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On Leray’s Problem for Almost Periodic Flows

By Luigi C. Berselli and Marco Romito

Abstract. We prove existence and uniqueness for fully-developed
(Poiseuille-type) flows in semi-infinite cylinders, in the setting of (time)
almost-periodic functions. In the case of Stepanov almost-periodic
functions the proof is based on a detailed variational analysis of a
linear “inverse” problem, while in the Besicovitch setting the proof
follows by a precise analysis in wave-numbers.

Next, we use our results to construct a unique almost periodic
solution to the so called “Leray’s problem” concerning 3D fluid motion
in two semi-infinite cylinders connected by a bounded reservoir. In the
case of Stepanov functions we need a natural restriction on the size of
the flux (with respect to the viscosity), while for Besicovitch solutions
certain limitations on the generalised Fourier coefficients are requested.
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1. Introduction

We consider the motion of a viscous fluid in semi-infinite cylindrical

pipes, with an assigned (time) almost-periodic flux. The results are aimed

to find solutions of the so-called “Leray’s problem.” Moreover, this work can

be considered as an intermediate step towards the analysis of (deterministic)

statistical solutions for the flow of Poiseuille-type, which is the object of

our current and ongoing research. We recall that Leray’s problem (which

seems to have been proposed by Leray to Ladyžhenskaya [20, 22]) is that of

determining a motion in a region with cylindrical exits, subject to a given

flux, and tending to the Poiseuille solution in each exit. More precisely,

let be given a connected open domain O ⊂ R3 made of a “reservoir”, a

bounded and smooth open set O0, with two cylindrical exits O1 and O2.

These two semi-infinite exits (pipes) are described in coordinate systems

with the variable z directed along their axis as

Oi = Di ×R+,

where the smooth cross sections Di, i = 1, 2, may be possibly of dif-

ferent shape and measure. We denote by z ∈ R+ the axial coordinate

in both cylinders. Pioneering results in the stationary case are those of

Ladyžhenskaya [21] and Amick [2]. See also the review in Finn [7]. The

extensive literature on the stationary problem is recalled for instance in [11,

12] for the linearized and full Navier-Stokes problem, respectively. More

recently the problem of motion in pipes has also been addressed in the time-

evolution case, see Ladyžhenskaya and Solonnikov [23] and also the review

in Solonnikov [31]. In the last decade Beirão da Veiga [3] and Pileckas [27]

gave new contributions to the study of the time-dependent problem with

assigned flux, and the special role of the pressure has been also emphasized

by Galdi and coworkers [13, 14]. See also the review in Pileckas [28].
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In [3] Leray’s problem has been considered in the context of time periodic

flows, especially in view of application to the study of blood flow and we

recall that the role for the analysis of blood flow in the current mathematical

research has been put in evidence by Quarteroni [30]. We also stress that

the (non-trivial) explicit solution introduced by Womersley is periodic, in

some sense generalises the Poiseuille flow, and has been discovered in the

study of physiological flows. Since the heart is pumping with a flux which

is not periodic, but a superposition of possibly non-rational frequencies,

this suggests also to study the problem in the setting of almost periodic

functions. This work has been originated by the inspiring results in [3] and

especially from Remark 3 therein: The independence of the various constant

on the period of the flux let the author suggest about the possible extension

to almost periodic solutions. The problem nevertheless requires a precise

functional setting in order to detect the largest class of almost periodic

functions to be employed. Moreover, it seems that the very nice proof based

on Fourier series in [3] cannot be directly applied to the new setting and

in addition new difficulties in treating the non–linearity arise when almost

periodic functions are employed. This leads us to propose two different

approaches in two different functional settings. We finally remark that,

in addition to early results of Foias [8], the approach via almost-periodic

functions finds wide applications in fluid mechanics, see for instance the

recent paper by Gérard-Varet and Masmoudi [15] and Giga et al. [16, 17,

18].

1.1. Setting of the problem

The problem we wish to solve is to find a (time) almost-periodic solution

of the Navier-Stokes equations
∂tu− ν∆u + (u · ∇)u +∇p = 0, x ∈ O, t ∈ R,

div u = 0, x ∈ O, t ∈ R,

u = 0 x ∈ ∂O, t ∈ R,

(1.1)

such that u converges in both pipes as |z| → ∞ (in a sense we shall make

clear later) to the solution of the Poiseuille-type problem. For clarity we

recall (cf. [3, § 2]) that by solution of the Poiseuille-type problem (of fully-

developed flow) we mean a solution of the Navier-Stokes equations such

that, in a reference frame with z directed along the axis of the pipe and
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x := (x1, x2) belonging to the orthogonal plane, is of the form

u(t, x, z) = (0, 0, w(t, x)) and p(t, x, z) = q(t, x, z) + r(t).

Here r(t) is an arbitrary function and, in addition, the flux condition is

satisfied: ∫
D

w(t, x) dx = f(t),

for some given function f , where D is the section of the domain.

The Poiseuille-type ansatz implies that Navier-Stokes equations reduce

in the semi-infinite pipes Oi, i = 1, 2, to the following equations
∂tw

i − ν∆xw
i + ∂zp

i = 0, (x, z) ∈ Oi, t ∈ R,

∂x1p
i = ∂x2p

i = 0 (x, z) ∈ Oi, t ∈ R,

wi(t, x) = 0, (x, z) ∈ ∂Di ×R+, t ∈ R,

where ∆x denotes the Laplace operator with respect to the variables x1

and x2. From the first equation it follows that ∂zp
i is independent of z.

