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On Leray’s Problem for Almost Periodic Flows

By Luigi C. BERSELLI and Marco ROMITO

Abstract. We prove existence and uniqueness for fully-developed
(Poiseuille-type) flows in semi-infinite cylinders, in the setting of (time)
almost-periodic functions. In the case of Stepanov almost-periodic
functions the proof is based on a detailed variational analysis of a
linear “inverse” problem, while in the Besicovitch setting the proof
follows by a precise analysis in wave-numbers.

Next, we use our results to construct a unique almost periodic
solution to the so called “Leray’s problem” concerning 3D fluid motion
in two semi-infinite cylinders connected by a bounded reservoir. In the
case of Stepanov functions we need a natural restriction on the size of
the flux (with respect to the viscosity), while for Besicovitch solutions
certain limitations on the generalised Fourier coefficients are requested.
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1. Introduction

We consider the motion of a viscous fluid in semi-infinite cylindrical
pipes, with an assigned (time) almost-periodic flux. The results are aimed
to find solutions of the so-called “Leray’s problem.” Moreover, this work can
be considered as an intermediate step towards the analysis of (deterministic)
statistical solutions for the flow of Poiseuille-type, which is the object of
our current and ongoing research. We recall that Leray’s problem (which
seems to have been proposed by Leray to Ladyzhenskaya [20, 22]) is that of
determining a motion in a region with cylindrical exits, subject to a given
flux, and tending to the Poiseuille solution in each exit. More precisely,
let be given a connected open domain O C R? made of a “reservoir”, a
bounded and smooth open set Op, with two cylindrical exits O; and Os.
These two semi-infinite exits (pipes) are described in coordinate systems

02

Oy

with the variable z directed along their axis as
Oi = Dl' X R+,

where the smooth cross sections D;, ¢ = 1,2, may be possibly of dif-
ferent shape and measure. We denote by z € R™ the axial coordinate
in both cylinders. Pioneering results in the stationary case are those of
Ladyzhenskaya [21] and Amick [2]. See also the review in Finn [7]. The
extensive literature on the stationary problem is recalled for instance in [11,
12] for the linearized and full Navier-Stokes problem, respectively. More
recently the problem of motion in pipes has also been addressed in the time-
evolution case, see Ladyzhenskaya and Solonnikov [23] and also the review
in Solonnikov [31]. In the last decade Beirao da Veiga [3] and Pileckas [27]
gave new contributions to the study of the time-dependent problem with
assigned flux, and the special role of the pressure has been also emphasized
by Galdi and coworkers [13, 14]. See also the review in Pileckas [28].
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In [3] Leray’s problem has been considered in the context of time periodic
flows, especially in view of application to the study of blood flow and we
recall that the role for the analysis of blood flow in the current mathematical
research has been put in evidence by Quarteroni [30]. We also stress that
the (non-trivial) explicit solution introduced by Womersley is periodic, in
some sense generalises the Poiseuille flow, and has been discovered in the
study of physiological flows. Since the heart is pumping with a flux which
is not periodic, but a superposition of possibly non-rational frequencies,
this suggests also to study the problem in the setting of almost periodic
functions. This work has been originated by the inspiring results in [3] and
especially from Remark 3 therein: The independence of the various constant
on the period of the flux let the author suggest about the possible extension
to almost periodic solutions. The problem nevertheless requires a precise
functional setting in order to detect the largest class of almost periodic
functions to be employed. Moreover, it seems that the very nice proof based
on Fourier series in [3] cannot be directly applied to the new setting and
in addition new difficulties in treating the non-linearity arise when almost
periodic functions are employed. This leads us to propose two different
approaches in two different functional settings. We finally remark that,
in addition to early results of Foias [8], the approach via almost-periodic
functions finds wide applications in fluid mechanics, see for instance the
recent paper by Gérard-Varet and Masmoudi [15] and Giga et al. [16, 17,
18].

1.1. Setting of the problem
The problem we wish to solve is to find a (time) almost-periodic solution
of the Navier-Stokes equations

ou —vAu+ (u-V)u+ Vp =0, xre 0, teR,
(1.1) divu =0, re0, teR,
u=20 x €00, teR,

such that u converges in both pipes as |z| — oo (in a sense we shall make
clear later) to the solution of the Poiseuille-type problem. For clarity we
recall (cf. [3, § 2]) that by solution of the Poiseuille-type problem (of fully-
developed flow) we mean a solution of the Navier-Stokes equations such
that, in a reference frame with z directed along the axis of the pipe and
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x := (x1,x2) belonging to the orthogonal plane, is of the form
u(t,z,z) = (0,0,w(t,z))  and  p(t,z,z) =q(t, z,z) +r).

Here r(t) is an arbitrary function and, in addition, the flux condition is
satisfied:

[ wit.ayds = 5o,
D

for some given function f, where D is the section of the domain.
The Poiseuille-type ansatz implies that Navier-Stokes equations reduce
in the semi-infinite pipes O;, i = 1,2, to the following equations

Ow' — vAw' + 0.p' = 0, (r,2) € O, t € R,
81‘1pi = aIQPZ =0 (Jf,Z) S Oi, t e R,
w'(t,x) =0, (z,2) € 0D; x Rt t € R,

where A, denotes the Laplace operator with respect to the variables x;
and xo. From the first equation it follows that d.p’ is independent of z.
From the second equation, we also obtain that p’ is independent of z, hence
pi(t,z,2) = p'(t, z) = —7(t) z + r%(t). Since the term r(t) does not affect
the velocity field, we may assume that the pressure has the form p(t, z) =
—7(t) z. Moreover, the dependence of w’ on the space variables x1 and xo
allows us to consider a problem reduced to the cross section D; of O;, and
the flux condition is then [, w p, W'(t,z)dz = f(t). This implies that we have
to study in each pipe the followmg problem (called in the sequel the “basic
flow”): Find (w'(t,z), 7%(t)) such that

o' (t, ) — vAw'(t,x) = 7(t), r € D;, teR,
(1.2) w'(t,r) =0 r € 0D;, t€R,
Jp, w'(t,z) dz = f(t) t e R,

showing (under suitable assumptions) that if f is almost periodic, then the
couple (w, ) is almost-periodic, too.

We observe that, contrary to the stationary problem where the same
approach gives the well-known Poiseuille solutions, the solution of the time-
dependent motion is more complex for the determination of the non-constant
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pressure (Observe that the classical Poiseuille solution is that obtained for
circular pipes, but nevertheless in more general domains the same approach
gives corresponding results). In our problem for the basic flow we have two
scalar unknowns and two equations, but contrary to the classical problems
in fluid mechanics one cannot get rid of the quantity = by means of pro-
jection operators. The problem we have to solve can in fact be considered
as an inverse problem. Consequently the problem cannot be treated with
the standard variational tools in a direct way. We can write a single equa-
tion (the “elimination” of 7% is obtained by taking the mean value over D;)
obtaining
dw' — vAw' + v [ Aw'dx = (), x € D;, teR,
wi(t,z) =0, x € 0D;, teR,

and the latter equation makes easy to understand why some knowledge also
of the derivative of the flux will be needed in order to solve (2.2). The usual
energy-type estimates obtained by testing with w?, or with —Aw?, and with
w! are not-conclusive when applied to this problem. In particular, the lack
of coercivity prevents from a direct application of the standard techniques
employed for parabolic problems, see [3, Sec. 3|. This specific issue has been
recently addressed in two different ways by Beirdo da Veiga [3] (periodic
case) and Pileckas [27] (given smooth flux).

Even if we generalize to the almost-periodic setting the periodic results
obtained in [3], in the first part of the paper we will mainly follow and
suitably adapt the approach of [27]. In particular we give special emphasis
to the solution of (1.2) since this represents one of the main technical dif-
ficulties. The nonlinear problem is then treated by means of perturbation
arguments in a more or less standard way. We want also to point out that
in the huge literature on almost periodic solutions we find particularly in-
spiring (for the choice of Stepanov functions as suitable for our problem)
the paper by Marcati and Valli [25] concerning compressible viscous fluids.

In the second part of the paper we consider the problem in the larger
class of Besicovitch almost periodic solutions, with an approach which is
more in the spirit of Fourier analysis. We give a different proof of the
existence of the basic flow, which also covers the H!(R) case and provides
an alternative proof of [3, Thm. 1], when restricted to a time-periodic flux.
The fully nonlinear case needs, besides the natural assumption of large
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viscosity, an additional assumption of regularity on the flux (see (3.12))
which accounts of the technical difficulties of this case, due essentially to
the non-local (in time) quantities that are used, see Section 3.4.7.

REMARK 1.1. For its variational formulation and the use of energy es-
timates the problem seems to be naturally set in Hilbert spaces and this is
not well fitting with the classical continuous (Bohr) spaces of almost peri-
odic functions. A suitable choice of the spaces represents then a fundamental
starting point. We are presenting two different proofs in two different set-
tings, since they are substantial different and the assumptions we make on
the flux are of very different nature. In the first part we deal with Stepanov
a.p. functions, and the setting is much similar to the classical variational one
for evolution partial differential equations. In the second part we deal with
Besicovitch a.p. functions and the proofs use analysis in wave-numbers. We
also point out that while the linear problem can be also treated in a unified
way, for the nonlinear one the differences in the functional setting imply
special assumptions on the size of the flux and on the Fourier coefficients,
respectively.

Plan of the paper: In Section 2 we consider the problem under the
condition of a Stepanov almost periodic flux. After recalling the main defi-
nition we give a complete solution of Leray’s problem, with the natural (in
space dimension three) restriction of a large viscosity. As by-product of our
results, we also prove existence in the case of H!(R) fluxes. In Section 3
we consider the problem in the larger class of Besicovitch almost periodic
solutions and we prove existence for the basic flow, together with existence
for the nonlinear problem under suitable restrictions on the flux.

2. Leray’s Problem in the Framework of Stepanov a.p. Functions

Here we introduce a functional setting in which it is possible to extend
the result of [3] to almost periodic solutions.

2.1. Functional setting

The problem of almost periodic solutions of partial differential equations
has been studied extensively in the last century, starting with the work of
Bohr, Muckenhoupt, Bochner, Favard, and many others. See the review in
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Amerio and Prouse [1], Besicovitch [5], Corduneanu [6], and Levitan and
Zhikov [24].

In the sequel we will use the standard Lebesgue LP and Sobolev spaces
H* = W2, For simplicity we also denote by || .|| the L?norm. We will
use the symbol C' to denote a generic constant, possibly different from line
to line, depending on the domain and not on the viscosity v nor on the
flux f. Next, given a Banach space (X, ||.||x) we denote by UAP(R; X)
the space of almost periodic functions in the sense of Bohr-Bochner. We
recall that a function f € C%(R;X) is almost periodic if and only if the
set of its translates is relatively compact in the C°(R; X)-topology (observe
that if CP(R; X) denotes the space of continuous bounded functions, then
UAP(R; X) C CP(R;X)). In the context of weak and strong solutions
to partial differential equations it is probably better to work with a more
general notion of almost-periodicity, given for functions f € LY (R;X),

loc
which is well-suited to deal with distributional solutions.

DEFINITION 2.1 (Stepanov p-almost periodicity). We say that the
function f : R — X is Stepanov p-almost periodic (denoted by f €
SP(R; X)) if f e LT (R;X) and if the set of its translates is relatively

compact in the L”, (R; X) topology defined by the norm

uloc

1/p

t+1
g i=sm [ [ 17 as]
teR t

When p = 2 we say simply that the function f : R — X is Stepanov almost
periodic.

We will give the main result by using fluxes belonging to this class, to-
gether with their first order derivative. However, in the second part of the
paper we will consider also a wider class of almost periodic functions: Func-
tions almost periodic in the sense of Besicovitch. Further generalities (not
needed in this section) on almost periodic functions are given in Section 3.1.

