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Topics in Absolute Anabelian Geometry I: Generalities

By Shinichi Mochizuki

Abstract. This paper forms the first part of a three-part series
in which we treat various topics in absolute anabelian geometry from
the point of view of developing abstract algorithms, or “software”, that
may be applied to abstract profinite groups that “just happen” to arise
as (quotients of) étale fundamental groups from algebraic geometry.
One central theme of the present paper is the issue of understand-
ing the gap between relative, “semi-absolute”, and absolute anabelian
geometry. We begin by studying various abstract combinatorial prop-
erties of profinite groups that typically arise as absolute Galois groups
or arithmetic/geometric fundamental groups in the anabelian geome-
try of quite general varieties in arbitrary dimension over number fields,
mixed-characteristic local fields, or finite fields. These considerations,
combined with the classical theory of Albanese varieties, allow us to
derive an absolute anabelian algorithm for constructing the quotient of
an arithmetic fundamental group determined by the absolute Galois
group of the base field in the case of quite general varieties of arbitrary
dimension. Next, we take a more detailed look at certain p-adic Hodge-
theoretic aspects of the absolute Galois groups of mixed-characteristic
local fields. This allows us, for instance, to derive, from a certain
result communicated orally to the author by A. Tamagawa, a “semi-
absolute” Hom-version — whose absolute analogue is false! — of the
anabelian conjecture for hyperbolic curves over mixed-characteristic lo-
cal fields. Finally, we generalize to the case of varieties of arbitrary
dimension over arbitrary sub-p-adic fields certain techniques devel-
oped by the author in previous papers over mixed-characteristic local
fields for applying relative anabelian results to obtain “semi-absolute”
group-theoretic contructions of the étale fundamental group of one hy-
perbolic curve from the étale fundamental group of another closely
related hyperbolic curve.
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Introduction

The present paper is the first in a series of three papers, in which we

continue our study of absolute anabelian geometry in the style of the follow-

ing papers: [Mzk6], [Mzk7], [Mzk8], [Mzk9], [Mzk10], [Mzk11], [Mzk13]. If

X is a (geometrically integral) variety over a field k, and ΠX
def
= π1(X) is the

étale fundamental group of X (for some choice of basepoint), then roughly

speaking, “anabelian geometry” may be summarized as the study of the

extent to which properties of X — such as, for instance, the isomorphism

class of X — may be “recovered” from (various quotients of) the profinite

group ΠX . One form of anabelian geometry is “relative anabelian geometry”

(cf., e.g., [Mzk3]), in which instead of starting from (various quotients of)

the profinite group ΠX , one starts from the profinite group ΠX equipped

with the natural augmentation ΠX � Gk to the absolute Galois group of k.

By contrast, “absolute anabelian geometry” refers to the study of proper-

ties of X as reflected solely in the profinite group ΠX . Moreover, one may

consider various “intermediate variants” between relative and absolute an-

abelian geometry such as, for instance, “semi-absolute anabelian geometry”,

which refers to the situation in which one starts from the profinite group

ΠX equipped with the kernel of the natural augmentation ΠX � Gk.

The new point of view that underlies the various “topics in absolute

anabelian geometry” treated in the present three-part series may be sum-

marized as follows. In the past, research in anabelian geometry typically

centered around the establishment of “fully faithfulness” results — i.e.,

“Grothendieck Conjecture-type” results — concerning some sort of “funda-

mental group functor X �→ ΠX” from varieties to profinite groups. In par-

ticular, the term “group-theoretic” was typically used to refer to properties

preserved, for instance, by some isomorphism of profinite groups ΠX
∼→ ΠY

(i.e., between the étale fundamental groups of varieties X, Y ). By contrast:

In the present series, the focus of our attention is on the development

of “algorithms” — i.e., “software” — which are “group-theoretic” in
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the sense that they are phrased in language that only depends on

the structure of the input data as (for instance) a profinite group.

Here, the “input data” is a profinite group that “just happens to arise” from

scheme theory as an étale fundamental group, but which is only of concern

to us in its capacity as an abstract profinite group. That is to say,

the algorithms in question allow one to construct various objects rem-

iniscent of objects that arise in scheme theory, but the issue of “even-

tually returning to scheme theory” — e.g., of showing that some iso-

morphism of profinite groups arises from an isomorphism of schemes

— is no longer an issue of primary interest.

One aspect of this new point of view is that the main results obtained are

no longer necessarily of the form

(∗) “some scheme is anabelian” — i.e., some sort of “fundamental group

functor X �→ ΠX” from varieties to profinite groups is fully faithful

—

but rather of the form

(†) “some a priori scheme-theoretic property/construction/operation

may be formulated as a group-theoretic algorithm”, i.e., an algorithm

that depends only on the topological group structure of the arithmetic

fundamental groups involved

— cf., e.g., (2), (4) below. A sort of intermediate variant between (∗) and

(†) is constituted by results of the form

(∗′) “homomorphisms between arithmetic fundamental groups that sat-

isfy some sort of relatively mild condition arise from scheme theory”

— cf., e.g., (3) below.

Here, we note that typically results in absolute or semi-absolute an-

abelian geometry are much more difficult to obtain than corresponding re-

sults in relative anabelian geometry (cf., e.g., the discussion of (i) below).

This is one reason why one is frequently obliged to content oneself with

results of the form (†) or (∗′), as opposed to (∗).
On the other hand, another aspect of this new point of view is that,

by abolishing the restriction that one must have as one’s ultimate goal

the complete reconstruction of the original schemes involved, one gains a
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greater degree of freedom in the geometries that one considers. This greater

degree of freedom often results in the discovery of new results that might

have eluded one’s attention if one restricts oneself to obtaining results of the

form (∗). Indeed, this phenomenon may already be seen in previous work

of the author:

(i) In [Mzk6], Proposition 1.2.1 (and its proof), various group-theoretic

algorithms are given for constructing various objects associated to

the absolute Galois group of a mixed-characteristic local field. In

this case, we recall that it is well-known (cf., e.g., [NSW], the Clos-

ing Remark preceding Theorem 12.2.7) that in general, there exist

isomorphisms between such absolute Galois groups that do not arise

from scheme theory.

(ii) In the theory of pro-l cuspidalizations given in [Mzk13], §3, “cuspi-

dalized geometrically pro-l fundamental groups” are “group-theoret-

ically constructed” from geometrically pro-l fundamental groups of

proper hyperbolic curves without ever addressing the issue of whether

or not the original curve (i.e., scheme) may be reconstructed from the

given geometrically pro-l fundamental group (of a proper hyperbolic

curve).

(iii) In some sense, the abstract, algorithmic point of view discussed

above is taken even further in [Mzk12], where one works with cer-

tain types of purely combinatorial objects — i.e., “semi-graphs of

anabelioids” — whose definition “just happens to be” motivated by

stable curves in algebraic geometry. On the other hand, the results

obtained in [Mzk12] are results concerning the abstract combinatorial

geometry of these abstract combinatorial objects — i.e., one is never

concerned with the issue of “eventually returning” to, for instance,

scheme-theoretic morphisms.

The main results of the present paper are, to a substantial extent, “gen-

eralities” that will be of use to us in the further development of the theory

in the latter two papers of the present three-part series. These main re-

sults center around the theme of understanding the gap between relative,

semi-absolute, and absolute anabelian geometry and may be summarized as

follows:

(1) In §1, we study various notions associated to abstract profinite
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groups such as RTF-quotients (i.e., quotients obtained by successive

formation of torsion-free abelianizations — cf. Definition 1.1, (i)),

slimness (i.e., the property that all open subgroups are center-free),

and elasticity (i.e., the property that every nontrivial topologically

finitely generated closed normal subgroup of an open subgroup is

itself open — cf. Definition 1.1, (ii)) in the context of the abso-

lute Galois groups that typically appear in anabelian geometry (cf.

Proposition 1.5, Theorem 1.7).

(2) In §2, we begin by formulating the terminology that we shall use in

our discussion of the anabelian geometry of quite general varieties of

arbitrary dimension (cf. Definition 2.1). We then apply the theory

of slimness and elasticity developed in §1 to study various variants of

the notion of “semi-absoluteness” (cf. Proposition 2.5). Moreover, in

the case of quite general varieties of arbitrary dimension over number

fields, mixed-characteristic local fields, or finite fields, we combine the

various group-theoretic considerations of (1) with the classical theory

of Albanese varieties (reviewed in the Appendix) to give various

“group-theoretic algorithms” for constructing the quotient of

an arithmetic fundamental group determined by the absolute

Galois group of the base field (cf. Theorem 2.6, Corollary

2.8).

Finally, in the case of hyperbolic orbicurves, we apply the theory

of maximal pro-RTF-quotients developed in §1 to give quite explicit

“group-theoretic algorithms” for constructing these quotients (cf.

Theorem 2.11). Such maximal pro-RTF-quotients may be thought of

as a sort of analogue, in the case of mixed-characteristic local fields,

of the reconstruction, in the case of finite fields, of the quotient of

an arithmetic fundamental group determined by the absolute Galois

group of the base field via the operation of “passing to the maximal

torsion-free abelian quotient” (cf. Remark 2.11.1).

(3) In §3, we develop a generalization of the main result of [Mzk1]

concerning

the geometricity of arbitrary isomorphisms of absolute Galois

groups of mixed-characteristic local fields that preserve the

ramification filtration (cf. Theorem 3.5).
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This generalization allows one to replace the condition of “preserving

the ramification filtration” by various more general conditions, cer-

tain of which were motivated by a result orally communicated to the

author by A. Tamagawa (cf. Remark 3.8.1). Moreover, unlike the

main result of [Mzk1], this generalization may be applied, in certain

cases, to

arbitrary open homomorphisms — i.e., not just isomor-

phisms! —

between absolute Galois groups of mixed-characteristic local fields,

hence implies certain semi-absolute Hom-versions (cf. Corollary 3.8,

3.9) of the relative Hom-versions of the Grothendieck Conjecture

given in [Mzk3], Theorems A, B. Also, we observe, in Example 2.13,

that the corresponding absolute Hom-version of these results is false

in general. Indeed, it was precisely the discovery of this counterexam-

ple to the “absolute Hom-version” that led the author to the detailed

investigation of the “gap between absolute and semi-absolute” that

forms the content of §2.

(4) In §4, we study various “fundamental operations” for passing from

one algebraic stack to another. In the case of arbitrary dimension,

these operations are the operations of “passing to a finite étale cover-

ing” and “passing to a finite étale quotient”; in the case of hyperbolic

orbicurves, we also consider the operations of “forgetting a cusp” and

“coarsifying a non-scheme-like point”. Our main result asserts that

if one assumes certain relative anabelian results concerning

the varieties under consideration, then there exist group-theo-

retic algorithms for describing the corresponding semi-abso-

lute anabelian operations on arithmetic fundamental groups

(cf. Theorem 4.7).

This theory, which generalizes the theory of [Mzk9], §2, and [Mzk13],

§2, may be applied not only to hyperbolic orbicurves over sub-p-adic

fields (cf. Example 4.8), but also to “iso-poly-hyperbolic orbisurfaces”

over sub-p-adic fields (cf. Example 4.9). In [Mzk15], this theory will

be applied, in an essential way, in our development of the theory of

Belyi and elliptic cuspidalizations. We also give a tempered version

of this theory (cf. Theorem 4.12).
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Finally, in an Appendix, we review, for lack of an appropriate reference,

various well-known facts concerning the theory of Albanese varieties that

will play an important role in the portion of the theory of §2 concerning

varieties of arbitrary dimension. Much of this theory of Albanese varieties

is contained in such classical references as [NS], [Serre1], [Chev], which are

written from a somewhat classical point of view. Thus, in the Appendix,

we give a modern scheme-theoretic treatment of this classical theory, but

without resorting to the introduction of motives and derived categories, as

in [BS], [SS]. In fact, strictly speaking, in the proofs that appear in the

body of the text (i.e., §2), we shall only make essential use of the portion

of the Appendix concerning abelian Albanese varieties (i.e., as opposed to

semi-abelian Albanese varieties). Nevertheless, we decided to give a full

treatment of the theory of Albanese varieties as given in the Appendix,

since it seemed to the author that the theory is not much more difficult and,

moreover, assumes a much more natural form when formulated for “open”

(i.e., not necessarily proper) varieties (which, roughly speaking, correspond

to the case of semi-abelian Albanese varieties) than when formulated only for

proper varieties (which, roughly speaking, correspond to the case of abelian

Albanese varieties).
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I would like to thank Brian Conrad for informing me of the references in
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Section 0. Notations and Conventions

Numbers:

The notation Q will be used to denote the field of rational numbers. The

notation Z ⊆ Q will be used to denote the set, group, or ring of rational

integers. The notation N ⊆ Z will be used to denote the set or monoid of

nonnegative rational integers. The profinite completion of the group Z will

be denoted Ẑ. Write

Primes

for the set of prime numbers. If p ∈ Primes, then the notation Qp (respec-

tively, Zp) will be used to denote the p-adic completion of Q (respectively,
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Z). Also, we shall write

Z(×)
p ⊆ Z×

p

for the subgroup 1 + pZp ⊆ Z×
p if p > 2, 1 + p2Zp ⊆ Z×

p if p = 2. Thus, we

have isomorphisms of topological groups

Z(×)
p × (Z×

p /Z
(×)
p )

∼→ Z×
p ; Z(×)

p
∼→ Zp

— where the second isomorphism is the isomorphism determined by dividing

the p-adic logarithm by p if p > 2, or by p2 if p = 2; Z×
p /Z

(×)
p

∼→ F×
p if p > 2,

Z×
p /Z

(×)
p

∼→ Z/pZ if p = 2.

A finite field extension of Q will be referred to as a number field, or NF,

for short. A finite field extension of Qp for some p ∈ Primes will be referred

to as a mixed-characteristic nonarchimedean local field, or MLF, for short.

A field of finite cardinality will be referred to as a finite field, or FF, for

short. We shall regard the set of symbols {NF,MLF,FF} as being equipped

with a linear ordering

NF > MLF > FF

and refer to an element of this set of symbols as a field type.

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup.

Let us write

ZG(H)
def
= {g ∈ G | g · h = h · g, ∀ h ∈ H}

for the centralizer of H in G;

NG(H)
def
= {g ∈ G | g ·H · g−1 = H}

for the normalizer of H in G; and

CG(H)
def
= {g ∈ G | (g ·H · g−1)

⋂
H has finite index in H, g ·H · g−1}

for the commensurator ofH in G. Note that: (i) ZG(H), NG(H) and CG(H)

are subgroups of G; (ii) we have inclusions H, ZG(H) ⊆ NG(H) ⊆ CG(H);

(iii) H is normal in NG(H). If H = NG(H) (respectively, H = CG(H)),

then we shall say that H is normally terminal (respectively, commensurably
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terminal) in G. Note that ZG(H), NG(H) are always closed in G, while

CG(H) is not necessarily closed in G. Also, we shall write Z(G)
def
= ZG(G)

for the center of G.

Let G be a topological group. Then (cf. [Mzk14], §0) we shall refer to

a normal open subgroup H ⊆ G such that the quotient group G/H is a

free discrete group as co-free. We shall refer to a co-free subgroup H ⊆ G

as minimal if every co-free subgroup of G contains H. Thus, any minimal

co-free subgroup of G is necessarily unique and characteristic.

We shall refer to a continuous homomorphism between topological

groups as dense (respectively, of DOF-type (cf. [Mzk10], Definition 6.2,

(iii)); of OF-type) if its image is dense (respectively, dense in some open

subgroup of finite index; an open subgroup of finite index). Let Π be a

topological group; ∆ a normal closed subgroup such that every characteristic

open subgroup of finite index H ⊆ ∆ admits a minimal co-free subgroup

Hco-fr ⊆ H. Write Π̂ for the profinite completion of Π. Let

Π̂� Q

be a quotient of profinite groups. Then we shall refer to as the (Q,∆)-co-

free completion of Π, or co-free completion of Π with respect to (the quotient

Π̂ �) Q and (the subgroup) ∆ ⊆ Π — where we shall often omit mention

of ∆ when it is fixed throughout the discussion — the inverse limit

ΠQ/co-fr def
= lim←−

H

ImQ(Π/Hco-fr)

— where H ⊆ ∆ ranges over the characteristic open subgroups of ∆ of

finite index; Ĥco-fr ⊆ Π̂ is the closure of the image of Hco-fr in Π̂; Ĥco-fr
Q ⊆ Q

is the image of Ĥco-fr in Q; “ImQ(−)” denotes the image in Q/Ĥco-fr
Q of

the group in parentheses. Thus, we have a natural dense homomorphism

Π → ΠQ/co-fr.

We shall say that a profinite group G is slim if for every open subgroup

H ⊆ G, the centralizer ZG(H) is trivial. Note that every finite normal

closed subgroup N ⊆ G of a slim profinite group G is trivial. (Indeed, this

follows by observing that for any normal open subgroup H ⊆ G such that

N
⋂
H = {1}, consideration of the inclusion N ↪→ G/H reveals that the

conjugation action of H on N is trivial, i.e., that N ⊆ ZG(H) = {1}.)
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We shall say that a profinite group G is decomposable if there exists an

isomorphism of profinite groups H1×H2
∼→ G, where H1, H2 are nontrivial

profinite groups. If a profinite group G is not decomposable, then we shall

say that it is indecomposable.

We shall write Gab for the abelianization of a profinite group G, i.e., the

quotient of G by the closure of the commutator subgroup of G, and

Gab-t

for the torsion-free abelianization of G, i.e., the quotient of Gab by the

closure of the torsion subgroup of Gab. Note that the formation of Gab,

Gab-t is functorial with respect to arbitrary continuous homomorphisms of

profinite groups.

We shall denote the group of automorphisms of a profinite group G

by Aut(G). Conjugation by elements of G determines a homomorphism

G → Aut(G) whose image consists of the inner automorphisms of G. We

shall denote by Out(G) the quotient of Aut(G) by the (normal) subgroup

consisting of the inner automorphisms. In particular, ifG is center-free, then

we have an exact sequence 1 → G→ Aut(G) → Out(G) → 1. If, moreover,

G is topologically finitely generated, then it follows immediately that the

topology of G admits a basis of characteristic open subgroups, which thus

determine a topology on Aut(G), Out(G) with respect to which the exact

sequence 1 → G → Aut(G) → Out(G) → 1 may be regarded as an exact

sequence of profinite groups.

Algebraic Stacks and Log Schemes:

We refer to [FC], Chapter I, §4.10, for a discussion of the coarse space

associated to an algebraic stack. We shall say that an algebraic stack is

scheme-like if it is, in fact, a scheme. We shall say that an algebraic stack

is generically scheme-like if it admits an open dense substack which is a

scheme.

We refer to [Kato] and the references given in [Kato] for basic facts and

definitions concerning log schemes. Here, we recall that the interior of a log

scheme refers to the largest open subscheme over which the log structure is

trivial.
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Curves:

We shall use the following terms, as they are defined in [Mzk13], §0:

hyperbolic curve, family of hyperbolic curves, cusp, tripod. Also, we refer to

[Mzk6], the proof of Lemma 2.1; [Mzk6], the discussion following Lemma

2.1, for an explanation of the terms “stable reduction” and “stable model”

applied to a hyperbolic curve over an MLF.

If X is a generically scheme-like algebraic stack over a field k that admits

a finite étale Galois covering Y → X, where Y is a hyperbolic curve over a

finite extension of k, then we shall refer to X as a hyperbolic orbicurve over

k. (Thus, when k is of characteristic zero, this definition coincides with the

definition of a “hyperbolic orbicurve” in [Mzk13], §0, and differs from, but

is equivalent to, the definition of a “hyperbolic orbicurve” given in [Mzk7],

Definition 2.2, (ii). We refer to [Mzk13], §0, for more on this equivalence.)

Note that the notion of a “cusp of a hyperbolic curve” given in [Mzk13], §0,

generalizes immediately to the notion of “cusp of a hyperbolic orbicurve”.

If X → Y is a dominant morphism of hyperbolic orbicurves, then we shall

refer toX → Y as a partial coarsification morphism if the morphism induced

by X → Y on associated coarse spaces is an isomorphism.

Let X be a hyperbolic orbicurve over an algebraically closed field; denote

its étale fundamental group by ∆X . We shall refer to the order of the

(manifestly finite!) decomposition group in ∆X of a closed point x of X

as the order of x. We shall refer to the (manifestly finite!) least common

multiple of the orders of the closed points of X as the order of X. Thus, it

follows immediately from the definitions that X is a hyperbolic curve if and

only if the order of X is equal to 1.

Section 1. Some Profinite Group Theory

We begin by discussing certain aspects of abstract profinite groups, as

they relate to the Galois groups of finite fields, mixed-characteristic nonar-

chimedean local fields, and number fields. In the following, let G be a profi-

nite group.

Definition 1.1.

(i) In the following, “RTF” is to be understood as an abbreviation for

“recursively torsion-free”. If H ⊆ G is a normal open subgroup that arises

as the kernel of a continuous surjection G� Q, where Q is a finite abelian
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group, that factors through the torsion-free abelianization G � Gab-t of G

(cf. §0), then we shall refer to (G,H) as an RTF-pair. If for some integer

n ≥ 1, a sequence of open subgroups

Gn ⊆ Gn−1 ⊆ . . . G1 ⊆ G0 = G

of G satisfies the condition that, for each nonnegative integer j ≤ n − 1,

(Gj , Gj+1) is an RTF-pair, then we shall refer to this sequence of open

subgroups as an RTF-chain (from Gn to G). If H ⊆ G is an open subgroup

such that there exists an RTF-chain from H to G, then we shall refer to

H ⊆ G as an RTF-subgroup (of G). If the kernel of a continuous surjection

φ : G � Q, where Q is a finite group, is an RTF-subgroup of G, then

we shall say that φ : G � Q is an RTF-quotient of G. If φ : G � Q is a

continuous surjection of profinite groups such that the topology of Q admits

a basis of normal open subgroups {Nα}α∈A satisfying the property that each

composite G � Q � Q/Nα (for α ∈ A) is an RTF-quotient, then we shall

say that φ : G � Q is a pro-RTF-quotient. If G is a profinite group such

that the identity map of G forms a pro-RTF-quotient, then we shall say

that G is a pro-RTF-group. (Thus, every pro-RTF-group is pro-solvable.)

(ii) We shall say that G is elastic if it holds that every topologically

finitely generated closed normal subgroup N ⊆ H of an open subgroup

H ⊆ G of G is either trivial or of finite index in G. If G is elastic, but not

topologically finitely generated, then we shall say that G is very elastic.

(iii) Let Σ ⊆ Primes (cf. §0) be a set of prime numbers. If G admits

an open subgroup which is pro-Σ, then we shall say that G is almost pro-Σ.

We shall refer to a quotient G � Q as almost pro-Σ-maximal if for some

normal open subgroup N ⊆ G with maximal pro-Σ quotient N � P , we

have Ker(G � Q) = Ker(N � P ). (Thus, any almost pro-Σ-maximal

quotient of G is almost pro-Σ.) If Σ
def
= Primes \ {p} for some p ∈ Primes,

then we shall write “pro-(�= p)” for “pro-Σ”. Write

Ẑ( �=p)

for the maximal pro-(�= p) quotient of Ẑ. We shall say that G is pro-omissive

(respectively, almost pro-omissive) if it is pro-(�= p) for some p ∈ Primes

(respectively, if it admits a pro-omissive open subgroup). We shall say that

G is augmented pro-p if there exists an exact sequence of profinite groups
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1 → N → G → Ẑ( �=p) → 1, where N is pro-p; in this case, the image

of N in G is uniquely determined (i.e., as the maximal pro-p subgroup of

G); the quotient G � Ẑ( �=p) (which is well-defined up to automorphisms

of Ẑ( �=p)) will be referred to as the augmentation of the augmented pro-p

group G. We shall say that G is augmented pro-prime if it is augmented

pro-p for some (not necessarily unique!) p ∈ Primes. If Σ = {p} for some

unspecified p ∈ Primes, we shall write “pro-prime” for “pro-Σ”. If C is the

“full formation” (cf., e.g., [FJ], p. 343) of finite solvable Σ-groups, then we

shall refer to a pro-C group as a pro-Σ-solvable group.

Proposition 1.2 (Basic Properties of Pro-RTF-quotients). Let

φ : G1 → G2

be a continuous homomorphism of profinite groups. Then:

(i) If H ⊆ G2 is an RTF-subgroup of G2, then φ−1(H) ⊆ G1 is an

RTF-subgroup of G1.

(ii) If H, J ⊆ G are RTF-subgroups of G, then so is H
⋂
J .

(iii) If H ⊆ G is an RTF-subgroup of G, then there exists a normal

(open) RTF-subgroup J ⊆ G of G such that J ⊆ H.

(iv) Every RTF-quotient G� Q of G factors through the quotient

G � GRTF def
= lim←−

N

G/N

— where N ranges over the normal (open) RTF-subgroups of G. We shall

refer to this quotient G� GRTF as the maximal pro-RTF-quotient. Finally,

the profinite group GRTF is a pro-RTF-group.

(v) There exists a commutative diagram

G1
φ−−−→ G2� �

GRTF
1

φRTF

−−−→ GRTF
2

— where the vertical arrows are the natural morphisms, and the continu-

ous homomorphism φRTF is uniquely determined by the condition that the

diagram commute.
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Proof. Assertion (i) follows immediately from the definitions, to-

gether with the functoriality of the torsion-free abelianization (cf. §0). To

verify assertion (ii), one observes that an RTF-chain from H
⋂
J to G may

be obtained by concatenating an RTF-chain from H
⋂
J to J (whose exis-

tence follows from assertion (i) applied to the natural inclusion homomor-

phism J ↪→ G) with an RTF-chain from J to G. Assertion (iii) follows by

applying assertion (ii) to some finite intersection of conjugates of H. Asser-

tion (iv) follows immediately from assertions (ii), (iii), and the definitions

involved. Assertion (v) follows immediately from assertions (i), (iv). �

Proposition 1.3 (Basic Properties of Elasticity).

(i) Let H ⊆ G be an open subgroup of the profinite group G. Then the

elasticity of G implies that of H. If G is slim, then the elasticity of H

implies that of G.

(ii) Suppose that G is nontrivial. Then G is very elastic if and only

if it holds that every topologically finitely generated closed normal subgroup

N ⊆ H of an open subgroup H ⊆ G of G is trivial.

Proof. Assertion (i) follows immediately from the definitions, to-

gether with the fact that a slim profinite group has no normal closed finite

subgroups (cf. §0). The necessity portion of assertion (ii) follows from the

fact that the existence of a topologically finitely generated open subgroup

of G implies that G itself is topologically finitely generated; the sufficiency

portion of assertion (ii) follows immediately by taking N
def
= G �= {1}. �

Next, we consider Galois groups.

Definition 1.4. We shall refer to a field k as solvably closed if, for

every finite abelian field extension k′ of k, it holds that k′ = k.

Remark 1.4.1. Note that if k̃ is a solvably closed Galois extension of

a field k of type MLF or FF (cf. §0), then k̃ is an algebraic closure of k.

Indeed, this follows from the well-known fact that the absolute Galois group

of a field of type MLF or FF is pro-solvable (cf., e.g., [NSW], Chapter VII,

§5).

Proposition 1.5 (Pro-RTF-quotients of MLF Galois Groups). Let k

be an algebraic closure of an MLF (cf. §0) k of residue characteristic p;
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Gk
def
= Gal(k/k); Gk � GRTF

k the maximal pro-RTF-quotient (cf. Proposi-

tion 1.2, (iv)) of Gk. Then:

(i) GRTF
k is slim.

(ii) There exists an exact sequence 1 → P → GRTF
k → Ẑ → 1, where P

is a pro-p group whose image in GRTF
k is equal to the image of the inertia

subgroup of Gk in GRTF
k . In particular, GRTF

k is augmented pro-p.

Proof. Recall from local class field theory (cf., e.g., [Serre2]) that for

any open subgroup H ⊆ Gk, corresponding to a subfield kH ⊆ k, we have a

natural isomorphism

(k×H)∧
∼→ Hab

(where the “∧” denotes the profinite completion of an abelian group; “×”

denotes the group of units of a ring); moreover, Hab fits into an exact

sequence

1→ O×
kH
→ Hab → Ẑ → 1

(where OkH ⊆ kH is the ring of integers) in which the image of O×
kH

in Hab

coincides with the image of the inertia subgroup of H. Observe, moreover,

that the quotient of the abelian profinite group O×
kH

by its torsion subgroup

is a pro-p group. Thus, assertion (ii) follows immediately from this observa-

tion, together with the definition of the maximal pro-RTF-quotient. Next,

let us observe that by applying the natural isomorphism (O×
kH

)⊗Qp
∼→ kH ,

it follows that whenever H is normal in Gk, the action of Gk/H on Hab-t is

faithful. Thus, assertion (i) follows immediately. �

The following result is well-known.

Proposition 1.6 (Maximal Pro-p Quotients of MLF Galois Groups).

Let k be an algebraic closure of an MLF k of residue characteristic p; Gk
def
=

Gal(k/k); Gk � G
(p)
k the maximal pro-p-quotient of Gk. Then:

(i) Any almost pro-p-maximal quotient Gk � Q of Gk is slim.

(ii) Suppose further that k contains a primitive p-th root of unity. Then

for any finite module M annihilated by p equipped with a continuous action

by G
(p)
k (which thus determines a continuous action by Gk), the natural

homomorphism Gk � G
(p)
k induces an isomorphism

Hj(G
(p)
k ,M)

∼→ Hj(Gk,M)
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on Galois cohomology modules for all integers j ≥ 0.