From the second equation, we also obtain that pi is independent of x, hence

pi(t, x, z) = pi(t, z) = −πi(t) z + ri(t). Since the term ri(t) does not affect

the velocity field, we may assume that the pressure has the form pi(t, z) =

−πi(t) z. Moreover, the dependence of wi on the space variables x1 and x2

allows us to consider a problem reduced to the cross section Di of Oi, and

the flux condition is then
∫
Di

wi(t, x) dx = f(t). This implies that we have

to study in each pipe the following problem (called in the sequel the “basic

flow”): Find (wi(t, x), πi(t)) such that
∂tw

i(t, x)− ν∆wi(t, x) = πi(t), x ∈ Di, t ∈ R,

wi(t, x) = 0 x ∈ ∂Di, t ∈ R,∫
Di

wi(t, x) dx = f(t) t ∈ R,

(1.2)

showing (under suitable assumptions) that if f is almost periodic, then the

couple (w, π) is almost-periodic, too.

We observe that, contrary to the stationary problem where the same

approach gives the well-known Poiseuille solutions, the solution of the time-

dependent motion is more complex for the determination of the non-constant
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pressure (Observe that the classical Poiseuille solution is that obtained for

circular pipes, but nevertheless in more general domains the same approach

gives corresponding results). In our problem for the basic flow we have two

scalar unknowns and two equations, but contrary to the classical problems

in fluid mechanics one cannot get rid of the quantity π by means of pro-

jection operators. The problem we have to solve can in fact be considered

as an inverse problem. Consequently the problem cannot be treated with

the standard variational tools in a direct way. We can write a single equa-

tion (the “elimination” of πi is obtained by taking the mean value over Di)

obtaining{
∂tw

i − ν∆wi + ν
∫
D ∆wi dx = f ′(t), x ∈ Di, t ∈ R,

wi(t, x) = 0, x ∈ ∂Di, t ∈ R,

and the latter equation makes easy to understand why some knowledge also

of the derivative of the flux will be needed in order to solve (2.2). The usual

energy-type estimates obtained by testing with wi, or with −∆wi, and with

wit are not-conclusive when applied to this problem. In particular, the lack

of coercivity prevents from a direct application of the standard techniques

employed for parabolic problems, see [3, Sec. 3]. This specific issue has been

recently addressed in two different ways by Beirão da Veiga [3] (periodic

case) and Pileckas [27] (given smooth flux).

Even if we generalize to the almost-periodic setting the periodic results

obtained in [3], in the first part of the paper we will mainly follow and

suitably adapt the approach of [27]. In particular we give special emphasis

to the solution of (1.2) since this represents one of the main technical dif-

ficulties. The nonlinear problem is then treated by means of perturbation

arguments in a more or less standard way. We want also to point out that

in the huge literature on almost periodic solutions we find particularly in-

spiring (for the choice of Stepanov functions as suitable for our problem)

the paper by Marcati and Valli [25] concerning compressible viscous fluids.

In the second part of the paper we consider the problem in the larger

class of Besicovitch almost periodic solutions, with an approach which is

more in the spirit of Fourier analysis. We give a different proof of the

existence of the basic flow, which also covers the H1(R) case and provides

an alternative proof of [3, Thm. 1], when restricted to a time-periodic flux.

The fully nonlinear case needs, besides the natural assumption of large
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viscosity, an additional assumption of regularity on the flux (see (3.12))

which accounts of the technical difficulties of this case, due essentially to

the non–local (in time) quantities that are used, see Section 3.4.7.

Remark 1.1. For its variational formulation and the use of energy es-

timates the problem seems to be naturally set in Hilbert spaces and this is

not well fitting with the classical continuous (Bohr) spaces of almost peri-

odic functions. A suitable choice of the spaces represents then a fundamental

starting point. We are presenting two different proofs in two different set-

tings, since they are substantial different and the assumptions we make on

the flux are of very different nature. In the first part we deal with Stepanov

a.p. functions, and the setting is much similar to the classical variational one

for evolution partial differential equations. In the second part we deal with

Besicovitch a.p. functions and the proofs use analysis in wave-numbers. We

also point out that while the linear problem can be also treated in a unified

way, for the nonlinear one the differences in the functional setting imply

special assumptions on the size of the flux and on the Fourier coefficients,

respectively.

Plan of the paper: In Section 2 we consider the problem under the

condition of a Stepanov almost periodic flux. After recalling the main defi-

nition we give a complete solution of Leray’s problem, with the natural (in

space dimension three) restriction of a large viscosity. As by-product of our

results, we also prove existence in the case of H1(R) fluxes. In Section 3

we consider the problem in the larger class of Besicovitch almost periodic

solutions and we prove existence for the basic flow, together with existence

for the nonlinear problem under suitable restrictions on the flux.

2. Leray’s Problem in the Framework of Stepanov a.p. Functions

Here we introduce a functional setting in which it is possible to extend

the result of [3] to almost periodic solutions.

2.1. Functional setting

The problem of almost periodic solutions of partial differential equations

has been studied extensively in the last century, starting with the work of

Bohr, Muckenhoupt, Bochner, Favard, and many others. See the review in
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Amerio and Prouse [1], Besicovitch [5], Corduneanu [6], and Levitan and

Zhikov [24].

In the sequel we will use the standard Lebesgue Lp and Sobolev spaces

Hs = W s,2. For simplicity we also denote by ‖ . ‖ the L2-norm. We will

use the symbol C to denote a generic constant, possibly different from line

to line, depending on the domain and not on the viscosity ν nor on the

flux f . Next, given a Banach space (X, ‖ . ‖X) we denote by UAP(R;X)

the space of almost periodic functions in the sense of Bohr-Bochner. We

recall that a function f ∈ C0(R;X) is almost periodic if and only if the

set of its translates is relatively compact in the C0(R;X)-topology (observe

that if C0
b (R;X) denotes the space of continuous bounded functions, then

UAP(R;X) ⊂ C0
b (R;X)). In the context of weak and strong solutions

to partial differential equations it is probably better to work with a more

general notion of almost-periodicity, given for functions f ∈ Lploc(R;X),

which is well-suited to deal with distributional solutions.