A first main result that we will prove concerns the existence of the “basic
flow” problem in this framework.

THEOREM 2.2. Let be given a smooth, connected, and bounded open
set D C R? and let be given f : R — R such that f, f' € S*(R). Then,
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there exists a unique solution (w,m) of (2.2) such that
Aw,w; € S*(R; L*(D)),
Vuw € §*(R; L*(D)) N Gy (R; L*(D)),
7€ S*(R),

and satisfying the estimate

t+1
oy AT+ [ (AR + o) + ()R ds]

1
2 2
< C(V +1+ ;)HfHHiloc(R)’

REMARK 2.3. The result concerning the linear problem (2.2) for the
basic flow holds true in any space dimension, hence also for a smooth and

bounded D C R™.

This allows to obtain in a rather standard way the following result for
the Navier-Stokes equations.

THEOREM 2.4. Let O as in the introduction and let be given f such
that f, f' € S2(R). Then there exists vy = vo(f,O) > 0 such that if v > vg
there exists a unique solution u of (1.1) such that

u € SZ(R’ Hlloc(o))

and u converges to the Poiseuille-type solution w® (the basic flow) in each
pipe Oy, as |z| — +o0.

REMARK 2.5. The restriction on the viscosity is not surprising and is
common to several results concerning the three-dimensional Navier-Stokes
equations. This is also observed in [12, Ch. XI], since the existence of a flux
carrier that can be absorbed by the dissipation for any positive viscosity
is generally not known to exist for cylindrical domains. This imposes (also
in the stationary case) limitations on the size of the flux, in terms of the
viscosity.

We observe that also in the time-periodic case [3] largeness (in terms of
data of the problem) of the viscosity is required. Nevertheless, the results
in [3] concern weak solutions and uniqueness is not stated. On the other
hand in [27] there is no restriction on the viscosity, since special “two-
dimensional-like” solutions are considered.
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2.2. Construction of the solution of the “basic flow”

In this section we give a detailed analysis of the existence of an almost
periodic basic flow and a complete proof of Theorem 2.2. The problem is
the following: given f, f’ € S?(R) find a Stepanov almost periodic solution
of

ow — vAw =T, reD, teR,
(2.2) w(t,z) =0, x € oD, teR,
Jpw(t,z)de = f(t) teR,

REMARK 2.6. It is easy to check that one can analyse the slightly more
general problem where (2.2) is replaced by

Oyw + vAw = e, teR,
(w(t),e)m = f(t) teR.

with an A an unbounded, linear, and with compact inverse operator on the
Hilbert space H, with domain D(A) and where e € H with e ¢ D(A) is
given. Under suitable assumptions on A, the same procedure that we will
employ can be used, see also [4]. The same remark holds also for the results
of Section 3.

We start by solving the following initial-boundary value problem in the
unknowns (w, ),

8tw —vAw =T, x € D, t€]0,T],
fD w(t, ) d:L‘—f(t), t € 10,7,
w(0,z) = wo(x), x € D.

We follow essentially the same approach of [27], with additional care on the
analysis of the initial datum and on the dependence of the solution on the
various parameters of the problem. In the sequel we will employ a spec-
tral (spatial) approximation using the L?(D)-orthonormal eigenfunctions
{er}ren of the Laplace operator,

—Aep, = ek reD,
er, =0 r € 0D.
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Define 3; := (1,¢;), j € N, where (,-) denotes the L?*(D) scalar product
and 1 is the function defined on D such that 1(z) = 1 a. e.. Without loss
of generality from now on we assume that |D|, the Lebesgue measure of D,
is equal to one. Clearly,

1= Zﬁjej(x) and Zﬁ? =|D|=1.
k=1 k=1

A special role is played by the pipe’s flux carrier, i. e., by the function ®
(which belongs to H?(D) N Hg(D) under the smoothness assumptions on
D) defined as solution of the following Poisson problem

—Ad =1 zeD,
=0 r € 0D.

We define the two quantities

X2 ::/ <I>da::/ |V®[?dz >0  and 72 ;:/ |®|?dz > 0,
D D D

which clearly depend only on D. Observe that the function ® is enough in
the stationary case to construct Poiseuille-type flows, since in that case the
problem for the flux and that for the pressure completely decouple. On the
other hand, in the time-dependent case the situation if more complex, since
both unknowns depend also on the time.

In our problem with a general viscosity we need the scaled version of
the flux carrier ¢ := v~1® which solves

—VvAp =1 D
(2.4) { vAp reD,

=0 x € 0D,

and such that
X4 %
/ pdr = V/ IV|?de =22 >0 and / lo2dx = —g.
D D v D v

REMARK 2.7. The proofs of the following Proposition 2.8 and Lemma
2.9 follow very closely those in [27, Sec 3-4]. Nevertheless, some care is taken
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here to deal with in the initial value and also to stress the dependence on
the viscosity, which will be crucial for the long-time behavior. The proofs
can be skipped by the reader well acquainted with the problem, but we give
full details in order to keep the paper self-contained, reproducing most of
the very precise estimates in [27].

We start our analysis by proving the following result.

PROPOSITION 2.8. Given f € HY0,T), assume that' wy(z) =
V“;—gf)f(O). Then, there exists a unique solution (w, ) of (2.3) such that
0

w € C(0,T; HY (D)) n H' (0, T; L?(D)) N L?(0, T; H*(D)),
e L*0,7T),

satisfying the following estimate

AVw@I? 402 [ [aw@ P+ [ o) Pds+ [ ()P ds
et fu e
< 0/0 (A2 + A+ () ds,  te0,T),

with a constant C' depending only on D (and in particular independent of
T).

Proor. We follow the approach in [27] and we start by constructing,
with the Faedo-Galerkin method, a global unique approximate solution in
Vin := Span(ey, ..., en). The first step is to approximate the initial condi-
tion. Let ¢ be the function introduced in (2.4) and write ¢ = > 72 | ek,
where the series converges in H?(D) and ¢ = (¢, e). Hence, the projection
of ¢ over V,, is given by

m
P = Z PrCr-
k=1

In order to satisfy the flux condition also at time t = 0 we set

m _ _f(0)Pnyp(x)
w™(0,z) := W.

!The initial condition here is chosen in such a way that the compatibility conditions
on the flux at time ¢ = 0 are satisfied.
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Observe that, for large enough m € N, the approximate initial datum is well-
defined. In fact, P, — ¢ in L?*(D) and since |D| < +oco then P,¢ — ¢
in L'(D). Since [, Pme — [p¢ = v X3 > 0, there exists mo € N such
that [, Pne # 0 for all m > mg. Moreover, w™(0,z) — wo(z) in H*(D),
as m — +o0.

We write Galerkin approximate functions

m

w(t,x) =) e (t) en(),

k=1

and we look for a couple (w™,n™) such that

d
%(wm, ej) +v(Vw™, Ve;) = n"(1,e) forj=1,...,m,

and 7 : (0,T7) — (0,T") chosen so that the flux condition

(2.6)

(2.7) /Dwm(t, x)dx = f(t) Vte (0,T),

is satisfied. The equality is meaningful since f is a. e. equal to a continuous
function. In terms of Galerkin coefficients {c]" }1<;j<m we have for the initial
condition that

' (0):=10) >0 kB’

while the system of ordinary differential equations for c7(¢) reads as

d m )
Ec;»”(t) +vAjcft(t) = (1)) forj=1,...,m,
and the solution can be written as follows
t
() = cM(0) e M +3; / (s)e ) ds forj=1,...,m.
0

To find the equation satisfied by 7™ we multiply the latter equality by f3;
and sum over j =1,...,m to get

m m t
Ft) =B (0)e N+ " 32 / 7" (s) e M) ds,
j=0 J=0 0



On Leray’s Problem for Almost Periodic Flows 81

Finally, to obtain an (integral) equation for 7, we differentiate with respect
to time deducing

"t) = — VZ)\jﬂjcgn(O) e VAt
§=0

m ¢
+> (@%m(t) 2y / B (s)e M) ds),
3=0 0
and this yields the following Volterra integral equation of the second type

'« )\ ﬂ2 z/)\ (t—s)
/ \ﬂ!Q " (s)ds
(2.8)

m . a— VAT
Otk
|5 | k1 Brpr
where |3]? := 7', 32, For any fixed m € N the kernel of the integral
equation (2.8) is bounded for all 0 < s < t. This is enough to infer that
if f € HY(0,T), then there exists a unique 7™ € L%(0,7T) satisfying the
integral equation (2.8) and such that

7™ L20,7) < Con W f1l 51 0,1)5

for a constant C),(v) possibly depending on m and also on v. Especially the

dependence on m is crucial, since we consider the problem at fixed viscosity,
while we need uniform estimates in m € N to employ the Galerkin method.
In particular, the uniform estimate does not follow directly since the series
defining the kernel for s = ¢, that is (> 7", ﬁg)_l S AeB32 does not
converge for m — +o00. See [27] for further details.

We need to find the a priori estimate in a different way, but observe
that, once we have constructed 7™, we can use it as a given external force
in the equation for the velocity (2.6). By using w™ as test function, we
obtain (with the Schwarz inequality and by using (2.7)) that

1 t t

gl v [ 19w = S+ [ 610 )ds
t

=Sl [ e pe)ds

t
BE / [(s)[2 ds
2 Jo

IA
g
=
T
+
o
O\H\O
=
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Observe also that wj® — wg in L*(D) and that |[w?||? < 2||lwgl|? for large
enough m and in addition

202
[Vwg? || < 2[[Vawo|* < 7!!f\\§11(o,T)!!V<P|!2 <2/ f 101y
0

This gives the first a-priori estimate showing that, for all m > my, there
exists a unique solution w™ € L>(0,T; L?)NL?(0,T; H'). Since the bounds
we obtain on the solution are not independent of m, they cannot be used
to make directly the Galerkin method to work. We can prove even more
regularity on w™ by standard estimates. In fact, by using as test function
wi" in the system satisfied by w™ we get

" @1 + 5 dtIIV TP =A@, ) () = 7" () f(2)-

Hence, an application of the Schwarz inequality gives
v 2 ! 2
LIV O + [ Jup|ds

(2.9) o Lo
< v||Vuol* + —/ |7 (s)|? ds + —/ |f(s)]? ds.

2 0 2¢ 0
By using —Aw™ as test function in the equation satisfied by w™ we also
obtain

1

v @+ [ 1w i
(2.10)

< 2 _ m 2 i
< IVwoll+ 5 [ e o) ds

These estimates are enough to construct, for each fixed m € N, a unique
solution (w™, 7™), which is smooth, say H'(0,T; L?(D))N L?(0,T; H*(D)).
Again the presence of 7" in the right-hand side prevents from uniformity
in m.

This issue is solved by using a special test function and a couple of nested
a-priori estimates in the following lemma, see [27].

LEMMA 2.9. There exists My € N (larger or equal than myg) such that
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for all m > My it holds for all t € [0,T]
t
IV O+ [ A ()P
t t
(2.11) + / |wi(s)]|? ds +/ 7™ (s)|? ds
0 0
t
< [ (AR ++If @) ds
with a constant C' depending only on D (hence independent of m and of T').

PROOF. We observe that the function P,,¢, where ¢ is defined in (2.4),
turns out to be a legitimate test function for the Galerkin system. With
integration by parts, we obtain

(0", Pmp) — v(w™, APpp) = 7™ () (1, ¢ + (Prnp — ¢)).

By adding to both sides of the previous equality the quantity —v(w™, Ap) =
(w™, 1) = f(t) we obtain

(Wi, Pn) + f = 7" (1, ¢) + 7" (1, P — ) + v(w"™, A(Prgp — ©)).