(iii) If k contains (respectively, does not contain) a primitive p-th root

of unity, then any closed subgroup of infinite index (respectively, any closed

subgroup of arbitrary index) H ⊆ G
(p)
k is a free pro-p group.

Proof. Assertion (i) follows from the argument applied to verify

Proposition 1.5, (i). To verify assertion (ii), it suffices to show that the

cohomology module

Hj(J,M) ∼= lim−→
k′

Hj(Gk′ ,M)

(where J
def
= Ker(Gk � G

(p)
k ); k′ ranges over the finite Galois extensions

of k such that [k′ : k] is a power of p; Gk′ ⊆ Gk is the open subgroup

determined by k′) vanishes for j ≥ 1. By “dévissage”, we may assume that

M ∼= Fp with the trivial Gk-action. Since the cohomological dimension of

Gk′ is equal to 2 (cf. [NSW], Theorem 7.1.8, (i)), it suffices to consider the

cases j = 1, 2. For j = 2, since H2(Gk′ ,Fp) ∼= Fp (cf. [NSW], Theorem

7.1.8, (ii); our hypothesis that k contains a primitive p-th root of unity), it

suffices, by the well-known functorial behavior of H2(Gk′ ,Fp) (cf. [NSW],

Corollary 7.1.4), to observe that k′ always admits a cyclic Galois extension

of degree p (arising, for instance, from an extension of the residue field of

k′). On the other hand, for j = 1, the desired vanishing is a tautology, in

light of the definition of the quotient Gk � G
(p)
k . This completes the proof

of assertion (ii).

Finally, we consider assertion (iii). If k does not contain a primitive p-th

root of unity, then G
(p)
k itself is a free pro-p group (cf. [NSW], Theorem

7.5.8, (i)), so any closed subgroup H ⊆ G
(p)
k is also free pro-p (cf., e.g., [RZ],

Corollary 7.7.5). Thus, let us assume that k contains a primitive p-th root

of unity, so we may apply the isomorphism of assertion (ii). In particular,

if J ⊆ G
(p)
k is an open subgroup such that H ⊆ J , and kJ ⊆ k is the

subfield determined by J , then one verifies immediately that the quotient

GkJ � J may be identified with the quotient GkJ � G
(p)
kJ

, so we obtain

an isomorphism H2(J,Fp)
∼→ H2(GkJ ,Fp) (where Fp is equipped with the

trivial Galois action). Thus, to complete the proof that H is free pro-p, it

suffices (by a well-known cohomological criterion for free pro-p groups —
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cf., e.g., [RZ], Theorem 7.7.4) to show that the cohomology module

H2(H,Fp) ∼= lim−→
kJ

H2(GkJ ,Fp)

(where Fp is equipped with the trivial Galois action; kJ ranges over the fi-

nite extensions of k arising from open subgroups J ⊆ G
(p)
k such that H ⊆ J)

vanishes. As in the proof of assertion (ii), this vanishing follows from the

well-known functorial behavior of H2(GkJ ,Fp), together with the observa-

tion that, by our assumption that H is of infinite index in G
(p)
k , kJ always

admits an extension of degree p arising from an open subgroup of J (where

J ⊆ G
(p)
k corresponds to kJ) containing H. �

Theorem 1.7 (Slimness and Elasticity of Arithmetic Galois Groups).

Let k̃ be a solvably closed Galois extension of a field k; write Gk
def
= Gal(k̃/k).

Then:

(i) If k is an FF, then Gk ∼= Ẑ is neither elastic nor slim.

(ii) If k is an MLF of residue characteristic p, then Gk, as well as any

almost pro-p-maximal quotient Gk � Q of Gk, is elastic and slim.

(iii) If k is an NF, then Gk is very elastic and slim.

Proof. Assertion (i) is immediate from the definitions; assertion (iii)

is the content of [Mzk11], Corollary 2.2; [Mzk11], Theorem 2.4. The slimness

portion of assertion (ii) for Gk is shown, for instance, in [Mzk6], Theorem

1.1.1, (ii) (via the same argument as the argument applied to prove Propo-

sition 1.5, (i); Proposition 1.6, (i)); the slimness portion of assertion (ii) for

Q is precisely the content of Proposition 1.6, (i). Write p for the residue

characteristic of k.

To show the elasticity portion of assertion (ii) for Q, let N ⊆ H be a

closed normal subgroup of infinite index of an open subgroup H ⊆ Q such

that N is topologically generated by r elements, where r ≥ 1 is an integer.

Then it suffices to show that N is trivial. Since Q has already been shown

to be slim (hence has no nontrivial finite normal closed subgroups — cf.

§0), we may always replace k by a finite extension of k. In particular, we

may assume that H = Q, and that Q is maximal pro-p. Since [Q : N ] is

infinite, it follows that there exists an open subgroup J ⊆ Q, corresponding

to a subfield kJ ⊆ k, such that N ⊆ J , and [kJ : Qp] ≥ r+1. Here, we recall
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from our discussion of local class field theory in the proof of Proposition 1.5

that dimQp(J
ab ⊗Qp) = [kJ : Qp] + 1 (≥ r + 2). In particular, we conclude

that N is necessarily a subgroup of infinite index of some topologically

finitely generated closed subgroup P ⊆ J such that [J : P ] is infinite. (For

instance, one may take P to be the subgroup of J topologically generated by

N , together with an element of J that maps to a non-torsion element of the

quotient of Jab by the image of Nab.) Thus, we conclude from Proposition

1.6, (iii), that P is a free pro-p group which contains a topologically finitely

generated closed normal subgroup N ⊆ P of infinite index. On the other

hand, by (a rather easy special case of) the theorem of Lubotzky-Melnikov-

van den Dries (cf., e.g., [FJ], Proposition 24.10.3; [MT], Theorem 1.5), this

implies that N is trivial. This completes the proof of the elasticity portion

of assertion (ii) for Q.

To show the elasticity portion of assertion (ii) for Gk, let N ⊆ H be a

closed normal subgroup of infinite index of an open subgroup H ⊆ Gk such

that N is topologically generated by r elements, where r ≥ 1 is an integer.

Then it suffices to show that N is trivial. As in the proof of the elasticity

of “Q”, we may assume that H = Gk; also, since [Gk : N ] is infinite, by

passing to a finite extension of k corresponding to an open subgroup of Gk
containing N , we may assume that [k : Qp] ≥ r. But this implies that the

image of N in Gab
k ⊗ Zp (which is of rank [k : Qp] + 1 ≥ r + 1) is of infinite

index, hence that the image of N in any almost pro-p-maximal quotient

Gk � Q is of infinite index. Thus, by the elasticity of “Q”, we conclude

that such images are trivial. Since, moreover, the natural surjection

Gk � lim←−
Q

Q

(where Q ranges over the almost pro-p-maximal quotients of Gk) is (by the

definition of the term “almost pro-p-maximal quotient”) an isomorphism,

this is enough to conclude that N is trivial, as desired. �

Section 2. Semi-absolute Anabelian Geometry

In the present §2, we consider the problem of characterizing “group-

theoretically” the quotient morphism to the Galois group of the base field of

the arithmetic fundamental group of a variety. In particular, the theory of

the present §2 refines the theory of [Mzk6], Lemma 1.1.4, in two respects:
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We extend this theory to the case of quite general varieties of arbitrary

dimension (cf. Corollary 2.8), and, in the case of hyperbolic orbicurves, we

give a “group-theoretic version” of the numerical criterion of [Mzk6], Lemma

1.1.4, via the theory of maximal pro-RTF-quotients developed in §1 (cf.

Corollary 2.12). The theory of the present §2 depends on the general theory

of Albanese varieties, which we review in the Appendix, for the convenience

of the reader.

Suppose that:

(1) k is a perfect field, k an algebraic closure of k, k̃ ⊆ k a solvably

closed Galois extension of k, and Gk
def
= Gal(k̃/k).

(2) X → Spec(k) is a geometrically connected, smooth, separated alge-

braic stack of finite type over k.

(3) Y → X is a connected finite étale Galois covering which is a (nec-

essarily separated, smooth, and of finite type over k) k-scheme such

that Gal(Y/X) acts freely on some nonempty open subscheme of Y

(so X is generically scheme-like — cf. §0).

(4) Y ↪→ Y is an open immersion into a connected proper k-scheme Y

such that Y is the underlying scheme of a log scheme Y
log

that is log

smooth over k (where we regard Spec(k) as equipped with the trivial

log structure), and the image of Y in Y coincides with the interior

(cf. §0) of the log scheme Y
log

.

Thus, it follows from the log purity theorem (which is exposed, for instance,

in [Mzk4] as “Theorem B”) that the condition that a finite étale covering

Z → Y be tamely ramified over the height one primes of Y is equivalent

to the condition that the normalization Z of Y in Z determine a log étale

morphism Z
log → Y

log
(whose underlying morphism of schemes is Z → Y );

in particular, one concludes immediately that the condition that Z → Y

be tamely ramified over the height one primes of Y is independent of the

choice of “log smooth log compactification” Y
log

for Y . Thus, one verifies

immediately (by considering the various Gal(Y/X)-conjugates of the “log

compactification” Y
log

) that the finite étale coverings of X whose pull-backs

to Y are tamely ramified over (the height one primes of) Y form a Galois

category, whose associated profinite group (relative to an appropriate choice



158 Shinichi Mochizuki

of basepoint for X) we denote by πtame
1 (X,Y ), or simply

πtame
1 (X)

when Y → X is fixed. In particular, if we use the subscript “k” to denote

base-change from k to k, then by choosing a connected component of Y k,

we obtain a subgroup πtame
1 (Xk) ⊆ πtame

1 (X) which fits into a natural exact

sequence 1 → πtame
1 (Xk)→ πtame

1 (X)→ Gal(k/k)→ 1.

Next, let Σ ⊆ Primes be a set of prime numbers; πtame
1 (Xk) � ∆X

an almost pro-Σ-maximal quotient of πtame
1 (Xk) whose kernel is normal in

πtame
1 (X), hence determines a quotient πtame

1 (X) � ΠX ; we also assume

that the quotient πtame
1 (X)� Gal(Y/X) admits a factorization πtame

1 (X)�
ΠX � Gal(Y/X), and that the kernel of the resulting homomorphism

∆X → Gal(Y/X) is pro-Σ. Thus, Ker(∆X → Gal(Y/X)) may be iden-

tified with the maximal pro-Σ quotient of Ker(πtame
1 (Xk)→ Gal(Y/X)); we

obtain a natural exact sequence

1 → ∆X → ΠX → Gal(k/k)→ 1

— which may be thought of as an extension of the profinite group Gal(k/k).

Definition 2.1.

(i) We shall refer to any profinite group ∆ which is isomorphic to the

profinite group ∆X constructed in the above discussion for some choice

of data (k,X, Y ↪→ Y ,Σ) as a profinite group of (almost pro-Σ) GFG-

type (where “GFG” is to be understood as an abbreviation for “geometric

fundamental group”). In this situation, we shall refer to any surjection

πtame
1 (Xk) � ∆ obtained by composing the surjection πtame

1 (Xk) � ∆X
with an isomorphism ∆X

∼→ ∆ as a scheme-theoretic envelope for ∆; we

shall refer to (k,X, Y ↪→ Y ,Σ) as a collection of construction data for ∆.

(Thus, given a profinite group of GFG-type, there are, in general, many

possible choices of construction data for the profinite group.)

(ii) We shall refer to any extension 1 → ∆ → Π → G → 1 of profinite

groups which is isomorphic to the extension 1→ ∆X → ΠX → Gal(k/k)→
1 constructed in the above discussion for some choice of data (k,X, Y ↪→
Y ,Σ) as an extension of (geometrically almost pro-Σ) AFG-type (where

“AFG” is to be understood as an abbreviation for “arithmetic fundamental
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group”). In this situation, we shall refer to any surjection πtame
1 (X)� Π (re-

spectively, any surjection πtame
1 (Xk)� ∆; any isomorphism Gal(k/k)

∼→ G)

obtained by composing the surjection πtame
1 (X) � ΠX (respectively, the

surjection πtame
1 (Xk) � ∆X ; the identity Gal(k/k) = Gal(k/k)) with an

isomorphism ΠX
∼→ Π (respectively, ∆X

∼→ ∆; Gal(k/k)
∼→ G) arising from

an isomorphism of the extensions 1→ ∆ → Π → G→ 1, 1→ ∆X → ΠX →
Gal(k/k)→ 1 as a scheme-theoretic envelope for Π (respectively, ∆; G); we

shall refer to (k,X, Y ↪→ Y ,Σ) as a collection of construction data for this

extension. (Thus, given an extension of AFG-type, there are, in general,

many possible choices of construction data for the extension.)

(iii) Let 1→ ∆∗ → Π∗ → G∗ → 1 be an extension of AFG-type; N ⊆ G∗

the inverse image of the kernel of the quotient Gal(k/k) � Gk relative to

some scheme-theoretic envelope Gal(k/k)
∼→ G∗. Suppose further that ∆∗

is slim, and that the outer action of N on ∆∗ (arising from the extension

structure) is trivial. Thus, every element of N ⊆ G∗ lifts to a unique element

of Π∗ that commutes with ∆∗. In particular, N lifts to a closed normal

subgroup NΠ ⊆ Π∗. We shall refer to any extension 1→ ∆ → Π → G→ 1 of

profinite groups which is isomorphic to an extension of the form 1→ ∆∗ →
Π∗/NΠ → G∗/N → 1 just constructed as an extension of (geometrically

almost pro-Σ) GSAFG-type (where “GSAFG” is to be understood as an

abbreviation for “geometrically slim arithmetic fundamental group”). In

this situation, we shall refer to any surjection πtame
1 (X)� Π (respectively,

πtame
1 (Xk)� ∆; Gal(k/k)� G) obtained by composing a scheme-theoretic

envelope πtame
1 (X) � Π∗ (respectively, πtame

1 (Xk) � ∆∗; Gal(k/k)
∼→ G∗)

with the surjection Π∗ � Π (respectively, ∆∗ � ∆; G∗ � G) in the above

discussion as a scheme-theoretic envelope for Π (respectively, ∆; G); we

shall refer to (k, k̃,X, Y ↪→ Y ,Σ) as a collection of construction data for

this extension. (Thus, given an extension of GSAFG-type, there are, in

general, many possible choices of construction data for the extension.)

(iv) Given construction data “(k,X, Y ↪→ Y ,Σ)” or “(k, k̃,X, Y ↪→
Y ,Σ)” as in (i), (ii), (iii), we shall refer to “k” as the construction data

field, to “X” as the construction data base-stack (or base-scheme, if X is

a scheme), to “Y ” as the construction data covering, to “Y ” as the con-

struction data covering compactification, and to “Σ” as the construction

data prime set. Also, we shall refer to a portion of the construction data

“(k,X, Y ↪→ Y ,Σ)” or “(k, k̃,X, Y ↪→ Y ,Σ)” as in (i), (ii), (iii), as partial
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construction data. If every prime dividing the order of a finite quotient

group of ∆ is invertible in k, then we shall refer to the construction data in

question as base-prime.

The following result is well-known, but we give the proof below for lack

of an appropriate reference in the case where (in the notation of the above

discussion) X is not necessarily proper.

Proposition 2.2 (Topological Finite Generation). Any profinite

group ∆ of GFG-type is topologically finitely generated.

Proof. Write (k,X, Y ↪→ Y ,Σ) for a choice of construction data for

∆. Since a profinite fundamental group is topologically finitely generated if

and only if it admits an open subgroup that is topologically finitely gener-

ated, we may assume that X = Y ; moreover, by applying de Jong’s theory

of alterations (as reviewed, for instance, in Lemma A.10 of the Appendix),

we may assume that Y is projective and k-smooth, and that D
def
= Y \Y is a

divisor with normal crossings on Y . Since we are only concerned with ∆, we

may assume that k is algebraically closed, hence, in particular, infinite. Now

suppose that dim(Y ) ≥ 2. Then since Y is smooth and projective (over k),

it follows that there exists a connected, k-smooth closed subscheme C ⊆ Y

obtained by intersecting Y with a sufficiently general hyperplane section

H such that D
⋂
H forms a divisor with normal crossings on C. Write

C
def
= C

⋂
Y (�= ∅). Now if Z → Y is any connected finite étale covering that

is tamely ramified over D, then write Z → Y for the normalization of Y in

Z. Thus, since Z is tamely ramfied over D — so, by the log purity theorem

reviewed above, one may apply the well-known theory of log étale morphisms

to describe the local structure of Z → Y — and D intersects C transversely,

it follows immediately that ZC
def
= Z ×Y C is normal. On the other hand,

since the closed subscheme ZC ⊆ Z arises as the zero locus of a nonzero

section of an ample line bundle on the normal scheme Z, it thus follows (cf.,

[SGA2], XI, 3.11; [SGA2], XII, 2.4) that ZC is connected, hence (since ZC

is normal) irreducible. But this implies that ZC
def
= Z ×Y C = ZC

⋂
Y is

connected. Moreover, this connectedness of ZC for arbitrary choices of the

covering Z → Y implies that the natural morphism πtame
1 (C) → πtame

1 (Y )

is surjective. Thus, by induction on dim(Y ), it suffices to prove Proposition
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2.2 in the case where Y is a curve. But in this case, (as is well-known)

Proposition 2.2 follows by deforming Y ↪→ Y to a curve in characteristic

zero, in which case the desired topological finite generation follows from the

well-known structure of the topological fundamental group of a Riemann

surface of finite type. �

Proposition 2.3 (Slimness and Elasticity for Hyperbolic Orbicurves).

(i) Let ∆ be a profinite group of GFG-type that admits partial construc-

tion data (k,X,Σ) (consisting of the construction data field, construction

data base-stack, and construction data prime set) such that X is a hyper-

bolic orbicurve (cf. §0), and Σ contains a prime invertible in k. Then ∆ is

slim and elastic.

(ii) Let 1 → ∆ → Π → G → 1 be an extension of GSAFG-type that

admits partial construction data (k,X,Σ) (consisting of the construction

data field, construction data base-stack, and construction data prime set)

such that X is a hyperbolic orbicurve, Σ �= ∅, and k is either an MLF or

an NF. Then Π is slim, but not elastic.

Proof. Assertion (i) is the easily verified “generalization to orbicurves

over fields of arbitrary characteristic” of [MT], Proposition 1.4; [MT], Theo-

rem 1.5 (cf. also Proposition 1.3, (i)). The slimness portion of assertion (ii)

follows immediately from the slimness portion of assertion (i), together with

the slimness portion of Theorem 1.7, (ii), (iii); the fact that Π is not elastic

follows from the existence of the nontrivial, topologically finitely generated

(cf. Proposition 2.2), closed, normal, infinite index subgroup ∆ ⊆ Π. �

Definition 2.4. For i = 1, 2, let

1 → ∆i → Πi → Gi → 1

be an extension which is either of AFG-type or of GSAFG-type. Suppose

that

φ : Π1 → Π2

is a continuous homomorphism of profinite groups. Then:

(i) We shall say that φ is absolute if φ is open (i.e., has open image).

(ii) We shall say that φ is semi-absolute (respectively, pre-semi-absolute)

if φ is absolute, and, moreover, the image of φ(∆1) in G2 is trivial (respec-

tively, either trivial or of infinite index in G2).
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(iii) We shall say that φ is strictly semi-absolute (respectively, pre-strictly

semi-absolute) if φ is semi-absolute, and, moreover, the subgroup φ(∆1) ⊆
∆2 is open (respectively, either open or nontrivial).

Proposition 2.5 (First Properties of Absolute Homomorphisms).

For i = 1, 2, let

1 → ∆i → Πi → Gi → 1

be an extension which is either of AFG-type or of GSAFG-type; (ki, Xi,Σi)

partial construction data for Πi � Gi (consisting of the construction data

field, construction data base-stack, and construction data prime set). Sup-

pose that

φ : Π1 → Π2

is a continuous homomorphism of profinite groups. Then:

(i) The following implications hold:

φ strictly semi-absolute =⇒ φ pre-strictly semi-absolute

=⇒ φ semi-absolute

=⇒ φ pre-semi-absolute =⇒ φ absolute.

(ii) Suppose that k2 is an NF. Then “φ semi-absolute” ⇐⇒ “φ pre-semi-

absolute” ⇐⇒ “φ absolute”.

(iii) Suppose that k2 is an MLF. Then “φ semi-absolute” ⇐⇒ “φ pre-

semi-absolute”.

(iv) Suppose that k1 either an FF or an MLF; that X2 is a hyperbolic

orbicurve; and that Σ2 is of cardinality > 1. Then “φ pre-strictly semi-

absolute” ⇐⇒ “φ semi-absolute”.

(v) Suppose that X2 is a hyperbolic orbicurve, and that Σ2 contains a

prime invertible in k2. Then “φ strictly semi-absolute” ⇐⇒ “φ pre-strictly

semi-absolute”.

Proof. Assertion (i) follows immediately from the definitions. Since

∆1 is topologically finitely generated (cf. Proposition 2.2), assertion (ii)

(respectively, (iii)) follows immediately, in light of assertion (i), from the

fact that G2 is very elastic (cf. Theorem 1.7, (iii)) (respectively, elastic (cf.

Theorem 1.7, (ii))). To verify assertion (iv), it suffices, in light of assertion
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(i), to consider the case where φ is semi-absolute, but not pre-strictly semi-

absolute. Then since ∆2 is elastic (cf. the hypothesis on Σ2; Proposition 2.3,

(i)), and ∆1 is topologically finitely generated (cf. Proposition 2.2), it follows

that the subgroup φ(∆1) ⊆ ∆2 is either open or trivial. Since φ is not pre-

strictly semi-absolute, we thus conclude that φ(∆1) = {1}, so φ induces an

open homomorphism G1 → Π2. That is to say, every sufficiently small open

subgroup ∆∗
2 ⊆ ∆2 admits a surjection H1 � ∆∗

2 for some closed subgroup

H1 ⊆ G1. On the other hand, since X2 is a hyperbolic orbicurve, and Σ2 is of

cardinality > 1, it follows (e.g., from the well-known structure of topological

fundamental groups of hyperbolic Riemann surfaces of finite type) that we

may take ∆∗
2 such that ∆∗

2 admits quotients ∆∗
2 � F ′, ∆∗

2 � F ′′, where F ′

(respectively, F ′′) is a nonabelian free pro-p′ (respectively, pro-p′′) group,

for distinct p′, p′′ ∈ Σ2. But this contradicts the well-known structure of G1,

when k1 is either an FF or an MLF — i.e., the fact that G1, hence also H1,

may be written as an extension of a meta-abelian group by a pro-p subgroup,

for some prime p. (Here, we recall that this fact is immediate if k1 is an FF,

in which case G1 is abelian, and follows, for instance, from [NSW], Theorem

7.5.2; [NSW], Corollary 7.5.6, (i), when k1 is a MLF.) Assertion (v) follows

immediately from the elasticity of ∆2 (cf. Proposition 2.3, (i)), together

with the topological finite generation of ∆1 (cf. Proposition 2.2). �

Theorem 2.6 (Field Types and Group-theoreticity). Let

1 → ∆ → Π → G→ 1

be an extension which is either of AFG-type or of GSAFG-type; (k,X,Σ)

partial construction data (consisting of the construction data field, construc-

tion data base-stack, and construction data prime set) for Π� G. Suppose

further that k is either an FF, an MLF, or an NF, and that every prime

∈ Σ is invertible in k. If H is a profinite group, j ∈ {1, 2}, and l ∈ Primes,

write

δjl (H)
def
= dimQl

(Hj(H,Ql)) ∈ N
⋃
{∞}

εjl (Π)
def
= sup
J⊆Π

{δjl (J)} ∈ N
⋃
{∞}

θj(Π)
def
= {l | εjl (Π) ≥ 3− j} ⊆ Primes
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(where J ranges over the open subgroups of Π); also, we set

ζ(H)
def
= sup
p,p′∈Primes

{δ1p(H)− δ1p′(H)} ∈ Z
⋃
{∞}

whenever δ1l (H) <∞, ∀l ∈ Primes. Then:

(i) Suppose that k is an FF. Then Π is topologically finitely generated;

the natural surjections

Πab-t � Gab-t; G� Gab-t

are isomorphisms. In particular, the kernel of the quotient Π � G may be

characterized (“group-theoretically”) as the kernel of the quotient Π� Πab-t

(cf. [Tama1], Proposition 3.3, (ii), in the case of curves). Moreover, for

every open subgroup H ⊆ Π, and every prime number l, δ1l (H) = 1.

(ii) Suppose that k is an MLF of residue characteristic p. Then Π is

topologically finitely generated; in particular, for every open subgroup H ⊆
Π, and every prime number l, δ1l (H) is finite. Moreover, δ1l (G) = 1 if l �= p,

δ1p(G) = [k : Qp] + 1; the quantity

δ1l (Π)− δ1l (G)

is = 0 if l /∈ Σ, and is independent of l if l ∈ Σ. Finally, ε1p(Π) = ∞; in

particular, the cardinality of θ1(Π) is always ≥ 1.

(iii) Let k be as in (ii). Then θ2(Π) ⊆ Σ. If, moreover, the cardinality

of θ1(Π) is ≥ 2, then θ2(Π) = Σ.

(iv) Let k be as in (ii). Then every almost pro-omissive topologically

finitely generated closed normal subgroup of Π is contained in ∆. If, more-

over, Σ �= Primes, then the kernel of the quotient Π � G may be charac-

terized (“group-theoretically”) as the maximal almost pro-omissive topolog-

ically finitely generated closed normal subgroup of Π.

(v) Let k be as in (ii). If θ2(Π) �= Primes, then write

Θ ⊆ Π

for the maximal almost pro-omissive topologically finitely generated closed

normal subgroup of Π, whenever a unique such maximal subgroup exists; if
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θ2(Π) = Primes, or there does not exist a unique such maximal subgroup,

set Θ
def
= {1} ⊆ Π. Then

ζ(Π)
def
= ζ(Π/Θ) = [k : Qp]

(cf. the finiteness portion of (ii)). In particular, the kernel of the quo-

tient Π� G may be characterized (“group-theoretically” — since “θ2(−)”,

“ζ(−)”, “ζ(−)” are “group-theoretic”) as the intersection of the open sub-

groups H ⊆ Π such that ζ(H)/ζ(Π) = [Π : H].

(vi) Suppose that k is an NF. Then the natural surjection Πab-t � Gab-t

is an isomorphism. The kernel of the quotient Π � G may be character-

ized (“group-theoretically”) as the maximal topologically finitely generated

closed normal subgroup of Π. In particular, Π is not topologically finitely

generated.

Proof. Write X → A for the Albanese morphism associated to X.

(We refer to the Appendix for a review of the theory of Albanese varieties

— cf., especially, Corollary A.11, Remark A.11.2.) Thus, A is a torsor over

a semi-abelian variety over k such that the morphism X → A induces an

isomorphism

∆ab-t ⊗ Zl
∼→ Tl(A)

onto the l-adic Tate module Tl(A) of A for all l ∈ Σ. Note, moreover, that

for l ∈ Σ, the quotient of ∆ determined by the image of ∆ in the pro-l

completion of Πab-t factors through the quotient

∆� ∆ab-t ⊗ Zl
∼→ Tl(A)� Tl(A)/G

— where we use the notation “/G” to denote the maximal torsion-free

quotient on which G acts trivially.

Next, whenever k is an MLF, let us write, for l ∈ Σ,

∆ab-t � ∆ab-t ⊗ Zl
∼→ Tl(A)� Rl

def
= R⊗ Zl � Ql

def
= Q⊗ Zl

for the pro-l portion of the quotients T (A)� R� Q of Lemma 2.7, (i), (ii),

below (in which we take “k” to be k and “B” to be the semi-abelian variety

over which A is a torsor). Here, we observe that Ql is simply the quotient

Tl(A)/G considered above. Thus, the Zl-ranks of Rl, Ql are independent of

l ∈ Σ.
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The topological finite generation portion of assertion (i) follows imme-

diately from the fact that G ∼= Ẑ, together with the topological finite gen-

eration of ∆ (cf. Proposition 2.2). The remainder of assertion (i) follows

immediately from the fact that Tl(A)/G = 0 (a consequence of the “Rie-

mann hypothesis for abelian varieties over finite fields” — cf., e.g., [Mumf],

p. 206). In a similar vein, assertion (vi) follows immediately from the fact

that Tl(A)/G = 0 (again a consequence of the “Riemann hypothesis for

abelian varieties over finite fields”), together with the fact that G is very

elastic (cf. Theorem 1.7, (iii)).

To verify assertion (ii), let us first observe that the topological finite

generation of Π follows from that of ∆ (cf. Proposition 2.2), together with

that of G (cf. [NSW], Theorem 7.5.10). Next, let us recall the well-known

fact that

δ1l (G) = 1 if l �= p, δ1p(G) = [k : Qp] + 1

(cf. our discussion of local class field theory in the proofs of Proposition 1.5;

Theorem 1.7, (ii)); in particular, ζ(G) = [k : Qp]. Moreover, the existence

of a rational point of A over some finite extension of k (which determines a

Galois section of the étale fundamental group of A over some open subgroup

of G) implies that

δ1l (Π) = δ1l (G) + dimQl
(Ql ⊗Ql)

(where we recall that dimQl
(Ql⊗Ql) is independent of l) for l ∈ Σ, δ1l (Π) =

δ1l (G) for l /∈ Σ. Thus, by considering extensions of k of arbitrarily large

degree, we obtain that ε1p(Π) = ∞. This completes the proof of assertion

(ii).

Next, we consider assertion (iii). First, let us consider the “E2-term” of

the Leray spectral sequence of the group extension 1 → ∆ → Π → G → 1.