Definition 2.1 (Stepanov p-almost periodicity). We say that the

function f : R → X is Stepanov p-almost periodic (denoted by f ∈
Sp(R;X)) if f ∈ Lploc(R;X) and if the set of its translates is relatively

compact in the Lpuloc(R;X) topology defined by the norm

‖f‖Lp
uloc(R,X) := sup

t∈R

[∫ t+1

t
‖f(s)‖pX ds

]1/p
.

When p = 2 we say simply that the function f : R→ X is Stepanov almost

periodic.

We will give the main result by using fluxes belonging to this class, to-

gether with their first order derivative. However, in the second part of the

paper we will consider also a wider class of almost periodic functions: Func-

tions almost periodic in the sense of Besicovitch. Further generalities (not

needed in this section) on almost periodic functions are given in Section 3.1.

A first main result that we will prove concerns the existence of the “basic

flow” problem in this framework.

Theorem 2.2. Let be given a smooth, connected, and bounded open

set D ⊂ R2 and let be given f : R → R such that f, f ′ ∈ S2(R). Then,
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there exists a unique solution (w, π) of (2.2) such that

∆w,wt ∈ S2(R;L2(D)),

∇w ∈ S2(R;L2(D)) ∩ C0
b (R;L2(D)),

π ∈ S2(R),

and satisfying the estimate

sup
t∈R

[
ν‖∇w(t)‖2 +

∫ t+1

t

(
ν2‖∆w(s)‖2 + ‖wt(s)‖2 + |π(s)|2

)
ds
]

≤ C
(
ν2 + 1 +

1

ν

)
‖f‖2H1

uloc(R),

(2.1)

Remark 2.3. The result concerning the linear problem (2.2) for the

basic flow holds true in any space dimension, hence also for a smooth and

bounded D ⊂ Rn.

This allows to obtain in a rather standard way the following result for

the Navier-Stokes equations.

Theorem 2.4. Let O as in the introduction and let be given f such

that f, f ′ ∈ S2(R). Then there exists ν0 = ν0(f,O) ≥ 0 such that if ν > ν0

there exists a unique solution u of (1.1) such that

u ∈ S2(R;H1
loc(O))

and u converges to the Poiseuille-type solution wi (the basic flow) in each

pipe Oi, as |z| → +∞.

Remark 2.5. The restriction on the viscosity is not surprising and is

common to several results concerning the three-dimensional Navier-Stokes

equations. This is also observed in [12, Ch. XI], since the existence of a flux

carrier that can be absorbed by the dissipation for any positive viscosity

is generally not known to exist for cylindrical domains. This imposes (also

in the stationary case) limitations on the size of the flux, in terms of the

viscosity.

We observe that also in the time-periodic case [3] largeness (in terms of

data of the problem) of the viscosity is required. Nevertheless, the results

in [3] concern weak solutions and uniqueness is not stated. On the other

hand in [27] there is no restriction on the viscosity, since special “two-

dimensional-like” solutions are considered.
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2.2. Construction of the solution of the “basic flow”

In this section we give a detailed analysis of the existence of an almost

periodic basic flow and a complete proof of Theorem 2.2. The problem is

the following: given f, f ′ ∈ S2(R) find a Stepanov almost periodic solution

of 
∂tw − ν∆w = π, x ∈ D, t ∈ R,

w(t, x) = 0, x ∈ ∂D, t ∈ R,∫
D w(t, x) dx = f(t) t ∈ R,

(2.2)

Remark 2.6. It is easy to check that one can analyse the slightly more

general problem where (2.2) is replaced by{
∂tw + νAw = πe, t ∈ R,

〈w(t), e〉H = f(t) t ∈ R.

with an A an unbounded, linear, and with compact inverse operator on the

Hilbert space H, with domain D(A) and where e ∈ H with e �∈ D(A) is

given. Under suitable assumptions on A, the same procedure that we will

employ can be used, see also [4]. The same remark holds also for the results

of Section 3.

We start by solving the following initial-boundary value problem in the

unknowns (w, π),
∂tw − ν∆w = π, x ∈ D, t ∈]0, T ],

w(t, x) = 0, x ∈ ∂D, t ∈]0, T ],∫
D w(t, x) dx = f(t), t ∈ [0, T ],

w(0, x) = w0(x), x ∈ D.

(2.3)

We follow essentially the same approach of [27], with additional care on the

analysis of the initial datum and on the dependence of the solution on the

various parameters of the problem. In the sequel we will employ a spec-

tral (spatial) approximation using the L2(D)-orthonormal eigenfunctions

{ek}k∈N of the Laplace operator,{
−∆ek = λkek x ∈ D,

ek = 0 x ∈ ∂D.
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Define βj := (11, ej), j ∈ N, where (·, ·) denotes the L2(D) scalar product

and 11 is the function defined on D such that 11(x) = 1 a. e.. Without loss

of generality from now on we assume that |D|, the Lebesgue measure of D,

is equal to one. Clearly,

11 =
∞∑
k=1

βjej(x) and
∞∑
k=1

β2
j = |D| = 1.

A special role is played by the pipe’s flux carrier, i. e., by the function Φ

(which belongs to H2(D) ∩ H1
0 (D) under the smoothness assumptions on

D) defined as solution of the following Poisson problem{
−∆Φ = 11 x ∈ D,

Φ = 0 x ∈ ∂D.

We define the two quantities

χ2
0 :=

∫
D

Φ dx =

∫
D
|∇Φ|2dx > 0 and η2

0 :=

∫
D
|Φ|2dx > 0,

which clearly depend only on D. Observe that the function Φ is enough in

the stationary case to construct Poiseuille-type flows, since in that case the

problem for the flux and that for the pressure completely decouple. On the

other hand, in the time-dependent case the situation if more complex, since

both unknowns depend also on the time.