The last term from the right-hand side vanishes since w™ € V,,, while
A(Ppp — @) € V5. Hence, squaring the latter equality (remember that
(1,¢) = v~1x2) we obtain

X0

=5 [T OF < 3(Ilef O 1 Pmeel® + [FOF + |7 (OF [ P = 1)

Next, since P, is a projection operator it follows that there exists My € N
such that ||Pny — o> < x§/(6v2) for all m > M,. Consequently, we can
absorb in the left-hand side the term involving 7™ from the right-hand side.
After integration over (0,7"), we get

(2.12) /0 |7 (s)|? ds < C/o (||w§”(s)”2 + Vzlf(s)|2) ds Vm > My,

with a constant C depending only on D (via xo and 79). Consider again (2.9)
and use now (2.12) with e = 1/C. It is possible to absorb the term involving
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7" from the right-hand side, obtaining
v 1 [t
SIvem @+ 5 [ )P s
0
¢
< TunlP+C [ AU + 17 )P ds
0

<c /0 L+ A2 + (1 + )| () ds.

This shows a uniform bound on [[wi"||z2(,). Hence, coming back again
to (2.12) we also obtain that

/ 7 (s)[? ds < C / L+ ) F()P + (L + )| () ds.
0 0

Next, by using the bound obtained in (2.10) we also get

2 ! m 2 ! 2 2 / 2
v /0 JAw™(s)] SC/O(HV)If(s)I (4| ()] ds.

By collecting all the estimates and with Young’s inequality we obtain
(2.11). O

With the above lemma we can conclude the proof of the existence result,
since uniform bounds imply that there exists a couple (w,n) and a sub-
sequence {mg }ren such that

W™ — w in H'(0,T; L*(D)) N L*(0,T; H*(D)),
w™ S in L>(0,T; Hy (D)),
"k — in L2(0,T).

The problem is linear and this implies that (w, ) is a distributional solu-
tion of (2.3) with the requested regularity. Uniqueness follows again from
linearity of the problem. [

Since the estimates on the norm of the solution are independent of T
(they depend just on D and on v) the same argument shows that if f €
H'(0,+00), one can study the problem with arbitrary 7 > 0 and then a
unique solution (with the same regularity) exists in [0, +00). More generally
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we have also the following result on the whole real line, which is obtained
by letting the initial time to go to —oo.

COROLLARY 2.10. Let be given f € H'(R). Then, there exists a
unique solution (w, ) of (2.3) defined for all t € R such that

w € Co(R; Hy(D)) N H'(R; L*(D)) N L*(R; H*(D)),
€ L*(R),

with the same bounds as before (here Cy denotes the subspace of continuous
functions vanishing at infinity).

For our purposes of studying almost periodic solutions it is important
to show that one has a global solution, with uniformly bounded gradients,
also if the force f is not in H'(0,+oc), but just in H}_ (0,400), where

[RalFal

uloc

t+1 ) ) 1
ooy =5 ([P 17 )P ds)
>0 \J¢
In particular, the following result will be crucial for the rest of the paper.

PROPOSITION 2.11. Let be given f € HY (0,+0c), then the unique
solution of (2.3) ewists for all positive time and it satisfies

w € Cy(0, +o0; HY(D)) N H}
7 e L2,.(0,400),

uloc

10c(07 +00; LQ(D» N Laloc(()? +00; HQ(D))7

with the estimate (2.19) in terms of the data.

PrRoOOF. Generally this result is straightforward in presence of a stan-
dard parabolic problem. Since here we deal essentially with an inverse
problem, we give a detailed proof, which is nevertheless obtained adapting
the usual techniques typical of almost periodic solutions, see e. g. Amerio
and Prouse [1]. Observe that the estimate (2.11) does not give a direct
control of supy.,r ||[Vw(t)|| since the bound depends on || f| g1,y and
consequently the H'-norm of w may become unbounded when T — +o0, if
f & HY(R). We first prove that ||[Vw|| € L>(0, +00).
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Observe that Proposition 2.8 imply that there exists a unique solution

w € C(0,+00; H (D)) N HL (0, +00; L*(D)) N L} (0, +00; H*(D)),
T e LIQOC(O, +00),

hence the following calculations will be completely justified. By using the
function ¢ from (2.4) as test function we obtain with integration by parts
the following identity

(wt790) - V(Aw790) - (wt,(,O) - (w7 VA(,D) = 7T(1l790)'

Hence, by recalling the definition of ¢ and the flux condition we get

2

%W(t) = (wi(t, ), p(x)) + f(1),

and consequently taking the square and integrating over the [, 7] (for all
couples ¢ < 7) we obtain that there exists C' > 0, depending only on D,
such that

(2.13) /; [m(s)|*ds < C/; lwe(s)[1* +v2[ f(5) | ds.

Next, we test the equation satisfied by (w, ) with w and with v~ !w,; and,
by recalling that [, w;dz = ( [, w dac)/ = f/(t), we obtain (for any ¢, > 0)
the following differential inequalities, a.e. ¢t € (0, +00)

- - < = -
Sl + v Vel? < Sial + [P,
l1d 9 1 2 n 2 1 2
—— = <L — .
3 gVl + Sl < gl + 5l

By choosing ¢ = (2vC)~! and n = (2C)~!, where C is the constant ap-
pearing in (2.13), and by integrating over an arbitrary interval [{, 7] we
get

1u)7’21 TZ/sz2 1wts2d5
I+ [ T+ o))

C

(2.14) )
|mwmp+lu@+mu@ﬁ+;W@Fw
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Hence, by using the Poincaré inequality and dropping the non-negative term
v~ wg||? we finally obtain that there exist c1,c2 > 0, depending only on
D, such that

1 T

)+ e [ ) ds
(2.15) ¢
<

lw(E)lF + c2 / v|f(s)]> + l|f’(s)\2ds.
I3 1%

N~

Suppose now that for a given ¢ € [0, +o00[ it holds that
(2.16) lw@lF < llw(E +1)[70,

and rewrite (2.15) in the interval [¢, 4 1] as follows:

141
oo+ Dl = @+ e [ o)y ds
(2.17) : t
t+1 1 , )
< [ VIfGIP ISR ds
t

Since by hypothesis (2.16) the first term is non-negative we obtain in par-
ticular that

1 , 1 \
(2.18) clu/_ lw(s)]|7: ds < e (1/ + ;) HfHHl1 :
t uloc

Next, by using the estimate (2.18) and the same argument we get, for each
couple 7 < ¢ with 7, € [t,t + 1], that

-
1
o) = @] < v [ o™ (@) s+ eato+ IS,
1
< 2c(v + ;)HfH?{&loc-
Since ||w||3, is a continuous function we can fix ¢ € [¢,7 + 1] such that

2 . 2
w = min |[w(s .
H (5)”1{1 T<s<iil || ( )HHl
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We have then, using (2.16) and the definition of ¢,
lw @I < [+ DlFn

< |lw@+DlFn = lw@©llzn | + w7

t+1
[+ 1) 120 — e 2] + / (€))% ds

t+1
< lw@+ DF = w7 +/z [w(s)|[3 ds.

Finally, from (2.17) and (2.18) we obtain

_ 1
w@®l <€ (v+1+55) 111, -

Hence, for each ¢ € (0,4+00) such that (2.16) holds true we have that
|[w()||3;: is bounded uniformly. On the contrary, if

lw @7 > lw(E + D)7,

we can repeat the same argument on the “window” [t — 1,¢]. In this way
it is clear that if we are not able to find an interval [t —n — 1,¢ — n] with
n <t — 1 such that

lw(@ —n —1)[fn < [lwE —n)|F

we obtain, for some 7 € N such that 0 <t —n < 1, the inequalities
lw(@ —n)l[7n > > [lw@® 7,

hence that

@ g < sup [w()|F:-
0<t<1

The latter is bounded simply by the local existence result. This finally
shows that, since ||wol/z1 depends itself on the norm of f in HY (R), for
all t € RT,

t+1 1
@l +ew [ ol ds < 0 (w414 5 ) 101,
t uloc
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Next, by going back to (2.14) we obtain an estimate on ||wt||%2(t 4+1y> Which
implies by (2.13) the corresponding estimate for ||7T||%2(t tr1)- Finally, by
comparison we get also an estimate for |[Awl|3, and by collecting all

inequalities we finally get

(t,t+1)

t+1
sup (VY + [ (a0 + fus) [ + Ir(o)) ds]
(2.19) =0 ¢

<O+ 14 ) (0smey
ending the proof of the Proposition 2.11. [J

We can finally construct a solution over the whole real line and we have
the following result.

PROPOSITION 2.12.  Let be given f € HL (R), with

1/2

t+1
£l i=su0 | [ 1£@F +17 )P as]
teR t

uloc
then the unique solution of (2.2) exists for all times and it satisfies

w e Cb(R; Hl) N H&IOC<R L2) N Luloc(R; H2)a
m € L. (R),

uloc(

with the estimate (2.1).

PROOF. We start by observing that since f € H. _(R), then it follows
that f € Cy(R) (again by a.e. identification). It follows directly that
f € C(R), but the control of the maximum of |f]| is obtained as follows.
We claim that sup,cg [f(z)] < 2Hf||H1 . In fact, for each couple of points
x,y € R such that |[x —y| <1 it follows that

[f(z) = fy)| = (s)ds

<[ Fll,_

Suppose now per absurdum that there exists z9 € R such that |f(zg)| >
2|1 H - The previous inequality implies that

|f(z)| > HfHHiloc for all x € [xo,z0 + 1],
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hence the contradiction

rott 2 2
[ R ds > i, -
X

0

This proves that the bound on |f(x)]| is true for all z € R.

The proof of Proposition 2.12 is then obtained by using the previous
results from Proposition 2.11 to solve the following family of problems
parametrized by n € N,

Oywy, — VAW, = Ty, re D, t>—n,
wp(t,x) =0, x€0D, t > —n,
Jpwn(t,x)de = f(t) t> —n,
wp(—n,x) = %%I)f(—n), x €D, t=—n.

The same arguments as before imply that

Wp € Liloc(_n? +00; Hz(D)) N H&loc(_n7 +00; L2(D))7

Vw, € L®(—n, +oo; L*(D)),

Tn € Lﬁloc(_nv +OO)7
with bounds independent of n € N (the dependence on v is the same as
in (2.5)). By defining the extended functions w, (¢, ) and 7,(¢t,z) on the

whole real line as

- wy(t, x) t>—n, 4 = Tn(t) t > —n,
Tt ) = (st e M PO e,
0 0

we can extract a sub-sequence (relabeled) as (wy,(, x), T, (¢, z)) such that

Wy, — w in LﬁlOC(R; HQ(D)) N H&

Vi, = Vw  in L®(R; L*(D)),
Tn — 7w in L2 (R).

uloc

(R; L*(D)),

loc

It is easy to see that (w, ) is a distributional solution to (2.3). Since the
problem is linear this is the unique solution. [

We finally prove the result in Stepanov space of almost periodic func-
tions.
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PROOF OF THEOREM 2.2. Since the function f is almost periodic (to-
gether with its first order derivative), for each sequence {r,,} C R we can
find a sub-sequence {ry,, } C R and a function f such that

t+1
~ -~ kot
sup [ (44 1) = FOP 4177 4 rm) = P0)P) dr =520,
€ER J¢

By using a standard argument by contradiction (see e. g. Foias and Zaid-
man [10] and Foias and Prodi [9]) we assume per absurdum that w and 7
are not almost periodic, hence that there exist a sequence {h,,} C R, a
function f : R — R such that

t+1 . 00
sup/ (IF (T + han) = FOP + /(7 + i) = F1(7)[2) dr "=570,
teR Jt

a constant dp > 0, and three sequences {t,}, {hm, }, {hn,} such that for all
peN,

tp+1
sup/ (VQHAUJ(T + hmp) - Aw(T + hnp)H2
teR Jt,

+ |7 (T + hi,) — 7(T + by, )[?) dT > 6.

