympkc (R
2, 0), then the Euler number

of the associated R
2-bundle E is given by the following expression:

e(E) = ±h(

g∏
i=1

[α̃i, β̃i]).

As a final preliminary we note that the ordinary Flux homomor-

phism on the identity component Sympk
c,0(R

2 \ {0}) extends to the group

Sympk
c (R

2, 0). As usual for any path joining Id to φ ∈ Sympk
c,0(R

2 \ {0})
and Xt = ∂

∂tφt the Flux homomorphism is defined as

Flux(φ) =

∫ 1

0
ιXtω ∈ H1

c (R2 \ {0},R).

Although one usually only considers Flux homomorphisms on groups of

smooth symplectomorphisms, the familiar properties of Flux also hold in the

case of symplectomorphisms that are only of class Ck and the proofs given

in e.g. [McS] for the smooth case hold verbatim for Ck-symplectomorphisms.

In particular, if ω = −dλ, then Flux(φ) = [λ − φ∗λ] and Hamk
c (R

2 \ {0})
agrees with the kernel of Flux. Moreover, there is a unique compactly

supported function Hφ on R
2 so that λ−φ∗λ = dHφ and under the natural

isomorphism H1
c (R2 \ {0},R) → R given by integrating over a sufficiently

long interval [0, R] we see that

Flux(φ) = lim
R→∞

∫
[0,R]

λ− φ∗λ = lim
R→∞

(Hφ(R) −Hφ(0)) = −Hφ(0).

This definition in terms of primitives then extends immediately to

Sympk
c (R

2, 0) and we denote this extension by Flux(R2,0).
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We are now ready to prove that there are foliations on R
2-bundles with

closed leaves so that the restriction of γ1 is non-trivial.

Theorem 5.8. For any 2 < k < ∞ there exist topologically trivial

foliated R
2-bundles with holonomy in Sympk(R2, 0) for which the restriction

of the characteristic class γ1 to the leaf corresponding to the origin is non-

trivial. In particular, the class γ1 is non-trivial in the foliated cohomology

of the total space.

Proof. By Theorem 5.5 there exists a representation of some surface

group π1(Σg) → Gk
ham for which γ1 is non-trivial. Let ai, bi be the standard

generators of π1(Σg) and let αi, βi denote the images of these generators

in Gk
ham. We further let α̃i, β̃i be representatives of these germs that have

compact support in R
2. Then by construction

φ =

g∏
i=1

[α̃i, β̃i]

is an element in Sympk
c (R

2 \ {0}). As the Euler class can be chosen to be

trivial (see Remark 5.1), it follows from Proposition 5.7 that φ lies in the

identity component of Sympk
c (R

2 \ {0}).
Moreover, φ lies in Hamk

c (R
2 \ {0}) since

FluxR
2\{0}(φ) = Flux(R2,0)(φ) = Flux(R2,0)(

g∏
i=1

[α̃i, β̃i]) = 0.

Thus by Lemma 5.6 we may write φ−1 as a product of N commutators of

elements that have support disjoint from 0. We may then define a represen-

tation π1(Σg+N ) → Sympk(R2, 0) on which the class γ1 is non-trivial and

by construction the associated foliated bundle is topologically trivial. �

Remark 5.9. Although the bundles in Theorem 5.8 are topologically

trivial, by Remark 5.3 we know that the central leaf must have linear holon-

omy. Thus the class γ1 may be viewed as an obstruction to having trivial

linear holonomy, even for leaves with topologically trivial normal bundles.

By considering products of the foliations given in Theorem 5.8 we obtain

the following generalisation as a corollary.
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Corollary 5.10. There exist topologically trivial foliated R
2n-bundles

such that the restriction of γn = γpn1 to some closed leaf L is non-trivial. In

particular, the class γn is non-trivial in the foliated cohomology of the total

space.

Proof. Let E be as in Theorem 5.8 and consider the n-fold product

En = E × ...×E with the product foliation Fn = F × ...×F . This is then

transversely symplectic with ωn = π∗
1ω + ... + π∗

nω, where πi denotes the

projection to the i-th factor. For any Bott connection on E the connection

∇n = π∗
1∇⊕ ...⊕ π∗

n∇ is Bott for Fn and

p1(F
∇n) = π∗

1p1(F
∇) + ...+ π∗

np1(F
∇) = π∗

1ω ∧ π∗
1γ1 + ...+ π∗

nω ∧ π∗
nγn

and it follows by dimension considerations that

pn1 (F∇n) = (π∗
1ω ∧ π∗

1γ1 + ...+ π∗
nω ∧ π∗

nγ1)
n

= (π∗
1ω + ...+ π∗

nω)n ∧ (π∗
1γ1 + ...+ π∗

nγ1)
n

= ωn
n ∧ (π∗

1γ1 + ...+ π∗
nγ1)

n = Ω ∧ γn(Fn).

Hence the restriction of γn(Fn) to Ln = L× ...×L is (π∗
1γ1|L+ ...+π∗

nγ1|L)n,

which is non-trivial by the Künneth formula and the fact that γ1|L is non-

trivial by assumption. �

Corollary 5.10 gives a generalisation of the non-triviality statement of

Theorem 4 in [KM] to foliations with trivial normal bundles. This is however

gained at the expense of considering foliations that are only of class Ck on

non-compact manifolds. We would further hope to show similar results for

transversely symplectic foliations on compact manifolds and for foliations

that are smooth. The former would require an analogue of Banyaga’s results

for symplectomorphisms of class Ck, whereas the latter would probably

require the development of new techniques since an extension of the results

of [BLW] to the smooth case seems unlikely.
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