In our problem with a general viscosity we need the scaled version of

the flux carrier ϕ := ν−1Φ which solves{
−ν∆ϕ = 11 x ∈ D,

ϕ = 0 x ∈ ∂D,
(2.4)

and such that∫
D

ϕdx = ν

∫
D
|∇ϕ|2dx =

χ2
0

ν
> 0 and

∫
D
|ϕ|2dx =

η2
0

ν2
.

Remark 2.7. The proofs of the following Proposition 2.8 and Lemma

2.9 follow very closely those in [27, Sec 3-4]. Nevertheless, some care is taken
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here to deal with in the initial value and also to stress the dependence on

the viscosity, which will be crucial for the long-time behavior. The proofs

can be skipped by the reader well acquainted with the problem, but we give

full details in order to keep the paper self-contained, reproducing most of

the very precise estimates in [27].

We start our analysis by proving the following result.

Proposition 2.8. Given f ∈ H1(0, T ), assume that1 w0(x) =
ν ϕ(x)
χ2

0
f(0). Then, there exists a unique solution (w, π) of (2.3) such that

w ∈ C(0, T ;H1
0 (D)) ∩H1(0, T ;L2(D)) ∩ L2(0, T ;H2(D)),

π ∈ L2(0, T ),

satisfying the following estimate

ν‖∇w(t)‖2 + ν2

∫ t

0
‖∆w(s)‖2 +

∫ t

0
‖wt(s)‖2 ds +

∫ t

0
|π(s)|2 ds

≤ C

∫ t

0

(
(1 + ν2)|f(s)|2 + (1 + ν)|f ′(s)|2

)
ds, t ∈ [0, T ],

(2.5)

with a constant C depending only on D (and in particular independent of

T ).

Proof. We follow the approach in [27] and we start by constructing,

with the Faedo-Galerkin method, a global unique approximate solution in

Vm := Span〈e1, . . . , em〉. The first step is to approximate the initial condi-

tion. Let ϕ be the function introduced in (2.4) and write ϕ =
∑∞
k=1 ϕkek,

where the series converges in H2(D) and ϕk = (ϕ, ek). Hence, the projection

of ϕ over Vm is given by

Pmϕ :=
m∑
k=1

ϕkek.

In order to satisfy the flux condition also at time t = 0 we set

wm(0, x) :=
f(0)Pmϕ(x)∫
D Pmϕ(x) dx

.

1The initial condition here is chosen in such a way that the compatibility conditions
on the flux at time t = 0 are satisfied.
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Observe that, for large enough m ∈ N, the approximate initial datum is well-

defined. In fact, Pmϕ → ϕ in L2(D) and since |D| < +∞ then Pmϕ → ϕ

in L1(D). Since
∫
D Pmϕ →

∫
D ϕ = ν−1χ2

0 > 0, there exists m0 ∈ N such

that
∫
D Pmϕ �= 0 for all m ≥ m0. Moreover, wm(0, x) → w0(x) in H2(D),

as m→ +∞.

We write Galerkin approximate functions

wm(t, x) =

m∑
k=1

cmk (t) ek(x),

and we look for a couple (wm, πm) such that

d

dt
(wm, ej) + ν(∇wm,∇ej) = πm(11, ej) for j = 1, . . . ,m,(2.6)

and πm : (0, T )→ (0, T ) chosen so that the flux condition∫
D

wm(t, x) dx = f(t) ∀ t ∈ (0, T ),(2.7)

is satisfied. The equality is meaningful since f is a. e. equal to a continuous

function. In terms of Galerkin coefficients {cmj }1≤j≤m we have for the initial

condition that

cmj (0) := f(0)
ϕj∑m

j=0 ϕkβk
,

while the system of ordinary differential equations for cmj (t) reads as

d

dt
cmj (t) + νλjc

m
j (t) = πm(t)βj for j = 1, . . . ,m,

and the solution can be written as follows

cmj (t) = cmj (0) e−νλjt+βj

∫ t

0
πm(s) e−νλj(t−s) ds for j = 1, . . . ,m.

To find the equation satisfied by πm we multiply the latter equality by βj
and sum over j = 1, . . . ,m to get

f(t) =
m∑
j=0

βjc
m
j (0) e−νλjt+

m∑
j=0

β2
j

∫ t

0
πm(s) e−νλj(t−s) ds.
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Finally, to obtain an (integral) equation for πm, we differentiate with respect

to time deducing

f ′(t) = − ν

m∑
j=0

λjβjc
m
j (0) e−νλjt

+
m∑
j=0

(
β2
j π
m(t)− νλj

∫ t

0
β2
j π
m(s) e−νλj(t−s) ds

)
,

and this yields the following Volterra integral equation of the second type

πm(t)− ν

∫ t

0

m∑
j=1

λjβ
2
j

|β|2 eνλj(t−s) πm(s) ds

=
1

|β|2 f
′(t) + f(0)

∑m
j=1 βjϕj e−νλjt∑m

k=1 βkϕk
,

(2.8)

where |β|2 :=
∑m
k=1 β2

m. For any fixed m ∈ N the kernel of the integral

equation (2.8) is bounded for all 0 ≤ s ≤ t. This is enough to infer that

if f ∈ H1(0, T ), then there exists a unique πm ∈ L2(0, T ) satisfying the

integral equation (2.8) and such that

‖πm‖L2(0,T ) ≤ Cm(ν)‖f‖H1(0,T ),

for a constant Cm(ν) possibly depending on m and also on ν. Especially the

dependence on m is crucial, since we consider the problem at fixed viscosity,

while we need uniform estimates in m ∈ N to employ the Galerkin method.

In particular, the uniform estimate does not follow directly since the series

defining the kernel for s = t, that is
(∑m

k=1 β2
k

)−1∑m
k=1 λkβ

2
k does not

converge for m→ +∞. See [27] for further details.