In addition, there are (by eventually relabeling the sequences) two real func-
tions fi1 and fo such that

t+1 .
sup / (7 + ty+ o) — (7))

teR

p—too

F (T + by + b)) — FL()]?) dr P57 0,

41 N
sup / (F(r 4ty + ) — Folr)P

teR
(7 + tp+ hny) — Fa()?) dr P27 0.

It is clear that f: fl = fg We consider now the problem (2.3) with the
two fluxes

Fip(t) :== f(t +tp + hm,),
F2p(t> = f(t+ tp + hnp)v
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and the corresponding solutions

wip(t, ) == w(t +tp + b, ), mp(t,z) =7t +tp + hiny,),
wap(t, x) == w(t +ty+ hy,, ), mop(t, @) := mw(t +tp + hn,).

Observe that Fy,(t) — f(t) and Fpp(t) — f(t) in HL (R), as p — oo.
Hence, by passing to the limit as p — 400 we construct two solutions

(w1, 71) and (we, o) corresponding to the same flux f. In particular,
wip — Wi and Wap — W2,

in Cy(R; HY (D)), but also in the topologies given in the statement of Propo-
sition 2.12. Hence, we have in particular

tps+1
6o < / | Aw(T + i, ) = Aw(r + )1
t

Ps

+ |7 (7 + iy, ) — (T + thS)IQ dr =

1
- / V2| Awip, (7) — Awsy, (I + [11p, (7) — 7o, () dr — 0,
0

because the problem is linear and the two solutions w; and ws corresponding
to the same flux, coincide. This proves the almost periodicity of w and the
same argument applied to w; ends the proof of the result. [

2.3. The full nonlinear problem in S?(R)

We now finally consider the Navier-Stokes equations and we look for
solutions u € L%, (R; HY(O"))NLA, .(R; H2(O")), for all 7 > 0 (see (2.22)),
where u solves the following problem

ou —vAu+ (u-V)u+ Vp=0, reO,teR,
V-u=0, reO0,teR,
u =0, x€00,teR,

with a.e. u ¢ H%(O) but with

sup [ Vu(t) — Vaoi()l|2(0,) < co.
teR
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for i = 1,2. Observe that this constraint implies (see [3, § 7] and [11, VLI})
that

timfu(t) — wi®)ll 1720, = O
uniformly in ¢.

As a preliminary remark we recall that it is well-known (see for ex-
ample [11, VI] and Amick [2]) that, due to the particular shape of the
unbounded domain O, the Poincaré inequality holds true

(2.20) dep >0 HUHLQ(O) < CPHVUHL?(O) Yu € Hé(O)

and, if the boundary is smooth enough (say of class C!'!), then the following
estimate for the Stokes operator holds true

(2.21) ull 20y < el PAul| 20y ue H*(0)N H&(O).

We now take advantage of the results on the linear case from the previous
section, but first we need to “glue” the basic flows constructed in the two
pipes. In this part of the paper we do not claim any originality and we use
a classical approach. We denote by z € R the axial coordinate in both
cylinders and we define the “truncated pipes”

O :={(z,2) €0;: z<r} i=1,2,

(2

and we also define the truncated domain
(2.22) O" := 0y U O] UO;.

We first define a field (which is as smooth as w;) defined on O and such that
is equal to w; in the sets O;\O}. This extension is obtained by freezing the
time variable and by gluing together the functions w; by cut-off functions
i = ¢i(z) € C°(R), depending just on the axial coordinate z, and such
that

)t (z,2) € 01\05/4,
Pilz) = {0 (z,2) € 02-1/2.
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Next, we observe that V[ := 2?21 ¢; w; vanishes on 0 and that

o(t, z, 2) Z¢Z w;(t, )

(2.23)
S H&IOC(R; L2(Or))

Vo=w; in Oi\Oil,

R;H}O")) Vr>o,

uloc(

and the regularity follows since the mapping (wy,ws) — Vp is bi-linear and
the extension does not involve the time-variable.

REMARK 2.13. Even if we are in a different functional framework from
[3, 27] the same procedure can be applied because the properties of the
extension with respect to the time variable are the same of those of the
basic flows (w’, 7).

This is not exactly the required extension, since the function V; is not
divergence-free. To this end first recall that since Vj = w; in Oi\Oil, it
is divergence-free in O\O!'. To “correct” the divergence one can use the
Bogovskif formula to solve the linear problem in the bounded domain O!:
Find B Vj such that

V- (BV) =-V-V, z € 0!
BV =0, z € 9O,

Since V - Vo € H}(O') and the compatibility condition Jor V-V =01is
satisfied this problem has a solution BVy € HF(O'). Denoting again by
BVj the null extension of BV off O', we finally set

(2.24) w:= Vo +BV.

The explicit integral form of the solution of the divergence equation shows
that the L2-regularity (the time variable ¢ is just a parameter) of 9;Vj is
inherited by 0BV, see e.g. Pileckas [28]. The regularity of the solution
of the divergence equation and the previous argument show that if w; €
Hl (R; L2 (0;) N LA, .(R; HE (O;)), then

uloc loc uloc

w = w; in 0;,\0}
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and

HwHH&IOC(R;LQ(Ol))ﬂLﬁloc(R;H2(Ol))
2

<c). lwill gy (R;z2(Di)nL2,, (R:H2(D,))>
i=1
for some ¢ = ¢(Op, O1,03).
We have finally the following result.

LEMMA 2.14. Let (w;, m;) be solutions of the basic flow with the regu-
larity of Theorem 2.2. Then, the extended function w € L (R; H'(O")) N
HL (R; L2(O7) N L2 (R; H?(O")), Vr > 0, is Stepanov almost periodic
and

lwll Loo (i1 (01 )12

uloc

(R;L2(0Y)))NL?

uloc

(R;H?(O))

2
< e Nwillp @ ooynm

uloc
=1

(R;L2(D:))NL}

uloc

(R;H2(Di))>
for some constant ¢ depending only on O;, i =0,1,2.

With this classical extension result, we can seek now for solutions of the
nonlinear problem in the form

u=U+w, p=P+m.

The nonlinear problem we have to solve is the following: Find a vector
valued function U belonging to L%, .(R; H(0)) N L2, .(R; H*(O)) such
that

U —vAU + (U -V)U + (U -V)w

(2.25) +(w-V)U + VP =F, xeO, teR,
V.U =0, re O, teR,
U=0, r €00, teR,
where
F(t,z,2) = — (Qw(t,z) — vAw(t,z) + (w(t,z) - V) w(t, z))
(2.26)

;)
+ z_; g(z ¢i(2) mi(t)).
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REMARK 2.15. We are looking for a solution u which is not bounded
in any Sobolev space over O, but which is the sum of a function U which is
globally bounded and of w which is a.e. in time only locally (in space) in
H?(0), and is also only locally in any Lebesgue space. Most likely related
results in spaces of global weighted functions can be obtained by following
the argument in Pileckas [29].

From the results of the previous section we can infer that F' € S?(R
L?(0)), hence we can now use standard results to show existence of an
almost periodic solution U. Observe also that U is a function belonging
globally to H}(O), hence carrying a vanishing flux: The flux f(t) is carried
by w, which does not belong to any global (summable on the whole O)
Lebesgue space.

In particular, one main point is that, for each ¢ € R the support of F'
is compact and more precisely it is contained in the bounded subset O!.
Hence, we can use the standard variational techniques to show existence of
a unique solution, provided that the viscosity is large enough.

In the sequel the only relevant property that we need to check is that
(w(t,x) - V)w(t,x) is almost periodic. First, recall that w = w; in Oy,
hence (w(t,z) - V) w(t,z) = 0 in 0;\O} and moreover dyw; — vAw; —m; =0
in the same set. All other terms in the summation defining F are clearly
almost periodic. The nonlinear one can be estimated as follows by using
the definition of w

/tt+1 /Ol (

t+1
< / 170 (8) 2200 l110(5) 2w o1 s

w(s,z) - V)w(s,z) ‘deds

t+1
< CZ sup ||V"LU@( )H%Q(Dl)/t ||Aw7'(8)||%2(D1) dSa

) seR

and this proves that F' € S?(R; L%(0)). By using this expression and from
the estimate (2.1) on (w’,7*), we obtain that

IFI2: mraoy = IFI2 RL2<OI))<0(V+1+ I wy

(2.27
+c(u 141 s
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As in the previous section, we need to show that there exists a solution
U € L?,.(0,+00; H*(0)), and this will follow by using that the right-
hand side is in L% _(0,+00; L?(0)). The existence of a local solution
U € L% (0, +00; H}(O)) follows by standard arguments. In particular, one
has to perform a truncation in the space variables (which is possible since
F' is of compact support, see again [3]) and the usual a-priori estimates. In
addition to these rather standard results, we now prove that the solution
is strong (provided that the viscosity is large enough, which is nevertheless
needed also for weak solutions) and that the solution is uniformly bounded
in H'(O) and belongs also to L2, .(R; H?(O)). We present just the a priori

estimates, which can be justified by the usual Galerkin method and trunca-
tion of the domain.

PROOF OF THEOREM 2.4. We multiply (2.25) by — PAU and we care-
fully treat the various terms. First note that

/ (=PAU) - (U - V) U dudz
01

k+1
:Z/k /D(—PAU)-(U~V)dedz

k>1

< C U aprny< ooy IVU o s 1)x 00y IPAU || 2o i1y 51
k>1

< O U e (g 1yx 0 IV U iz (@i k1)< 03) | AU 2 (ke 1) % D)
k>1

<Y MU ey e o) 10 12 1) x )
E>1

2
< C(Iilgf HUHHl((k,IH—l)XDl)) % U2 (k,e41) % D1)

< C(max U (rsnyeon ) 1V (0,
< ClU o IUN1z2(0,):
because the constants of the Sobolev embedding H!((k,k + 1) x D;) C

L*((k,k+1) x D;) are uniformly bounded in each of the strips (k, k+1) x D;,
see [12, Lemma 2.1]. The estimates in Oz follow the same lines, and those



98 Luigi C. BERSELLI and Marco ROMITO
in Og are even simpler. Hence, we finally get
2
/ (—=PAU) - (U - V) U dwdz = Z/ (—PAU) - (U - V) U dad=
o i=0 Y Oi

< ClU N o) 1U 1 2(0-

Moreover, the Poincaré inequality and standard regularity theory for the
Stokes operator in (2.20)-(2.21) show also that

/ (PAU) - (U - V) U dadz
o

< O|VU | 20 IPAU | Z20-

The term fOl (U-V)w-(—PAU) dzxdz is then estimated as follows: By using
the same splitting into slices (cf. (80-81) in [3]) of width 1 in the z-direction,
and by using the Sobolev embedding H?(D;) C L*>(D;) one gets

k+1
/ /(U-V)w-(—PAU)dxdz
k D;
k+1
< /k 1 o IV 2o | PAU | 12y 2

k+1 9
<ClIVuilizpy [ 1V, d=

By adding to the contribution of the two pipes also that of the bounded set
O we easily get

2
(U - V)w PAU dzdz < CY_ [ Vwill 120, U 32 0y

(2.28) =l

2
<O IVwillzz o IPAU3:0)-
1=1

The other term [, (w-V) U PAU dxdz is estimated in the same way. Adding
together the various terms, we finally we arrive at the differential inequality

d
%HVUH%P(O) + (v = Ci(IVU | 12(0) + ||vaL2(Ol)))||PAUH%2(O)

F 2
- o, FEe0)

- v
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for some constants C'1, Co > 0 depending only on O.
We fix now the viscosity large enough, so that

y_clznw )| z2(pyy > 0.

and this is possible since we have the uniform bound on ||Vw;|| < C(/v +
14+1/v) ||fHH1l (r) coming from Proposition 2.12. From now on we set, for
simplicity, v > 1 and we obtain

fg£\|vw(t)||%2 oy < C1 Sélpz IVwit)llZ2(p,) < CVIFITn gy

for some constant C; > 0 depending only on O. Moreover, the support of
F is contained in O', hence ||[F(t)||2(01) = || F(t )||L2(O € L% .(R). This is
enough to show existence of a local unique solution, in a time interval [0, ¢,
for some positive §, which depends on the data of the problem.