Since G is of cohomological dimension 2 (cf., e.g., [NSW], Theorem 7.1.8,

(i)), and δ2l (G) = 0 for all l ∈ Primes (cf., e.g., [NSW], Theorem 7.2.6),

the spectral sequence yields an equality δ2l (Π) = 0 if l /∈ Σ, and a pair of

injections

H1(G,Hom(Rl,Ql)) ↪→ H1(G,Hom(∆ab-t,Ql)) ↪→ H2(Π,Ql)

if l ∈ Σ (cf. Lemma 2.7, (iii), below). By applying the analogue of this

conclusion for an arbitrary open subgroup H ⊆ Π, we thus obtain that
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δ2l (H) = 0 if l /∈ Σ, i.e., that ε2l (Π) = 0 if l /∈ Σ; this already implies

that if l /∈ Σ, then l /∈ θ2(Π), i.e., that θ2(Π) ⊆ Σ. If the cardinality

of θ1(Π) is ≥ 2, then there exists some open subgroup H ⊆ Π and some

l ∈ Primes such that δ1l (H) ≥ 2, l �= p. Now we may assume without

loss of generality that H acts trivially on the quotient R; also to simplify

notation, we may replace Π by H and assume that H = Π. Then (since

δ1l (G) = 1, by assertion (ii)) the fact that δ1l (Π) ≥ 2 implies that l ∈ Σ,

and dimQl
(Rl ⊗ Ql) ≥ 1 (cf. our computation in the proof of assertion

(ii)). But this implies that for any l′ ∈ Σ, we have dimQl′ (Rl′ ⊗ Ql′) ≥ 1,

hence that H1(G,Hom(Rl′ ,Ql′)) = H1(G,Ql′) ⊗ Hom(Rl′ ,Ql′) �= 0. Thus,

by the injections discussed above, we conclude that ε2l′(Π) ≥ δ2l′(Π) ≥ 1, so

l′ ∈ θ2(Π). This completes the proof of assertion (iii).

Assertion (iv) follows immediately from the existence of a surjection

G� Ẑ (cf., e.g., Proposition 1.5, (ii)), together with the elasticity of G (cf.

Theorem 1.7, (ii)), and the topological finite generation of ∆ (cf. Proposition

2.2).

Next, we consider assertion (v). First, let us observe that whenever

Σ = Primes, it follows from assertion (ii) that ζ(Π) = ζ(G) = [k : Qp].

Now we consider the case θ2(Π) = Primes. In this case, Θ = {1} (by

definition), and θ2(Π) = Σ = Primes (by assertion (iii)). Thus, we obtain

that ζ(Π) = ζ(Π/Θ) = [k : Qp], as desired (cf. [Mzk6], Lemma 1.1.4, (ii)).

Next, we consider the case θ1(Π) �= {p} (i.e., θ1(Π) is of cardinality ≥ 2

— cf. assertion (ii)), θ2(Π) �= Primes. In this case, by assertion (iii), we

conclude that Σ = θ2(Π) �= Primes. Thus, by assertion (iv), Θ = ∆, so

ζ(Π/Θ) = ζ(G) = [k : Qp], as desired.

Finally, we consider the case θ1(Π) = {p} (i.e., θ1(Π) is of cardinality

one), θ2(Π) �= Primes. If Σ �= Primes, then it follows from the definition

of Θ, together with assertion (iv), that Θ = ∆, hence that ζ(Π/Θ) =

ζ(G) = [k : Qp], as desired. If, on the other hand, Σ = Primes, then since

θ1(Π) = {p}, it follows (cf. the computation in the proof of assertion (ii))

that dimQl
(Ql⊗Ql) = 0 for all primes l �= p, hence that dimQp(Qp⊗Qp) = 0;

but this implies that δ1l (Π) = δ1l (G) for all l ∈ Primes. Now since Θ ⊆ ∆ (by

assertion (iv)), it follows that δ1l (Π) ≥ δ1l (Π/Θ) ≥ δ1l (G) for all l ∈ Primes,

so we obtain that δ1l (Π) = δ1l (Π/Θ) = δ1l (G) for all l ∈ Primes. But this

implies that ζ(Π) = ζ(Π/Θ) = ζ(G) = [k : Qp], as desired. This completes

the proof of assertion (v). �
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Remark 2.6.1. When (in the notation of Theorem 2.6) X is a smooth

proper variety, the portion of Theorem 2.6, (ii), concerning “δ1l (Π)− δ1l (G)”

is essentially equivalent to the main result of [Yoshi].

Lemma 2.7 (Combinatorial Quotients of Tate Modules). Suppose that

k is an MLF (so k = k̃). Let B be a semi-abelian variety over k. Write

T (B)
def
= Hom(Q/Z, B(k))

for the Tate module of B. Then:

(i) The maximal torsion-free quotient module T (B) � Q of T (B) on

which Gk acts trivially is a finitely generated free Ẑ-module.

(ii) There exists a quotient Gk-module T (B)� R such that the following

properties hold: (a) R is a finitely generated free Ẑ-module; (b) the action

of Gk on R factors through a finite quotient; (c) no nonzero torsion-free

subquotient S of the Gk-module N
def
= Ker(T (B)� R) satisfies the property

that the resulting action of Gk on S factors through a finite quotient.

(iii) If R is as in (ii), then the natural map

H1(Gk,Hom(R, Ẑ))→ H1(Gk,Hom(T (B), Ẑ))

is injective.

Proof. Assertion (i) is literally the content of [Mzk6], Lemma 1.1.5.

Assertion (ii) follows immediately from the proof of [Mzk6], Lemma 1.1.5

(more precisely, the “combinatorial” quotient “Tcom” of loc. cit.). Asser-

tion (iii) follows by considering the long exact cohomology sequence asso-

ciated to the short exact sequence 0 → Hom(R, Ẑ) → Hom(T (B), Ẑ) →
Hom(N, Ẑ) → 0, since the fact that N has no nonzero torsion-free sub-

quotients on which Gk acts through a finite quotient implies that H0(Gk,

Hom(N, Ẑ)) = 0. �

Corollary 2.8 (Field Types and Absolute Homomorphisms). For

i = 1, 2, let 1 → ∆i → Πi → Gi → 1, ki, Xi, Σi, φ : Π1 → Π2 be as

in Proposition 2.5. Suppose further that ki is either an FF, an MLF, or an

NF, and that every prime ∈ Σi is invertible in ki. Then:

(i) Suppose further that φ is absolute. Then the field type of k1 is ≥
(cf. §0) the field type of k2. If, moreover, it holds either that both k1 and
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k2 are FF’s or that both k1 and k2 are NF’s, then φ is semi-absolute, i.e.,

φ(∆1) ⊆ ∆2.

(ii) Suppose further that φ is an isomorphism. Then the field types of k1,

k2 coincide, and φ is strictly semi-absolute, i.e., φ(∆1) = ∆2. If, moreover,

for i = 1, 2, ki is an MLF of residue characteristic pi, then p1 = p2.

Proof. Assertion (i) concerning the inequality “≥” follows immedi-

ately from the topological finite generation portions of Theorem 2.6, (i),

(ii), (vi), together with the estimates of “δ1l (−)”, “ε1l (−)” in Theorem 2.6,

(i), (ii). The final portion of assertion follows, in the case of FF’s, from

Theorem 2.6, (i), and, in the case of NF’s, from Proposition 2.5, (ii). Next,

we consider assertion (ii). The fact that the field types of k1, k2 coincide

follows from assertion (i) applied to φ, φ−1. To verify that φ is strictly semi-

absolute, let us first observe that every semi-absolute isomorphism whose in-

verse is also semi-absolute is necessarily strictly semi-absolute. Thus, since

the inverse to φ satisfies the same hypotheses as φ, to complete the proof of

Corollary 2.8, it suffices to verify that φ is semi-absolute. If k1, k2 are FF’s

(respectively, MLF’s; NF’s), then this follows immediately from the “group-

theoretic” characterizations of Πi � Gi in Theorem 2.6, (i) (respectively,

Theorem 2.6, (v); Theorem 2.6, (vi)). Finally, if, for i = 1, 2, ki is an MLF

of residue characteristic pi, then since φ induces an isomorphism G1
∼→ G2,

the fact that p1 = p2 follows, for instance, from [Mzk6], Proposition 1.2.1,

(i). �

Remark 2.8.1. In the situation of Corollary 2.8, suppose further that

k2 is an MLF of residue characteristic p2; that X2 is a hyperbolic orbicurve;

that Σ2 ⊆ {p2} (cf. Proposition 2.5, (iv)); and that if Σ2 = ∅, then k1 is an

NF. Then it is not clear to the author at the time of writing (but of interest

in the context of the theory of the present §2!) whether or not there exists

a continuous surjective homomorphism

G1 � Π2

(in which case, by Corollary 2.8, (i), k1 is either an NF or an MLF).

The general theory discussed so far for arbitraryX becomes substantially

simpler and more explicit, when X is a hyperbolic orbicurve.
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Definition 2.9. Let G be a profinite group. Then we shall refer to as

an aug-free decomposition of G any pair of closed subgroups H1, H2 ⊆ G

that determine an isomorphism of profinite groups

H1 ×H2
∼→ G

such that H1 is a slim, topologically finitely generated, augmented pro-prime

(cf. Definition 1.1, (iii)) profinite group, and H2 is either trivial or a non-

abelian pro-Σ-solvable free group for some set Σ ⊆ Primes of cardinality

≥ 2. In this situation, we shall refer to H1 as the augmented subgroup of

this aug-free decomposition and to H2 as the free subgroup of this aug-free

decomposition. If G admits an aug-free decomposition, then we shall say

that G is of aug-free type. If G is of aug-free type, with nontrivial free

subgroup, then we shall say that G is of strictly aug-free type.

Proposition 2.10 (First Properties of Aug-free Decompositions). Let

H1 ×H2
∼→ G

be an aug-free decomposition of a profinite group G, in which H1 is the

augmented subgroup, and H2 is the free subgroup. Then:

(i) Let J be a topologically finitely generated, augmented pro-prime

group; φ : J → G a continuous homomorphism of profinite groups such that

φ(J) is normal in some open subgroup of G. Then φ(J) ⊆ H1.

(ii) Aug-free decompositions are unique — i.e., if J1 × J2
∼→ G is any

aug-free decomposition of G, in which J1 is the augmented subgroup, and J2

is the free subgroup, then J1 = H1, J2 = H2.

Proof. First, we consider assertion (i). Suppose that φ(J) is not

contained in H1. Then the image I ⊆ H2 of φ(J) via the projection to H2 is

a nontrivial, topologically finitely generated closed subgroup which is normal

in an open subgroup of H2. Since H2 is elastic (cf. [MT], Theorem 1.5),

it follows that I is open in H2, hence that I is a nonabelian pro-Σ-solvable

free group for some set Σ ⊆ Primes of cardinality ≥ 2. On the other hand,

since I is a quotient of the augmented pro-prime group J , it follows that

there exists a p ∈ Primes such that the maximal pro-(�= p) quotient of I is

abelian. But this implies that Σ ⊆ {p}, a contradiction. Next, we consider

assertion (ii). By assertion (i), J1 ⊆ H1, H1 ⊆ J1. Thus, H1 = J1. Now
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since H1 = J1 is slim, it follows that the centralizer ZH1(G) (respectively,

ZJ1(G)) is equal to H2 (respectively, J2), so H2 = J2, as desired. �

Theorem 2.11 (Maximal Pro-RTF-quotients for Hyperbolic Orbi-

curves). Let

1 → ∆ → Π → G→ 1

be an extension of AFG-type; (k,X,Σ) partial construction data (consisting

of the construction data field, construction data base-stack, and construc-

tion data prime set) for Π � G. Suppose that k is an MLF of residue

characteristic p; X is a hyperbolic orbicurve; Σ �= ∅. For l ∈ Primes, write

Π[l] ⊆ Π

for the maximal almost pro-l topologically finitely generated closed normal

subgroup of Π, whenever a unique such maximal subgroup exists; if there

does not exist a unique such maximal subgroup, then set Π[l]
def
= {1}.

In the following, we shall use a subscript “G” to denote the quotient of

a closed subgroup of Π determined by the quotient Π� G; we shall use the

superscript “RTF” to denote the maximal pro-RTF-quotient and the super-

scripts “RTF-aug”, “RTF-free” to denote the augmented and free subgroups

of the maximal pro-RTF-quotient whenever this maximal pro-RTF-quotient

is of aug-free type. Then:

(i) Suppose that Π[l] �= {1} for some l ∈ Primes. Then Π[l] = ∆,

Σ = {l}; Π[l′] = {1} for all l′ ∈ Primes such that l′ �= l.

(ii) Suppose that Π[l] = {1} for all l ∈ Primes. Then Σ is of cardinality

≥ 2. Moreover, for every open subgroup J ⊆ Π, there exists an open sub-

group H ⊆ J which is characteristic as a subgroup of Π such that HRTF is

of aug-free type. In particular, (cf. Proposition 2.10, (ii)) the subquotients

HRTF-aug, HRTF-free of Π are characteristic.

(iii) Suppose that Π[l] = {1} for all l ∈ Primes. Suppose, moreover,

that H ⊆ Π is an open subgroup that corresponds to a finite étale covering

Z → X, where Z is a hyperbolic curve, defined over a finite extension kZ
of k such that Z has stable reduction (cf. §0) over the ring of integers OkZ
of kZ ; that Z(kZ) �= ∅; that the dual graph ΓZ of the geometric special fiber

of the resulting model (cf. §0) over OkZ has either trivial or nonabelian

topological fundamental group; and that the Galois action of G on ΓZ is
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trivial. Thus, the finite Galois coverings of the graph ΓZ of degree a product

of primes ∈ Σ determine a pro-Σ “combinatorial” quotient H � ∆com
H ;

write ∆com
H � ∆com-sol

H for the maximal pro-solvable quotient of ∆com
H . Then

the quotient

H � HRTF
G ×∆com-sol

H

may be identified with the maximal pro-RTF-quotient H � HRTF of H;

moreover, this product decomposition determines an aug-free decomposition

of HRTF. Finally, for any open subgroup J ⊆ Π, there exists an open

subgroup H ⊆ J which is characteristic as a subgroup of Π and, moreover,

satisfies the above hypotheses on “H”.

(iv) Suppose that Π[l] = {1} for all l ∈ Primes. Let H ⊆ J ⊆ Π be open

subgroups of Π such that HRTF, JRTF are of aug-free type. Then we have

isomorphisms

JRTF-aug ∼→ JRTF
G ; JRTF-free ∼→ Ker(JRTF � JRTF

G )

(arising from the natural morphisms involved); the open homomorphism

HRTF → JRTF induced by φ maps HRTF-aug (respectively, HRTF-free) onto

an open subgroup of JRTF-aug (respectively, JRTF-free).

Proof. Since ∆ is elastic (cf. Proposition 2.3, (i)), every nontrivial

topologically finitely generated closed normal subgroup of ∆ is open, hence

almost pro-Σ′ for Σ′ ⊆ Primes if and only if Σ′ ⊇ Σ. Also, let us observe

that by Theorem 2.6, (iv), Π[l] ⊆ ∆ for all l ∈ Primes. Thus, if Π[l] �= {1}
for some l ∈ Primes, then it follows that Σ = {l}, Π[l] = ∆, and that Π[l′]
is finite, hence trivial (since ∆ is slim — cf. Proposition 2.3, (i)) for primes

l′ �= l. Also, we observe that if Σ is of cardinality one, i.e., Σ = {l} for some

l ∈ Primes, then ∆ = Π[l] �= {1} (cf. Theorem 2.6, (iv)). This completes

the proof of assertion (i), as well as of the portion of assertion (ii) concerning

Σ. Also, we observe that the remainder of assertion (ii) follows immediately

from assertion (iii).

Next, we consider assertion (iii). Suppose that H ⊆ Π satisfies the

hypotheses given in the statement of assertion (iii); write ∆H
def
= ∆

⋂
H.

Thus, one has the quotient H � ∆com
H , where ∆com

H is either trivial or a

nonabelian pro-Σ free group, and Σ is of cardinality ≥ 2 (cf. the portion of

assertion (ii) concerning Σ). Write ∆ab
H = ∆ab-t

H � R for the maximal pro-Σ



Absolute Anabelian Geometry I 173

quotient of the quotient “R” of Lemma 2.7, (ii), associated to the Albanese

variety of Z.

Now I claim that the quotient ∆H � R coincides with the quotient

∆H � (∆com
H )ab. First, let us observe that by the definition ofR (cf. Lemma

2.7, (ii)), it follows that the quotient ∆H � (∆com
H )ab factors through the

quotient ∆H � R. In particular, since, for l ∈ Σ, the modules R ⊗ Zl,

(∆com
H )ab⊗Zl are Zl-free modules of rank independent of l ∈ Σ (cf. Lemma

2.7, (ii); the fact that ∆com
H is pro-Σ free), it suffices to show that these

two ranks are equal, for some l ∈ Σ. Moreover, let us observe that for the

purpose of verifying this claim, we may enlarge Σ. Thus, it suffices to show

that the two ranks are equal for some l ∈ Σ such that l �= p. But then the

claim follows immediately from the (well-known) fact that by the “Riemann

hypothesis for abelian varieties over finite fields” (cf., e.g., [Mumf], p. 206),

all powers of the Frobenius element in the absolute Galois group of the

residue field of k act with eigenvalues �= 1 on the pro-l abelianizations of the

fundamental groups of the geometric irreducible components of the smooth

locus of the special fiber of the stable model of Z over OkZ . This completes

the proof of the claim.

Now let us write H � Hcom for the quotient of H by Ker(∆H �
∆com
H ). Then by applying the above claim to various open subgroups of

H, we conclude that the quotient H � HRTF factors through the quotient

H � Hcom (i.e., we have a natural isomorphism HRTF ∼→ (Hcom)RTF).

On the other hand, since Z(kZ) �= ∅, it follows that H � HG, hence also

Hcom � HG admits a section s : HG → Hcom whose image lies in the

kernel of the quotient Hcom � ∆com
H (cf. the proof of [Mzk3], Lemma 1.4).

In particular, we conclude that the conjugation action of HG on ∆com
H

∼=
Ker(Hcom � HG) ⊆ Hcom arising from s is trivial. Thus, s determines a

direct product decomposition

Hcom ∼→ HG ×∆com
H

— hence a direct product decomposition HRTF ∼→ (Hcom)RTF ∼→ HRTF
G ×

(∆com
H )RTF. Moreover, since ∆com

H is either trivial or nonabelian pro-Σ free,

it follows immediately that the quotient ∆com
H � (∆com

H )RTF may be iden-

tified with the quotient ∆com
H � ∆com-sol

H , where ∆com-sol
H is either trivial or

nonabelian pro-Σ-solvable free. Since HRTF
G is slim, augmented pro-prime,

and topologically finitely generated (cf. Proposition 1.5, (i), (ii); Theorem
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2.6, (ii)), we thus conclude that we have obtained an aug-free decomposition

of HRTF, as asserted in the statement of assertion (iii).

Finally, given an open subgroup J ⊆ Π, the existence of an open sub-

group H ⊆ J which satisfies the hypotheses on “H” in the statement of

assertion (iii) follows immediately from well-known facts concerning stable

curves over discretely valued fields (cf., e.g., the “stable reduction theorem”

of [DM]; the fact that Σ �= ∅, so that one may assume that ΓZ is as large

as one wishes by passing to admissible coverings). The fact that one can

choose H to be characteristic follows immediately from the characteristic

nature of ∆ (cf., e.g., Corollary 2.8, (ii)), together with the fact that ∆, Π

are topologically finitely generated (cf., e.g. Proposition 2.2; Theorem 2.6,

(ii)). This completes the proof of assertion (iii).

Finally, we consider assertion (iv). First, we observe that since the

augmented and free subgroups of any aug-free decomposition are slim (cf.

Definition 2.9; [MT], Proposition 1.4), hence, in particular, do not contain

any nontrivial closed normal finite subgroups, we may always replace H by

an open subgroup of H that satisfies the same hypotheses as H. In partic-

ular, we may assume that H is an open subgroup “H” as in assertion (iii)

(which exists, by assertion (iii)). Then by Proposition 2.10, (i), the image

of HRTF-aug in JRTF is contained in JRTF-aug, so we obtain a morphism

HRTF-aug → JRTF-aug. By assertion (iii), HRTF-free = Ker(HRTF � HRTF
G ),

and the natural morphism HRTF-aug → HRTF
G is an isomorphism. Since

HG → JG, hence also HRTF
G → JRTF

G , is clearly an open homomorphism, we

thus conclude that the natural morphism HRTF-aug → JRTF
G , hence also the

natural morphism JRTF-aug → JRTF
G , is open. Thus, the image of JRTF-free in

JRTF
G commutes with an open subgroup of JRTF

G (i.e., the image of JRTF-aug

in JRTF
G ), so by the slimness of JRTF

G (cf. Proposition 1.5, (i)), we conclude

that JRTF-free ⊆ Ker(JRTF � JRTF
G ). In particular, we obtain a surjection

JRTF-aug � JRTF
G , hence an exact sequence

1 → N → JRTF-aug → JRTF
G → 1

— where we write N
def
= Ker(JRTF-aug � JRTF

G ) ⊆ JRTF-aug ⊆ JRTF. Note,

moreover, that since JRTF
G is an augmented pro-p group (cf. Proposition 1.5,

(ii)) which admits a surjection JRTF
G � Zp × Zp (cf. the computation of

“δ1p(−)” in Theorem 2.6, (ii)), it follows immediately that (the augmented

pro-prime group) JRTF-aug is an augmented pro-p group whose augmenta-
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tion factors through JRTF
G ; in particular, we conclude that N is pro-p. Also,

we observe that since the composite HRTF-free → HRTF
G → JRTF

G is trivial,

it follows that the projection under the quotient JRTF � JRTF-aug of the

image of HRTF-free in JRTF is contained in N .

Now I claim that to complete the proof of assertion (iv), it suffices to

verify that N = {1} (or, equivalently, since JRTF-aug is slim, that N is

finite). Indeed, if N = {1}, then we obtain immediately the isomorphisms

JRTF-aug ∼→ JRTF
G , JRTF-free ∼→ Ker(JRTF � JRTF

G ). Moreover, by the above

discussion, if N = {1}, then it follows that the image of HRTF-free in JRTF

is contained in JRTF-free. Since the homomorphism HRTF → JRTF is open,

this implies that the open homomorphism HRTF � JRTF induced by φ

maps HRTF-aug (respectively, HRTF-free) onto an open subgroup of JRTF-aug

(respectively, JRTF-free), as desired. This completes the proof of the claim.

Next, let J ⊆ J be an open subgroup that arises as the inverse image in J

of an (open) RTF-subgroup JG ⊆ JG (so the notation “JG” does not lead to

any contradictions). Then one verifies immediately from the definitions that

any RTF-subgroup of JG (respectively, J) determines an RTF-subgroup of

JG (respectively, J). Thus, the natural morphisms

JRTF
G → JRTF

G ; JRTF → JRTF

are injective. Moreover, the subgroups JRTF-aug
⋂
JRTF, JRTF-free of JRTF

clearly determine an aug-free decomposition of JRTF. Thus, from the point

of view of verifying the finiteness of N , we may replace J by J (and H

by an appropriate smaller open subgroup contained in J and satisfying the

hypotheses of the “H” of (iii)). In particular, since — by the definition

of “RTF” and of the subgroup N ! — there exists a J such that N ⊆
JRTF-aug has nontrivial image in (JRTF-aug)ab-t, we may assume without

loss of generality that N has nontrivial image in (JRTF-aug)ab-t. Thus, we

have

(δ1p(J) ≥) δ1p(J
RTF-aug) > δ1p(J

RTF
G ) = δ1p(JG)

(cf. the notation of Theorem 2.6), i.e., sJ
def
= δ1p(J

RTF-aug) − δ1p(J
RTF
G ) > 0.

By Theorem 2.6, (ii), this already implies that p ∈ Σ.

In a similar vein, let J ⊆ J be an open subgroup that arises as the in-

verse image in J of an (open) RTF-subgroup JRTF-free ⊆ JRTF-free. Then one

verifies immediately from the definitions that any RTF-subgroup of J deter-

mines an RTF-subgroup of J . Thus, the natural morphism JRTF → JRTF is
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injective, with image equal to JRTF-aug×JRTF-free. Moreover, the subgroups

JRTF-aug, JRTF-free of JRTF clearly determine an aug-free decomposition of

JRTF (so the notation “JRTF-free” does not lead to any contradictions).

Since (by the above discussion applied to J instead of J) JRTF-free maps

to the identity in JRTF
G , we thus obtain a quotient JRTF � JRTF-aug =

JRTF-aug � JRTF
G , hence a quotient JRTF � JRTF-aug � JRTF

G in which

the image of J
⋂

∆ is a finite normal closed subgroup, hence trivial (since

JRTF
G is slim — cf. Proposition 1.5, (i)). That is to say, the surjection

J � JRTF-aug � JRTF
G to the pro-RTF-group JRTF

G factors through JG,

hence through JRTF
G . Thus, we obtain a surjection JRTF

G � JRTF
G whose

composite JRTF
G � JRTF

G → JRTF
G with the natural morphism induced by

the inclusion J ↪→ J is the identity (since JRTF
G is slim (cf. Proposition 1.5,

(i)), and all of these maps “lie under a fixed J”). But this implies that

the natural morphism JRTF
G → JRTF

G is an isomorphism. In particular, we

have an isomorphism of kernels Ker(JRTF-aug � JRTF
G )

∼→ Ker(JRTF-aug �
JRTF
G ). Thus, from the point of view of verifying the finiteness of N , we

may replace J by J (and H by an appropriate smaller open subgroup con-

tained in J and satisfying the hypotheses of the “H” of (iii)). In particu-

lar, since JRTF-aug ∼→ JRTF-aug, we may assume without loss of generality

that the rank rJ of the pro-ΣJ -solvable free group JRTF-free (for some subset

ΣJ ⊆ Primes of cardinality ≥ 2) is either 0 or > δ1p(J
RTF-aug). In particular,

if l ∈ ΣJ , then either rJ = 0 or rJ = δ1l (J
RTF-free) > δ1p(J

RTF-aug) ≥ sJ .

Now we compute: Since Σ is of cardinality ≥ 2, let l ∈ Σ be a prime �= p.

Then:

δ1l (J
RTF-free) = δ1l (J

RTF-free) + δ1l (J
RTF-aug)− δ1l (J

RTF
G )

= δ1l (J
RTF)− δ1l (J

RTF
G ) = δ1l (J)− δ1l (JG)

= δ1p(J)− δ1p(JG) = δ1p(J
RTF)− δ1p(J

RTF
G )

= δ1p(J
RTF-free) + δ1p(J

RTF-aug)− δ1p(J
RTF
G )

= δ1p(J
RTF-free) + sJ

— where we apply the “independence of l” of Theorem 2.6, (ii). Thus,

we conclude that sJ = δ1l (J
RTF-free) − δ1p(J

RTF-free) — where δ1l (J
RTF-free),

δ1p(J
RTF-free) ∈ {0, rJ} (depending on whether or not l, p belong to ΣJ) —

is a positive integer. But this implies that 0 < sJ ∈ {0, rJ ,−rJ}, hence that

sJ = rJ > 0 — in contradiction to the inequality sJ < rJ (which holds if
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rJ > 0). This completes the proof of assertion (iv). �

Remark 2.11.1. One way of thinking about the content of Theorem

2.11, (iv), is that it asserts that “aug-free decompositions of maximal pro-

RTF-quotients play an analogous (though somewhat more complicated) role

for absolute Galois groups of MLF’s to the role played by torsion-free

abelianizations for absolute Galois groups of FF’s” (cf. Theorem 2.6, (i)).

Corollary 2.12 (Group-theoretic Semi-absoluteness via Maximal

Pro-RTF-quotients). For i = 1, 2, let 1→ ∆i → Πi → Gi → 1, ki, Xi, Σi,

φ : Π1 → Π2 be as in Proposition 2.5. Suppose further that ki is an MLF;

Xi is a hyperbolic orbicurve; Σi �= ∅. Also, for i = 1, 2, let us write

Θi ⊆ Πi

for the maximal almost pro-prime topologically finitely generated closed nor-

mal subgroup of Πi, whenever a unique such maximal subgroup exists; if

there does not exist a unique such maximal subgroup, then we set Θi
def
= {1}.

Suppose that φ is absolute. Then:

(i) For i = 1, 2, Θi ⊆ ∆i; Θi �= {1} if and only if Σi is of cardinality

one; if Θi �= {1}, then Θi = ∆i. Finally, φ(Θ1) ⊆ Θ2 (so φ induces a

morphism Π1/Θ1 → Π2/Θ2).

(ii) In the notation of Theorem 2.11, φ is semi-absolute (or, equivalently,

pre-semi-absolute — cf. Proposition 2.5, (iii)) if and only if the following

(“group-theoretic”) condition holds:

(∗s-ab) For i = 1, 2, let Hi ⊆ Πi/Θi be an open subgroup such that

HRTF
i is of aug-free type, and (the morphism induced by) φ maps

H1 into H2. Then the open homomorphism

HRTF
1 → HRTF

2

induced by φ maps HRTF-free
1 into HRTF-free

2 .

(iii) If, moreover, Σ2 is of cardinality ≥ 2, then φ is semi-absolute if

and only if it is strictly semi-absolute (or, equivalently, pre-strictly semi-

absolute — cf. Proposition 2.5, (v)).