We need to find the a priori estimate in a different way, but observe

that, once we have constructed πm, we can use it as a given external force

in the equation for the velocity (2.6). By using wm as test function, we

obtain (with the Schwarz inequality and by using (2.7)) that

1

2
‖wm‖2 + ν

∫ t

0
‖∇wm‖2 =

1

2
‖wm0 ‖2 +

∫ t

0
πm(s)(11, wm(s)) ds

=
1

2
‖wm0 ‖2 +

∫ t

0
πm(s)f(s) ds

≤ ‖w0‖2 +
1

2ε

∫ t

0
|f(s)|2 +

ε

2

∫ t

0
|πm(s)|2 ds.
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Observe also that wm0 → w0 in L2(D) and that ‖wm0 ‖2 ≤ 2‖w0‖2 for large

enough m and in addition

‖∇wm0 ‖2 ≤ 2‖∇w0‖2 ≤
2ν2

χ2
0

‖f‖2H1(0,T )‖∇ϕ‖2 ≤ 2‖f‖2H1(0,T ).

This gives the first a-priori estimate showing that, for all m ≥ m0, there

exists a unique solution wm ∈ L∞(0, T ;L2)∩L2(0, T ;H1). Since the bounds

we obtain on the solution are not independent of m, they cannot be used

to make directly the Galerkin method to work. We can prove even more

regularity on wm by standard estimates. In fact, by using as test function

wmt in the system satisfied by wm we get

‖wmt (t)‖2 +
ν

2

d

dt
‖∇wm(t)‖2 = πm(t)(11, wmt (t)) = πm(t)f ′(t).

Hence, an application of the Schwarz inequality gives

ν

2
‖∇wm(t)‖2 +

∫ t

0
‖wmt ‖2 ds

≤ ν‖∇w0‖2 +
ε

2

∫ t

0
|πm(s)|2 ds +

1

2ε

∫ t

0
|f ′(s)|2 ds.

(2.9)

By using −∆wm as test function in the equation satisfied by wm we also

obtain

1

2
‖∇wm(t)‖2 +

ν

2

∫ t

0
‖∆wm(s)‖2 ds

≤ ‖∇w0‖2 +
1

2ν

∫ t

0
|πm(s)|2 ds.

(2.10)

These estimates are enough to construct, for each fixed m ∈ N, a unique

solution (wm, πm), which is smooth, say H1(0, T ;L2(D))∩L2(0, T ;H2(D)).

Again the presence of πm in the right-hand side prevents from uniformity

in m.

This issue is solved by using a special test function and a couple of nested

a-priori estimates in the following lemma, see [27].

Lemma 2.9. There exists M0 ∈ N (larger or equal than m0) such that



On Leray’s Problem for Almost Periodic Flows 83

for all m > M0 it holds for all t ∈ [0, T ]

ν‖∇wm(t)‖2 + ν2

∫ t

0
‖∆wm(s)‖2

+

∫ t

0
‖wmt (s)‖2 ds +

∫ t

0
|πm(s)|2 ds

≤ C

∫ t

0

(
(1 + ν2)|f(s)|2 + (1 + ν)|f ′(s)|2

)
ds,

(2.11)

with a constant C depending only on D (hence independent of m and of T ).

Proof. We observe that the function Pmϕ, where ϕ is defined in (2.4),

turns out to be a legitimate test function for the Galerkin system. With

integration by parts, we obtain

(wmt , Pmϕ)− ν(wm,∆Pmϕ) = πm(t)(11, ϕ + (Pmϕ− ϕ)).

By adding to both sides of the previous equality the quantity −ν(wm,∆ϕ) =

(wm, 11) = f(t) we obtain

(wmt , Pmϕ) + f = πm(11, ϕ) + πm(11, Pmϕ− ϕ) + ν(wm,∆(Pmϕ− ϕ)).

The last term from the right-hand side vanishes since wm ∈ Vm, while

∆(Pmϕ − ϕ) ∈ V ⊥
m . Hence, squaring the latter equality (remember that

(11, ϕ) = ν−1χ2
0) we obtain

χ4
0

ν2
|πm(t)|2 ≤ 3

(
‖wmt (t)‖2‖Pmϕ‖2 + |f(t)|2 + |πm(t)|2‖Pmϕ− ϕ‖2

)
.

Next, since Pm is a projection operator it follows that there exists M0 ∈ N

such that ‖Pmϕ − ϕ‖2 < χ4
0/(6ν

2) for all m ≥ M0. Consequently, we can

absorb in the left-hand side the term involving πm from the right-hand side.

After integration over (0, T ), we get∫ t

0
|πm(s)|2 ds ≤ C

∫ t

0

(
‖wmt (s)‖2 + ν2|f(s)|2

)
ds ∀m ≥M0,(2.12)

with a constant C depending only on D (via χ0 and η0). Consider again (2.9)

and use now (2.12) with ε = 1/C. It is possible to absorb the term involving
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πm from the right-hand side, obtaining

ν

2
‖∇wm(t)‖2 +

1

2

∫ t

0
‖wmt (s)‖2 ds

≤ ν‖∇w0‖2 + C

∫ t

0
ν2|f(s)|2 + |f ′(s)|2 ds

≤ C

∫ t

0
(1 + ν2)|f(s)|2 + (1 + ν)|f ′(s)|2 ds.

This shows a uniform bound on ‖wmt ‖L2(0,T ). Hence, coming back again

to (2.12) we also obtain that∫ t

0
|πm(s)|2 ds ≤ C

∫ t

0
(1 + ν2)|f(s)|2 + (1 + ν)|f ′(s)|2 ds.

Next, by using the bound obtained in (2.10) we also get

ν2

∫ t

0
‖∆wm(s)‖2 ≤ C

∫ t

0
(1 + ν2)|f(s)|2 + (1 + ν)|f ′(s)|2 ds.