The next step is to show that, under suitable assumptions on v, the
solution is global. This is rather standard: Fix vy = v1(f,0) > 1 large
enough such that

2
it v>u1y then v—C Z |Vw;i ()| 2D,y = % vVteR.
i=1

For such v > v; > 1 we are reduced to the differential inequality (possibly
redefining the constants)

G IVURa(0) + O (4~ 190112000 ) VU B0y < 21F 0

Hence, by using (2.27) to bound from above the right-hand-side, and if we
define Z(t) as the solution of the following Cauchy problem

(2.29) {Z’ +C1(5 -V2)Z2 = ”F Ii20:
Z(0) = IVU(0)[1720) =

we have that 0 < ||VU(t )HL2(O Z(t), Vt > 0. We employ now a fixed
point argument in the space of functlons which are continuous and bounded
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over [0,+00] to show that Z(t) is well defined and bounded in the same
half-line. Let be given z € ([0, +00) such that

<
o

zZ(0) =0 and 0<z(t) < Vt e [0,+00).

1

[«

Solve then the linear problem

24 G5 - VA= CIF I
z(0) = 0.

Since § < § — VZ < 5 and both the initial value and the right-hand-side
are non-negative, it follows that z(¢) > 0. Hence z(t) satisfies

(2.30) 7+ HF\P

011/
4
The same argument employed in the proof of Proposition 2.11 (see also [25,

§ 2]) shows that

9C!
0<2(0) < 5 51PN, mazon = Ol + 11, @)

Then, fix vg > v; > 1 large enough such that

2
1%
oI s,y + I s ) < 22

For v > vy, consider now the map ® : Z — 2z and given 7 > 0 define

2
K, = {z e C%(0,7]) : 2(0) =0, 0<Z(t) < ’1’—6 Vte [o,T]} .

Clearly we have ®(K;) C K, and the map is relatively compact by Ascoli-
Arzela theorem since z is Lipschitz continuous as solution of (2.30). Hence
® as a fixed point which is a solution to (2.29). Since 7 > 0 is arbitrary this
proves that Z exists on the whole interval [0, +oo) A standard comparison
argument shows that ||VU(t)||%2(O) < Z(t) < %, forall £ > 0.

This estimate implies, by using standard arguments well-established for
the Navier-Stokes equations, that there exists a solution

U € Cy(0,400; H3(0)) N L2),.(0, +00; H*(0)) N HY,..(0, +00; L*(0)),

uloc loc
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and due to its regularity this solution turns out to be unique.
Next, one can construct a global solution, by solving the following family
of problems in [—n,00) x O,

oUp, —vAU, + (Uy, - V) U, + (U, - V) w

+(w-V)U, + VP, =F x € O,t € [-n,0),
V-U,=0 x € O,t € [-n,0),
U,=0 z € O0,t €[—n,00),
Un(—n,z) =0 z € 0.

Again by prolongation we define a velocity on the whole real line by
7 Un t, t Z BRAS]
0 —n.

We can show that, as n — 400, the function U, (t,z) converges to a weak
solution U such that

U € Gy(R; Hy(0)) N Lijoe(R; H*(0)) N Hyoo(R: L*(0)).
To conclude the proof we need to show that if the external force is almost
periodic, then U is almost periodic too. For this result we need a result of
“asymptotic equivalence,” which is obtained as follows. Let us suppose the
we have two solutions of (2.25) on the interval [ty, +00) corresponding to

different initial data, but to the same external force. Then the difference
U := U; — Uy satisfies

(8,0 — vAU + (Uy - V) Uy — (Us - V) Us+
+(U -VYw+ (w-VYU+VP=0 z€O0, te [ty,+],

V-U=0 z €O, te [ty,+oo],
U=0 x € 00, t € [ty, +0o0],
\(7(150,9:) = U, x € 0.

By multiplication by U and by the usual integration by parts, we can get
L2-estimates, which are enough to show that U € S?(R;L?(0)), but to
prove the main result, that is Stepanov almost periodicity with values in
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H(O) we need to test with —PAU. By using standard manipulations we
get

Ld

2dt\|Vﬁ||2+uHPAﬁ||2 < ’/(ﬁ-V) Uy - PAU + (U - V) U - PAU dzdz
o

+‘/(ﬁ-V)w-PAﬁJr(w-V)ﬁ-PAﬁda:dz’.
O

By using the same techniques employed before to handle unbounded do-
mains we can show that

‘/(ﬁ-V)Ul-PA17+(U2-V)(7-PA(~dedz
o

< T2 VU2 | AT |2 + [ Ual| 12 | VU | 2 | AT 12
<TI0z + 1Uall 2 101132

< (IVUillz2 + VU2 2) | PAT |12

< SIIPAT 2.,

where in the last step we used the estimate on U; coming from the previous
proposition.
The same argument used in the proof of (2.28) shows also that

]/(ﬁ-V)w-PAﬁ+ (w-V)ﬁ-PAﬁdxdz‘
O
< C(IVwill 2,y + IV wsll 2y ) IPAT,
for some constant depending only on O. Hence by collecting all the estimates
we obtain

1d

~ Ij ~
5 VTR + (5 = CIVwillzaoy + I Vwnlzzmy) ) IPATI? < 0.

The uniform bounds on w; and Us in H}(D;) from (2.5), the Poincaré in-

equality, and the estimate for the Leray projection from (2.20)-(2.21) imply
that for large enough viscosity one has

d _~ -
EHVUH%Q(O) +vC|VU 720y <0,
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for some C' > 0. This finally shows that
IVU 720y < IVU (t0)l[720) e, t > 1o,

The same argument employed in the proof of Theorem 2.2 can be used here
and, for each sequence {r,,} C R we can find a sub-sequence {r, } C R
and a function F' such that

t+1 . B
fulg/ IF (T + 1) — F(7) 220 dr =557 0,
€ t

Assume by contradiction that U is not almost periodic, hence that there
exist a sequence {h,,} C R and a function f: R — R such that

t+1 _ oo
sup/ |F (7 + hy) — F(7)|| dr "=5 0,
teR Jt

and a constant 5y > 0 and three sequences {t,}, {hn,, } and {hy,} such that
for all p € N,

tpt1
Sup/ HU(T—I—hmP)_U(T—i—hnp)H?—Ié(O) dr > bp.

teR Jt,,

There exists two real functions Fl and FQ such that

t+1 ~ _
sup/ IF(r 4ty + hum,) — Fy ()2 dr ¥255% 0.
teR Jt

t+1 ) e
Sup/ IF(r 4ty + hny) — Fo(r)||? dr "5 0,
teR Jt

It follows in a standard way that F = 1*:'1 = Fg and we consider now the
problem (2.25) with the two forces

Fip(t,x) := F(t +tp + hpm,,x) and  Fop(t,x) := F(t +t, + hy,, ),
and the corresponding solutions
Up(t,z) == Ut +tp + hm,,z) and  Usy(t,z) :=U(t +tp + hy,, 7).

By passing to the limit as p — 400 we construct two solutions U; and Us
corresponding to the same force F. In particular

Uy — Uy in Coe(R; HY), Usp — Us in Choe(R; HY).
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In addition we have

tpe+1 )
503l1 U7 + Py, ) = U (T + T, g 0y A7 =

Ps
1 1
= [ W0 (0) = U (D00 a7 — [ I02() = Uat) gy 0
0 0
On the other hand the asymptotic equivalence implies that
1U1() = Ua(t) 1330y < UL (t0) = Ua(to) |31 0y et 2 t0,
and letting t) — —oo we obtain a contradiction, ending the proof. [J

REMARK 2.16. The result with f € H!(R) follows in the same, even
simpler, way.

3. Leray’s Problem in the Framework of Besicovitch a. p. Func-
tions

In this section we discuss the same problem in a more general setting,
and first we recall some definitions on almost periodic solutions.

3.1. Generalities on almost periodic functions

In the literature there are different definitions of almost periodic func-
tions and we need now to explain the precise setting we are using. We refer
mainly to [5, ch. I] for further details and references. Let Trig(R) be the set
of all trigonometric polynomials, that is, u € Trig(R) if there exist n € N,
&,...,6, € Rand uq,...,u, € C such that

n
u(m):Zukeig’“x, z € R.
k=1

Next, a set A C R is relatively dense if there exists L > 0 such that each
interval of length L contains an element of the set A.

DEeFINITION 3.1 (Bohr). A  wuniformly almost periodic function
(UAP(R)) is a continuous function f : R — R such that there is a relatively-
dense set of e-almost-periods. That is for all € > 0, there exist translations
T. > 0 of the variable ¢ such that

lft+T:) - f(B)] <e.
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It is easy to see that all trigonometric polynomials are almost periodic
according to the previous definition. Let UAP(R) be the set of all uni-
formly almost periodic functions. Then UAP(R) coincides with the closure
of Trig(R) with respect to the sup-norm || - ||z~. Alternatively, as recalled
in Section 2, a function f € UAP(R) if the set {f(7 + ) : 7 € R} of trans-
lates of f is relatively compact in C'(R). A more general notion of almost
periodicity was introduced by Stepanov in 1925. To this end for p > 1 and
r > 0, define the norm

1 t+r 1
fllsnr = sup(7 [ 7)1 as) "

Then, the space SP(R) is the closure of Trig(R) with respect to the norm
|| - ||sp,» above. Notice also that while the norm depends on r, the topology
is independent of the value of r, hence we re-obtain the definition used in
Section 2 (Cf. [5]).

The definition was later extended by Weyl in 1927 by considering the
closure WP(R) of trigonometric polynomials with respect to the semi-norm

[ llwe = Tim || fllse -
r—00

Finally, Besicovitch [5] defined the space BP(R) as the closure of Trig(R)
with respect to the semi-norm

1 R 1
fllBr = limsup<—/ f(s pds)p.
[malrs imsup (57 _R\()
Notice that one can have ||f||gr = 0 even though f # 0. For example this
happens if f is in LY(R) with ¢ > p or f € L*®(R) and |f(z)| — 0 as
|z| — oco. One has the following strict inclusions

UAP(R) C SP(R) C WP(R) C BP(R), for any p €]1,+o0],

(with obvious inclusions with different values of p). It turns out that
the spaces BP(R) of Besicovitch almost periodic functions are among the
“largest possible” compatible with the treatment of partial differential equa-
tions as we shall see in Proposition 3.2. Let us focus on the case p = 2,
since B2(R) has an Hilbert structure. Given f € L] _(R), define

_ 1 (R
M(f) = limsupﬁ _Rf(t) dt.

R—o00
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The mean operator M(f) is defined as the above quantity when the limit
exists. Given f € BY(R), the (generalised) Fourier coefficients of f are
defined as follows

ax(f) == M(f(t)e?)

(later we will also use the notation f(A) and fy for the Fourier coefficient
corresponding to the mode A) and the set

o(f) :=={reR:ax(f) # 0},

the spectrum of f, is at most countable.

Define the equivalence relation ~ as f ~ g if ay(f —g) = 0 for all A € R.
As stated above, |- |gr is not a norm, as it can be zero on nonzero functions.
It turns out that the quotient space B/~ is a Banach space (see [5]). If
f,g € B2(R) then the mean M(fg) is well-defined and M(f g) = M(f191)
if £~ f; and g~¥g;. The space B2/~ is an Hilbert space when endowed
with the scalar product (f,g)zz = M(fg) and we have the fundamental
result due to Besicovitch.