Proof. First, we consider assertion (i). By Theorem 2.6, (iv), any

almost pro-prime topologically finitely generated closed normal subgroup of
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Πi — hence, in particular, Θi — is contained in ∆i. Thus, by Theorem

2.11, (i), (ii), Θi �= {1} if and only if Σi is of cardinality one; if Θi �= {1},
then Θi = ∆i. Now to show that φ(Θ1) ⊆ Θ2, it suffices to consider the

case where φ(Θ1) �= {1} (so Σ1 is of cardinality one). Since φ is absolute,

it follows that φ(Θ1) is normal in some open subgroup of Π2. Thus, by

Theorem 2.6, (iv), we have φ(Θ1) ⊆ ∆2, so we may assume that Θ2 = {1}
(which implies that Σ2 is of cardinality ≥ 2). But then the elasticity of

∆2 (cf. Proposition 2.3, (i)) implies that φ(Θ1) is an open subgroup of ∆2,

hence that φ(Θ1) is almost pro-Σ2 (for some Σ2 of cardinality ≥ 2), which

contradicts the fact that φ(Θ1) is almost pro-Σ1 (for some Σ1 of cardinality

one). This completes the proof of assertion (i).

Next, we consider assertion (ii). By Proposition 2.5, (iii), one may

replace the term “semi-absolute” in assertion (ii) by the term “pre-semi-

absolute”. By assertion (i), for i = 1, 2, either Θi = {1} or Θi = ∆i; in either

case, it follows from Theorem 2.11, (iv) (cf. also Proposition 1.5, (i), (ii)),

that (in the notation of (∗s-ab)) the projection HRTF
i � HRTF-aug

i may be

identified with the projection HRTF
i � (Hi)

RTF
Gi

(which is an isomorphism

whenever Θi = ∆i). Thus, the condition (∗s-ab) may be thought of as

the condition that the morphism HRTF
1 → HRTF

2 be compatible with the

projection morphisms HRTF
i � (Hi)

RTF
Gi

. From this point of view, it follows

immediately that the semi-absoluteness of φ implies (∗s-ab), and that (∗s-ab)

implies (in light of the existence of H1, H2 — cf. Theorem 2.11, (ii)) the

pre-semi-absoluteness of φ. Assertion (iii) follows from Proposition 2.5, (iv),

(v). �

Remark 2.12.1. The criterion of Corollary 2.12, (ii), may be thought

of as a “group-theoretic Hom-version”, in the case of hyperbolic orbicurves,

of the numerical criterion “ζ(H)/ζ(Π) = [Π : H]” of Theorem 2.6, (v).

Alternatively (cf. the point of view of Remark 2.11.1), this criterion of

Corollary 2.12, (ii), may be thought of as a (necessarily — cf. Example

2.13 below!) somewhat more complicated version for MLF’s of the latter

portion of Corollary 2.8, (i), in the case of FF’s or NF’s.

Example 2.13 A Non-pre-semi-absolute Absolute Homomorphism.

(i) In the situation of Theorem 2.11, suppose that Σ = Primes. Fix

a natural number N (which one wants to think of as being “large”). By

replacing Π by an open subgroup of Π, we may assume that Π satisfies the
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hypotheses of the subgroup “H” of Theorem 2.11, (iii), and that the dual

graph of the special fiber of X is not a tree (cf. the discussion preceding

[Mzk6], Lemma 2.4). Thus, we have a “combinatorial” quotient Π� ∆com,

where ∆com is a nonabelian profinite free group. In particular, there exists

an open subgroup of ∆com which is a profinite free group on > N genera-

tors. Thus, by replacing Π by an open subgroup of Π arising from an open

subgroup of ∆com, we may assume from the start that ∆com is a profinite

free group on > N generators.

(ii) Now let

1→ ∆∗ → Π∗ → G∗ → 1

be an extension of AFG-type that admits a construction data field which is

an MLF. Thus, Π∗ is topologically finitely generated (cf. Theorem 2.6, (ii)),

so it follows that there exists a Π as in (i), together with a surjection of

profinite groups

ψ : Π� Π∗

that factors through the quotient Π� ∆com. In particular, ψ is an absolute

homomorphism which is not pre-semi-absolute (hence, a fortiori, not semi-

absolute).

In light of the appearance of the “combinatorial quotient” in Theorem

2.11, (iii), we pause to recall the following result (cf. [Mzk6], Lemma 2.3,

in the profinite case).

Theorem 2.14 (Graph-theoreticity for Hyperbolic Curves). For i =

1, 2, let 1 → ∆i → Πi → Gi → 1, ki, Xi, Σi, φ : Π1 → Π2 be as in

Proposition 2.5. Suppose further that ki is an MLF of residue characteristic

pi; that Σi contains a prime �= pi; that φ is an isomorphism; and that Xi
is a hyperbolic curve with stable reduction over the ring of integers Oki of

ki. Write Γi for the dual semi-graph with compact structure (i.e., the dual

graph, together with additional open edges corresponding to the cusps — cf.

[Mzk6], Appendix) of the geometric special fiber of the stable model of Xi
over Oki. Then:

(i) We have p1 = p2, Σ1 = Σ2; φ induces isomorphisms ∆1
∼→ ∆2,

G1
∼→ G2; φ induces an isomorphism of semi-graphs φΓ : Γ1

∼→ Γ2 which

is functorial in φ. In particular, the natural Galois action of G1 on Γ1 is

compatible, relative to φΓ, with the natural Galois action of G2 on Γ2.
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(ii) For i = 1, 2, suppose that the action of Gi on Γi is trivial. Write

Πi � ∆com
i for the pro-Σi “combinatorial” quotient determined by the finite

Galois coverings of the semi-graph Γi of degree a product of primes ∈ Σi.

Then φ is compatible with the quotients Πi � ∆com
i .

Proof. First, we consider assertion (i). By Corollary 2.8, (ii), p1 = p2,

and φ induces isomorphisms ∆1
∼→ ∆2, G1

∼→ G2. Since (by the well-known

structure of geometric fundamental groups of hyperbolic curves) Σi is the

unique minimal Σ ⊆ Primes such that ∆i is almost pro-Σ, we thus conclude

that Σ1 = Σ2. Write p
def
= p1 = p2, Σ

def
= Σ1 = Σ2; let l ∈ Σ be such

that l �= p. Then it follows immediately from the “Riemann hypothesis for

abelian varieties over finite fields” (cf., e.g., [Mumf], p. 206) that the action

of Gi on the maximal pro-l quotient ∆i � ∆
(l)
i is — in the terminology

of [Mzk12] — “l-graphically full”. Thus, by [Mzk12], Corollary 2.7, (ii),

the isomorphism ∆
(l)
1

∼→ ∆
(l)
2 is — again in the terminology of [Mzk12] —

“graphic”, hence induces a functorial isomorphism of semi-graphs Γ1
∼→ Γ2,

as desired.

Next, we consider assertion (ii). First, we observe that, by assertion

(i), the condition that the action of Gi on Γi be trivial is compatible with

φ. Also, let us observe that if Hi ⊆ Πi is an open subgroup corresponding

to a finite étale covering Zi → Xi of Xi, then the condition that Zi have

stable reduction is compatible with φ (cf. [Mzk6], the proof of Lemma 2.1;

our assumption that there exists an l ∈ Σi such that l �= pi). Next, I claim

that:

A finite étale Galois covering Zi → Xi of Xi arises from ∆com
i if

and only if Zi has stable reduction, and the action of Gal(Zi/Xi) on

the dual semi-graph with compact structure of the geometric special

fiber of the stable model of Zi is free.

Indeed, the necessity of this criterion is clear. To verify the sufficiency of

this criterion, observe that, by considering the non-free actions of inertia

subgroups of the Galois covering Zi → Xi, it follows immediately that

this criterion implies that all of the inertia groups arising from irreducible

components and cusps of the geometric special fiber of a stable model of

Xi are trivial, hence (cf., e.g., [SGA2], X, 3.4, (i); [Tama2], Lemma 2.1,

(iii)) that the covering Zi → Xi extends to an admissible covering of the
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respective stable models. On the other hand, once one knows that the

covering Zi → Xi admits such an admissible extension, the sufficiency of

this criterion is immediate. This completes the proof of the claim. Now

assertion (ii) follows immediately, by applying the functorial isomorphisms

of semi-graphs of assertion (i). �

Section 3. Absolute Open Homomorphisms of Local Galois

Groups

In the present §, we give various generalizations of the main result of

[Mzk1] concerning isomorphisms between Galois groups of MLF’s. One as-

pect of these generalizations is the substitution of the condition given in

[Mzk1] for such an isomorphism to arise geometrically — a condition that

involves the higher ramification filtration — by various other conditions (cf.

Theorem 3.5). Certain of these conditions were motivated by a recent re-

sult of A. Tamagawa (cf. Remark 3.8.1) concerning Lubin-Tate groups and

abelian varieties with complex multiplication; other conditions (cf. Corollary

3.7) were motivated by a certain application of the theory of the present §3
to be discussed in [Mzk15]. Another aspect of these generalizations is that

certain of the conditions studied below allow one to prove a “Hom-version”

(i.e., involving open homomorphisms, as opposed to just isomorphisms — cf.

Theorem 3.5) of the main result of [Mzk1]. Finally, this Hom-version of the

main result of [Mzk1] implies certain semi-absolute Hom-versions (cf. Corol-

lary 3.8, 3.9 below) of the absolute Isom-version of the Grothendieck Conjec-

ture given in [Mzk13], §2, and the relative Hom-version of the Grothendieck

Conjecture for function fields given in [Mzk3], Theorem B.

Let k be an MLF of residue characteristic p; k an algebraic closure

of k; Gk
def
= Gal(k/k); k̂ the p-adic completion of k; E an MLF of residue

characteristic p all of whose Qp-conjugates are contained in k. Write Ik ⊆ Gk
(respectively, Iwild

k ⊆ Ik) for the inertia subgroup (respectively, wild inertia

subgroup) of Gk; G
tame
k

def
= Gk/I

wild
k ; Gunr

k
def
= Gk/Ik (∼= Ẑ).

Definition 3.1.

(i) Let A be an abelian topological group; ρ, ρ′ : Gk → A characters (i.e.,

continuous homomorphisms). Then we shall write ρ ≡ ρ′ and say that ρ, ρ′

are inertially equivalent if, for some open subgroup H ⊆ Ik, the restricted

characters ρ|H , ρ′|H coincide (cf. [Serre3], III, §A.5).
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(ii) Write Emb(E, k) for the set of field embeddings σ : E ↪→ k. Let

σ ∈ Emb(E, k). Then if π is a uniformizer of k, then we shall denote by

χσ,π : Gk → E× the composite homomorphism

Gk � Gab
k

∼→ (k×)∧
∼→ O×

k × Ẑ � O×
k → O×

E ⊆ E×

— where the “∧” denotes the profinite completion; the first “
∼→ ” is the

isomorphism arising from local class field theory (cf., e.g., [Serre2]); the

second “
∼→ ” is the splitting determined by π; the second “�” is the

projection to the factor O×
k , composed with the inverse automorphism on

O×
k (cf. Remark 3.1.1 below); the homomorphism O×

k → O×
E is the norm

map associated to the field embedding σ. Since (as is well-known, from

local class field theory) Ik ⊆ Gk surjects to O×
k × {1} ⊆ O×

k × Ẑ, it follows

immediately that the inertial equivalence class of χσ,π is independent of the

choice of π. Thus, we shall often write χσ to denote χσ,π for some unspecified

choice of π.

(iii) Let ρ : Gk → E× be a character. Then we shall say that ρ is of

qLT-type (i.e., “quasi-Lubin-Tate” type) if there exists an open subgroup

H ⊆ Gk, corresponding to a field extension kH of k, and a field embedding

σ : E ↪→ kH such that ρ|H ≡ χσ; in this situation, we shall refer to [E : Qp]

as the dimension of ρ. We shall say that ρ is of 01-type if it is Hodge-Tate,

and, moreover, every weight appearing in its Hodge-Tate decomposition

∈ {0, 1}. Write

χcyclo
k : Gk → Q×

p

for the cyclotomic character associated to Gk. We shall say that ρ is of

ICD-type (i.e., “inertially cyclotomic determinant” type) if its determinant

det(ρ) : Gk → Q×
p (i.e., the composite of ρ with the norm map E× → Q×

p )

is inertially equivalent to χcyclo
k .

(iv) For i = 1, 2, let ki be an MLF of residue characteristic pi; ki an

algebraic closure of ki; k̂i the pi-adic completion of ki. We shall use similar

notation for the various subquotients of the absolute Galois group Gki
def
=

Gal(ki/ki) of ki to the notation already introduced for Gk. Let

φ : Gk1 → Gk2

be an open homomorphism. Then we shall say that φ is of qLT-type (re-

spectively, of 01-qLT-type) if p1 = p2, and, moreover, for every pair of open
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subgroups H1 ⊆ Gk1 , H2 ⊆ Gk2 such that φ(H1) ⊆ H2, and every character

ρ : H2 → F× of qLT-type (where F is an MLF of residue characteristic

p1 = p2 all of whose conjugates are contained in the fields determined by

H1, H2), the restricted character ρ|H1 : H1 → F× (obtained by restricting

via φ) is of qLT-type (respectively, of 01-type). We shall say that φ is of

HT-type (i.e., “Hodge-Tate” type) if p1 = p2, and, moreover, the topological

Gk1-module (but not necessarily the topological field!) obtained by compos-

ing φ with the natural action of Gk2 on k̂2 is isomorphic (as a topological

Gk1-module) to k̂1. We shall say that φ is of CHT-type (i.e., “cyclotomic

Hodge-Tate” type) if φ is of HT-type, and, moreover, the cyclotomic charac-

ters of Gk1 , Gk2 satisfy χcyclo
k1

= χcyclo
k2

◦φ. We shall say that φ is geometric if

it arises from an isomorphism of fields k2
∼→ k1 that maps k2 into k1 (which

implies, by considering the divisibility of the k×i , that p1 = p2, and that the

isomorphism k2
∼→ k1 is compatible with the respective topologies).

(v) Let 1 → ∆ → Π → Gk → 1 be an extension of AFG-type. Then we

shall say that this extension Π � Gk (or, when there is no danger of con-

fusion, that Π) is of A-qLT-type (i.e., “Albanese-quasi-Lubin-Tate” type) if

for every open subgroup H ⊆ Gk, and every character ρ : H → F× of qLT-

type (where F is an MLF of residue characteristic p all of whose conjugates

are contained in the field determined by H), there exists an open subgroup

J ⊆ Π×Gk
(Ik

⋂
H) (so one has an outer action of the image JG of J in Gk

on J∆
def
= J

⋂
∆) such that the JG-module Vρ obtained by letting JG act on

F via ρ|JG is isomorphic to some subquotient S of the JG-module Jab
∆ ⊗Qp.

Remark 3.1.1. As is well-known, the ρ that arises from a Lubin-Tate

group is of qLT-type — cf., e.g., [Serre3], III, §A.4, Proposition 4. This is

the reason for the terminology “quasi-Lubin-Tate”.

We begin by reviewing some well-known facts.

Proposition 3.2 (Characterization of Hodge-Tate Characters). Let

ρ : Gk → E× be a character; write Vρ for the Gk-module obtained by letting

Gk act on E via ρ. Then ρ is Hodge-Tate if and only if

ρ ≡
∏

σ∈Emb(E,k)

χnσσ
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for some nσ ∈ Z. Moreover, in this case, we have an isomorphism of k̂[Gk]-

modules:

Vρ ⊗Qp k̂
∼=

⊕
σ∈Emb(E,k)

k̂(nσ)

(where the “(−)” denotes a Tate twist).

Proof. Indeed, this criterion for the character ρ to be Hodge-Tate is

precisely the content of [Serre3], III, §A.5, Corollary. The Hodge-Tate de-

composition of Vρ then follows immediately the Hodge-Tate decomposition

of “Vρ” in the case where one takes “ρ” to be χσ (cf. [Serre3], III, §A.5,

proof of Lemma 2). �

Proposition 3.3 (Characterization of Quasi-Lubin-Tate Characters).

Let ρ, Vρ be as in Proposition 3.2. Then the following conditions on ρ are

equivalent:

(i) ρ is of qLT-type.

(ii) We have an isomorphism of k̂[Gk]-modules: Vρ ⊗Qp k̂
∼= k̂(1)⊕ k̂ ⊕

. . .⊕ k̂.

(iii) ρ is of ICD-type and Hodge-Tate; the resulting nσ’s of Proposition

3.2 are ∈ {0, 1}.
(iv) ρ is of ICD-type and of 01-type.

Proof. The fact that (i) implies (ii) follows immediately from the

description of the Hodge-Tate decomposition of “Vρ” in the case where one

takes “ρ” to be χσ (cf. [Serre3], III, §A.5, proof of Lemma 2). Next, let

us assume that (ii), (iii), or (iv) holds. In either of these cases, it follows

that ρ, hence also the determinant det(ρ) : Gk → Q×
p of ρ, is Hodge-Tate.

Then by applying Proposition 3.2 to ρ, we obtain that the associated nσ’s

are ∈ {0, 1}; by applying Proposition 3.2 to det(ρ) (in which case one takes

“E” to be Qp), we obtain that det(ρ) is inertially equivalent to the (
∑
σ nσ)-

th power of χcyclo
k . But this allows one to conclude (either from the explicit

Hodge-Tate decomposition of (ii), or from the assumption that ρ is of ICD-

type in (iii), (iv)) that
∑
σ nσ = 1, hence that there exists precisely one

σ ∈ Emb(E, k) such that nσ = 1, nσ′ = 0 for σ′ �= σ. Thus, (sorting

through the definitions) we conclude that (i), (ii), (iii), and (iv) hold. This

completes the proof of Proposition 3.3. �
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Proposition 3.4 (Preservation of Tame Quotients). In the notation

of Definition 3.1, (iv), let φ : Gk1 → Gk2 be an open homomorphism. Then

p1 = p2, and there exists a commutative diagram

Gk1
φ−−−→ Gk2� �

Gtame
k1

φtame

−−−→ Gtame
k2

— where the vertical arrows are the natural surjections; φtame is an injective

homomorphism.

Proof. We may assume without loss of generality that φ is surjective.

Next, let H2 ⊆ Gk2 be an open subgroup, H1
def
= φ−1(H2) ⊆ Gk1 . Then if

p1 �= p2, then (since we have a surjection H2 � H1) 1 = δ1l (H2) ≥ δ1l (H1) ≥
2 for l = p1 (cf. Theorem 2.6, (ii)); thus, we conclude that p1 = p2. Write

p
def
= p1 = p2. Since Gtame

k2
∼= Ẑ( �=p)(1) � Ẑ (for some faithful action of Ẑ

on Ẑ( �=p)(1) — cf., e.g., [NSW], Theorem 7.5.2), it follows immediately that

every closed normal pro-p subgroup of Gtame
k2

is trivial. Thus, the image

of φ(Iwild
k1

) in Gtame
k2

is trivial, so we conclude that φ induces a surjection

φtame : Gtame
k1

� Gtame
k2

. Since, for i = 1, 2, the quotient Gtame
ki

� Gunr
ki
∼= Ẑ

may be characterized as the quotient Gtame
ki

� (Gtame
ki

)ab-t, it thus follows

immediately that φtame induces continuous homomorphisms

Ẑ ∼= Gunr
k1 � Gunr

k2
∼= Ẑ; Ẑ( �=p)(1) ∼= Ik1/I

wild
k1 → Ik2/I

wild
k2

∼= Ẑ( �=p)(1)

— the first of which is surjective, hence an isomorphism (since, as is well-

known, every surjective endomorphism of a topologically finitely generated

profinite group is an isomorphism). But this implies that the second dis-

played homomorphism is also surjective, hence an isomorphism. This com-

pletes the proof of Proposition 3.4. �

Theorem 3.5 (Criteria for Geometricity). For i = 1, 2, let ki be an

MLF of residue characteristic pi; ki an algebraic closure of ki; k̂i the pi-adic

completion of ki. We shall use similar notation for the various subquotients

of the absolute Galois group Gki
def
= Gal(ki/ki) of ki to the notation intro-

duced at the beginning of the present §3 for Gk. Let

φ : Gk1 → Gk2
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be an open homomorphism. Then:

(i) The following conditions on φ are equivalent: (a) φ is of CHT-type;

(b) φ is of 01-qLT-type; (c) φ is of qLT-type; (d) φ is geometric.

(ii) Suppose that φ is an isomorphism. Then φ is geometric if and only

if it is of HT-type.

(iii) For i = 1, 2, let 1 → ∆i → Πi → Gki → 1 be an extension of

AFG-type;

ψ : Π1 → Π2

a semi-absolute (or, equivalently, pre-semi-absolute — cf. Proposition 2.5,

(iii)) homomorphism that lifts φ. Suppose that Π2 is of A-qLT-type. Then

φ is geometric.

Proof. First, we observe that by Proposition 3.4, it follows that p1 =

p2; write p
def
= p1 = p2. Also, we may always assume without loss of general-

ity that φ is surjective. Thus, by Proposition 3.4, it follows that φ(Ik1) = Ik2 .

In the following, we will use a superscript “Gki” (where i = 1, 2) to denote

the submodule of Gki-invariants of a Gki-module.

Next, we consider assertion (i). First, we observe that it is immediate

that condition (d) implies condition (a). Next, let us suppose that condition

(a) holds. Since ki = k̂
Gki

i is finite-dimensional over Qp, it follows that, for

i = 1, 2, any Gki-module M which is finite-dimensional over Qp is Hodge-

Tate with weights ∈ {0, 1} if and only if

dimQp((M ⊗ k̂i)
Gki ) + dimQp((M(−1)⊗ k̂i)

Gki ) = dimQp(M) · dimQp(k̂
Gki

i )

(where the tensor products are over Qp). Now suppose that M is a Gk2-

module that arises as a “Vρ” for some character ρ : Gk2 → E× of qLT-type

(so M is Hodge-Tate with weights ∈ {0, 1} — cf. Proposition 3.3, (i) =⇒
(iv)); write Mφ for the Gk1-module Mφ obtained by composing the Gk2-

action on M with φ. Thus, it follows immediately from our assumption that

φ is of CHT-type that the above condition concerning Qp-dimensions for M

implies the above condition concerning Qp-dimensions for Mφ. Applying

this argument to corresponding open subgroups of Gk1 , Gk2 thus shows

that φ is of 01-qLT-type, i.e., that condition (b) holds.

Next, let us assume that condition (b) holds. First, I claim that χcyclo
k1

≡
χcyclo
k2

◦ φ. Indeed, by condition (b), it follows that the character χcyclo
k2

◦
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φ : Gk1 → Q×
p is of 01-type. Thus, by Proposition 3.2, we conclude that

χcyclo
k2

◦φ ≡ (χcyclo
k1

)n, for some n ∈ {0, 1}. On the other hand, the restriction

of χcyclo
k2

to Ik2 clearly has open image; since φ(Ik1) = Ik2 , it thus follows

that the restriction of χcyclo
k2

◦ φ to Ik1 has open image. This rules out

the possibility that n = 0, hence completes the proof of the claim. Now, by

applying this claim, together with Proposition 3.3, (i)⇐⇒ (iv), we conclude

that φ is of qLT-type, i.e., that condition (c) holds.

Next, let us assume that condition (c) holds. First, I claim that this

already implies that φ is injective (i.e., an isomorphism). Indeed, let γ ∈
Ker(φ) ⊆ Gk1 be such that γ �= 1. Then there exists an open subgroup

J1 ⊆ Gk1 ⊆ GQp satisfying the following conditions: (1) γ /∈ J1; (2) J1 is

characteristic as a subgroup GQp ; (3) the extension E of Qp determined by

J1 contains all Qp-conjugates of k2. Fix an embedding σ0 : k2 ↪→ E; write

H2 ⊆ Gk2 for the corresponding open subgroup. Let H1 ⊆ J1 ⊆ Gk1 be an

open subgroup which is normal in Gk1 such that φ(H1) ⊆ H2; for i = 1, 2,

write kHi for the extension of ki determined by Hi. Thus, the embedding

σ2 : E ↪→ kH2 given by the identity E = kH2 (respectively, σ1 : E ↪→ kH1

determined by the inclusion H1 ⊆ J1) determines a character ρ2 : H2 →
E× (respectively, ρ1 : H1 → E×) of qLT-type (i.e., the character “χσ2”

(respectively, “χσ1”)). Moreover, by condition (c), the character ρ2◦(φ|H1) :

H1 → E× is of qLT-type, hence is inertially equivalent to τ ◦ ρ1 : H1 → E×

for some τ ∈ Gal(E/Qp). In particular, by replacing σ2 by σ2 ◦τ−1, we may

assume that τ is the identity, hence that ρ2 ◦ (φ|H1) ≡ ρ1. On the other

hand, since γ /∈ J1, hence acts nontrivially on the subfield E ⊆ kH1 (relative

to the embedding σ1), it follows that ρ1 ◦κγ ≡ δ ◦ ρ1, where we write κγ for

the automorphism of H1 given by conjugating by γ, and δ ∈ Gal(E/Qp) is

not equal to the identity. But since φ(γ) = 1 ∈ Gk2 , we thus conclude that

δ◦ρ1 ≡ ρ1◦κγ ≡ ρ2◦(φ|H1)◦κγ ≡ ρ2◦(φ|H1) ≡ ρ1, which (since ρ1 has open

image) contradicts the fact that δ ∈ Gal(E/Qp) is not equal to the identity.

This completes the proof of the claim. Thus, we may assume that φ is an

isomorphism of qLT-type, i.e., we are, in effect, in the situation of [Mzk1],

§4. In particular, the fact that φ is geometric, i.e., that condition (d) holds,

follows immediately via the argument of [Mzk1], §4. This completes the

proof of assertion (i).

Next, we consider assertion (ii). Since φ is an isomorphism, it follows

(cf. [Mzk1], Proposition 1.1; [Mzk6], Proposition 1.2.1, (vi)) that χcyclo
k1

=
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χcyclo
k2

◦ φ. In particular, φ is of HT-type if and only if φ is of CHT-type.

Thus, assertion (ii) follows from the equivalence of (a), (d) in assertion (i).

Finally, we consider assertion (iii). First, let us recall that by a well-

known result of Tate (cf. [Tate], §4, Corollary 2), if J ⊆ Π1 is an open

subgroup with image JG ⊆ Gk1 and intersection J∆
def
= J

⋂
∆1, then the

JG-module Jab
∆ ⊗Qp is always Hodge-Tate with weights ∈ {0, 1}. Thus, the

condition that Π2 is of A-qLT-type implies that φ is of 01-qLT-type, hence,

by assertion (i), geometric. This completes the proof of assertion (iii). �

Definition 3.6.

(i) If H ⊆ Gk is an open subgroup corresponding to an extension field

kH of k, then by local class field theory (cf., e.g., [Serre2]), we have a natural

isomorphism

O×
kH

∼→ Tor(H)

— where we write Tor(H) (i.e., the “toral portion of H”) for the image

of Ik
⋂
H in Hab. Thus, by applying the p-adic logarithm O×

kH
→ kH , we

obtain a natural isomorphism λH : Tor(H)⊗Qp
∼→ kH .

(ii) We shall refer to a collection {NH}H , where H ranges over a col-

lection of open subgroups of Gk that form a basis of the topology of Gk,

as a uniformly toral neighborhood of Gk if there exist nonnegative inte-

gers a, b (which are independent of H!) such that (in the notation of (i))

NH ⊆ Tor(H) ⊗ Qp is an open subgroup such that pa · OkH ⊆ λH(NH) ⊆
p−b · OkH ⊆ kH .

(iii) Let φ : Gk1
∼→ Gk2 be an isomorphism of profinite groups. Then

we shall say that φ is uniformly toral if Gk1 admits a uniformly toral neigh-

borhood {NH}H such that {Nφ(H)
def
= φ(NH)}φ(H) forms a uniformly toral

neighborhood of Gk2 . We shall say that φ is RF-preserving (i.e., “ramifica-

tion filtration preserving”) if φ is compatible with the filtrations on Gk1 , Gk2
given by the (positively indexed) higher ramification groups in the upper

numbering (cf., [Mzk1], Theorem).

Corollary 3.7 (Uniform Torality and Geometricity). In the situa-

tion of Theorem 3.5, suppose further that φ is an isomorphism. Then the

following conditions on φ are equivalent: (a) φ is RF-preserving; (b) φ is

uniformly toral; (c) φ is geometric.
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Proof. First, we observe that by Proposition 3.4, it follows that p1 =

p2; write p
def
= p1 = p2. Also, we observe that it is immediate that condition

(c) implies condition (a). Next, we recall that the fact that condition (a)

implies condition (b) is precisely the content of the discussion preceding

[Mzk1], Proposition 2.2. That is to say, for i = 1, 2, the images of appropri-

ate higher ramification groups in Tor(H)⊗Qp (for open subgroupsH ⊆ Gki)

multiplied by appropriate integral powers of p yield a uniformly toral neigh-

borhood of Gki that is compatible with φ whenever φ is RF-preserving.

Next, let us assume that condition (b) holds. For i = 1, 2, let {N iH}H be

a uniformly toral neighborhood of Gki . Again, we take the point of view of

the discussion preceding [Mzk1], Proposition 2.2. That is to say, we think

of ki as the inductive limit

Ii
def
= lim−→

H

Tor(H)⊗Qp

— where H ranges over the open subgroups ⊆ Gki involved in {N iH}H ; the

morphisms in the inductive system are those induced by the Verlagerung,

or transfer, map. Write Ni ⊆ Ii for the subgroup generated by the N iH ⊆
Tor(H) ⊗ Qp. Then relative to the isomorphism (of abstract modules!)