By collecting all the estimates and with Young’s inequality we obtain

(2.11). �

With the above lemma we can conclude the proof of the existence result,

since uniform bounds imply that there exists a couple (w, π) and a sub-

sequence {mk}k∈N such that

wmk ⇀ w in H1(0, T ;L2(D)) ∩ L2(0, T ;H2(D)),

wmk
∗
⇀ w in L∞(0, T ;H1

0 (D)),

πmk ⇀ π in L2(0, T ).

The problem is linear and this implies that (w, π) is a distributional solu-

tion of (2.3) with the requested regularity. Uniqueness follows again from

linearity of the problem. �

Since the estimates on the norm of the solution are independent of T

(they depend just on D and on ν) the same argument shows that if f ∈
H1(0,+∞), one can study the problem with arbitrary T > 0 and then a

unique solution (with the same regularity) exists in [0,+∞). More generally
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we have also the following result on the whole real line, which is obtained

by letting the initial time to go to −∞.

Corollary 2.10. Let be given f ∈ H1(R). Then, there exists a

unique solution (w, π) of (2.3) defined for all t ∈ R such that

w ∈ C0(R;H1
0 (D)) ∩H1(R;L2(D)) ∩ L2(R;H2(D)),

π ∈ L2(R),

with the same bounds as before (here C0 denotes the subspace of continuous

functions vanishing at infinity).

For our purposes of studying almost periodic solutions it is important

to show that one has a global solution, with uniformly bounded gradients,

also if the force f is not in H1(0,+∞), but just in H1
uloc(0,+∞), where

‖f‖H1
uloc(0,+∞) := sup

t≥0

(∫ t+1

t
|f(s)|2 + |f ′(s)|2 ds

) 1
2
.

In particular, the following result will be crucial for the rest of the paper.

Proposition 2.11. Let be given f ∈ H1
uloc(0,+∞), then the unique

solution of (2.3) exists for all positive time and it satisfies

w ∈ Cb(0,+∞;H1
0 (D)) ∩H1

uloc(0,+∞;L2(D)) ∩ L2
uloc(0,+∞;H2(D)),

π ∈ L2
uloc(0,+∞),

with the estimate (2.19) in terms of the data.

Proof. Generally this result is straightforward in presence of a stan-

dard parabolic problem. Since here we deal essentially with an inverse

problem, we give a detailed proof, which is nevertheless obtained adapting

the usual techniques typical of almost periodic solutions, see e. g. Amerio

and Prouse [1]. Observe that the estimate (2.11) does not give a direct

control of sup0<t<T ‖∇w(t)‖ since the bound depends on ‖f‖H1(0,T ) and

consequently the H1-norm of w may become unbounded when T → +∞, if

f �∈ H1(R). We first prove that ‖∇w‖ ∈ L∞(0,+∞).



86 Luigi C. Berselli and Marco Romito

Observe that Proposition 2.8 imply that there exists a unique solution

w ∈ C(0,+∞;H1
0 (D)) ∩H1

loc(0,+∞;L2(D)) ∩ L2
loc(0,+∞;H2(D)),

π ∈ L2
loc(0,+∞),

hence the following calculations will be completely justified. By using the

function ϕ from (2.4) as test function we obtain with integration by parts

the following identity

(wt, ϕ)− ν(∆w,ϕ) = (wt, ϕ)− (w, ν∆ϕ) = π(11, ϕ).

Hence, by recalling the definition of ϕ and the flux condition we get

χ2
0

ν
π(t) = (wt(t, x), ϕ(x)) + f(t),

and consequently taking the square and integrating over the [ξ, τ ] (for all

couples ξ ≤ τ) we obtain that there exists C > 0, depending only on D,

such that ∫ τ

ξ
|π(s)|2 ds ≤ C

∫ τ

ξ
‖wt(s)‖2 + ν2|f(s)|2 ds.(2.13)

Next, we test the equation satisfied by (w, π) with w and with ν−1wt and,

by recalling that
∫
D wt dx =

( ∫
D w dx

)′
= f ′(t), we obtain (for any ε, η > 0)

the following differential inequalities, a.e. t ∈ (0,+∞)

1

2

d

dt
‖w‖2 + ν‖∇w‖2 ≤ ε

2
|π|2 +

1

2ε
|f |2,

1

2

d

dt
‖∇w‖2 +

1

ν
‖wt‖2 ≤

η

2ν
|π|2 +

1

2ην
|f ′|2.

By choosing ε = (2νC)−1 and η = (2C)−1, where C is the constant ap-

pearing in (2.13), and by integrating over an arbitrary interval [ξ, τ ] we

get

1

2
‖w(τ)‖2H1 +

∫ τ

ξ

(
ν‖∇w(s)‖2 +

1

ν
‖wt(s)‖2

)
ds

≤ 1

2
‖w(ξ)‖2H1 +

∫ τ

ξ
ν(2 + C)|f(s)|2 +

C

ν
|f ′(s)|2 ds.

(2.14)
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Hence, by using the Poincaré inequality and dropping the non-negative term

ν−1‖wt‖2 we finally obtain that there exist c1, c2 > 0, depending only on

D, such that

1

2
‖w(τ)‖2H1 + c1ν

∫ τ

ξ
‖w(s)‖2H1 ds

≤ 1

2
‖w(ξ)‖2H1 + c2

∫ τ

ξ
ν|f(s)|2 +

1

ν
|f ′(s)|2 ds.

(2.15)

Suppose now that for a given t ∈ [0,+∞[ it holds that

‖w(t)‖2H1 ≤ ‖w(t + 1)‖2H1 ,(2.16)

and rewrite (2.15) in the interval [t, t + 1] as follows:

‖w(t + 1)‖2H1 − ‖w(t)‖2H1 + c1ν

∫ t+1

t
‖w(s)‖2H1 ds

≤ c2

∫ t+1

t
ν|f(s)|2 +

1

ν
|f ′(s)|2 ds.