PROPOSITION 3.2. The exponential functionst — e are an orthonor-

mal Hilbert basis for B>(R). In different words, any f € B*(R) can be
represented by its generalised Fourier series

(3.1) 2 Y ax(f)e™,

Aea(f)

and 3, lan()P? < .
Conversely, if one has a generalised series as above (with square

summable coefficients as a generalised series), then there is a function f €
B2(R) having the series as its own generalised Fourier series.

Hence, we can identify a function by means of its generalised series as
follows

(32)  BR)={f e LER): IfIE = D () < +o0}
Ae€a(f)

and the identification f(¢) ~ ", o(f) () e holds in the sense of conver-
gence in B%(R).
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We turn to the pipe problem (2.2) in the almost periodic case. Since
the problem is linear, it is reasonable to find a solution in terms of Fourier
transform (or series). It is clear that, once the problem is solved in the
Fourier space, we are given with coefficients a(§) € C for £ € R and we
are left with the problem of reconstructing the solution by inverse Fourier
transforming. Since the convergence for classical Fourier series is robust in
L? for £? coefficients, likewise in the context of almost periodic functions we
consider the (correct) space B2, for which the analogous of the Riesz-Fischer
theorems holds true.

In the following we shall also need spaces of the type Sobolev-
Besicovitch, which are defined in the following way.

DEFINITION 3.3. Given a real s > 0, a function f € B(R) belongs to
B*2(R) if

1£1Fe2 = D A+ AP lax(H)? < +oo.
Aea(f)

In particular, if f € BY2(R), then the Fourier series for the (formal)
derivative f’ of f is convergent and defines an element of B%(R).

3.2. Construction of the “basic flow” in the Besicovitch setting

In this section we solve problem (2.2) in the unknowns (w, ), with the
Besicovitch meaning. As a by-product of the method we obtain also a new
proof of the existence of the basic flow in the periodic case.

THEOREM 3.4. Given f € BY2(R) there are w € B*(R;H?*(D) N
HE (D)), with dyw € B*(R; L*(D)), and m € B*(R) such that

Ow — vAw L and / w(t,z) dz ~ f(t).
D

Moreover, w and w are unique up to identification as almost periodic func-
tions. Finally, there exists ¢ > 0 such that

C
|Aw||g2(z2(py) < el fllg2 + ;Hf/HB?v

Imlls2 + 10wl 22 (py) < evll flls2 + el ]l
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In order to prove the theorem, we restate the problem by spectral anal-
ysis in terms of Fourier transform with respect to the time variable ¢ (with
conjugate variable £). Once Fourier transformed, problem (2.2) reads as
follows: Find (@w,7) such that

15@(€7£)_UA&]\(£7:L‘):%(§)7 :EGDa €€R7
(3.3) w(, x) =0, xedD, £ €eR,
Jp @& z) dx = f(&) £ER.

Clearly, the same result follows by a decomposition in Fourier series. The
first equation yields w (¢, x) = 7(§)We(x), where

We() = ((i€1d - vA) 1) ()

is defined to be the solution to the linear, stationary, and complex system

1iEWe —vAWe =1 eD
o s e

W§($) =0, x € 0D,

parametrized by £ € R. Set

ag := / We () de,
D
then by Fourier transforming the flux condition in (2.2) we get f(¢) = agm(€)
and in conclusion the solution to (2.2) (or, more precisely, to (3.3)), is given
by

~

(3.5) (&) =—f() and  w(x) = —f(E)We().

1
g ag
The problem reduces to analyse the behaviour of the two terms a¢ and W

with respect to £ € R. The main properties are summarised in the following
lemma.

LEMMA 3.5. For every & € R it holds
1. ag =v [, [VWe(2)|? do — i€ [, [We(2)]? da,

2. v [, AWe(z) dx = ifag — 1,
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3. V2 [ [AWe(a)|? do 4 &2 [, [We(a)|? do = 1.

Proor. To prove the first property, take the complex conjugate of the
equation satisfied by W, multiply by W, and integrate by parts, obtaining

[ Wetwyda = [ (elWe? — vWeATE) do
D D

:I//D|VW§(x)\2dx—if/D|W§(a:)|2dx.

For the second property, just integrate the equation for W¢ on D. In order
to prove the third, take again the complex conjugate of the equation for W,
but this time multiply by AW¢. Next, integrate by parts and use the first
two properties to get

iag — 1 :y/ AWe dz = —zﬂ/ |AW5|2dx+iy§/ VW |* dx
D D D

- _;ﬂ/ |AWe|? d + iag — g2/ [We|? de,
D D
which proves the equality. [

Next, we need to understand the growth/decay of a¢ and We(x) with
respect to £, in order to show that the formal expression (3.5) defines a
solution (in a suitable sense).

LEMMA 3.6. The map £ — Wg is continuous on R with values in
H?*(D) N HY(D). Moreover, as |§| — +oo we have We — 0 in H*(D)
and also

3.6 lim  &||[VWe|? =0, and lim  E2||We||? =1.
(3.6) m%oofH §||L2(D) |£|_)+oof | EHL?(D)

Finally, the map & — ag is continuous on R and ag — —i as [£] — oo.
Proor. Fix £,& € R, with £ # 0, and set V' := Wg, — We. By
symmetry we can assume that £ > 0 and start with the case £y > 0. The

new function V' solves i€V — vAV = i({ — &)We,. Multiply by AV and
integrate by parts to get

VY25, + VIAV |20, = i(€ — &) /D YW, - VV da.
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The imaginary part of the above formula yields

fHVV”%?(D) il (e 50)?)?(/[) VWe, -VVda:) <

£ (£ - &)?
< §HVVH%2(D) + THVW&)H%%D),
and so [VV|p2(p) < |z2(py- On the other hand the real part
yields
VAV ) = (60~ 93( [ VW - TV o) <
£ —&)°
<16 - &l I Wey 200y 19V 20y < S0 190 22

and as & — &, continuity follows.
In the case £ = 0 the proof is slightly different, since one can prove
directly by taking the real part that

VAV 22 (py < [EIIVWe 72Dy

Since V' € H} (D), this proves that as & — 0, V tends to zero in H?(D), but
now with order |§|%

Finally, we consider the limit at co. By the previous lemma we know that
V[[AWe||p2(py < 1 and [§][[Wel[z2(py < 1, so for every sequence || — oo
there is sub ~sequence converging weakly in H?(D) (hence strongly in
L?(D)) to some function Wy, € H?(D). By the bound in the L? norm, it
turns out that W, = 0 and, by a standard contradiction argument, that
We — 0 in H?(D) for |¢| — oo. In particular, using the second property of
the previous lemma, {a¢ — —i and, by taking the real and imaginary part
of the first property, (3.6) follows. Finally, by (3.6) and the third property
of the previous lemma, ||[AWl|[z2(py — 0, which, together with the weak
convergence, implies W — 0 strongly in H*(D). O

REMARK 3.7. Notice that

IEWe +ill 22y = EWell L2y + 23(8ag) +1 — 0,
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and so EWe — —i in L*(D), as |¢| — co. With a little more effort one can
show that {We — —i point-wise as || — +o00, but we are not going to use
this property in the sequel.

PrROOF OF THEOREM 3.4. We use the identification (3.2) of an almost
periodic function with its Fourier series and of the B? semi-norm with the
sum of squares of Fourier coefficients (namely, Parseval’s identity). Con-
sider f~37, F(€) €€, then we only need to prove suitable bounds for the
quantities |agl, [[AWe|z2(py, and [|[We|lr2(p)-

Indeed, solving problem (3.3) for the Fourier components yields

w(t,x)%zwz—im)f(g)eiﬁt and w(t)i*iz%)eiﬁt.
13 13

In order to capture the dependence of constants on v, we observe that
We = —Wf/l,, where Wg is the solution to (3.4) corresponding to v = 1. Set

no(€) = [Welfoy: M€ = VWeliay  m2(€) = [AWe[72(p)-
Indeed,

I 1 &
1AW B2 g.r2(py) = D 1AD|F2py = W\f(ﬁ)PHAW&H%%D)
3 3

) o v2na ()
_§|f(f) v2n1(£)2 + €2n9(%)2

C2
< c1ll fllgem) + ﬁ”f/”%s?(R)’

since for [£| < v,

l/2n2(§) < 712(%) < max na(o) .
V2”1( )2 +§2n0( )2 n1(§)2 lo|<1 ny(0)?
while for [¢| > v,
U2n2(£) < igL%)
v (5)2 +Eno(5)2 T V27 [(£) no(5)]
< ifz su _ma(o) — 252

V27 ol>1 (02n0(0))2 v?
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Similarly,
”8thBQ(L2 Z§ Hw HL2 ’ ||W£HL2
13
-3 i7e) 252”0<£>
V2n1 (£)2+&no(%)?
< C3l/2”f”82(R) + C4Hf HB2(R)7
since for |£] < v,
1/252710({) < y2 < V2 s 1 _ 31/2
V2n1( ) +£2n0( ) N no(g) o lo|<1 no(a) ’
while for [£| > v,
Vol ¢ ! <¢ : = cs6%.
ar+ Ena(ER = (D) = i)
Finally, with similar computations,
A

D)

Il = S 7O =3 ‘%If(f)IQ Gk
¢ ¢ 1% ¢

< esV?|| fllge + call 1|

where ¢5 = max|,|<1 W The quantities ¢y, ..., c5 are easily seen to be

finite by the previous lemma. [

REMARK 3.8. The computations in the proof of Theorem 3.4 provide
an alternate proof to Theorem 1 in [3], as well as to Corollary 2.10, once
(generalised) Fourier transform is replaced by (generalised) Fourier series

expansion. Moreover, the following estimates hold,

Cc
/R 18wl dt < el flliamy + 51 172wy

/R 10wl 72y dt + /R ()12 dt < ev?||flI72m) + I 172w,

1
2 2 112
fgg ||Vw(t)||L2(D) < C(V||fHL2(R) + ;”f H[}(R))'
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Indeed, in the proof above we have shown that

[AWellz2p) _ emax {1,v71¢]}
lagl -~ | |
&l Well
(3.7) W < cmax {[¢], v},

]a—15| < cmax {[¢|,v}.

Hence, by Parseval’s identity, we get

1 - c
2 _ [ 2 2 < 2 o2
J 18wl = [ FOPIAW ) < el e + 1517 Ty

and the other inequalities are obtained similarly. Finally, the inequality
for Vw follows by integration by parts and the identity %HVMH%Q(D) =

-2 [ w Aw da.

3.3. On the meaning of the solution

We need to spend a few words about the notion of solution we con-
structed. We observe that a given f € BM2(R) is clearly identified in the
sense of BY2(R), hence by means of its generalised Fourier series. This im-
plies, for instance that if w is a solution in the sense of Besicovitch spaces,
then w + 1 is also a solution, for any @ € L?(R; H*(D)) N H(R; L?(D)).
This poses some restrictions to the interpretation of the result. One would
like to have some embedding in the space of continuous functions, in order
to have a more precise identification of the solution. A larger spaces in
which we are able to solve the equation is balanced by a weaker notion of
solution.

In general one cannot expect the validity of the usual Sobolev embed-
dings in B*P(R) as is explained for instance in Pankov [26] and especially
the identification with UAP(R) functions is not a trivial fact. Classical
counterexamples can be found in the references cited, while the following
general embedding result is proved for instance in [19].

ProprosITION 3.9. Let 2 C R be countable and assume there is 3 > 0
such that the generalised sum satisfies

1 < 400 fory>p
Z— {:+oo for v < .
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If B < 2s, then for every f € BS2(R) such that o(f) C Z, we have f €
C™*(R) NUAP(R) for all « € [0,s —r — [3/2), where r = [s — g} (with

corresponding inequality for the norms).