λi : Ii
∼→ ki determined by the λH ’s, we have

pa · Oki ⊆ λi(Ni) ⊆ p−b · Oki ⊆ ki

for some nonnegative integers a, b (cf. Definition 3.6, (ii)). In particular, it

follows that the topology on Ii determined by the submodules pc ·Ni, where

c ≥ 0 is an integer, coincides, relative to λi, with the p-adic topology on ki
(i.e., the topology determined by the pc · Oki , where c ≥ 0 is an integer).

Write Îi for the completion of Ii relative to the topology determined by

the pc ·Ni. Thus, λi determines an isomorphism of topological Gki-modules

Îi
∼→ k̂i. In particular, the assumption that φ is uniformly toral implies that

φ is of HT-type. Thus, by Theorem 3.5, (ii), we conclude that φ is geometric,

i.e., that condition (c) holds. This completes the proof of Corollary 3.7. �

Remark 3.7.1. In fact, one verifies immediately that the argument

applied in the proof of Corollary 3.7 implies that the equivalences of Corol-

lary 3.7 (as well as the definitions of Definition 3.6) continue to hold when
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φ is replaced by an isomorphism of profinite groups between the maximal

pro-p quotients of the Gki . We leave the routine details to the reader.

Corollary 3.8 (Geometricity of Semi-absolute Homomorphisms for

Hyperbolic Orbicurves). For i = 1, 2, let ki, ki, k̂i, pi, Gki (and its sub-

quotients) be as in Theorem 3.5; 1 → ∆i → Πi → Gki → 1 an extension of

AFG-type; (ki, Xi,Σi) partial construction data (consisting of the construc-

tion data field, construction data base-stack, and construction data prime

set) for Πi � Gki; αi : π1(Xi) = πtame
1 (Xi) � Πi a scheme-theoretic enve-

lope compatible with the natural projections π1(Xi)� Gki, Πi � Gki;

ψ : Π1 → Π2

a semi-absolute (or, equivalently, pre-semi-absolute — cf. Proposition 2.5,

(iii)) homomorphism that lifts a homomorphism φ : G1 → G2. Suppose

further that X2 is a hyperbolic orbicurve, that p2 ∈ Σ2, and that one of the

following conditions holds:

(a) φ is of CHT-type;

(b) φ is of 01-qLT-type;

(c) φ is of qLT-type;

(d) φ is an isomorphism of HT-type;

(e) φ is a uniformly toral isomorphism;

(f) φ is an RF-preserving isomorphism;

(g) Π2 is of A-qLT-type.

(h) φ is geometric;

Then ψ is geometric, i.e., arises (relative to the αi) from a unique dom-

inant morphism of schemes X1 → X2 lying over a morphism Spec(k1) →
Spec(k2).

Proof. Indeed, by Theorem 3.5, (i), (ii), (iii); Corollary 3.7, it follows

that any of the conditions (a), (b), (c), (d), (e), (f), (g), (h) implies condition

(h). Thus, since X2 is a hyperbolic orbicurve, and p2 ∈ Σ2, the fact that ψ

is geometric follows from [Mzk3], Theorem A. �
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Remark 3.8.1. One important motivation for the theory of the present

§3 is the following result, orally communicated to the author by A. Tama-

gawa:

(∗A-qLT) LetX be a hyperbolic orbicurve over k that admits a finite étale

covering Y → X by a hyperbolic curve Y such that Y admits

a dominant k-morphism Y → P , where P is the projective line

minus three points over k (i.e., a tripod — cf. §0). Then the

arithmetic fundamental group π1(X) � Gk of X is of A-qLT-

type.

In particular, it follows that:

Corollary 3.8 may be applied (in the sense that condition (g) is sat-

isfied) whenever X2 satisfies the conditions placed on the hyperbolic

orbicurve “X” of (∗A-qLT).

Indeed, Tamagawa’s original motivation for considering (∗A-qLT) was pre-

cisely the goal of applying the methods of [Mzk1] to obtain an “isomorphism

version” of Corollary 3.8, (g). Upon learning of these ideas of Tamagawa,

the author proceeded to re-examine the theory of [Mzk1]. This led the au-

thor to the discovery of the various generalizations of [Mzk1] — and, in

particular, the Hom-version of Corollary 3.8, (g) — given in the present §3.

Tamagawa derives (∗A-qLT) from the following result:

(∗CM) Given a character ρ : Gk → E× of qLT-type, there exists an

abelian variety with complex multiplication A over some finite ex-

tension kA of k such that ρ|GkA
is inertially equivalent to some

character whose associated GkA-module appears as a subquotient

of the GkA-module given by the p-adic Tate module of A.

Indeed, to derive (∗A-qLT) from (∗CM), one reasons as follows: Every abelian

variety with complex multiplication A is defined over a number field, hence

arises as a quotient of a Jacobian of a smooth proper curve Z over a num-

ber field. Moreover, by considering Belyi maps, it follows that some open

subscheme UZ ⊆ Z arises as a finite étale covering of the projective line

minus three points. Thus, any Galois module that appears as a subquotient

of the p-adic Tate module of A also appears as a subquotient of the p-adic

Tate module of the Jacobian of some finite étale covering of the curve P of

(∗A-qLT), hence, a fortiori, as a subquotient of the p-adic Tate module of
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the Jacobian of some finite étale covering of the curves Y , X of (∗A-qLT).

Thus, we conclude that π1(X) is of A-qLT-type, as desired.

Corollary 3.9 (Geometricity of Strictly Semi-absolute Homomor-

phisms for Function Fields). Assume that either of the results (∗A-qLT),

(∗CM) of Remark 3.8.1 holds. For i = 1, 2, let ki be an MLF, Ki a function

field of transcendence degree ≥ 1 over ki (so ki is algebraically closed in

Ki), Ki an algebraic closure of Ki, ki the algebraic closure of ki determined

by Ki, Πi
def
= Gal(Ki/Ki), Gi

def
= Gal(ki/ki), ∆i

def
= Ker(Πi � Gi). Then

every open homomorphism

ψ : Π1 → Π2

that induces an open homomorphism ψ∆ : ∆1 → ∆2 (hence also an open

homomorphism φ : G1 → G2) is geometric, i.e., arises from a unique em-

bedding of fields K2 ↪→ K1 that induces an embedding of fields k2 ↪→ k1 of

finite degree.

Proof. Since every function field of transcendence degree ≥ 1 over

k2 contains the function field of a tripod over k2, it follows from (∗A-qLT),

hence also from (∗CM) (cf. Remark 3.8.1), that there exists a hyperbolic

curve X over k2 whose function field is contained in K2 such that if we

write Π2 � Π3
def
= π1(X) for the resulting surjection, then Π3 is of A-qLT-

type. Now we wish to apply a “birational analogue” of Corollary 3.8, (g), to

the composite homomorphism Π1 → Π2 � Π3 (where the first arrow is ψ).

To verify that such an analogue holds, it suffices to verify that φ is of

01-qLT-type (cf. Theorem 3.5, (i), (b) =⇒ (d)). To this end, set k3
def
= k2,

G3
def
= G2, ∆3

def
= Ker(Π3 � G3); let us suppose, for i = 1, 3, that Hi ⊆ ∆i,

Ji ⊆ Gi are characteristic open subgroups such that ψ∆(H1) ⊆ H3, φ(J1) ⊆
J3. Thus, if we write p for the common residue characteristic of k1, k3

(cf. Proposition 3.4), then we obtain a surjection Hab
1 ⊗ Qp � Hab

3 ⊗ Qp

that is compatible with φ. Moreover, it follows immediately from Corollary

A.11 (cf. also Proposition A.3, (v)) of the Appendix that the J1-module

Hab-t
1 ⊗ Zp admits a quotient J1-module Hab-t

1 ⊗ Zp � Q1 such that Q1 is

the p-adic Tate module of some abelian variety over a finite extension of k1,

and, moreover, the kernel Ker(Hab-t
1 ⊗ Zp � Q1) is topologically generated

by topologically cyclic subgroups (i.e., “copies of Zp”) on which some open
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subgroup of J1 (which may depend on the cyclic subgroup) acts via the

cyclotomic character. Next, let us observe that if V3 is any J3-module

associated to a character of qLT-type of dimension ≥ 2, then V3 does not

contain any sub-J3-modules of dimension 1 over Qp. From this observation,

it follows immediately that any subquotient (cf. Definition 3.1, (v)) of the

J3-module Hab
3 ⊗ Qp that is isomorphic to the J3-module associated to a

character of qLT-type of dimension ≥ 2 determines a subquotient (not only

of the J1-module Hab-t
1 ⊗ Qp, but also) of the J1-module Q1 ⊗ Qp. Thus,

we conclude that any such subquotient of the J1-module Q1⊗Qp is Hodge-

Tate with weights ∈ {0, 1}. Moreover, by considering determinants of such

subquotients, one concludes that the pull-back of the cyclotomic character

J3 → Z×
p is a character J1 → Z×

p which is Hodge-Tate, and whose unique

weight w is ≥ 0. If w ≥ 2, then the fact that the J3-module determined

by the cyclotomic character of J3 occurs as a subquotient of Hab
3 ⊗ Qp

(for sufficiently small H3), hence determines a J1-module that occurs as a

subquotient (not only of the J1-module Hab-t
1 ⊗Qp, but also, in light of our

assumption that w ≥ 2!) of the J1-module Q1⊗Qp leads to a contradiction

(since the J1-module Q1 ⊗Qp is Hodge-Tate with weights ∈ {0, 1}). Thus,

we conclude that φ : G1 → G2 = G3 is of 01-qLT-type, hence geometric, i.e.,

arises from a unique embedding of fields k2 ↪→ k1 of finite degree. Finally,

the geometricity of φ implies that the geometricity of ψ may be derived

from the “relative” result given in [Mzk3], Theorem B. �

Remark 3.9.1. The proof given above of Corollary 3.9 shows that the

“Π2” of Corollary 3.9 may, in fact, be taken to be a “Π2” as in Corollary

3.8, (g).

Section 4. Chains of Elementary Operations

In the present §4, we generalize (cf. Theorems 4.7, 4.12; Remarks 4.7.1,

4.12.1 below) the theory of “categories of dominant localizations” discussed

in [Mzk9], §2 (cf. also the tempered versions of these categories, discussed

in [Mzk10], §6), to include “localizations” obtained by more general “chains

of elementary operations” — i.e., the operations of passing to a finite étale

covering, passing to a finite étale quotient, “de-cuspidalization”, and “de-

orbification” (cf. Definition 4.2 below; [Mzk13], §2) — which are applied to

some given algebraic stack over a field. The field and algebraic stack under
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consideration are quite general in nature (by comparison, e.g., to the theory

of [Mzk9], §2; [Mzk13], §2), but are subject to various assumptions. One

key assumption asserts that the algebraic stack satisfies a certain relative

version of the “Grothendieck Conjecture”.

Before proceeding, we recall the following immediate consequence of

[Mzk13], Lemma 2.1; [Mzk12], Proposition 1.2, (ii).

Lemma 4.1 (Decomposition Groups of Hyperbolic Orbicurves). Let Σ

be a nonempty set of prime numbers, ∆ a pro-Σ group of GFG-type that ad-

mits base-prime (cf. Definition 2.1, (iv)) partial construction data (k,X,Σ)

(consisting of the construction data field, construction data base-stack, and

construction data prime set) such that X is a hyperbolic orbicurve (cf. §0),
and k is algebraically closed. Let xA (respectively, xB �= xA) be either a

closed point or a cusp (cf. §0) of X; A ⊆ ∆ (respectively, B ⊆ ∆) the de-

composition group (well-defined up to conjugation in ∆) of xA (respectively,

xB). Then:

(i) A, B are pro-cyclic groups; A
⋂
B = {1}. If xA is a closed point of

X, and A �= {1}, then A is a finite, normally terminal (cf. §0) subgroup of

∆. If xA is a cusp, then A is a torsion-free, commensurably terminal (cf.

§0) infinite subgroup of ∆.

(ii) The order of every finite cyclic closed subgroup C ⊆ ∆ divides the

order of X (cf. §0).
(iii) Every finite nontrivial closed subgroup C ⊆ ∆ is contained in a

decomposition group of a unique closed point of X. In particular, the

nontrivial decomposition groups of closed points of X may be characterized

(“group-theoretically”) as the maximal finite nontrivial closed subgroups of

∆.

(iv) X is a hyperbolic curve if and only if ∆ is torsion-free.

(v) Suppose that the quotient ψA : ∆ � ∆A of ∆ by the closed normal

subgroup of ∆ topologically generated by A is slim and nontrivial. If xA
is a closed point of X (respectively, a cusp), then we suppose further that

Σ = Primes (which forces the characteristic of k to be zero) (respectively,

that A ⊆ J for some normal open torsion-free subgroup J of ∆). Then ∆A
is a profinite group of GFG-type that admits base-prime partial construc-

tion data (k,XA,Σ) (consisting of the construction data field, construction
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data base-stack, and construction data prime set) such that XA is a hyper-

bolic orbicurve equipped with a dominant k-morphism φA : X → XA that is

uniquely determined (up to a unique isomorphism) by the property that it

induces (up to composition with an inner automorphism) ψA. Moreover, if

xA is a closed point of X (respectively, a cusp), then φA is a partial coarsi-

fication morphism (cf. §0) which is an isomorphism either over XA or over

the complement in XA of the point of XA determined by xA (respectively,

is an open immersion whose image is the complement of the point of XA
determined by xA).

(vi) In the notation of (v), if B �= {1}, then ψA(B) �= {1}.

Proof. First, we recall that by the definition of a profinite group of

GFG-type (cf. the discussion at the beginning of §2), it follows that there

exists a normal open subgroup H ⊆ ∆ such that if we write XH → X for

the corresponding Galois covering, then XH is a hyperbolic curve. Next,

let us observe that, in light of our assumption that the partial construction

data is base-prime, we may lift the entire situation to characteristic zero,

hence assume, at least for the proof of assertions (i), (ii), (iii), (iv), that

k is of characteristic zero. Thus, assertions (i), (ii), (iii) when xA, xB are

closed points (respectively, cusps) of X follow immediately from [Mzk13],

Lemma 2.1 (respectively, [Mzk12], Proposition 1.2, (ii)). Next, we consider

assertion (iv). First, we observe that the necessity portion of assertion (iv)

follows immediately from assertion (iii). To verify sufficiency, let us suppose

that ∆ is torsion-free. Let πtame
1 (X) � ∆ be a scheme-theoretic envelope

of ∆. Then since XH is a scheme, it follows that the nontrivial (finite

closed) subgroups of πtame
1 (X) that arise as decomposition groups of closed

points map injectively, via the composite surjection πtame
1 (X)� ∆� ∆/H,

into ∆/H, hence, a fortiori, injectively via the surjection πtame
1 (X) � ∆,

into ∆ (which is torsion-free). Thus, the decomposition groups in π1(X) =

πtame
1 (X) (cf. our assumption that k is algebraically closed of characteristic

zero) of closed points of X are trivial. But this implies (by considering, for

instance, the Galois covering XH → X) that X is a scheme, as desired.

This completes the proof of assertion (iv).

Next, we consider assertion (v). First, let us observe that XA admits

a finite étale covering YA → XA arising from a normal open subgroup of

∆A such that YA is a curve, which will necessarily be hyperbolic, in light

of the slimness and nontriviality of ∆A. Indeed, when xA is a closed point
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of X (so Σ = Primes; k is of characteristic zero), this follows immediately

from the equivalence of definitions of a “hyperbolic orbicurve” discussed in

§0; when xA is a cusp, this follows from assertion (iv) and our assumption

of the existence of the subgroup J ⊆ ∆. Now the remainder of assertion

(v) follows immediately from the definitions. This completes the proof of

assertion (v). Finally, we consider assertion (vi). Assertion (vi) is immediate

if xB is a cusp (cf. assertion (i)); thus, we may assume that xB is a closed

point of X. If ψA(B) = {1}, then it follows that the decomposition group

⊆ ∆A of the image of xB in XA is trivial. Since (by assertion (v)) XA admits

a finite étale covering YA → XA arising from an open subgroup of ∆A such

that YA is a hyperbolic curve, we thus conclude that XA is scheme-like in

a neighborhood of the image of xB in XA, hence (in light of the explicit

description of the morphism φA in the statement of assertion (v)) that X is

scheme-like in a neighborhood of xB. But this implies that B = {1}. This

completes the proof of assertion (vi). �

Remark 4.1.1. Note that Lemma 4.1, (iv), is false if we only assume

that ∆ is almost pro-Σ. Indeed, such an example may be constructed by

taking X to be a hyperbolic curve over an algebraically closed field k of

characteristic zero, Y → X a finite étale Galois covering of degree prime

to Σ, and ∆ to be the quotient of π1(X) by the kernel of the surjection

(π1(X) ⊇) π1(Y ) � π1(Y )(Σ) to the maximal pro-Σ quotient π1(Y )(Σ) of

π1(Y ). Then for any prime p dividing the order of Gal(Y/X) (so p �∈ Σ),

it follows by considering Sylow p-subgroups that ∆ contains an element of

order p, despite the fact that X is a curve.

Definition 4.2. Let G be a slim profinite group;

1 → ∆ → Π → G→ 1

an extension of GSAFG-type that admits base-prime partial construction

data (k,X,Σ), where Σ �= ∅; α : πtame
1 (X) � Π is a scheme-theoretic

envelope. Thus, if we write πtame
1 (X) � Gk for the quotient given by

the absolute Galois group Gk of k, then α determines a scheme-theoretic

envelope β : Gk � G. Write X̃ → X for the pro-finite étale covering of

X determined by the surjection α; k̃ for the resulting field extension of k.

In a similar vein, we shall write Π̃ for the projective system of profinite

groups determined by the open subgroups of Π. (Thus, one may consider
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homomorphisms between Π̃ and a profinite group by thinking of the profinite

group as a trivial projective system of profinite groups — cf. the theory of

“pro-anabelioids”, as in [Mzk8], Definition 1.2.6.) Then:

(i) We shall refer to as an (X̃/X-)chain (of length n) (where n ≥ 0 is

an integer) any finite sequence

X0 � X1 � . . .� Xn−1 � Xn

of generically scheme-like algebraic stacks Xj (for j = 0, . . . , n), each

equipped with a dominant “rigidifying morphism” ρj : X̃ → Xj satisfy-

ing the following conditions:

(0X) X0 = X (equipped with its natural rigidifying morphism X̃ → X).

(1X) There exists a (uniquely determined) morphism Xj → Spec(kj)

compatible with ρj , where kj ⊆ k̃ is a finite extension of k such

that Xj is geometrically connected over kj .

(2X) Each ρj determines a maximal pro-finite étale covering X̃j → Xj
such that X̃ → Xj admits a factorization X̃ → X̃j → Xj . The

kernel ∆j of the resulting natural surjection

Πj
def
= Gal(X̃j/Xj)� Gj

def
= Gal(k̃/kj)

is slim and nontrivial; every prime dividing the order of a finite

quotient group of ∆j is invertible in k.

(3X) Suppose that X is a hyperbolic orbicurve (over k). Then each

Xj is also a hyperbolic orbicurve (over kj). Moreover, each ∆j is a

pro-Σ group.

(4X) Each “Xj � Xj+1” (for j = 0, . . . , n − 1) is an “elementary

operation”, as defined below.

Here, an elementary operation “Xj � Xj+1” is defined to consist of the

datum of a dominant “operation morphism” φ either from Xj to Xj+1 or

from Xj+1 to Xj which is compatible with ρj , ρj+1, and, moreover, is of one

of the following four types:

(a) Type �: In this case, the elementary operation Xj � Xj+1 consists

of a finite étale covering φ : Xj+1 → Xj . Thus, φ determines an

open immersion of profinite groups Πj+1 ↪→ Πj .
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(b) Type �: In this case, the elementary operation Xj � Xj+1 consists

of a finite étale morphism φ : Xj → Xj+1 — i.e., a “finite étale

quotient”. Thus, φ determines an open immersion of profinite groups

Πj ↪→ Πj+1.

(c) Type •: This type of elementary operation is only defined if X

is a hyperbolic orbicurve. In this case, the elementary operation

Xj � Xj+1 consists of an open immersion φ : Xj ↪→ Xj+1 (so

kj = kj+1) — i.e., a “de-cuspidalization” — such that the image

of φ is the complement of a single kj+1-valued point of Xj+1 whose

decomposition group in ∆j is contained in some normal open torsion-

free subgroup of ∆j . Thus, φ determines a surjection of profinite

groups Πj � Πj+1.

(d) Type �: This type of elementary operation is only defined if X

is a hyperbolic orbicurve and Σ = Primes (which forces the char-

acteristic of k to be zero). In this case, the elementary operation

Xj � Xj+1 consists of a partial coarsification morphism (cf. §0)

φ : Xj → Xj+1 (so kj = kj+1) — i.e., a “de-orbification” — such

that φ is an isomorphism over the complement in Xj+1 of some kj+1-

valued point of Xj+1. Thus, φ determines a surjection of profinite

groups Πj � Πj+1.

Thus, any X̃/X-chain determines a sequence of symbols ∈ {�,�, •,�} (cor-

responding to the types of elementary operations in the X̃/X-chain), which

we shall refer to as the type-chain associated to the X̃/X-chain.

(ii) An isomorphism between two X̃/X-chains with identical type-chains

(hence of the same length)

(X0 � . . .� Xn)
∼→ (Y0 � . . .� Yn)

is defined to be a collection of isomorphisms of generically scheme-like al-

gebraic stacks Xj
∼→ Yj (for j = 0, . . . , n) that are compatible with the

rigidifying morphisms. (Here, we note that the condition of compatibility

with the rigidifying morphisms implies that every automorphism of an X̃/X-

chain is given by the identity, and that every isomorphism of X̃/X-chains

is compatible with the respective operation morphisms.) Thus, one obtains

a category

Chain(X̃/X)
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whose objects are the X̃/X-chains (with arbitrary associated type-chain),

and whose morphisms are the isomorphisms between X̃/X-chains (with

identical type-chains). A terminal morphism between two X̃/X-chains

(with arbitrary associated type-chains)

(X0 � . . .� Xn)→ (Y0 � . . .� Ym)

is defined to be a dominant k-morphism Xn → Ym. Thus, one obtains a

category

Chaintrm(X̃/X)

whose objects are the X̃/X-chains (with arbitrary associated type-chain),

and whose morphisms are the terminal morphisms between X̃/X-chains;

write

Chainiso-trm(X̃/X) ⊆ Chaintrm(X̃/X)

for the subcategory determined by the terminal isomorphisms (i.e., the

isomorphisms of Chaintrm(X̃/X)). Thus, it follows immediately from

the definitions that we obtain natural functors Chain(X̃/X) →
Chainiso-trm(X̃/X)→ Chaintrm(X̃/X).

(iii) We shall refer to as a (Π-)chain (of length n) (where n ≥ 0 is an

integer) any finite sequence

Π0 � Π1 � . . .� Πn−1 � Πn

of slim profinite groups Πj (for j = 0, . . . , n), each equipped with an open

“rigidifying homomorphism” ρj : Π̃ → Πj (i.e., since we are working with

slim profinite groups, an open homomorphism from some open subgroup of

Π to Πj) satisfying the following conditions:

(0Π) Π0 = Π (equipped with its natural rigidifying homomorphism

Π̃ → Π).

(1Π) There exists a (uniquely determined) surjection Πj � Gj , where

Gj ⊆ G is an open subgroup, that is compatible with ρj and the

natural composite morphism Π̃ → Π� G.

(2Π) Each kernel

∆j
def
= Ker(Πj � Gj ↪→ G)

is slim and nontrivial; every prime dividing the order of a finite

quotient group of ∆j is invertible in k.
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(3Π) Suppose that X is a hyperbolic orbicurve (over k). Then each ∆j
is a pro-Σ group. Also, we shall refer to as a cuspidal decomposition

group in ∆j any commensurator in ∆j of a nontrivial image via ρj of

the inverse image in Π̃ of the decomposition group in ∆ (determined

by α) of a cusp of X.

(4Π) Each “Πj � Πj+1” (for j = 0, . . . , n − 1) is an “elementary

operation”, as defined below.

Here, an elementary operation “Πj � Πj+1” is defined to consist of the

datum of an open “operation homomorphism” φ either from Πj to Πj+1 or

from Πj+1 to Πj which is compatible with ρj , ρj+1, and, moreover, is of one

of the following four types:

(a) Type �: In this case, the elementary operation Πj � Πj+1 consists

of an open immersion of profinite groups φ : Πj+1 ↪→ Πj .

(b) Type �: In this case, the elementary operation Πj � Πj+1 consists

of an open immersion of profinite groups φ : Πj ↪→ Πj+1.

(c) Type •: This type of elementary operation is only defined if X

is a hyperbolic orbicurve. In this case, the elementary operation

Πj � Πj+1 consists of a surjection of profinite groups φ : Πj � Πj+1,

such that Ker(φ) is topologically normally generated by a cuspidal

decomposition group C in ∆j such that C is contained in some normal

open torsion-free subgroup of ∆j .

(d) Type �: This type of elementary operation is only defined if X is a

hyperbolic orbicurve and Σ = Primes (which forces the characteristic

of k to be zero). In this case, the elementary operation Πj � Πj+1

consists of a surjection of profinite groups φ : Πj � Πj+1, such that

Ker(φ) is topologically normally generated by a finite closed subgroup

of ∆j .

Thus, any Π-chain determines a sequence of symbols ∈ {�,�, •,�} (corre-

sponding to the types of elementary operations in the Π-chain), which we

shall refer to as the type-chain associated to the Π-chain.

(iv) An isomorphism between two Π-chains with identical type-chains

(hence of the same length)

(Π0 � . . .� Πn)
∼→ (Ψ0 � . . .� Ψn)
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is defined to be a collection of isomorphisms of profinite groups Πj
∼→ Ψj

(for j = 0, . . . , n) that are compatible with the rigidifying homomorphisms.

(Here, we note that the condition of compatibility with the rigidifying ho-

momorphisms implies (since all of the profinite groups involved are slim)

that every automorphism of a Π-chain is given by the identity, and that

every isomorphism of Π-chains is compatible with the respective operation

homomorphisms.) Thus, one obtains a category

Chain(Π)

whose objects are the Π-chains (with arbitrary associated type-chain), and

whose morphisms are the isomorphisms between Π-chains (with identical

type-chains). A terminal homomorphism between two Π-chains (with arbi-

trary associated type-chains)

(Π0 � . . .� Πn)→ (Ψ0 � . . .� Ψm)

is defined to be an open outer homomorphism Πn → Ψm that is compatible

(up to composition with an inner automorphism) with the open homomor-

phisms Πn → G, Ψm → G. Thus, one obtains a category

Chaintrm(Π)

whose objects are the Π-chains (with arbitrary associated type-chain), and

whose morphisms are the terminal homomorphisms between Π-chains; write

Chainiso-trm(Π) ⊆ Chaintrm(Π)

for the subcategory determined by the terminal isomorphisms (i.e., the iso-

morphisms of Chaintrm(Π)). Thus, it follows immediately from the def-

initions that we obtain natural functors Chain(Π) → Chainiso-trm(Π) →
Chaintrm(Π).

(v) We shall use the notation

Chainiso-trm(∼){−} ⊆ Chainiso-trm(∼); Chaintrm(∼){−} ⊆ Chaintrm(∼)

— where “(∼)” is either equal to “(X̃/X)” or “(Π)”, and “{−}” contains

some subset of the set of symbols {�,�, •,�} — to denote the respective
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full subcategories determined by the chains whose associated type-chain only

contains the symbols that belong to “{−}”. In particular, we shall write:

DLoc(X̃/X)
def
= Chaintrm(X̃/X){�, •}; DLoc(Π)

def
= Chaintrm(Π){�, •}

ÉtLoc(X̃/X)
def
= Chainiso-trm(X̃/X){�,�};

ÉtLoc(Π)
def
= Chainiso-trm(Π){�,�}

(cf. the theory of [Mzk9], §2; Remark 4.7.1 below).

Remark 4.2.1. Thus, it follows immediately from the definitions that

if, in the notation of Definition 4.2, (i),

X0 � X1 � . . .� Xn−1 � Xn

is an X̃/X-chain, then the resulting profinite groups Πj determine a Π-chain

Π0 � Π1 � . . .� Πn−1 � Πn

with the same associated type-chain. In particular, we obtain natural func-

tors

Chain(X̃/X)→ Chain(Π)

Chainiso-trm(X̃/X)→ Chainiso-trm(Π); Chaintrm(X̃/X)→ Chaintrm(Π)

which are compatible with the natural functors of Definition 4.2, (ii), (iv).

Remark 4.2.2. Note that in the situation of Definition 4.2, (i), Gj
is a slim profinite group; 1 → ∆j → Πj → Gj → 1 is an extension of

GSAFG-type that admits base-prime partial construction data (kj , Xj ,Σ),

where Xj is a hyperbolic orbicurve whenever X0 is a hyperbolic orbicurve;

α, ρj determine (in light of the slimness of Πj) a scheme-theoretic envelope

αj : πtame
1 (Xj)� Πj . That is to say, we obtain, for each j, similar data to

the data introduced at the beginning of Definition 4.2. Here, relative to issue

of verifying that ∆j admits an open subgroup that corresponds to a scheme-

like covering of Xj , it is useful to recall, in the case of de-cuspidalization

operations, i.e., “•”, the condition (cf. Definition 4.2, (i), (c); Definition

4.2, (iii), (c)) that the cuspidal decomposition group under consideration

be contained in a normal open torsion-free subgroup (cf. Lemma 4.1, (iv));



Absolute Anabelian Geometry I 203

in the case of de-orbification operations, i.e., “�”, it is useful to recall the

assumption that Σ = Primes, together with the equivalence of definitions of

the notion of a “hyperbolic orbicurve” discussed in §0.