(2.17)

Since by hypothesis (2.16) the first term is non-negative we obtain in par-

ticular that

c1ν

∫ t+1

t
‖w(s)‖2H1 ds ≤ c2

(
ν +

1

ν

)
‖f‖2H1

uloc
.(2.18)

Next, by using the estimate (2.18) and the same argument we get, for each

couple τ ≤ ξ with τ, ξ ∈ [t, t + 1], that

∣∣‖w(τ)‖2H1 − ‖w(ξ)‖2H1

∣∣ ≤ c1ν

∫ τ

ξ
‖wm(s)‖2H1 ds + c2(ν +

1

ν
)‖f‖2H1

uloc

≤ 2c2(ν +
1

ν
)‖f‖2H1

uloc
.

Since ‖w‖2H1 is a continuous function we can fix ξ ∈ [t, t + 1] such that

‖w(ξ)‖2H1 = min
t≤s≤t+1

‖w(s)‖2H1 .
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We have then, using (2.16) and the definition of ξ,

‖w(t)‖2H1 ≤ ‖w(t + 1)‖2H1

≤
∣∣∣‖w(t + 1)‖2H1 − ‖w(ξ)‖2H1

∣∣∣+ ‖w(ξ)‖2H1

=
∣∣∣‖w(t + 1)‖2H1 − ‖w(ξ)‖2H1

∣∣∣+ ∫ t+1

t
‖w(ξ)‖2H1 ds

≤
∣∣∣‖w(t + 1)‖2H1 − ‖w(ξ)‖2H1

∣∣∣+ ∫ t+1

t
‖w(s)‖2H1 ds.

Finally, from (2.17) and (2.18) we obtain

‖w(t)‖2H1 ≤ C

(
ν + 1 +

1

ν2

)
‖f‖2H1

uloc
.

Hence, for each t ∈ (0,+∞) such that (2.16) holds true we have that

‖w(t)‖2H1 is bounded uniformly. On the contrary, if

‖w(t)‖2H1 > ‖w(t + 1)‖2H1 ,

we can repeat the same argument on the “window” [t − 1, t]. In this way

it is clear that if we are not able to find an interval [t − n − 1, t − n] with

n < t− 1 such that

‖w(t− n− 1)‖2H1 ≤ ‖w(t− n)‖2H1

we obtain, for some n ∈ N such that 0 ≤ t− n < 1, the inequalities

‖w(t− n)‖2H1 > · · · > ‖w(t)‖2H1 ,

hence that

‖w(t)‖H1 ≤ sup
0≤t≤1

‖w(t)‖2H1 .

The latter is bounded simply by the local existence result. This finally

shows that, since ‖w0‖H1 depends itself on the norm of f in H1
uloc(R), for

all t ∈ R+,

‖w(t)‖2H1 + c1ν

∫ t+1

t
‖w(s)‖2H1 ds ≤ C

(
ν + 1 +

1

ν2

)
‖f‖2H1

uloc
.
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Next, by going back to (2.14) we obtain an estimate on ‖wt‖2L2(t,t+1), which

implies by (2.13) the corresponding estimate for ‖π‖2L2(t,t+1). Finally, by

comparison we get also an estimate for ‖∆w‖2L2(t,t+1) and by collecting all

inequalities we finally get

sup
t≥0

[
ν‖∇w(t)‖2 +

∫ t+1

t

(
ν2‖∆w(s)‖2 + ‖wt(s)‖2 + |π(s)|2

)
ds
]

≤ C
(
ν2 + 1 +

1

ν

)
‖f‖2H1

uloc(0,+∞),

(2.19)

ending the proof of the Proposition 2.11. �

We can finally construct a solution over the whole real line and we have

the following result.

Proposition 2.12. Let be given f ∈ H1
uloc(R), with

‖f‖H1
uloc(R) := sup

t∈R

[ ∫ t+1

t
|f(s)|2 + |f ′(s)|2 ds

]1/2
,

then the unique solution of (2.2) exists for all times and it satisfies

w ∈ Cb(R;H1) ∩H1
uloc(R;L2) ∩ L2

uloc(R;H2),

π ∈ L2
uloc(R),

with the estimate (2.1).

Proof. We start by observing that since f ∈ H1
uloc(R), then it follows

that f ∈ Cb(R) (again by a.e. identification). It follows directly that

f ∈ C(R), but the control of the maximum of |f | is obtained as follows.

We claim that supx∈R |f(x)| ≤ 2‖f‖H1
uloc

. In fact, for each couple of points

x, y ∈ R such that |x− y| ≤ 1 it follows that

|f(x)− f(y)| =
∣∣∣∣∫ y

x
f ′(s) ds

∣∣∣∣ ≤ ‖f‖H1
uloc

.

Suppose now per absurdum that there exists x0 ∈ R such that |f(x0)| >
2‖f‖H1

uloc
. The previous inequality implies that

|f(x)| > ‖f‖H1
uloc

for all x ∈ [x0, x0 + 1],
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hence the contradiction∫ x0+1

x0

|f(s)|2 ds > ‖f‖2H1
uloc

.

This proves that the bound on |f(x)| is true for all x ∈ R.

The proof of Proposition 2.12 is then obtained by using the previous

results from Proposition 2.11 to solve the following family of problems

parametrized by n ∈ N,
∂twn − ν∆wn = πn, x ∈ D, t > −n,

wn(t, x) = 0, x ∈ ∂D, t > −n,∫
D wn(t, x) dx = f(t) t > −n,

wn(−n, x) = νϕ(x)
χ2

0
f(−n), x ∈ D, t = −n.