REMARK 3.10. To simplify the notation from now on we denote by f
the (generalised) Fourier coefficient f(€£) that is (more precisely) written as

ag(f) in (3.1).

To understand this result, let us observe that if ¢, € ¢!1(C), then the
series ) ¢ cg ei¢! converges uniformly and can be identified with a continuous
almost periodic function f ~ ZE ce elét,

Moreover, for classical Fourier series, i. e. o(f) = 2 C Z, the -condition
is satisfied for 3 = 1 and this shows that if {¢;};ez, {j ¢;j}jez € ¢*(C), then

‘Zc dit|? < ‘Z‘Cj" (Z] lcj )( ZO ) < to0.

JEZ

This is the guideline to understand the result for B%2(R), since one has —
roughly speaking — to show an inequality similar to

’ Z Cgeiﬁt‘QS) Z |0d‘2 < ( Z 15’2%5’2)( Z ,5‘25) < oo,
gea(f) £€a(f) tco(f teo

For instance Proposition 3.9 implies the following result.

COROLLARY 3.11. Let be given f € BY2(R), with fﬁ’jzg feel®t such
that

1
E — < +00.
2
¢ea(f) <l

Then, there are w € B*R;H?*(D)) N UAP(R; H}(D)), with dw €
B?(R; L*(D)), and m € B*(R) such that (2.2) is satisfied in the sense of
Besicovitch.

This makes also possible to consider the flux as

ft) = fi(t) + fa(t),
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with fi € BY3(R) and fo € H'(R), so that || fa||g1.2 = 0. One can construct
the solutions w; € BY?(R; L?(D)) and wy € W12(R; L?(D)) corresponding
to f1 and fo respectively, and add them together.

This is not completely satisfactory, since we still do not have a precise
identification of the pressure. To this end one would like to have a solution in
the classical UAP(R) space for example. This can be achieved by assuming
stronger conditions on f (rather than on its spectrum), as shown by the
following result.

PROPOSITION 3.12. Let f be given, with fﬂizg feel®t, such that
D (L + (€D fel < +oo.
3

Then, there ezists a unique solution (w,m) to (2.2) such that
c
Dl Awellzzpy < > Ifel + ” > gl £l
g g g
D omel + Y L€l lwellrapy < ev Y fel +e D l€l I fel,
3 3 ¢ 3

(3.8)

where wg and m¢ are the (generalised) Fourier coefficients of w and 7, re-
spectively. In particular, w € UAP(R; H?(D)), ;w € UAP(R; L*(D)) and
m € UAP(R).

PROOF. First we notice that since . [f¢| < +00, then
) 2
Skl < (D Ifl)
£ £

showing that f € B?(R). The same argument shows also that f’ € B%(R),
and so Theorem 3.4 ensures the existence of a unique solution. Since w¢ =
angg fe and mg = %—1 fe, the estimates (3.8) follow immediately from (3.7).
In order to show that w and 7 are Bohr-almost periodic, we consider a
truncation

fn: Z ffei£t7
g€on(f)



116 Luigi C. BERSELLI and Marco RoMITO

where {0,(f)}nen is an increasing sequence of finite subsets of o(f) such
that |J,, on(f) = o(f). For each n € N we can consider (2.2) with flux given
by the trigonometric polynomial f,, and the estimates (3.8) imply uniform
convergence of the corresponding solutions (wy,, 7,) towards UAP functions
with the requested properties. [

3.4. The nonlinear case

In this last section we consider the non-linear problem. Assume prelim-
inarily (we shall assume stronger assumptions on f later) that f € BL2(R)
and denote by wi, wo the basic flows in the two pipes O1, Os respectively.
As in the previous section, these are defined (in the appropriate reference
frame) as w;(t,z,z) = (0,0,w(t,x)) for t € R, x € D, and z > 0, where w
is the solution provided by Theorem 3.4.

Let Vp be the flow defined as in (2.23), it is clear that Vj is also almost
periodic and keeps the same time regularity properties of wy and ws, namely

Vo € B*(R; H*(O")) N BY*(R; L*(O")),

for every r > 0 (where the domain O" is defined in (2.22)), as well as the
flow w defined in (2.24). Indeed, both flows are obtained by applying only
linear operators in the space variable to w; and ws.

Consider the full nonlinear Leray’s problem in the (Besicovitch) almost
periodic setting, namely to find a solution (u,p) to the problem

Ou — vAu+ (u-V)u+ VpR0,

(3.9) V-ur0,
=0 on 00,
such that
Hu - wiHBQ(R;Hl(Oi)) < Co, 1= 1, 2,

and this implies that
(3.10) v —willgggmep)) =0, i=1,2.

If w is the flow defined in (2.24), consider the solution u = U + w as a
perturbation of w. Consequently,
U —vAU + (U -V)U+ (U -V)w+ (w-V)U +VPXF,
(3.11) Y. U0
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where F' is defined in (2.26). The main theorem of the section is the follow-
ing.

THEOREM 3.13. Assume that the flux [ satisfies

(3.12) be = || flls =D _(1+[€])|fel < o0
£

Then there exists vy > 0, with vy = vo(f,O), such that for every v > 1y
problem (3.9) admits a solution

u € BX(R; H'(0")) N B22(R; L*(0")),
for every r > 0, and which satisfies (3.10).

By our construction the above result will be proved if we can show that,
under the assumptions of the theorem, there is a solution

U € B(R; H}(0)) N B3*(R; L*(0))

of problem (3.11). The rest of the section is devoted to the proof of this
result.
3.4.1 Spectrum and module

Before turning to the analysis of problem (3.11), we recall that, since
f € B%(R), its generalised Fourier series is well-defined and its spectrum
o(f) is the set of modes £ € R corresponding to non-zero coefficients fe¢ in
the Fourier expansion of f.

Since f is real, it follows that f_g = f_¢ and so the spectrum is symmetric,

namely —o(f) = o(f).

DEFINITION 3.14. The set u(f) is the Z-module of the spectrum of f,
namely the smallest subset of R which contains o(f) and is closed for the
sum (that is, if £, € p(f), then a& +bn € u(f), for all a,b € Z).

It is clear that u(f) is also symmetric and, since o(f) is at most count-
able, p(f) is at most countable too. Moreover, it is easy to see that the
spectra of w and F', by linearity, are contained in the spectrum of f. In-
deed, by construction, the terms Vj and w, defined in (2.23) and in (2.24),
respectively have spectrum contained in pu(f).
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In the following, with the purpose of approximations, we shall need to
consider finite dimensional truncations. To this aim, we fix an increasing
sequence { N (f)} nven of subsets of u(f) converging to u(f), that is un(f) C
pn+1(f) and p(f) = Uy pn(f), and such that pn(f) = —pn(f).

3.4.2  Reduction to a system in Fourier variables

A remarkable feature of the non—linearity we are going to analyse is
that if uj, ug are Besicovitch almost-periodic, then (u; - V)wusg is also in
the same class. This result on product of almost periodic functions is not
true in general, but as we will see in our case it holds since the spectrum of
the non-linearity is contained in the module generated by o(u;) and o(u2).
Having this in mind, we recast problem (3.11) in Fourier variables,

(3.13) iU — vAUe + Y [(Uy- V) Uy + (Uy - V) wg + (wy - V) Up]
n+6=¢
+ VP = F,

for £ € p(f), with V- U = 0, and the sum in the formula above is extended
over all n,0 € u(f).

We shall use the following strategy to prove Theorem 3.13. We linearise
the non-linearity (by introducing an auxiliary field U ) and solve the new
linearised problem (in two steps, first for a finite number of modes, then
for all modes). The assumption on the viscosity allows to have a uniquely
defined map that gives a solution to the linearised problem for each field U.
The same assumption ensures that this map is a contraction and its fixed
point is the solution to problem (3.11).

3.4.8 Preliminary tools

We prove two preliminary tools for the analysis of the problem. We first
consider the fields w and F' defined respectively as in (2.24) and (2.26) and
prove the following estimates in terms of ¢,.

LEMMA 3.15. Let be given f € BY2(R), assume that (3.12) holds.
Then, there is c3.15 > 0 (independent of v) such that

1F 22 (0)) < esas((L+v) + (L4 D2 F1) 1 2wy,
D Fellzzio) < esas((L+v) + L+ D2 L)l
3
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Moreover, if u,v € H}(O), then

‘/u‘(U-V)wgdx‘ + ’/u-(w§~V)vdx
0 0
< ez15|| Vel L2 (py lull 71 o) 101 71 0

for every & € p(f), where (w,7) is the solution to the basic flow provided by
Theorem 3.4.

PROOF. By its construction, F = 0 on O\ O', hence ||Fg||;2(0) =
| Fell2(o1y- By the definitions and the continuity of the Bogovskii operator
B it easily follows that

[[Ovwle || L2(01) < cll[Orlell L2(Dy)
[[Awlellz20ny < cll[AWe] 2Dy,

|me| < elm.

For £ € p(f), writing the explicit expression for [(w - V)wle =3, o (wy -
V) wg, we obtain that

1w V) wlell 201y < ¢ Y [IVwyllzzon) | Awe] 201

n+6=¢
<c Y IVyllLap) | ATl 2(p),
n+0=¢
hence
9 _ _ 2
1w - V) wlig2(g;r2(01y) < CZ( > ”an”LQ(D)”AWHB(D))
£ nt+o=¢
< o( 3 IVell2(py) 18T Feqr;2(0):
1
and

Dol - V) wlellizon < e Y 1IV@y ]2y | ATl 12 ()

£ € nto=¢

< C(Z IIV%HL%D)) (Z ”A@”LQ(D))
¢ 3



120 Luigi C. BERSELLI and Marco RoMITO

The estimate of F' now follows from Theorem 3.4 and Proposition 3.12.

We prove the second statement of the lemma, for instance on the first
term on the left-hand side. We proceed as in [3, (78)—(80)] and divide the
integral on O in two terms: the first is the integral on O!, the second on
O\ O'. Notice that on O\ O = 01\ 01 UO2\ O} the basic flow w coincides
either with wy or ws, hence

‘/U (v- V) we dﬂﬁ’ < c(IIVwell 201y + IV@el 2 (o)) el i1 0y vl 1 0)-
Finally, ||[Vwel|r2(01) < ¢|| Ve || p2(py follows as above. [

The second result is the extension to our setting of the usual cancella-
tion property of the nonlinear convective term, when energy estimates are
derived. Define

B*(R; H}(0)) = {h € Lio(R; H} (0)) + [1hllge(ryrmg o)
= 3 L+ 1EDlhellmo) < +oo}.

§ea(h)

LEMMA 3.16. Let be given X = Y X¢el® and Y = Y Yeel®® both be-
longing to B2(R; H}(0)), with Y divergence-free. Assume that the spectra
of X and'Y are contained in u(f) and fix an integer N > 1. Then

ZN)ZN)/X5 (Yy - V) Xpdx = 0,

n+0=¢§

where the superscript on the sum above means that the sum is extended only
over modes in un(f).

Moreover, the same holds true for N = oo if at least one between X and
Y is in B*(R; HL(O)).

Finally, the statements above hold true if Y is replaced by the basic flow
w (defined at the beginning of the section as in (2.24)).

PROOF. Let us denote by (n) the sum in the statement of the lemma,
then by a change of summation index

® = ZN)/X,5 (Y- V) Xp da

E+n+60=0
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:—Z /Xg (Y, - V) X¢ dz, = —@,

E+n+6=0

since Yg = X_¢, and the claim is true. To show that the same holds for
N = o0, it is sufficient to prove that the following sum is bounded uniformly
in N. Indeed, if Z is another field,

Z Z(N/X£ (Y, V) Zgdz

n+0=¢
Z Z IV XellLz0)[IVYall 201V Zol L2(0)
n+6=¢
< CHXHBQ(Hl(O))”YHBz(Hl(O))||ZHB*(H1(O))a
by Young’s inequality for convolutions.
Assume finally that Y is the basic flow w. The first statement holds
true with the same proof once we know that the integral involved are finite.