Proposition 4.3 (Re-ordering of Chains). In the notation of Defini-

tion 4.2, suppose that Σ = Primes; let X0 � . . . � Xn be an X̃/X-chain.

Then there exists a terminally isomorphic X̃/X-chain Y0 � . . .� Ym whose

associated type-chain is of the form

�, •, •, . . . , •,�,�,�, . . . ,�,�

— i.e., consists of the symbol �, followed by a sequence of the symbols •,
followed by the symbol �, followed by a sequence of the symbols �, followed

by the symbol �. Moreover, Ym−1 → Ym may be taken to arise from an

extension of the base field (where we recall that this base field will always be

a finite extension of k).

Proof. Indeed, let us first observe that by taking Ym−1 → Ym to

arise from an appropriate extension of the base field, we may ignore the

“kj-rationality” issues that occur in Definition 4.2, (i), (c), (d). Next, let

us observe that it is immediate from the definitions that we may always

“move the symbol � to the top of the type-chain”. This completes the

proof of Proposition 4.3 when X is not a hyperbolic orbicurve. Thus, in

the remainder of the proof, we may assume without loss of generality that

X is a hyperbolic orbicurve, and that the symbols indexed by j ≥ 1 of

the type-chain are ∈ {�, •,�}. Next, let us observe that the operation

morphisms indexed by j ≥ 1 always have domain indexed by j and codomain

indexed by j + 1. Thus, by composing these operation morphisms, we

obtain a morphism X1 → Xn−1. Here, we may assume, without loss of

generality, that X1 is a hyperbolic curve, and that X1 → Xn−1 induces a

Galois extension of function fields and an isomorphism of base fields. Also,

we may assume that the morphism X1 → Xn−1 factors through a connected

finite étale covering Z → Xn−1, where Z is a hyperbolic curve. Thus, by

considering the extension of function fields determined by X1 → Xn−1, it

follows immediately that Xn−1 may be obtained from X1 by applying de-

cuspidalization operations (i.e., “•”) to X1 at the cusps of X1 that map to

points of Xn−1, then forming the stack-theoretic quotient by the action of

Gal(X1/Xn−1) (i.e., “�”), and finally applying suitable de-orbification (i.e.,
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“�”) operations to this quotient to recover Xn−1. This yields a type-chain

of the desired form. �

As the following example shows, the issue of permuting the symbols “�”,

“�” is not so straightforward.

Example 4.4 Non-permutability of Étale Quotients and De-orbifica-

tions. In the notation of Definition 4.2, let us assume further Σ = Primes

(so k is of characteristic zero). Then there exists an X̃/X-chainX0 � X1 �
X2 of length 2 with associated type-chain ∗0, ∗1, where ∗0, ∗1 ∈ {�,�}, ∗0 �=
∗1, which is not terminally isomorphic to any X̃/X-chain Y0 � Y1 � Y2 of

length 2 with associated type-chain ∗1, ∗0. Indeed:

(i) The case of type-chain �,�: Let X be a hyperbolic curve of type

(g, r) over k equipped with an automorphism σ of the k-scheme X of order

2 that has precisely one fixed point x ∈ X(k); X0 = X � X1 the elementary

operation of type � given by forming the stack-theoretic quotient of X by

the action of σ; x1 ∈ X1(k) the image of x in X1; X1 � X2 the nontrivial

elementary operation of type � (i.e., such that the corresponding operation

morphism X1 → X2 is a non-isomorphism) determined by the point x1 ∈
X1(k). Thus, we assume that X2 is a hyperbolic curve, whose type we denote

by (g2, r2). On the other hand, sinceX is a scheme, any chain Y0 � Y1 � Y2

of length 2 with associated type-chain �,� satisfies Y0
∼→ Y1 (compatibly

with X̃). Thus, if Y2
∼→ X2 over k, then the covering X = X0 → X2, which

is ramified, of degree 2, together with the covering X
∼→ Y0

∼→ Y1 → Y2,

which is unramified, of some degree d, yields equations

2 · χ2 + 1 = χ = d · χ2

(where we write χ
def
= 2g−2+ r, χ2

def
= 2g2−2+ r2) — which imply (since d,

χ, χ2 are positive integers) that d− 2 = χ2 = 1, hence that d = 3, χ2 = 1,

χ = 3. In particular, by choosing X so that χ is > 3 (e.g., X such that

g ≥ 3), we obtain a contradiction.

(ii) The case of type-chain �,�: Let X be a proper hyperbolic orbicurve

over k; X → C the coarse space associated to the algebraic stack X. Let

us assume further that C is a (proper) hyperbolic curve over k; that the

morphism X → C is a non-isomorphism which restricts to an isomorphism

away from some point c ∈ C(k); and that there exists a finite étale covering
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ε : C → D of degree 2 (so D is also a proper hyperbolic curve over k, which

is not isomorphic to C). (It is easy to construct such objects by starting

from D and then constructing C, X.) Now we take X0 = X � X1
def
= C to

be the elementary operation of type � determined by the unique point of

x ∈ X(k) lying over c ∈ C(k); C = X1 � X2
def
= D to be the elementary

operation of type � determined by the finite étale covering ε : C → D.

Write ex ≥ 2 for the ramification index of X → C at x; gD ≥ 2 for the

genus of D; χD
def
= 2gD − 2 ≥ 2. On the other hand, let us suppose that

Y0 � Y1 � Y2 is a chain of length 2 with associated type-chain �,� such

that X2
∼→ Y2 over k. Then since D = X2

∼→ Y2 is a scheme, it follows

that the hyperbolic orbicurve Y1 admits a point y1 ∈ Y1(k) such that Y1 is a

scheme away from y1. Write ey1 for the ramification index of the operation

morphism Y1 → Y2 at y1. Note that if Y1 is a scheme, then the finite étale

covering X = Y0 of Y1 is as well — a contradiction. Thus, we conclude that

Y1 is not a scheme at y1, i.e., ey1 ≥ 2. Next, let us observe that if the finite

étale morphism Y0 → Y1 is not an isomorphism, i.e., of degree d ≥ 2, then

the morphisms X → C → D and X = Y0 → Y1 give rise to a relation

2χD + (ex − 1)/ex = d(χD + (ey1 − 1)/ey1)

— i.e., 1 > (ex − 1)/ex = (d − 2)χD + d(ey1 − 1)/ey1 ≥ d(ey1 − 1)/ey1 ≥
d/2 ≥ 1, a contradiction. Thus, we conclude that d = 1, i.e., that the

operation morphism X = Y0 → Y1 is an isomorphism. But this implies

that Y2 is isomorphic to the coarse space associated to X, i.e., that we have

an isomorphism Y2
∼→ C, hence an isomorphism D = X2

∼→ Y2
∼→ C — a

contradiction.

Next, we recall the group-theoretic characterization of the cuspidal de-

composition groups of a hyperbolic (orbi)curve given in [Mzk12].

Lemma 4.5 (Cuspidal Decomposition Groups). Let G be a slim profi-

nite group;

1 → ∆ → Π → G→ 1

an extension of GSAFG-type that admits base-prime (cf. Definition 2.1,

(iv)) partial construction data (k, k̃,X,Σ), where X is a hyperbolic orbi-

curve; α : πtame
1 (X) � Π a scheme-theoretic envelope; l ∈ Σ a prime such

that the cyclotomic character χcyclo
G : G → Z×

l (i.e., the character whose
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restriction to πtame
1 (X) via α and the surjection Π � G is the usual cy-

clotomic character πtame
1 (X) � Gal(k̃/k) → Z×

l ) has open image (i.e., in

the terminology of [Mzk12], “the outer action of G on ∆ is l-cyclotomically

full”). We recall from [Mzk12] that a character χ : G → Z×
l is called Q-

cyclotomic (of weight w ∈ Q) if there exist integers a, b, where b > 0, such

that χb = (χcyclo
G )a, w = 2a/b (cf. [Mzk12], Definition 2.3, (i), (ii)). Then:

(i) X is non-proper if and only if every torsion-free pro-Σ open subgroup

of ∆ is free pro-Σ.

(ii) Let M be a finite-dimensional Ql-vector space equipped with a con-

tinuous G-action. Then we shall say that this action is quasi-trivial if it

factors through a finite quotient of G (cf. [Mzk12], Definition 2.3, (i)). We

shall write τ(M) for the quasi-trivial rank of M (cf. [Mzk12], Definition

2.3, (i)), i.e., the sum of the Ql-dimensions of the quasi-trivial subquotients

M j/M j+1 of any filtration Mn ⊆ . . . ⊆ M j ⊆ . . .M0 = M of M by Ql[G]-

modules such that each M j/M j+1 is either quasi-trivial or has no nontrivial

subquotients. If χ : G→ Z×
l is a character, then we shall write

dχ(M)
def
= τ(M(χ−1))− τ(HomQl

(M,Ql))

(where “M(χ−1)” denotes the result of “twisting” M by the character χ−1).

We shall say that two characters G → Z×
l are power-equivalent if there

exists a positive integer n such that the n-th powers of the two characters

coincide. Then dχ(M), regarded as a function of χ, depends only on the

power-equivalence class of χ.

(iii) Suppose that X is not proper (cf. (i)). Then the character G→ Z×
l

arising from the determinant of the G-module Hab ⊗Ql, where H ⊆ ∆ is a

torsion-free pro-Σ characteristic open subgroup such that Hab ⊗ Ql �= 0, is

Q-cyclotomic of positive weight. Moreover, for every sufficiently small char-

acteristic open subgroup H ⊆ ∆, the power-equivalence class of the cyclo-

tomic character χcyclo
G may be characterized as the unique power-equivalence

class of characters χ : G→ Z×
l of the form χ = χ∗ ·χ∗, where χ∗ : G→ Z×

l

(respectively, χ∗ : G → Z×
l ) is a Q-cyclotomic character χ• of maximal

(respectively, minimal) weight such that τ(M(χ−1
• )) �= 0 for some subquo-

tient G-module M of (Hab ⊗ Ql) ⊕ Ql (where the final direct summand

Ql is equipped with the trivial G-action). Moreover, in this situation, if

χ = χcyclo
G , then the divisor of cusps of the covering of X ×k k̃ determined

by H is a disjoint union of dχ(H
ab ⊗Ql) + 1 copies of Spec(k̃).
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(iv) Suppose that X is not proper (cf. (i)). Let H ⊆ ∆ be a torsion-free

pro-Σ characteristic open subgroup; H � H∗ the maximal pro-l quotient

of H. Then the decomposition groups of cusps ⊆ H∗ may be characterized

(“group-theoretically”) as the maximal closed subgroups I ⊆ H∗ isomorphic

to Zl which satisfy the following condition: We have

d
χcyclo
G

(Jab ⊗Ql) + 1 = [I · J : J ] · d
χcyclo
G

((I · J)ab ⊗Ql) + 1

(i.e., “the covering of curves corresponding to J ⊆ I · J is totally ramified

at precisely one cusp”) for every characteristic open subgroup J ⊆ H∗.

(v) Let X, H, H∗ be as in (iv). Then the set of cusps of the covering of

X ×k k̃ determined by H is in natural bijective correspondence with the set

of conjugacy classes in H∗ of decomposition groups of cusps (as described

in (iv)). Moreover, this correspondence is functorial in H and compatible

with the natural actions by Π on both sides. In particular, by allowing H to

vary, this yields a (“group-theoretic”) characterization of the decomposition

groups of cusps in Π.

(vi) Let I ⊆ Π be a decomposition group of a cusp. Then I = CΠ(I
⋂

∆)

(cf. §0).

Proof. Assertion (i) may be reduced to the case of hyperbolic curves

via Lemma 4.1, (iv), in which case it is well-known (cf., e.g., [Mzk12], Re-

mark 1.1.3). Assertion (ii) is immediate from the definitions. Assertion (iii)

follows immediately from [Mzk12], Proposition 2.4, (iv), (vii); the proof of

[Mzk12], Corollary 2.7, (i). Assertion (iv) is (in light of assertion (iii)) pre-

cisely a summary of the argument of [Mzk12], Theorem 1.6, (i). Finally,

assertions (v), (vi) follow immediately from [Mzk12], Proposition 1.2, (i),

(ii). �

Definition 4.6.

(i) Let V (respectively, F; S) be a set of isomorphism classes of algebraic

stacks (respectively, set of isomorphism classes of fields; set of nonempty

subsets of Primes);

D ⊆ V× F× S

a subset of the direct product set V×F×S, which we shall think of as a set

of collections of partial construction data. In the following discussion, we

shall use “[−]” to denote the isomorphism class of “−”. We shall say that
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D is chain-full if for every extension 1 → ∆ → Π → G→ 1 of GSAFG-type,

where G is slim, that admits base-prime partial construction data (X, k,Σ)

such that ([X], [k],Σ) ∈ D (cf. Definition 4.2), it follows that every “Xj ,

kj” (cf. Definition 4.2, (i)) appearing in an X̃/X-chain (where X̃ → X

is the pro-finite étale covering of X determined by some scheme-theoretic

envelope for Π) determines an element ([Xj ], [kj ],Σ) ∈ D.

(ii) Let D be as in (i); suppose that D is chain-full. Then we shall say

that the rel-isom-DGC holds (i.e., “the relative isomorphism version of the

Grothendieck Conjecture for D holds”) (respectively, the rel-hom-DGC holds

(i.e., “the relative homomorphism version of the Grothendieck Conjecture

for D holds”)), or that, the rel-isom-GC holds for D (respectively, the rel-

hom-GC holds for D) if the following condition is satisfied: For i = 1, 2,

let

1 → ∆i → Πi → Gi → 1

be an extension of GSAFG-type, where Gi is slim, that admits base-prime

partial construction data (ki, Xi,Σi) such that ([Xi], [ki],Σi) ∈ D; αi :

πtame
1 (Xi) � Πi a scheme-theoretic envelope; ζk : k1

∼→ k2 an isomorphism

of fields that induces, via the αi, an outer isomorphism ζG : G1
∼→ G2. Then

the natural map

Isomk1,k2(X1, X2)→ Isomout
G1,G2

(Π1,Π2)

(respectively, Homdom
k1,k2(X1, X2)→ Homout-open

G1,G2
(Π1,Π2))

determined by the αi from the set of isomorphisms of schemes X1
∼→ X2

lying over ζk : k1
∼→ k2 (respectively, the set of dominant morphisms of

schemes X1 → X2 lying over ζk : k1
∼→ k2) to the set of outer isomorphisms

of profinite groups Π1
∼→ Π2 lying over ζG : G1

∼→ G2 (respectively, the

set of open outer homomorphisms of profinite groups Π1 → Π2 lying over

ζG : G1
∼→ G2) is a bijection.

Remark 4.6.1. Of course, in a similar vein, one may also formulate the

notions that “the absolute isomorphism version of the Grothendieck Conjec-

ture holds for D”, “the absolute homomorphism version of the Grothendieck

Conjecture holds for D”, “the semi-absolute isomorphism version of the

Grothendieck Conjecture holds for D”, “the semi-absolute homomorphism

version of the Grothendieck Conjecture holds for D”, etc. Since we shall not
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use these versions in the discussion to follow, we leave the routine details of

their formulation to the interested reader.

Theorem 4.7 (Semi-absoluteness of Chains of Elementary Opera-

tions). Let D be a chain-full set of collections of partial construction data

(cf. Definition 4.6, (i)) such that the rel-isom-DGC holds (cf. Definition

4.6, (ii)). For i = 1, 2, let Gi be a slim profinite group;

1 → ∆i → Πi → Gi → 1

an extension of GSAFG-type that admits base-prime (cf. Definition 2.1,

(iv)) partial construction data (ki, k̃i, Xi,Σi) such that ([Xi], [ki],Σi) ∈ D;

αi : πtame
1 (Xi) � Πi a scheme-theoretic envelope. Also, let us suppose

further that the following conditions are satisfied:

(a) if either X1 or X2 is a hyperbolic orbicurve, then both X1 and X2

are hyperbolic orbicurves;

(b) if either X1 or X2 is a non-proper hyperbolic orbicurve, then there

exists a prime number l ∈ Σ1
⋂

Σ2 such that for i = 1, 2, the cyclo-

tomic character Gi → Z×
l (i.e., the character whose restriction to

πtame
1 (Xi) via αi and the surjection Πi � Gi is the usual cyclotomic

character πtame
1 (Xi)� Gal(k̃i/ki)→ Z×

l ) has open image.

Let

φ : Π1
∼→ Π2

be an isomorphism of profinite groups that induces isomorphisms φ∆ :

∆1
∼→ ∆2, φG : G1

∼→ G2. Then:

(i) The natural functors (cf. Remark 4.2.1)

Chain(X̃i/Xi)→ Chain(Πi); Chainiso-trm(X̃i/Xi)→ Chainiso-trm(Πi)

ÉtLoc(X̃i/Xi)→ ÉtLoc(Πi)

are equivalences of categories that are compatible with passing to type-

chains.

(ii) The isomorphism φ induces equivalences of categories

Chain(Π1)
∼→ Chain(Π2); Chainiso-trm(Π1)

∼→ Chainiso-trm(Π2)

ÉtLoc(Π1)
∼→ ÉtLoc(Π2)
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that are compatible with passing to type-chains and functorial in φ.

(iii) Suppose further that the rel-hom-DGC holds (cf. Definition 4.6,

(ii)), and that for i = 1, 2, Xi is a hyperbolic orbicurve. Then the natural

functors (cf. Remark 4.2.1)

Chaintrm(X̃i/Xi)→ Chaintrm(Πi); DLoc(X̃i/Xi)→ DLoc(Πi)

are equivalences of categories that are compatible with passing to type-

chains.

(iv) In the situation of (iii), the isomorphism φ induces equivalences of

categories

Chaintrm(Π1)
∼→ Chaintrm(Π2); DLoc(Π1)

∼→ DLoc(Π2)

that are compatible with passing to type-chains and functorial in φ.

Proof. First, we consider the natural functor

Chain(X̃i/Xi)→ Chain(Πi)

of Remark 4.2.1. To conclude that this functor is an equivalence of cate-

gories, it follows immediately from the definitions of the categories involved

that it suffices to verify that the X̃i/Xi-chain and Πi-chain versions of the

four types of elementary operations �, �, •, � described in Definition 4.2,

(i), (iii), correspond bijectively to one another. This is immediate from the

definitions (respectively, the cuspidal portion of Lemma 4.1, (i), (v); the

“closed point of X” portion of Lemma 4.1, (iii), (v)) for � (respectively,

•; �). (Here, we note that in the case of •, �, the “kj+1-rationality” (in

the notation of Definition 4.2, (i), (c), (d)) of the cusp or possibly non-

scheme-like point in question follows immediately from Lemma 4.1, (vi), by

taking “xB” to be the various Galois conjugates of this point.) Finally, the

desired correspondence for � follows from our assumption that the rel-isom-

DGC holds by applying this “rel-isom-DGC” as was done in the proofs of

[Mzk7], Theorem 2.4; [Mzk9], Theorem 2.3, (i). This completes the proof

that the natural functor Chain(X̃i/Xi) → Chain(Πi) is an equivalence.

A similar application of the “rel-isom-DGC” then yields the equivalences

Chainiso-trm(X̃i/Xi)
∼→ Chainiso-trm(Πi), ÉtLoc(X̃i/Xi)

∼→ ÉtLoc(Πi). In a

similar vein, the “rel-hom-DGC” (cf. assertion (iii)) implies the equivalences
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of categories Chaintrm(X̃i/Xi)
∼→ Chaintrm(Πi), DLoc(X̃i/Xi)

∼→ DLoc(Πi)

of assertion (iii). This completes the proof of assertions (i), (iii).

Finally, to obtain the equivalences of assertions (ii), (iv), it suffices to

observe that the definitions of the various categories involved are entirely

“group-theoretic”. Here, we note that the “group-theoreticity” of the ele-

mentary operations of type �, �, � is immediate; the “group-theoreticity”

of the elementary operations of type • follows immediately from Lemma 4.5,

(v) (in light of our assumptions (a), (b)). Also, we observe that whenever

the Xi (for i = 1, 2) are hyperbolic orbicurves, Σi may be recovered “group-

theoretically” from ∆i (i.e., as the unique minimal subset Σ′ ⊆ Primes such

that ∆i is almost pro-Σ′). This completes the proof of assertions (ii), (iv). �

Remark 4.7.1. The portion of Theorem 4.7 concerning the categories

“ÉtLoc(−)” (cf. also Example 4.8 below; Corollary 2.8, (ii)) and “DLoc(−)”

allows one to relate the theory of the present §4 to the theory of [Mzk9], §2
(cf., especially, [Mzk9], Theorem 2.3).

Example 4.8 Hyperbolic Orbicurves. Let p be a prime number; S the

set of subsets of Primes containing p; V the set of isomorphism classes of

hyperbolic orbicurves over fields of cardinality ≤ the cardinality of Qp.

(i) Let F be the set of isomorphism classes of generalized sub-p-adic fields

(i.e., subfields of finitely generated extensions of the quotient field of the ring

of Witt vectors with coefficients in an algebraic closure of Fp — cf. [Mzk5],

Definition 4.11); D = V× F× S. Then let us observe that:

The hypotheses of Theorem 4.7, (i), (ii), are satisfied relative to this

D.

Indeed, it is immediate that D is chain-full; the rel-isom-DGC follows from

[Mzk5], Theorem 4.12; the prime p clearly serves as a prime “l” as in the

statement of Theorem 4.7. Moreover, we recall from [Mzk5], Lemma 4.14,

that the absolute Galois group of a generalized sub-p-adic field is always

slim.

(ii) Let F be the set of isomorphism classes of sub-p-adic fields (i.e.,

subfields of finitely generated extensions of Qp — cf. [Mzk3], Definition

15.4, (i)); D = V× F× S. Then let us observe that:
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The hypotheses of Theorem 4.7, (iii), (iv), are satisfied relative to

this D.

Indeed, it is immediate that D is chain-full; the rel-hom-DGC follows from

[Mzk3], Theorem A; the prime p clearly serves as a prime “l” as in the

statement of Theorem 4.7. Moreover, we recall from [Mzk3], Lemma 15.8,

that the absolute Galois group of a sub-p-adic field is always slim.

Example 4.9 Iso-poly-hyperbolic Orbisurfaces.

(i) Let k be a field of characteristic zero. Then we recall from [Mzk3],

Definition a2.1, that a smooth k-scheme X is called a hyperbolically fibred

surface if it admits the structure of a family of hyperbolic curves (cf. §0)

over a hyperbolic curve Y over k. If X is a smooth, generically scheme-like,

geometrically connected algebraic stack over k, then we shall say that X

is an iso-poly-hyperbolic orbisurface (cf. the term “poly-hyperbolic” as it is

defined in [Mzk4], Definition 4.6) if X admits a finite étale covering which

is a hyperbolically fibred surface over some finite extension of k.

(ii) Let p be a prime number; S
def
= {Primes} (where we regard Primes as

the unique non-proper subset of Primes); F the set of isomorphism classes

of sub-p-adic fields; V the set of isomorphism classes of iso-poly-hyperbolic

orbisurfaces (cf. (i)) over sub-p-adic fields; D = V × F × S. Then let us

observe that:

The hypotheses of Theorem 4.7, (i), (ii), are satisfied relative to this

D.

Indeed, it is immediate that D is chain-full; the rel-isom-DGC, as well as the

slimness of the ∆i (for i = 1, 2), follows immediately from [Mzk3], Theorem

D. Moreover, we recall from [Mzk3], Lemma 15.8, that the absolute Galois

group of a sub-p-adic field is always slim.

(iii) Let k be a sub-p-adic field; X the moduli stack of hyperbolic curves of

type (0, 5) (i.e., the moduli stack of smooth curves of genus 0 with 5 distinct,

unordered points) over k; X̃ → X a “universal” pro-finite étale covering of

X; k the algebraic closure of k determined by X̃ → X. Then one veri-

fies immediately that X is an iso-poly-hyperbolic orbisurface over k. Write

1 → ∆ → Π → G → 1 for the GSAFG-extension defined by the natural

surjection π1(X) = Gal(X̃/X) � Gal(k/k) (which we regard as equipped

with the tautological scheme-theoretic envelope given by the identity) and
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Loc(X̃/X) ⊆ Chaintrm(X̃/X) (respectively, Loc(Π) ⊆ Chaintrm(Π)) for the

subcategory determined by the terminal morphisms (respectively, homo-

morphisms) which are finite étale (respectively, injective). Then it follows

immediately from (ii); Theorem 4.7, (i), that we have an equivalence of

categories

Loc(X̃/X)
∼→ Loc(Π)

(cf. [Mzk7], Theorem 2.4; [Mzk9], Theorem 2.3, (i)). Moreover, the objects

of these categories “Loc(−)” determined by X, Π (i.e., by the unique chain

of length 0) is terminal (cf. [Mzk2], Theorem C) — i.e., a “core” (cf. the

terminology of [Mzk7], §2; [Mzk8], §2).

Finally, we observe that the theory of the present §4 admits a “tempered

version”, in the case of hyperbolic orbicurves over MLF’s. We begin by

recalling basic facts concerning tempered fundamental groups. Let k be an

MLF of residue characteristic p; k an algebraic closure of k; X a hyperbolic

orbicurve over k. We shall use a subscript k to denote the result of a base-

change from k to k. Write

πtp
1 (X); πtp

1 (Xk)

for the tempered fundamental groups of X, Xk (cf. [André], §4; [Mzk10],

Examples 3.10, 5.6). Thus, the profinite completion of πtp
1 (X) (respectively,

πtp
1 (Xk)) is naturally isomorphic to the usual étale fundamental group π1(X)

(respectively, π1(Xk)). If H ⊆ πtp
1 (Xk) is an open subgroup of finite index,

then recall that the minimal co-free subgroup of H

Hco-fr ⊆ H

(cf. §0) is precisely the subgroup of H with the property that the quotient

H � H/Hco-fr corresponds to the tempered covering of Xk determined by

the universal covering of the dual graph of the special fiber of a stable model

of Xk — cf. [André], proof of Lemma 6.1.1.

Proposition 4.10 (Basic Properties of Tempered Fundamental

Groups). In the notation of the above discussion, suppose further that

φ : X → Y is a morphism of hyperbolic orbicurves over k. For Z = X,Y ,

let us write

Πtp
Z

def
= πtp

1 (Z); ∆tp
Z

def
= πtp

1 (Zk)
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and denote the profinite completions of Πtp
Z , ∆tp

Z by Π̂tp
Z , ∆̂tp

Z , respectively;

in the following, all “co-free completions” (cf. §0) of open subgroups of finite

index in Πtp
X (respectively, ∆tp

X ) will be with respect to (the intersections of

such open subgroups with) the subgroup ∆tp
X ⊆ Πtp

X (respectively, ∆tp
X ⊆ ∆tp

X ).

Then:

(i) The natural homomorphism Πtp
X → Π̂tp

X
∼→ π1(X) (respectively,

∆tp
X → ∆̂tp

X
∼→ π1(Xk)) is injective. In fact, if H ⊆ ∆tp

X is any character-

istic open subgroup of finite index, then Πtp
X/H

co-fr, ∆tp/Hco-fr inject into

their respective profinite completions. In particular, πtp
1 (X) (respectively,

πtp
1 (Xk)) is naturally isomorphic to its π1(X)-co-free completion (respec-

tively, π1(Xk)-co-free completion) (cf. §0).
(ii) Πtp

X (respectively, ∆tp
X ) is normally terminal in Π̂tp

X (respectively,

∆̂tp
X ).

(iii) Suppose that φ is either a de-cuspidalization morphism (i.e., an

open immersion whose image is the complement of a single k-valued point

of Y — cf. Definition 4.2, (i), (c)) or a de-orbification morphism (i.e.,

a partial coarsification morphism which is an isomorphism over the com-

plement of a single k-valued point of Y — cf. Definition 4.2, (i), (d)).

Then the natural homomorphism Πtp
X → Πtp

Y (respectively, ∆tp
X → ∆tp

Y ) may

be reconstructed — “group-theoretically” — from its profinite completion

Π̂tp
X � Π̂tp

Y (respectively, ∆̂tp
X � ∆̂tp

Y ) as the natural morphism from Πtp
X

(respectively, ∆tp
X ) to the co-free completion of Πtp

X with respect to Π̂tp
Y (re-

spectively, ∆̂tp
Y ) (cf. §0).

(iv) Let l ∈ Primes. If J ⊆ ∆tp
X is an open subgroup of finite index, write

J → J [l] for the co-free completion of J with respect to the maximal pro-l

quotient of the profinite completion of J . Let H ⊆ ∆tp
X be an open subgroup

of finite index. Suppose that l �= p. Then the dual graph ΓH of the special

fiber of a stable model of the covering of Xk corresponding to H determines

verticial and edge-like subgroups of H [l] (i.e., decomposition groups of the

vertices and edges of ΓH — cf. [Mzk10], Theorem 3.7, (i), (iii)). The

verticial (respectively, edge-like) subgroups of H [l] may be characterized —

“group-theoretically” — as the maximal compact subgroups (respectively,

nontrivial intersections of two distinct maximal compact subgroups) of H [l].

In particular, the graph ΓH may be reconstructed — “group-theoretically”

— from the verticial and edge-like subgroups of H [l], together with their
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various mutual inclusion relations.

