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Addendum to “On Isolated Log Canonical

Singularities with Index One”

By Osamu Fujino

Abstract. We add a supplementary argument to the paper:
O. Fujino, On isolated log canonical singularities with index one.

In this short note, we will freely use the notation in [F]. As Masayuki

Kawakita pointed out it, it does not seem to be obvious that the statement

in Remark 5.3 in [F] directly follows from the proof of Theorem 5.2 in [F].

It is because V ′
1 ∩V ′

2 in Step 3 in the proof of Theorem 5.2 is not necessarily

connected. Therefore, we would like to add the following proposition be-

tween Theorem 5.2 and Remark 5.3 in [F]. Note that the proof of Theorem

5.2 and Remark 5.3 in [F] are both correct. We just add a supplemen-

tary argument for the reader’s convenience. We note that Remark 5.3 is

indispensable for the proof of Theorem 5.5 in [F], where we prove that our

invariant µ coincides with Ishii’s Hodge theoretic invariant.

Proposition. If V ′
1 ∩ V ′

2 is disconnected, equivalently, has two con-

nected components W ′
1 and W ′

2, in Step 3 in the proof of Theorem 5.2, then

C � Hm−1(W ′
i ,OW ′

i
)
δ|W ′

i−→ Hm(V ′,OV ′) � C

is an isomorphism for i = 1, 2, where δ is the connecting homomorphism of

the Mayer–Vietoris exact sequence.

Proof. We note that Hm−1(W ′
i ,OW ′

i
) � C for i = 1, 2 by Theorem

5.2. We also note that Hm(V ′
i ,OV ′

i
) = 0 for i = 1, 2 by Step 3 in the proof

of Theorem 5.2. We consider the following Mayer–Vietoris exact sequence

· · · → Hm−1(V ′
1 ,OV ′

1
) ⊕Hm−1(V ′

2 ,OV ′
2
)

α→ Hm−1(W ′
1,OW ′

1
) ⊕Hm−1(W ′

2,OW ′
2
)

δ→ Hm(V ′,OV ′) → 0
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as in Step 3 in the proof of Theorem 5.2. Note that Imα � Kerδ is a

one-dimensional C-vector space. We consider the exact sequence:

· · · → Hm−1(V ′
1 ,OV ′

1
) → Hm−1(W ′

i ,OW ′
i
) → Hm(V ′

1 ,OV ′
1
(−W ′

i )) → 0.

By the Serre duality,

Hm(V ′
1 ,OV ′

1
(−W ′

i ))

is isomorphic to

H0(V ′
1 ,OV ′

1
(KV ′

1
+ W ′

i ))

for i = 1, 2. We can check that H0(V ′
1 ,OV ′

1
(KV ′

1
+ W ′

i )) = 0 for i = 1, 2

by the same way as in Step 3 in the proof of Theorem 5.2. Therefore, the

natural map, which is induced by the restriction,

Hm−1(V ′
1 ,OV ′

1
) → Hm−1(W ′

i ,OW ′
i
) � C

is surjective for i = 1, 2. Thus, we see that

Imα � C

(
⊂ Hm−1(W ′

1,OW ′
1
) ⊕Hm−1(W ′

2,OW ′
2
) � C

2
)

contains neither Hm−1(W ′
1,OW ′

1
) � C nor Hm−1(W ′

2,OW ′
2
) � C. This

implies that

C � Hm−1(W ′
i ,OW ′

i
)
δ|W ′

i−→ Hm(V ′,OV ′) � C

is non-trivial, equivalently, an isomorphism, for i = 1, 2. �

The statement in [F, Remark 5.3] follows from Step 3 in the proof of [F,

Theorem 5.2] and Proposition.
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