This is ensured by the second part of Lemma 3.15. Likewise the second
statement follows from the fact that the following estimate is uniform in N,

Z(N Zm/xg (wy V) Zy da

n+0=¢

SCZ Z 1 Xell 210y [IVW0n L2 (D) 1 26| 1 0)
n+6=¢

< C||XHB?(H1(0))||VUJHB2(L2(D))HZ||B*(H1(0))7

where w is the basic flow provided by Theorem 3.4. OJ

We observe that in the cancellation property above it is fundamental
that we deal with the complex conjugate of X and with the fact that the
spectrum is symmetric, since flux and solution are both real-valued.

The proof of Theorem 3.13 is split into three preliminary steps.

3.4.4 First step: existence for the finite modes approzimation

Given U € B3(R; H}(0)) with V-U = 0 and an integer N > 1, we seek

for a solution to the following problem,

: (N) -~ ~
(3.14) iU — vAUe + > ' [(Uy - V) U + (Uyy - V) wp + (wy - V) Up]
n+6=¢
+ VP = F,
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for &€ € pun(f), where again the superscript on the above sum means that
the sum is extended only over modes in pn(f).

PROPOSITION 3.17. Let f € BY2(R) and U € B-2(R; H}(0)) and set

(V) (N) |~
o = DSl and Y =) Ul o)
3 3

Then, there is a unique solution UWN) = {UéN)}ge(,N(f) of problem (3.14).
Moreover, there are non-negative functions ci(-,-) and ca(-,-,-) increasing
of their arguments and depending only on the domain O, such that

()
(3.15) 107 g8

< e I flgremy) el + (v, o || fllsr2(w)-

N
ont UM g2 (r; 1 0y

Moreover there ezists cs.17 > 0 (independent of v, N, f and (7) such that if

v > caarl +ezar(l+ 1)k,

then
N 1y 4N N o)
(316) (v = esartd — epar(1+ 1)ol) (30 VU 1120 ) <
3

<c(1+v)p) +c(1+ 1)) + (1 + L)ool

PrROOF. The proof can be carried on with the standard technique of
Fujita (cf. Theorem 1.4 of [32, Ch. 2]) for the case of existence of solutions
for the steady Navier-Stokes equations in unbounded domains (but we have
the additional advantage of the Poincaré inequality (2.20)). We use Galerkin
approximations U™ = >}, uFey, (not necessarily made with eigenfunctions)
and we consider the projection of (3.14) on the finite dimensional Galerkin
space as a problem on R?™V (the real and imaginary parts of each u* count
as two variables) with the scalar product induced by the one of H}(O)®2V.

We show existence of a solution of the finite dimensional problem by
means of Lemma 1.4 of [32, Chapter 2] (which in turns is a consequence
of Brouwer’s fixed point theorem). Let P(U™) be given component-wise by
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the projection of (3.14) so that if P(U™) = 0 then U™ is the solution to the
Galerkin projected problem. It is sufficient to show that P(U") - U, > 0
on |U"| = Cy for some Cjy > 0, where product and norm are those we have
given on R?"Y . This is immediate by Lemma 3.15 and 3.16 since

PU™) - U™ > v|U"? - Z " S Nl 0y | VB2 U2
n+0=¢
—C||F||32(L2(0))\U |
> v|U" P — ep N IV@| g2 220y U™ = el Fllg2 2oy U™,
which is strictly positive if we choose v such that
Co > L (WY IV g2r2(py) + cll Flls2(r2(0y))-

Passing to the limit in the Galerkin approximation is standard (the non-
linearity contains a finite sum) and follows from uniform bounds (in n) on
U™ which are similar to (3.15) and whose proof is formally similar. Hence,
we prove (3.15) directly. For each ¢ € pn (f) multiply (3.14) by U, integrate
by parts on O, sum over £ € un(f), and use Lemma 3.16 to get

() (N)
DY U720 +’/Z IVUellZ2(0) +
3
N) [ —
_|_Z Z U V)wgdm—z Ug - F.

n+0=¢ g ©
Hence by applying Lemma 3.15, Young’s inequality for convolutions, Theo-
rem 3.4, and by taking the real part we get

VIVUB2 20y <C315Z Z HU£||H1(0)H[777”H1(0)HV%HB(D)
n+0=¢
+ CHFHB(L2(O))HU||B2(H1(O))

1
< (v (1+ ) sy + el Fllszzop ) 10 ls2m 0y

which yields inequality (3.15).
To prove uniqueness, let UI(N) UQ(N) be two solutions corresponding to
the same data, set D) := UI(N) U(N and QW) .= PI(N) - PQ(N), then

N ~
0™ — vap™ + (@, ) DR + (w, - v) D) + v o,
n+6=¢
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and now taking the scalar product with DEN)
VHVD(N)H%Q(R-L?(O)) =0, hence D) = 0.

Finally, to prove (3.16), multiply (3.14) by Uy, integrate by parts on O
and divide by the non-zero value of |[VUg|| 2 to get

and using Lemma 3.16 yields

V[[VUel 1200y < cllFellz2(0) +

(N) /=~ ~ ~
+e 3 (10l o) 1Tall s 0y + W00l 0y | Vol 2y +
n+0=¢
+ IV @yl 200y 106 111 0)) -
Inequality (3.16) follows by summing in £, using Young’s convolution in-
equality, Proposition 3.12 and Lemma 3.15. [J

3.4.5 Second step: existence of a limit as N — oo
Let f € BY2(R) N B*(R) and assume additionally that the quantity

1Flle =D (1 + €D fel
¢

is finite. This implies in particular, as in Lemma 3.12, that f and 1’ have
representatives which are Bohr-almost periodic. Let U € B2(R; H(0)),
assume that the quantity ), [|Ue|1(0) is also finite and consider the prob-
lem

(3.17) iEUe —vAUe + Y [(Uy- V) U+ (Uy - V) wy + (wy - V) Up)
n+6=¢
+ VP = F,

for £ € p(f).

PROPOSITION 3.18. There exists vy > 0, with vy = vo(f,O), such that
for every v > vy there is ¥, > 0 such that

v > czar(e + (14 DI,

and if

D IVUell 20y < ¥
13
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then there is a unique solution U € B*(R; H(0)) N BY22(R; L?(0)) to
problem (3.17).
Moreover,

10N 532 R0y T IV B2 R:18 0))
(3.18) < e, | fllrem)) s + e, | fllss [1fls12R))s
Z 1Ueller 0y < s
§

Proor. Let {UM)}ys1 be the sequence of solutions to (3.14) pro-
vided by Proposition 3.17. By (3.15) it follows that {U®™)} x>, is bounded
in BY/22(R; L*(0)) and in B*(R; H}(O)), hence there is a sub-sequence
weakly convergent to a limit point U € BY/22(R; L?*(0)) N B2(R; H}(O)).
Since in (3.17) U does not depend on N, weak convergence is enough to
pass to the limit in the equation. Uniqueness follows as in Proposition 3.17,
using Lemma 3.16.

We only have to identify vy and v,. From (3.16) it follows that

(v = caaribe = eaar(1+ D] (ZHVUgIILz )

<@+ v)|flls+ et +5)? (HfH )2+ e+ D)l

so everything boils down to show that for v large enough there is ¢, such
that

(L + V) fll + e+ HNFIZ + e+ DI Flle
v—cpe —c(1+ 3)lIf]l

< s,

that is

e = (v =2c(1+ DIfl) e + et +v)lIf e + A+ 3)?IFIZ < 0.

It is elementary to verify that the above polynomial has two positive solu-
tions for v large enough. [J

REMARK 3.19. Clearly, without the assumption on the size of v in the
previous proposition, one can still show existence and uniqueness of the
solution of (3.17). The size condition on v is necessary only to get the
second estimate in (3.18), which will be crucial in the next step.
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3.4.6 Third step: the fixed point argument
Under the assumptions of Proposition 3.18 we have a well defined map
U — U, where U is the solution to problem (3.17). Denote the map by Z,
then it is clear that any fixed point of Z is a solution to (3.13) and hence
to (3.11).

ProoOF Oor THEOREM 3.13. Fix v > 1, where vy is given in Propo-
sition 3.18. We prove that the map 7 is a contraction on the set X of all
U € B%(R; H}(0)) N BY/%2(R; L?(0)) that verify the bounds (3.18).

The fact that Z maps X into X clearly follows from Proposition 3.18,
so we only need to prove that 7 is a contraction. This is obtained as in
the proof of uniqueness of Proposition (3.17). Indeed, if £ := U — U2 and
D :=Z(U') — Z(U?), then

i€D¢ —vADe + Y (Ey-V)I(UY)g + (U2 V) Dy
n+0=¢
+ (Ey - V) wg + (wy - V) Dp + VQe = 0,

with a suitable (). By multiplying by D_g, integrating by parts, summing
over ¢ and using Lemma 3.16, we get

v[[VDlg2r2(0)) < (s + (14 DIF IO E g2 0))
that is ||D||BQ(H1(O)) < K()HEHBz(Hl(O)), with

et c(L+ DI

14

Ky :=

Likewise we also have ||Dl|gi/22(2(0)) < VKG|E|lg2(m1(0y)- Finally, by
multiplying by Dg, dividing by ||V D¢|| £2(0) and summing over £ we get

(v = esar (e + 1+ DIFI) D IDel o) < vEo Y I1Eelm 0)-
3 £

The coefficient on the right—hand side is positive by assumption, hence if

we set
v Ky

(v—car(vu + A+ D)fI1K)’

Ky =
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and we choose v large enough so that K; < 1, hence Ky < 1, and VK% <1,
the map 7 is a contraction.

In order to conclude the proof, we need to show that if {Ug}ec,(s) is
solution to (3.13), then the Besicovitch almost periodic vector field U having
Fourier coefficients {Ug }¢c,(r) is a weak solution to (3.11), namely that for
every divergence-free p € C°(0;R?) and every ¢ € R,

M[ (00 ) = v(U. Bg) = U, (U +w) - V) ¢) = (w, (U - V) ) ) ] =0,
which is straightforward due to the bounds (3.18). O

3.4.7 Final considerations
Apparently the assumption (3.12) seems to be essential for the proof in
the Besicovitch setting to work. The technical problem is essentially related
to the term

D Ue (V- V) Wy

§ nto=¢

which is of order three, although all bounds on U, V', W are of order two, if
one works in the framework of B? spaces. Young’s convolution inequalities
tell us that in general there is no possibility to bound the above term under
these assumptions. In terms of the time variable, we are trying to bound
the Navier-Stokes non-linearity over the whole R.

Another possibility would be to use the other a-priori estimate we have
obtained, namely the bound in BY/22(R; L?(0)), which plays no role in the
above work, using for instance the results in Section 3.3. This possibility
is ruled out by the non-linear term. In fact, in the standard case of Leray-
Hopf weak solutions one has a better knowledge of the time derivative and
this can be used for instance with the Aubin-Lions compactness lemma to
handle the non-linear term.

Indeed the non-linearity reads in Fourier variables (in time) as a con-
volution and, whatever is the spectrum o(f) of the flux, the spectrum of
the solution to the non-linear problem will have the Z-module p(f) as its
spectrum. In different words, the non-linearity creates a full set of harmonic
resonances in the time frequency. The structure of Z-modules in R shows
that the only possibility to use a bound on the derivatives (while obtaining
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a useful information for all times ¢ € R) is the periodic case, previously

studied in [3]. Indeed it is easy to verify the following result.

PROPOSITION 3.20. Let G C R be a Z-module. Then, either G = kZ

for some k € R or G is dense in R.
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