(v) The prime number p may be characterized — “group-theoretically”

— as the unique prime number l such that their exist open subgroups H, J ⊆
∆tp
X of finite index, together with distinct prime numbers l1, l2, satisfying

the following properties: (a) H is a normal subgroup of J of index l; (b) for

i = 1, 2, the outer action of J on H [li] (cf. (iv)) fixes (the conjugacy class

in H [li] of) and induces the trivial outer action on some maximal compact

subgroup of H [li] (cf. (iv)).

(vi) Let l be a prime number �= p (a “group-theoretic” condition, by

(v)!); H ⊆ ∆tp
X an open subgroup of finite index. Then the set of cusps

of the covering of Xk corresponding to H may be characterized — “group-

theoretically” — as the set of conjugacy classes in H [l] of the commensu-

rators in H [l] of the images in H [l] of edge-like subgroups of J [l] (cf. (iv)),

where J ⊆ H is an open subgroup of finite index, which are not contained in

edge-like subgroups of H [l]. In particular, by allowing H to vary, this yields

a (“group-theoretic”) characterization of the decomposition groups of cusps

in ∆tp
X , Πtp

X (i.e., a “tempered version” of Lemma 4.5, (v)).

Proof. Assertion (i) follows immediately from the discussion at the

beginning of [Mzk10], §6 (cf. also the discussion of [André], §4.5). Asser-

tion (ii) is the content of [Mzk10], Lemma 6.1, (ii), (iii) (cf. also [André],

Corollary 6.2.2). Assertion (iii) follows immediately from assertion (i). As-

sertion (iv) follows immediately from [Mzk10], Theorem 3.7, (iv); [Mzk10],

Corollary 3.9 (cf. also the proof of [Mzk10], Corollary 3.11). Assertions (v),

(vi) amount to summaries of the relevant portions of the proof of [Mzk10],

Corollary 3.11. Here, in assertion (v), we observe that at least one of the li
is �= p; thus, for this choice of li, the action of J fixes and induces the trivial

outer action on some verticial subgroup of H [li]. �

Remark 4.10.1. It is not clear to the author at the time of writing

how to prove a version of Proposition 4.10, (vi), for decomposition groups

of closed points which are not cusps (i.e., a “tempered version” of Lemma

4.1, (iii)).

Remark 4.10.2. A certain fact applied in the portion of the proof of

[Mzk10], Corollary 3.11, summarized in Proposition 4.10, (vi), is only given
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a somewhat sketchy proof in loc. cit. A more detailed treatment of this fact

is given in [Mzk15], Corollary 2.11.

Now we are ready to state the tempered version of Definition 4.2.

Definition 4.11. In the notation of the above discussion, let

1 → ∆ → Π → G→ 1

be an extension of topological groups that is isomorphic to the natural ex-

tension 1 → πtp
1 (Xk) → πtp

1 (X) → Gal(k/k) → 1 via some isomorphism

α : πtp
1 (X)

∼→ Π, which we shall refer to as a scheme-theoretic envelope.

Write Π̂ for the profinite completion of Π; X̃ → X for the pro-finite étale

covering of X determined by the completion of α (so Π̂ = Gal(X̃/X)); k̃ for

the resulting field extension of k. In a similar vein, we shall write Π̃ for the

projective system of topological groups determined by the open subgroups of

finite index of Π (cf. Definition 4.2). Then:

(i) We shall refer to as an (Π-)chain (of length n) (where n ≥ 0 is an

integer) any finite sequence

Π0 � Π1 � . . .� Πn−1 � Πn

of topological groups Πj (for j = 0, . . . , n) with slim profinite completions

Π̂j , each equipped with a “rigidifying homomorphism” ρj : Π̃ → Πj which

is of DOF-type (i.e., which maps some member of the projective system Π̃

onto a dense subgroup of an open subgroup of finite index of Πj — cf. §0)

satisfying the following conditions:

(0tp) Π0 = Π (equipped with its natural rigidifying homomorphism

Π̃ → Π).

(1tp) There exists a (uniquely determined) surjection Πj � Gj , where

Gj ⊆ G is an open subgroup, that is compatible with ρj and the

natural composite morphism Π̃ → Π� G.

(2tp) Each kernel

∆j
def
= Ker(Πj � Gj ↪→ G)

has a slim, nontrivial profinite completion ∆̂j .

(3tp) The topological groups Πj , ∆j are residually finite. Also, we shall

refer to as a cuspidal decomposition group in ∆̂j any ∆̂j-conjugate
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of the commensurator in ∆̂j of a nontrivial image via ρj of the

inverse image in Π̃ of the decomposition group in ∆ (determined

by α) of a cusp of X.

(4tp) Each “Πj � Πj+1” (for j = 0, . . . , n − 1) is an “elementary

operation”, as defined below.

Here, an elementary operation “Πj � Πj+1” is defined to consist of the

datum of an “operation homomorphism” φ of DOF-type either from Πj to

Πj+1 or from Πj+1 to Πj which is compatible with ρj , ρj+1, and, moreover,

is of one of the following four types:

(a) Type �: In this case, the elementary operation Πj � Πj+1 consists

of an immersion of OF-type (cf. §0) φ : Πj+1 ↪→ Πj .

(b) Type �: In this case, the elementary operation Πj � Πj+1 consists

of an immersion of OF-type (cf. §0) φ : Πj ↪→ Πj+1.

(c) Type •: In this case, the elementary operation Πj � Πj+1 consists

of a dense homomorphism φ : Πj → Πj+1 which is isomorphic to

the co-free completion of Πj with respect to the induced profinite

quotient φ̂ : Π̂j � Π̂j+1 (and the subgroup ∆j), such that Ker(φ̂) is

topologically normally generated by a cuspidal decomposition group

C in ∆̂j such that C is contained in some normal open torsion-free

subgroup of ∆̂j .

(d) Type �: In this case, the elementary operation Πj � Πj+1 consists

of a dense homomorphism φ : Πj → Πj+1 which is isomorphic to

the co-free completion of Πj with respect to the induced profinite

quotient φ̂ : Π̂j � Π̂j+1 (and the subgroup ∆j), such that Ker(φ̂) is

topologically normally generated by a finite closed subgroup of ∆̂j .

Thus, any Π-chain determines a sequence of symbols ∈ {�,�, •,�} (corre-

sponding to the types of elementary operations in the Π-chain), which we

shall refer to as the type-chain associated to the Π-chain.

(ii) An isomorphism between two Π-chains with identical type-chains

(hence of the same length)

(Π0 � . . .� Πn)
∼→ (Ψ0 � . . .� Ψn)

is defined to be a collection of isomorphisms of topological groups Πj
∼→ Ψj

(for j = 0, . . . , n) that are compatible with the rigidifying homomorphisms.
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(Here, we note that the condition of compatibility with the rigidifying homo-

morphisms implies (since all of the topological groups involved are residually

finite with slim profinite completions) that every automorphism of a Π-chain

is given by the identity, and that every isomorphism of Π-chains of the same

length is compatible with the respective operation homomorphisms.) Thus,

one obtains a category

Chain(Π)

whose objects are the Π-chains (with arbitrary associated type-chain), and

whose morphisms are the isomorphisms between Π-chains (with identical

type-chains). A terminal homomorphism between two Π-chains (with arbi-

trary associated type-chains)

(Π0 � . . .� Πn)→ (Ψ0 � . . .� Ψm)

is defined to be an outer homomorphism of DOF-type (cf. §0; [Mzk10],

Theorem 6.4) Πn → Ψm that is compatible (up to composition with an

inner automorphism) with the open homomorphisms Πn → G, Ψm → G.

Thus, one obtains a category

Chaintrm(Π)

whose objects are the Π-chains (with arbitrary associated type-chain), and

whose morphisms are the terminal homomorphisms between Π-chains; write

Chainiso-trm(Π) ⊆ Chaintrm(Π)

for the subcategory determined by the terminal isomorphisms (i.e., the iso-

morphisms of Chaintrm(Π)). Thus, it follows immediately from the def-

initions that we obtain natural functors Chain(Π) → Chainiso-trm(Π) →
Chaintrm(Π). Finally, we have (sub)categories

Chainiso-trm(Π){−} ⊆ Chainiso-trm(Π); Chaintrm(Π){−} ⊆ Chaintrm(Π)

DLoc(Π)
def
= Chaintrm(Π){�, •}; ÉtLoc(Π)

def
= Chainiso-trm(Π){�,�}

(cf. Definition 4.2, (v)).
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Remark 4.11.1. Just as in the profinite case (i.e., Remark 4.2.1), we

have natural functors

Chain(X̃/X)→ Chain(Π)→ Chain(Π̂)

Chainiso-trm(X̃/X)→ Chainiso-trm(Π)→ Chainiso-trm(Π̂)

Chaintrm(X̃/X)→ Chaintrm(Π)→ Chaintrm(Π̂)

— where we apply Proposition 4.10, (iii), in the construction of the first

arrow in each line; the second arrow in each line is the natural functor

obtained by profinite completion; the various composite functors of the two

functors in each line are the natural functors of Remark 4.2.1.

Remark 4.11.2. A similar remark to Remark 4.2.2 applies in the

present tempered case.

Theorem 4.12 (Tempered Chains of Elementary Operations). For

i = 1, 2, let ki be an MLF of residue characteristic pi; ki an algebraic

closure of ki; Xi a hyperbolic orbicurve over ki;

1 → ∆i → Πi → Gi → 1

an extension of topological groups that is isomorphic to the natural ex-

tension 1 → πtp
1 ((Xi)ki) → πtp

1 (Xi) → Gal(ki/ki) → 1 via some scheme-

theoretic envelope αi : πtp
1 (Xi)

∼→ Πi. Let

φ : Π1
∼→ Π2

be an isomorphism of topological groups. Then:

(i) The natural functors (cf. Remark 4.11.1)

Chain(X̃i/Xi)→ Chain(Πi); Chainiso-trm(X̃i/Xi)→ Chainiso-trm(Πi)

ÉtLoc(X̃i/Xi)→ ÉtLoc(Πi)

Chaintrm(X̃i/Xi)→ Chaintrm(Πi); DLoc(X̃i/Xi)→ DLoc(Πi)

are equivalences of categories that are compatible with passing to type-

chains.
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(ii) We have p1 = p2; the isomorphism φ induces isomorphisms φ∆ :

∆1
∼→ ∆2, φG : G1

∼→ G2, as well as equivalences of categories

Chain(Π1)
∼→ Chain(Π2); Chainiso-trm(Π1)

∼→ Chainiso-trm(Π2)

ÉtLoc(Π1)
∼→ ÉtLoc(Π2)

Chaintrm(Π1)
∼→ Chaintrm(Π2); DLoc(Π1)

∼→ DLoc(Π2)

that are compatible with passing to type-chains and functorial in φ.

Proof. In light of Proposition 4.10, (iii), together with the “tem-

pered anabelian theorem” of [Mzk10], Theorem 6.4, the proof of Theorem

4.12 is entirely similar to the proof of Theorem 4.7. (Here, we note that

in the case of de-cuspidalization operations, instead of applying the de-

cuspidalization portion of Proposition 4.10, (iii), one may instead apply the

“group-theoretic” characterization of Proposition 4.10, (vi).) Also, we recall

that the portion of assertion (ii) concerning, “p1 = p2”, “φ∆”, “φG” follows

immediately )by considering the profinite completion of φ) from Theorem

2.14, (i). �

Remark 4.12.1. A similar remark to Remark 4.7.1 applies in the

present tempered case (cf. [Mzk10], Theorem 6.8).

Appendix. The Theory of Albanese Varieties

In the present Appendix, we review the basic theory of Albanese varieties

(cf., e.g., [NS], [Serre1], [Chev], [BS], [SS]), as it will be applied in the present

paper. One of our aims here is to present the theory in modern scheme-

theoretic language (i.e., as opposed to [NS], [Serre1], [Chev]), but without

resorting to the introduction of motives and derived categories, as in [BS],

[SS]. Put another way, although there is no doubt that the content of the

present Appendix is implicit in the literature, the lack of an appropriate

reference that discusses this material explicitly seemed to the author to

constitute sufficient justification for the inclusion of a detailed discussion of

this material in the present paper.

In the following discussion, we fix a perfect field k, together with an

algebraic closure k of k. The result of base-change (of k-schemes and mor-

phisms of k-schemes) from k to k will be denoted by means of a subscript

“k”. Write Gk
def
= Gal(k/k) for the absolute Galois group of k.
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We will apply basic well-known properties of commutative group schemes

of finite type over k without further explanation. In particular, we recall

the following:

(I) The category of such group schemes is abelian (cf., e.g., [SGA3-1],

VIA, 5.4); subgroup schemes are always closed (cf., e.g., [SGA3-1],

VIB, 1.4.2); reduced group schemes over k are k-smooth (cf., e.g.,

[SGA3-1], VIA, 1.3.1).

(II) Every connected reduced subquotient of a semi-abelian variety over

k (i.e., an extension of an abelian variety by a torus) is itself a

semi-abelian variety over k. (Indeed, this may be verified easily by

applying a well-known theorem of Chevalley (cf., e.g., [Con], for a

treatment of this result in modern language; [Bor], Theorems 10.6,

10.9), to the effect that any smooth connected commutative group

scheme over k may be written as an extension of a semi-abelian

variety by a successive extension of copies of the additive group

(Ga)k.)

(III) Let φ : B → A be a connected finite étale Galois covering of a

semi-abelian variety A over k, with identity element 0A ∈ A(k),

such that (φ−1(0A))(k) �= ∅, and the degree of φ is prime to the

characteristic of k. Then each element of b ∈ (φ−1(0A))(k) deter-

mines on B a unique structure of semi-abelian variety over k on B

such that b is the identity element of the group B(k), and φ is a ho-

momorphism of group schemes over k. (Indeed this may be verified

easily by applying the theorem of Chevalley quoted in (II) above.)

Note, moreover, that in this situation, if k = k, then we obtain an

inclusion Gal(B/A) ↪→ B(k), which implies, in particular, that the

covering φ is abelian, and, moreover, appears as a subcovering of a

covering A→ A given by multiplication by some n invertible in k.

Definition A.1.

(i) A variety over k, or k-variety, is defined to be a geometrically integral

separated scheme of finite type over k. A k-variety will be called complete if

it is proper over k. We shall refer to a pair (V, v), where V is a k-variety and

v ∈ V (k), as a pointed variety over k; a morphism of pointed varieties over k,

or pointed k-morphism, (V, v) → (W,w) (which we shall often simply write

V →W , when v, w are fixed) is a morphism of k-varieties that maps v �→ w.

Any reduced group schemeG over k has a natural structure of pointed variety
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over k determined by the identity element 0G ∈ G(k). If G, H are group

schemes over k, then we shall refer to a k-morphism G→ H as a (k-)trans-

homomorphism if it factors as the composite of a homomorphism of group

schemes G→ H over k with an automorphism of H given by translation by

an element of H(k). If V is a k-variety, then we shall use the notation π1(V )

to denote the étale fundamental group (relative to an appropriate choice of

basepoint) of V . Thus, we have a natural exact sequence of fundamental

groups 1 → π1(Vk) → π1(V ) → Gk → 1. Let Σk ⊆ Primes (cf. §0) be

the set of primes invertible in k; use the superscript “(Σk)” to denote the

maximal pro-Σk quotient of a profinite group; if V is a k-variety, then we

shall write

∆V
def
= π1(Vk)

(Σk); ΠV
def
= π1(V )/Ker(π1(Vk)� π1(Vk)

(Σk))

for the resulting geometrically pro-Σk fundamental groups, so we have a

natural exact sequence of fundamental groups 1→ ∆V → ΠV → Gk → 1.

(ii) Let C be a class of commutative group schemes of finite type over k.

If A is a group scheme over k that belongs to the class C, then we shall write

A ∈ C. If (V, v) is a pointed k-variety, then we shall refer to a morphism of

pointed k-varieties

φ : V → A

as a C-Albanese morphism if A ∈ C (so A is equipped with a point 0A ∈ A(k),

as discussed in (i)), and, moreover, for any pointed k-morphism φ′ : V → A′,
where A′ ∈ C, there exists a unique homomorphism ψ : A → A′ of group

schemes over k such that φ′ = ψ◦φ. In this situation, A will also be referred

to as the C-Albanese variety of V . We shall write Cab
k for the class of abelian

varieties over k and Cs-ab
k for the class of semi-abelian varieties over k. When

C = Cs-ab
k , the term “C-Albanese”, will often be abbreviated “Albanese”.

(iii) If X is a k-variety (respectively, noetherian scheme) which admits

a log structure such that the resulting log scheme X log is log smooth over

k (where we regard Spec(k) as equipped with the trivial log structure) (re-

spectively, log regular (cf. [Kato])), then we shall refer to X as k-toric (re-

spectively, absolutely toric) and to X log as a torifier, or torifying log scheme,

for X. (Thus, “k-toric” implies “absolutely toric”.)

(iv) If k is of positive characteristic, then, for any k-schemeX and integer

n ≥ 1, we shall write XF
n

for the result of base-changing X by the n-th
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iterate of the Frobenius morphism on k; thus, we obtain a k-linear relative

Frobenius morphism ΦnX : X → XF
n
. If k is of characteristic zero, then we

set XF
n def

= X, ΦnX
def
= idX , for integers n ≥ 1. If φ : X → Y is a morphism

of k-schemes, then we shall refer to φ as a sub-Frobenius morphism if, for

some integer n ≥ 1, there exists a k-morphism ψ : Y → XF
n

such that

ψ ◦ φ = ΦnX , φF
n ◦ ψ = ΦnY . (Thus, in characteristic zero, a sub-Frobenius

morphism is simply an automorphism.)

Remark A.1.1. As is well-known, if V is a k-variety, then ΦnV induces

an isomorphism ΠV
∼→ ΠV Fn , for all integers n ≥ 1. Note that this implies

that every sub-Frobenius morphism V → W of k-varieties induces isomor-

phisms ΠV
∼→ ΠW , ∆V

∼→ ∆W .

Before proceeding, we review the following well-known result.

Lemma A.2 (Morphisms to Abelian and Semi-abelian Schemes). Let

S be a noetherian scheme; X an S-scheme whose underlying scheme is

absolutely toric; A an abelian scheme over S (respectively, a semi-abelian

scheme over S which is an extension of an abelian scheme B → S by a

torus T → S); V ⊆ X an open subscheme whose complement in X is

of codimension ≥ 1 (respectively, ≥ 2) in X. Then any morphism of S-

schemes V → A extends uniquely to X.

Proof. First, we consider the case where A is an abelian scheme. If X

is regular, then Lemma A.2 follows from [BLR], §8.4, Corollary 6. When X

is an arbitrary absolutely toric scheme with torifier X log, we reduce imme-

diately to the case where X is strictly henselian, hence admits a resolution

of singularities (cf., e.g., [Mzk4], §2)

Y log → X log

— i.e., a log étale morphism of log schemes which induces an isomorphism

UY
∼→ UX between the respective interiors such that Y log arises from a

divisor with normal crossings in a regular scheme Y . Since the “regular case”

has already been settled, we may assume that UX ⊆ V ; also, it follows that

the restriction UY → A to UY of the resulting morphism UX → A extends

uniquely to a morphism Y → A. The graph of this morphism determines a

closed subscheme Z ⊆ AY
def
= A×S Y . Moreover, by considering the image
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of Z under the morphism AY → AX
def
= A ×S X of proper X-schemes,

we conclude from “Zariski’s main theorem” (since X is normal) that to

obtain the (manifestly unique, since V is schematically dense in X) desired

extension X → A, it suffices to show that the fibers of Y → X map to

points of A. On the other hand, as is observed in the discussion of [Mzk4],

§2, each irreducible component of the fiber of Y → X at a point x ∈ X is

a rational variety over the residue field k(x) at x, hence maps to a point in

the abelian variety Ax
def
= A×S k(x) (cf., e.g., [BLR], §10.3, Theorem 1, (b),

(c)). This completes the proof of Lemma A.2 in the non-resp’d case. Thus,

to complete the proof of Lemma A.2 in the resp’d case, we may assume that

A = T is a torus over S. In fact, by étale descent, we may even assume

that T is a split torus over S. Then it suffices to show that if L is any line

bundle on X that admits a generating section sV ∈ Γ(V,L), then it follows

that sV extends to a generating section of L over X. But since X is normal,

this follows immediately from [SGA2], XI, 3.4; [SGA2], XI, 3.11. �

Proposition A.3 (Basic Properties of Albanese Varieties). Let C ∈
{Cab
k , Cs-ab

k }; φV : V → A, φW : W → B C-Albanese morphisms. Then:

(i) (Base-change) Let k′ be an algebraic field extension of k; denote the

result of base-change (of k-schemes and morphisms of k-schemes) from k

to k′ by means of a subscript “k′”. If C = Cab
k (respectively, C = Cs-ab

k ),

then set C′ = Cab
k′ (respectively, C′ = Cs-ab

k′ ). Then (φV )k′ : Vk′ → Ak′ is a

C′-Albanese morphism.

(ii) (Functoriality) Given any k-morphism βV : V → W , there exists a

unique k-trans-homomorphism βA : A → B such that φW ◦ βV = βA ◦ φV .

If, moreover, βV is pointed, then βA is a homomorphism.

(iii) (Relative Frobenius Morphisms) For any integer n ≥ 1, φF
n

V :

V F
n → AF

n
is a C-Albanese morphism. If, moreover, in (ii), φW = φF

n

V ,

βV = ΦnV , then βA = ΦnA.

(iv) (Sub-Frobenius Morphisms) If, in (ii), βV is a sub-Frobenius mor-

phism, then so is βA.

(v) (Toric Open Immersions) Suppose, in (ii), that βV is an open im-

mersion, that W is k-toric, and that if C = Cab
k (respectively, C = Cs-ab

k ),

then the codimension of the complement of the image of βV in W is ≥ 1

(respectively, ≥ 2). Then βA is an isomorphism.
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(vi) (Dominant Quotients) If, in (ii), βV is dominant, then βA is sur-

jective.

(vii) (Surjectivity of Fundamental Groups) The (outer) homomorphisms

ΠφV : ΠV → ΠA, ∆φV : ∆V → ∆A induced by φV are surjective.

(viii) (Semi-abelian versus Abelian Albanese Morphisms) Suppose that

C = Cs-ab
k . Write A� Aab for the maximal quotient of group schemes over

k such that Aab ∈ Cab
k . Then the composite morphism V → A � Aab is a

Cab
k -Albanese morphism.

(ix) (Group Law Generation) For integers n ≥ 1, write

ζn : V ×k . . .×k V → A

(v1, . . . , vn) �→
n∑
j=1

vj

for the morphism from the product over k of n copies of V to A given by

adding the images under φV of the points in the n factors. Then there exists

an integer N such that ζn is surjective for all n ≥ N . In particular, if V is

proper, then so is A.

Proof. To verify assertion (i), we may assume that k′ is a finite (hence

necessarily étale, since k is perfect) extension of k. Then assertion (i) fol-

lows immediately by considering the Weil restriction functor Wk′/k(−) from

k′ to k. That is to say, it is immediate that Wk′/k(−) takes objects in

C′ to objects in C. Thus, to give a k′-morphism Vk′ → A′ (respectively,

Ak′ → A′) is equivalent to giving a k-morphism V → Wk′/k(A
′) (respec-

tively, A→Wk′/k(A
′)). This completes the proof of assertion (i). Assertions

(ii), (iii) follow immediately from the definition of a “C-Albanese morphism”;

assertion (iv) follows immediately from assertion (iii). Assertion (v) follows

immediately from the definition of a “C-Albanese morphism”, in light of

Lemma A.2.

Assertion (vi) follows from the definition of a “C-Albanese morphism”,

by arguing as follows: First, we observe that βV is an epimorphism in

the category of schemes. Also, we may assume without loss of generality

that βV is pointed. Now consider the composite β ◦ φW : W → B/C

of φW : W → B with the natural quotient morphism β : B � B/C,

where we write C
def
= Im(βA) ⊆ B (so C ∈ C). Since β ◦ φW has the same
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restriction (via βV ) to V as the constant pointed morphism W → B/C,

we thus conclude that β ◦ φW is constant, i.e., that Im(φW ) ⊆ C. But, by

the definition of a “C-Albanese morphism”, this implies the existence of a

section B → C of the natural inclusion C ↪→ B (i.e., such that the composite

B → C ↪→ B is equal to the identity), hence that B = C, as desired. In

a similar vein, assertion (vii) follows from the definition of a “C-Albanese

morphism”, by observing that if ΠφV : ΠV → ΠA fails to surject, then (after

possibly replacing k by a finite extension of k, which is possible, by assertion

(i)) it follows that φV : V → A factors V → C → A, where the morphism

C → A is a nontrivial finite étale Galois covering, with C geometrically

connected over k, so C ∈ C. But this implies, by the definition of a “C-
Albanese morphism”, the existence of a section A → C of the surjection

C � A (i.e., such that the composite A → C � A is the identity), hence

that this surjection is an isomorphism C
∼→ A, a contradiction.

Next, we observe that assertion (viii) follows immediately from the def-

initions, in light of the well-known fact that any homomorphism G→ H of

group schemes over k, where G is a torus and H is an abelian variety, is

trivial (cf., e.g., [BLR], §10.3, Theorem 1, (b), (c)).

Finally, we consider assertion (ix). First, let us observe that we may

assume without loss of generality that k = k. Next, let us observe that

since the image of φV contains 0A ∈ A(k), it follows that for n ≥ m,

the image In ⊆ A(k) of ζn contains the image Im of ζm. Write Fn ⊆ A

for the (reduced closed subscheme given by the) closure of In. Since the

domain of ζn is irreducible, it follows immediately that Fn is irreducible.

Thus, the ascending sequence . . . ⊆ Fm ⊆ . . . ⊆ Fn ⊆ . . . terminates,

i.e., we have Fn = Fm for all n,m ≥ N ′, for some N ′; write F
def
= FN ′ .

Since IN ′ is constructible, it follows that IN ′ contains a nonempty open

subset U of (the underlying topological space of) F ; let u ∈ U(k). Now

let us write I ′n for the union of the translates of U by elements of In; thus,

one verifies immediately that I ′n is open in F , that I ′n ⊆ In+N ′ , and that

u + In ⊆ I ′n. Since F is noetherian, it thus follows that the ascending

sequence . . . ⊆ I ′m ⊆ . . . ⊆ I ′n ⊆ . . . terminates, i.e., that for some N ′′ > N ′,
we have I ′n = I ′m for all n,m ≥ N ′′; write I ⊆ F for the resulting open

subscheme. Thus, for n ≥ N ′′, u + I ⊆ u + In+N ′ ⊆ I. On the other

hand, again since F is noetherian, it follows that the ascending sequence

I ⊆ I−u ⊆ I−2u ⊆ . . . terminates, hence that u+I = I. In particular, for
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some N ′′′ > N ′′, we have In = I, for n ≥ N ′′′. Next, let us observe that for

any j ∈ I(k), it follows from the definition of the In that j + I ⊆ I, hence

(as in the case where j = u), we have j+I = I. Since 0A ∈ I, it thus follows

that I is closed under the group operation on A, as well as taking inverses

in A. Thus, it follows that I is a subgroup scheme of A, hence that I is a

closed subscheme of A (so I = F ). But this implies, by the definition of

a “C-Albanese morphism”, the existence of a homomorphism A→ I whose

composite with the inclusion I ↪→ A is the identity on A. Thus, we conclude

that the inclusion I ↪→ A is a surjection, i.e., that I = A, as desired. �

A proof of the following result may be found, in essence, in [NS] (albeit

in somewhat archaic language), as well as in [FGA], 236, Théorème 2.1,

(ii) (albeit in somewhat sketchy form). Various other approaches (e.g., via

Weil divisors) to this result are discussed in [Klei], Theorem 5.4, and the

discussion following [Klei], Theorem 5.4.

Theorem A.4 (Properness of the Identity Component of the Picard

Scheme). The identity component of the Picard scheme

Pic0
V/k

(cf., e.g., [BLR], §8.2, Theorem 3; [BLR], §8.4) associated to a complete

normal variety V over a field k is proper.

Proof. Write G for the reduced group scheme (Pic0
V/k)red over k. Then

by a well-known theorem of Chevalley (cf., e.g., [Con], for a treatment of

this result in modern language; [Bor], Theorems 10.6, 10.9), it follows that

to show that G (hence also Pic0
V/k) is proper, it suffices to show that G does

not contain any copies of the multiplicative group (Gm)k or the additive

group (Ga)k. On the other hand, since (Gm)k, (Ga)k may be thought of as

open subschemes of the affine line A1
k, this follows immediately from Lemma

A.5 below (i.e., by applying the functorial interpretation of Pic0
V/k — cf.,

e.g., [BLR], §8.1, Proposition 4). �

Lemma A.5 (Rational Families of Line Bundles). Let V be a normal

variety over k; U ⊆ A1
k a nonempty open subscheme of the affine line A1

k.

Then every line bundle LU on V ×kU arises via pull-back from a line bundle

Lk on V .
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Proof. In the following, let us regard A1
k as an open subscheme A1

k ⊆
P1
k of the projective line (obtained in the standard way by removing the point

at infinity ∞k ∈ P1
k(k)). First, let us verify Lemma A.5 under the further

hypothesis that V is smooth over k. Then it follows immediately that V×kP1
k

is smooth over k, hence locally factorial (cf., e.g., [SGA2], XI, 3.13, (i)).

Thus, LU extends to a line bundle LP on P
def
= V ×kP1

k (⊇ V ×kA1
k ⊇ V ×kU).

Moreover, by tensoring with line bundles associated to multiples of the

divisor on P arising from ∞k, we may assume that the degree of LP on the

fibers of the trivial projective bundle f : P → V is zero. Thus, the natural

morphism f∗f∗LP → LP is an isomorphism, which exhibits LP , hence also

LU , as a line bundle Lk pulled back from V .

Now we return to the case of an arbitrary normal variety V . As is

well-known, V contains a dense open subscheme W ⊆ V which is smooth

over k and such that the closed subscheme F
def
= V \W (where we equip F

with the reduced induced structure) is of codimension ≥ 2 in V (cf., e.g.,

[SGA2], XI, 3.11, applied to the geometric fiber of V → Spec(k)). Thus, by

the argument given in the smooth case, we conclude that MU
def
= LU |W×kU

arises from a line bundle Mk on W . Next, let us write ιk : W ↪→ V ,

ιU : W ×k U ↪→ V ×k U for the natural open immersions. Since U is k-flat,

it follows immediately that we have a natural isomorphism

((ιk)∗Mk)|V×kU
∼→ (ιU )∗MU

(arising, for instance, by computing the right-hand side by means of an

affine covering of W ×k U obtained by taking the product over k with U of

an affine covering of W ). On the other hand, since V ×k U is normal and

F ×k U ⊆ V ×k U is a closed subscheme of codimension ≥ 2, it follows from

the definition ofMU that (ιU )∗MU
∼→LU (cf., e.g., [SGA2], XI, 3.4; [SGA2],

XI, 3.11), i.e., that ((ιk)∗Mk)|V×kU is a line bundle on V ×kU . On the other

hand, since the morphism U → Spec(k), hence also the projection morphism

V ×kU → V , is faithfully flat, we thus conclude that Lk def
= (ιk)∗Mk is a line

bundle on V whose pull-back to V ×k U is isomorphic to LU , as desired. �

Proposition A.6 (Duals of Picard Varieties as Albanese Varieties).

Let V be a complete normal variety over k; Pic0
V/k the identity component of

the associated Picard scheme; A the dual abelian variety to G
def
= (Pic0

V/k)red
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(which is an abelian variety by Theorem A.4); v ∈ V (k). Then the universal

line bundle PV (cf., e.g., [BLR], §8.1, Proposition 4) on V ×k G relative

to the rigidification determined by v (i.e., such that PV |{v}×G is trivial)

determines (by the definition of A) a morphism of pointed k-varieties

φ : V → A

such that the pull-back of the Poincaré bundle PA on A ×k G via φ ×k G :

V ×k G → A ×k G is isomorphic to PV (in a fashion compatible with the

respective rigidifications). Moreover:

(i) The morphism φ is a Cab
k -Albanese morphism.

(ii) Suppose, in the situation of Proposition A.3, (ii), that W is also

complete and normal, and that βV is pointed and birational. Then the dual

morphism βG : H → G to βA : A→ B is a closed immersion. In particular,

βA is an isomorphism if and only if dimk(A) ≤ dimk(B).

(iii) The morphism φ induces an injection H1(A,OA) ↪→ H1(V,OV ).

(iv) The morphism φ induces an isomorphism ∆ab-t
V

∼→ ∆A (where we

refer to §0 for the notation “ab-t”).

Proof. First, we consider assertion (i). Let ψV : V → C be a mor-

phism of pointed k-varieties, where C ∈ Cab
k . Now by the functoriality of

“Pic0
(−)/k”, ψV induces a morphism D

def
= Pic0

C/k → Pic0
V/k (so D is the dual

abelian variety to C), hence a morphism ψD : D → G, whose dual gives a

morphism ψA : A → C. The fact that ψV = ψA ◦ φ : V → C follows by

thinking of morphisms as classifying morphisms for line bundles and con-

sidering the following (a priori, not necessarily commutative) diagram of

morphisms between varieties equipped with (isomorphism classes of) line

bundles:

(V ×k D,L)
id−−−→ (V ×k D,L)

V×kψD−−−−−→ (V ×k G,PV )
�ψV ×kD

�φ×kD
�φ×kG

(C ×k D,PC)
ψA×kD←−−−−− (A×k D,M)

A×kψD−−−−−→ (A×k G,PA)

— where we write L def
= (ψV ×k D)∗PC ; M def

= (ψA ×k D)∗PC ∼= (A ×k
ψD)∗PA. That is to say, the desired commutativity of the left-hand square
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follows by computing:

(φ×k D)∗(ψA ×k D)∗PC ∼= (φ×k D)∗(A×k ψD)∗PA
∼= (V ×k ψD)∗(φ×k G)∗PA
∼= (V ×k ψD)∗PV
∼= (ψV ×k D)∗PC

— which implies that ψV = ψA ◦ φ. Finally, the uniqueness of such a “ψA”

follows immediately by applying “Pic0
(−)/k” to the condition “ψV = ψA ◦φ :

V → A→ C”. This completes the proof of assertion (i).

Next, we consider assertion (ii). First, observe that there exists a k-

smooth open subscheme U ⊆ W such that W \ U has codimension ≥ 2 in

W (cf., e.g., [SGA2], XI, 3.11, as it was applied in the proof of Lemma

A.5), and, moreover, βV : V → W admits a section σ : U → V over U .

Note, moreover, that if S is any local artinian finite k-scheme, and we write

ιS : US
def
= U ×k S ↪→ WS

def
= W ×S k for the natural inclusion, then for

any line bundle L on WS , we have a natural isomorphism (ιS)∗(ι∗SL)
∼→ L

(cf., e.g., [SGA2], XI, 3.4; [SGA2], XI, 3.11). Thus, by applying this nat-

ural isomorphism, together with the section σ, we conclude that the map

Pic0
W/k(S)→ Pic0

V/k(S) (induced by βV ) is an injection, which implies that

the kernel group scheme of βG : H → G is trivial, hence that βG is a closed

immersion, as desired. This completes the proof of assertion (ii).

Next, we consider assertion (iii). The morphism H1(A,OA) →
H1(V,OV ) in question may be interpreted as the morphism induced by φ

on tangent spaces to the Picard scheme, i.e., as the morphism

G(k[ε]/(ε2)) = Pic0
A/k(k[ε]/(ε

2))→ Pic0
V/k(k[ε]/(ε

2))

(cf., e.g., [BLR], §8.4, Theorem 1, (a)). But, by the definition of G, this

morphism arises from the natural closed immersion G ↪→ Pic0
V/k, hence is

an injection, as desired.

Finally, we consider assertion (iv). The surjectivity portion of assertion

(iv) follows immediately from Proposition A.3, (vii). To verify the fact that

the surjection ∆ab-t
V � ∆A is an isomorphism, we reason as follows: First,

we recall that if n ≥ 1 is an integer invertible in k, then a line bundle L on V

such that L⊗n is trivial may be interpreted (via the Kummer exact sequence

in étale cohomology) as a continuous homomorphism ∆V → (Z/nZ)(1)
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(where the “(1)” denotes a “Tate twist”). On the other hand, by [BLR],

§8.4, Theorem 7, there exists an integer m ≥ 1 such that for every integer

n ≥ 1, the cokernel of the inclusion nG(k) ↪→ nPicV/k(k) (where the “n”

preceding an abelian group denotes the kernel of multiplication by n) is

annihilated by m. In light of the functorial interpretation of the inclusion

G ↪→ Pic0
V/k ⊆ PicV/k, this implies that the cokernel of the homomorphism

Hom(∆A,Q/Z) → Hom(∆V ,Q/Z) is annihilated by m. But, by applying

Hom(−,Q/Z), this implies that the induced homomorphism ∆ab
V → ∆A has

finite kernel, hence (in light of the surjectivity already verified) induces an

isomorphism upon passing to “ab-t”. �

Remark A.6.1. The content of Proposition A.6, (i), is discussed in

[FGA], 236, Théorème 3.3, (iii).

Remark A.6.2. Suppose that we are in the situation of Proposition

A.6, (ii). Then it is not necessarily the case that the induced morphism

βA is an isomorphism. This phenomenon already appears in the work of

Chevalley — cf. [Chev]; the discussion of [Klei], p. 248; Example A.7 below.

Example A.7 Albanese Varieties and Resolution of Singularities. For

simplicity, suppose that k = k. Write P2
k = Proj(k[x1, x2, x3]) (i.e., where

we consider k[x1, x2, x3] as a graded ring, in which x1, x2, x3 are of de-

gree 1). Let f ∈ k[x1, x2, x3] be a homogeneous polynomial that defines

a smooth plane curve X ⊆ P2
k of genus ≥ 1. Thus, any x ∈ X(k) deter-

mines an embedding X ↪→ J , where J is the Jacobian variety of X. Set

Y
def
= Spec(k[x1, x2, x3]/(f)); write y ∈ Y (k) for the origin, UY

def
= Y \ {y}.

Thus, we have a natural morphism Y ⊇ UY → X; UY → X is a Gm-torsor

over X. In particular, UY is k-smooth. Thus, since Y is clearly a local com-

plete intersection (hence, in particular, Cohen-Macaulay), it follows from

Serre’s criterion of normality (cf., e.g., [SGA2], XI, 3.11) that Y is nor-

mal. Let Z → Y be the blow-up of Y at the origin y. Thus, we obtain

an isomorphism UZ
def
= Z ×Y UY ∼→ UY . Moreover, one verifies immedi-

ately that the morphism UZ
∼→ UY → X extends to a morphism Z → X

which has the structure of an A1-bundle, in which E
def
= Z ×Y {y} ⊆ Z

forms a “zero section” (so E
∼→ X). Thus, Z admits a natural compacti-

fication Z ↪→ Z∗ to a P1-bundle Z∗ → X. Moreover, by gluing Z∗ \ E to

Y along Z \ E = UZ
∼→ UY ⊆ Y , we obtain a compactification Y ↪→ Y ∗
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such that the blow-up morphism extends to a morphism Z∗ → Y ∗ (which

may be thought of as the blow-up of Y ∗ at y ∈ Y (k) ⊆ Y ∗(k)). On the

other hand, note that the composite Z∗ → X ↪→ J determines a closed

immersion Z∗ ⊇ E
∼→ X ↪→ J . Thus, the restriction UY

∼→ UZ → J of this

morphism Z∗ → J to UY
∼→ UZ does not extend to Y or Y ∗. In particular, it

follows that if we write Y ∗ → AY , Z∗ → AZ for the Cab
k -Albanese varieties

of Proposition A.6, (i), then the surjection AZ � AY induced by Z∗ → Y ∗

(cf. Proposition A.6, (ii)) is not an isomorphism.

Proposition A.8 (Albanese Varieties of Complements of Divisors with

Normal Crossings). Let Z be a smooth projective variety over k; D ⊆ Z

a divisor with normal crossings; Y
def
= Z \D ⊆ Z; y ∈ Y (k);

D =
r⋃
n=1

Dn

(for some integer r ≥ 1) the decomposition of D into irreducible components;

M the free Z-module (of rank r) of divisors supported on D; P ⊆ M the

submodule of divisors that determine a line bundle ∈ Pic0
Z/k(k). Then:

(i) (Y, y) admits an Albanese morphism Y → AY .

(ii) Suppose that each of the Dn is geometrically irreducible. Then the

AY of (i) may be taken to be an extension of the abelian variety AZ given

by the dual to GZ
def
= (Pic0

Z/k)red (cf. Propositions A.3, (viii); A.6, (i)) by

a torus whose character group is naturally isomorphic to P .

(iii) The morphism Y → AY of (i) induces an isomorphism ∆ab-t
Y

∼→
∆AY

.

Proof. By étale descent (with respect to finite extensions of k), it

follows immediately that to verify assertion (i), it suffices to verify assertion

(ii). Next, we consider assertion (ii). Again, by étale descent, we may

assume without loss of generality that k = k. Note that the tautological

homomorphism P → GZ(k) determines an extension

0→ TY → AY → AZ → 0

of AZ by a split torus TY with character group P . Now the fact that AY
serves as an Albanese variety for Y is essentially a tautology: Indeed, since
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any pointed morphism from Y to an abelian variety C extends (cf. Lemma

A.2) to a pointed morphism Z → C, and, moreover, we already know that

AZ is a Cab
k -Albanese variety for Z (cf. Proposition A.6, (i)), it follows that

it suffices to consider pointed morphisms Y → B, where B is an extension

of AZ by a (split) torus, and the composite morphism Y → B � AZ
coincides with the morphism that exhibits AZ as a Cab

k -Albanese variety for

Y . In fact, for simplicity, we may even assume that this torus is simply

(Gm)k. Thus, it suffices to consider pointed morphisms Y → B, where

B is an extension of AZ by (Gm)k, determined by some extension class

κB ∈ GZ(k), and the composite morphism Y → B � AZ coincides with

the morphism that exhibits AZ as a Cab
k -Albanese variety for Y . Then the

datum of such a morphism Y → B corresponds precisely to an invertible

section of the restriction to Y of the line bundle L on Z given by pulling

back the Gm-torsor B → AZ via the Albanese morphism Z → AZ . Note

that such an invertible section of L|Y may be thought of as the datum of

an isomorphism OZ(E)
∼→ L for some divisor E supported on D. That is

to say, since the isomorphism class of L is precisely the class determined by

the element κB ∈ GZ(k) ⊆ PicZ/k(k), it thus follows that E ∈ P , and that

κB is the image of E ∈ P in Pic0
Z/k(k) = GZ(k). Thus, in summary, the

datum of a pointed morphism Y → B, where B is an extension of AZ by a

(split) torus, and the composite morphism Y → B � AZ coincides with the

morphism that exhibits AZ as a Cab
k -Albanese variety for Y , is equivalent (in

a functorial way) to the datum of a homomorphism AY → B lying over the

identity morphism of AZ . In particular, the identity morphism AY → AY
determines a morphism Y → AY . This completes the proof of assertion (ii).

Finally, we consider assertion (iii). We may assume without loss of

generality that k = k (cf. Proposition A.3, (i)). Let F ⊆ D be a closed

subscheme of codimension ≥ 1 in D such that Z ′ def
= Z \ F ⊆ Z, D′ def

=

D \ F ⊆ D are k-smooth. Then one has the associated Gysin sequence in

étale cohomology

0→ H1
ét(Z

′,Zl(1))→ H1
ét(Y,Zl(1))→M ⊗ Zl → H2

ét(Z
′,Zl(1))

for l ∈ Σk (cf. [Milne], p. 244, Remark 5.4, (b)). Moreover, we have

natural isomorphisms Hjét(Z
′,Zl(1))

∼→ Hjét(Z,Zl(1)), for j = 1, 2. (Indeed,

by applying noetherian induction, it suffices to verify these isomorphisms

in the case where F is k-smooth, in which case these isomorphisms follow
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from [Milne], p. 244, Remark 5.4, (b).) Note, moreover, that the morphism

M⊗Zl → H2
ét(Z

′,Zl(1))
∼→ H2

ét(Z,Zl(1)) is precisely the “fundamental class

map”, hence factors through the natural inclusion

PicZ/k(k)
∧ ↪→ H2

ét(Z,Zl(1))

(where the “∧” denotes the pro-l completion) arising from the Kummer exact

sequence on Z. On the other hand, since Pic0
Z/k(k) is l-divisible, and the

quotient PicZ/k(k)/Pic0
Z/k(k) is finitely generated (cf. [BLR], §8.4, Theorem

7), it follows that we have an isomorphism

(PicZ/k(k)/Pic0
Z/k(k))⊗ Zl

∼→ PicZ/k(k)
∧

— i.e., that the kernel of the morphism M⊗Zl → H2
ét(Z

′,Zl(1)) is precisely

P ⊗ Zl. In particular, the isomorphism ∆ab-t
Z

∼→ ∆AZ
of Proposition A.6,

(iv), implies (in light of the above exact sequence) that H1
ét(Y,Zl(1)) (i.e.,

Hom(∆ab-t
Y ,Zl(1))), hence also ∆ab-t

Y ⊗ Zl, is a free Zl-module of the same

rank as ∆AY
⊗ Zl. Thus, we conclude that the surjection ∆ab-t

Y � ∆AY
of

Proposition A.3, (vii), is an isomorphism, as desired. �

Remark A.8.1. A sharper version (in the sense that it includes a com-

putation of the torsion subgroup of ∆ab
Y ) of Proposition A.8, (iii), is given

in [SS], Proposition 4.2. The discussion of [SS] involves the point of view of

1-motives. On the other hand, such a sharper version may also be obtained

directly from the Gysin sequence argument of the above proof of Proposition

A.8, (iii), by working with torsion coefficients.

The following result is elementary and well-known.

Lemma A.9 (Descending Chains of Subgroup Schemes). Let G be a

(not necessarily reduced) commutative group scheme of finite type over k;

. . . ⊆ Gn ⊆ . . . ⊆ G1 ⊆ G0 = G

a descending chain of (not necessarily reduced!) subgroup schemes of G,

indexed by the nonnegative integers. Then there exists an integer N such

that Gn = Gm for all n,m ≥ N .

Proof. First, let us consider the case where all of the Gn, for n ≥ 0,

are reduced and connected. Then since all of the Gn are closed integral
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subschemes of G, it follows immediately that if we take any integer N such

that dimk(Gn) = dimk(Gm) for all n,m ≥ N , then Gn = Gm for all n,m ≥
N . Now we return to the general case. By what we have done so far, we

may assume without loss of generality that (G0)red = (Gn)red for all n ≥ 0.

Thus, by forming the quotient by (G0)red, we may assume that all of the

Gn are finite over Spec(k). Then Lemma A.9 follows immediately. �

Before proceeding, we recall the following result of de Jong.

Lemma A.10 (Equivariant Alterations). Suppose that k = k; let V be

a variety over k. Then there exists a smooth projective variety Z over

k, a finite group Γ of automorphisms of Z over k, a divisor with normal

crossings D ⊆ Z stabilized by Γ, and a Γ-equivariant (relative to the trivial

action of Γ on V ) surjective, proper, generically quasi-finite morphism

Y
def
= Z \D → V

such that if we write k(Z), k(V ) for the respective function fields of Z, V ,

then the subfield of Γ-invariants k(Z)Γ ⊆ k(Z) forms a purely inseparable

extension of k(V ).

Proof. This is the content of [deJong], Theorem 7.3. �

We are now ready to prove the main result of the present Appendix, the

first portion of which (i.e., Corollary A.11, (i)) is due to Serre (cf. [Serre1]).

Corollary A.11 (Albanese Varieties of Arbitrary Varieties).

(i) Every pointed variety (V, v) over k admits an Albanese morphism

V → A.

(ii) Let φ : V → A be an Albanese morphism, where (V, v) is a k-toric

pointed variety. Then φ induces an isomorphism ∆ab-t
V

∼→ ∆A.

Proof. First, we consider assertion (i). By applying étale descent, we

may assume without loss of generality that k = k. Let Z ⊇ Y → V be

as in Lemma A.10, y ∈ Y (k) a point that maps to v ∈ V (k) (where we

observe that, as is easily verified, the existence of an Albanese morphism as

desired is independent of the choice of v). Then by Proposition A.8, (i), it

follows that Y admits an Albanese morphism Y → B. Thus, every pointed
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morphism ν : V → C, where C ∈ Cs-ab
k , determines, by restriction to Y ,

a homomorphism B → C, whose kernel is a subgroup scheme Hν ⊆ B. In

particular, the collection of such pointed morphisms ν : V → C determines

a projective system of subgroup schemes Hν ⊆ B which is filtered (a fact

that is easily verified by considering product morphisms V → C1 ×k C2 of

pointed morphisms ν1 : V → C1, ν2 : V → C2). Moreover, by Lemma A.9,

this projective system admits a cofinal subsystem which is constant, i.e.,

given by a single subgroup scheme H ⊆ B. Now it is a tautology that the

composite morphism Y → B � B/H factors uniquely (where we observe

that uniqueness follows from the fact that Y → V is dominant) through a

morphism V → B/H which serves as an Albanese morphism for V .

Next, we consider assertion (ii). First, let us observe that, by Proposition

A.3, (i), we may assume without loss of generality that k = k. Next, let Z ⊇
Y → V , Γ be as in Lemma A.10; write Y → V ′ → V for the factorization

through the normalization V ′ → V of V in the purely inseparable extension

k(Z)Γ of k(V ). Let φ′ : V ′ → A′ be an Albanese morphism (which exists

by assertion (i)). Since V is normal, it follows immediately that V ′ →
V is a sub-Frobenius morphism. Thus, by Proposition A.3, (iv) (cf. also

Remark A.1.1), it follows that V ′ → V induces isomorphisms ∆ab-t
V ′

∼→∆ab-t
V ,

∆A′
∼→ ∆A. In particular, to complete the proof of assertion (ii), it suffices

to verify that φ′ induces an isomorphism ∆ab-t
V ′

∼→ ∆A′ .

Next, let Y → B be an Albanese morphism for Y (cf. Proposition A.8,

(i)). Then, by Proposition A.3, (ii), the action of Γ on Y extends to a

compatible action of Γ on B by k-trans-homomorphisms. This action of Γ

on B may be thought of as the combination of an action of Γ on the group

scheme B (i.e., via group scheme automorphisms), together with a twisted

homomorphism χ : Γ → B(k) (where Γ acts on B(k) via the group scheme

action of Γ on B). Write B � C ′ for the quotient semi-abelian scheme of

B by the group scheme action Γ, i.e., the quotient of B by the subgroup

scheme generated by the images of the group scheme endomorphisms (1−γ) :

B → B, for γ ∈ Γ. Thus, χ determines a homomorphism χ′ : Γ → C ′(k);
write C ′ → C for the quotient semi-abelian scheme of C ′ by the finite

subgroup scheme of C ′ determined by the image of χ′. Note that every trans-

homomorphism of semi-abelian schemes B → D which is Γ-equivariant with

respect to the trivial action of Γ on D and the trans-homomorphism action

of Γ of B factors uniquely through B � C.
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Now I claim that the composite Y → B � C factors uniquely through

V ′. Indeed, this is clear generically; write ξ′ : ηV ′ → C for the resulting

morphism. Here, we use the notation “η(−)” to denote the spectrum of the

function field of “(−)”. Since the morphism V ′ → V is a sub-Frobenius

morphism, it thus follows that for some integer n ≥ 1, the composite ηV ′ →
C → CF

n
of ξ′ with ΦnC factors through the natural morphism ηV ′ → ηV ,

thus yielding a morphism ξ : ηV → CF
n
. Now since V is normal, it follows

from the properness of Y → V that ξ extends uniquely to points of height

1 of V ; thus, since V is k-toric, it follows from Lemma A.2 that ξ extends

uniquely to the entire scheme V . Finally, by the definition of V ′ → V as a

normalization morphism, it follows that from the fact that ΦnC is finite and

surjective that ξ′ extends uniquely to the entire scheme V ′. This completes

the proof of the claim.

Next, let us observe that it is a tautology that the morphism V ′ → C

resulting from the above claim is an Albanese morphism for V ′. In particu-

lar, we may assume without loss of generality that φ′ : V ′ → A′ is V ′ → C.

Next, let us observe that it follows immediately from the description of fi-

nite étale coverings of semi-abelian schemes reviewed at the beginning of

the present Appendix that the functor “(−) �→ ∆(−)” transforms exact

sequences of semi-abelian schemes into exact sequences of profinite groups.

Thus, if follows immediately from the construction of C (= A′) from B that,

for l ∈ Σk, the surjection ∆B ⊗Ql � ∆A′ ⊗Ql induces an isomorphism

(∆B ⊗Ql)/Γ
∼→ ∆A′ ⊗Ql

(where the “/Γ” denotes the maximal quotient on which Γ acts trivially).

On the other hand, by Proposition A.8, (iii), it follows that we have a

natural isomorphism ∆ab-t
Y

∼→ ∆B, hence, in particular, a natural isomor-

phism

(∆ab-t
Y ⊗Ql)/Γ

∼→ (∆B ⊗Ql)/Γ
∼→ ∆A′ ⊗Ql

for l ∈ Σk. Moreover, since the morphism Y → V ′ is dominant, it in-

duces an open homomorphism ∆Y → ∆V ′ , hence a surjection ∆ab-t
Y ⊗Ql �

∆ab-t
V ′ ⊗ Ql which is Γ-equivariant (with respect to the trivial action of Γ

on ∆ab-t
V ′ ⊗ Ql). In particular, we obtain that the natural isomorphism

(∆ab-t
Y ⊗Ql)/Γ

∼→ ∆A′ ⊗Ql factors as the composite of surjections

(∆ab-t
Y ⊗Ql)/Γ� ∆ab-t

V ′ ⊗Ql � ∆A′ ⊗Ql
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(cf. Proposition A.3, (vii)). Thus, we conclude that these surjections are

isomorphisms, hence that the surjection ∆ab-t
V ′ � ∆A′ induced by φ′ (cf.

Proposition A.3, (vii)), is an isomorphism, as desired. �

Remark A.11.1. In fact, given any variety V over k, one may con-

struct an “Albanese morphism” V → A, where A is a torsor over a semi-

abelian variety over k, by passing to a finite (separable) extension k′ of k

such that V (k′) �= ∅, applying Corollary A.11, (i), over k′, and then de-

scending back to k. This morphism V → A will then satisfy the universal

property for morphisms V → A′ to torsors A′ over semi-abelian varieties

over k (i.e., every such morphism V → A′ admits a unique factorization

V → A → A′, where the morphism A → A′ is a k-morphism that base-

changes to a trans-homomorphism over k). In the present Appendix, how-

ever, we always assumed the existence of rational points in order to simplify

the discussion.

Remark A.11.2. One may further generalize Remark A.11.1, as fol-

lows. If V is a generically scheme-like (cf. §0) geometrically integral sep-

arated algebraic stack of finite type over k that is obtained by forming the

quotient, in the sense of stacks, of some variety W over k by the action of

a finite group of automorphisms Γ ⊆ Aut(W ), then, by applying Remark

A.11.1 to W to obtain an Albanese morphism W → B for W , one may

construct an “Albanese morphism”

V → A

for V (i.e., which satisfies the universal property described in Remark A.11.1)

by forming the quotient B → A of B as in the proof of Corollary A.11, (ii):

That is to say, after reducing, via étale descent, to the case k = k, the action

of Γ on W induces an action of Γ by k-trans-homomorphisms on B, hence an

action of Γ by group scheme automorphisms on B, together with a twisted

homomorphism χ : Γ → B(k). Then we take B � A′ to be the quotient

by the images of the group scheme endomorphisms (arising from the group

scheme action of Γ on B) (1− γ) : B → B, for γ ∈ Γ, and A′ � A to be the

quotient by the image of the homomorphism χ′ : Γ → A′(k) determined by

χ. If, moreover, V (i.e., W ) is k-toric, then just as in the proof of Corollary

A.11, (ii), we obtain a natural isomorphism

∆ab-t
V

∼→ ∆A



Absolute Anabelian Geometry I 239

(where we use the notation “∆(−)” to denote the evident stack-theoretic

generalization of this notation for varieties).

The content of more classical works (cf., e.g., [NS], [Chev]) written from

the point of view of birational geometry may be recovered via the following

result.

Corollary A.12 (Albanese Varieties and Birational Geometry).

(i) Let βV : V ′ → V be a proper birational morphism of normal varieties

over k which restricts to an isomorphism βU : U ′ def
= V ′ ×V U ∼→ U over

some nonempty open subscheme U ⊆ V ; βA : A′ → A the induced morphism

on Albanese varieties (cf. Corollary A.11, (i)); W ⊆ V a k-toric open

subscheme. Then the composite morphism U
⋂
W ↪→ U

∼→ U ′ ↪→ V ′ → A′

extends uniquely to a morphism W → A′ which induces a surjection ∆W �
∆A′.

(ii) Let

. . .→ Vn → . . .→ V1 → V0 = V

be a sequence (indexed by the nonnegative integers) of birational morphisms

of complete normal varieties over k. Then there exists an integer N such

that for all n,m ≥ N , where n ≥ m, the induced morphism on Albanese

varieties An → Am is an isomorphism. If V is k-toric, then one may take

N = 0.

Proof. First, we consider assertion (i). We may assume without loss

of generality that U ⊆W . Then since V ′ → V is proper, and W is normal, it

follows that the morphism U
∼→ U ′ ↪→ V ′ extends uniquely to an open subset

W \F ⊆W , where F is a closed subscheme of codimension ≥ 2 in W . Thus,

the fact that the resulting morphism W \ F → V ′ → A′ extends uniquely

to W follows immediately from Lemma A.2. To verify the surjectivity of

∆W → ∆A′ , it suffices to verify the surjectivity of ∆U → ∆A′ , i.e., of

∆U ′ → ∆V ′ → ∆A′ . On the other hand, this follows from the surjectivity

of ∆V ′ → ∆A′ (cf. Proposition A.3, (vii)), together with the surjectivity of

∆U ′ → ∆V ′ (cf. the fact that U ′ ⊆ V ′ is a nonempty open subscheme of

the normal variety V ′).
Next, we consider assertion (ii). By Proposition A.6, (i), (ii) (cf. also

Proposition A.3, (viii), (ix); Corollary A.11, (i)), each induced morphism on
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Albanese varieties An → Am, for n ≥ m, is a surjection of abelian varieties

which is an isomorphism if and only if dimk(An) ≤ dimk(Am). On the other

hand, if W ⊆ V is any nonempty k-toric (e.g., k-smooth) open subscheme,

whose Albanese morphism (cf. Corollary A.11, (i)) we denote by W → AW ,

then assertion (i) yields a morphism W → An that induces a surjection

∆W � ∆An , hence, in particular, a morphism AW → An that induces a

surjection ∆AW
� ∆An . But this implies that dimk(An) ≤ dimk(AW ),

hence that for some integer N , dimk(An) = dimk(Am), for all n,m ≥ N . In

particular, if W = V , then dimk(An) ≤ dimk(A0), for all n ≥ 0. �
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