The same arguments as before imply that

wn ∈ L2
uloc(−n,+∞;H2(D)) ∩H1

uloc(−n,+∞;L2(D)),

∇wn ∈ L∞(−n,+∞;L2(D)),

πn ∈ L2
uloc(−n,+∞),

with bounds independent of n ∈ N (the dependence on ν is the same as

in (2.5)). By defining the extended functions w̃n(t, x) and π̃n(t, x) on the

whole real line as

w̃n(t, x) :=

{
wn(t, x) t ≥ −n,
νϕ(x)
χ2

0
f(−n) t ≤ −n,

and π̃n(t) :=

{
πn(t) t ≥ −n,
νf(−n)
χ2

0
t < −n,

we can extract a sub-sequence (relabeled) as (w̃n(t, x), π̃n(t, x)) such that

w̃n ⇀ w in L2
uloc(R;H2(D)) ∩H1

uloc(R;L2(D)),

∇w̃n
∗
⇀ ∇w in L∞(R;L2(D)),

π̃n ⇀ π in L2
uloc(R).

It is easy to see that (w, π) is a distributional solution to (2.3). Since the

problem is linear this is the unique solution. �

We finally prove the result in Stepanov space of almost periodic func-

tions.



On Leray’s Problem for Almost Periodic Flows 91

Proof of Theorem 2.2. Since the function f is almost periodic (to-

gether with its first order derivative), for each sequence {rm} ⊂ R we can

find a sub-sequence {rmk
} ⊂ R and a function f̂ such that

sup
t∈R

∫ t+1

t

(
|f(τ + rmk

)− f̂(τ)|2 + |f ′(τ + rmk
)− f̂ ′(τ)|2

)
dτ

k→+∞−→ 0.

By using a standard argument by contradiction (see e. g. Foias and Zaid-

man [10] and Foias and Prodi [9]) we assume per absurdum that w and π

are not almost periodic, hence that there exist a sequence {hm} ⊂ R, a

function f̂ : R→ R such that

sup
t∈R

∫ t+1

t

(
|f(τ + hm)− f̂(τ)|2 + |f ′(τ + hm)− f̂ ′(τ)|2

)
dτ

m→+∞−→ 0,

a constant δ0 > 0, and three sequences {tp}, {hmp}, {hnp} such that for all

p ∈ N,

sup
t∈R

∫ tp+1

tp

(
ν2‖∆w(τ + hmp)−∆w(τ + hnp)‖2

+ |π(τ + hmp)− π(τ + hnp)|2
)
dτ ≥ δ0.

In addition, there are (by eventually relabeling the sequences) two real func-

tions f̂1 and f̂2 such that

sup
t∈R

∫ t+1

t

(
|f(τ + tp + hmp)− f̂1(τ)|2

+ |f ′(τ + tp + hmp)− f̂ ′
1(τ)|2

)
dτ

p→+∞−→ 0,

sup
t∈R

∫ t+1

t

(
|f(τ + tp + hnp)− f̂2(τ)|2

+ |f ′(τ + tp + hnp)− f̂ ′
2(τ)|2

)
dτ

p→+∞−→ 0.

It is clear that f̂ = f̂1 = f̂2. We consider now the problem (2.3) with the

two fluxes

F1p(t) := f(t + tp + hmp),

F2p(t) := f(t + tp + hnp),
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and the corresponding solutions

w1p(t, x) := w(t + tp + hmp , x), π1p(t, x) := π(t + tp + hmp),

w2p(t, x) := w(t + tp + hnp , x), π2p(t, x) := π(t + tp + hnp).

Observe that F1p(t) → f(t) and F2p(t) → f(t) in H1
uloc(R), as p → ∞.

Hence, by passing to the limit as p → +∞ we construct two solutions

(w1, π1) and (w2, π2) corresponding to the same flux f . In particular,

w1p → w1 and w2p → w2,

in Cb(R;H1
0 (D)), but also in the topologies given in the statement of Propo-

sition 2.12. Hence, we have in particular

δ0 ≤
∫ tps+1

tps

ν2‖∆w(τ + hmps
)−∆w(τ + hnps )‖

2

+ |π(τ + hmps
)− π(τ + hnps )|

2 dτ =

=

∫ 1

0
ν2‖∆w1ps(τ)−∆w2ps(τ)‖2 + |π1ps(τ)− π2ps(τ)|2 dτ −→ 0,

because the problem is linear and the two solutions w1 and w2 corresponding

to the same flux, coincide. This proves the almost periodicity of w and the

same argument applied to wt ends the proof of the result. �

2.3. The full nonlinear problem in S2(R)

We now finally consider the Navier-Stokes equations and we look for

solutions u ∈ L∞
uloc(R;H1(Or))∩L2

uloc(R;H2(Or)), for all r > 0 (see (2.22)),

where u solves the following problem
∂tu− ν∆u + (u · ∇)u +∇p = 0, x ∈ O, t ∈ R,

∇ · u = 0, x ∈ O, t ∈ R,

u = 0, x ∈ ∂O, t ∈ R,

with a.e. u �∈ H2(O) but with

sup
t∈R

‖∇u(t)−∇wi(t)‖L2(Oi) ≤ c0,
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for i = 1, 2. Observe that this constraint implies (see [3, § 7] and [11, VI.I])

that

lim
z→+∞

‖u(t)− wi(t)‖H1/2(Di))
= 0,

uniformly in t.

As a preliminary remark we recall that it is well-known (see for ex-

ample [11, VI] and Amick [2]) that, due to the particular shape of the

unbounded domain O, the Poincaré inequality holds true

∃ cP > 0 ‖u‖L2(O) ≤ cP ‖∇u‖L2(O) ∀u ∈ H1
0 (O)(2.20)

and, if the boundary is smooth enough (say of class C1,1), then the following

estimate for the Stokes operator holds true

‖u‖H2(O) ≤ c‖P∆u‖L2(O) u ∈ H2(O) ∩H1
0 (O).(2.21)

We now take advantage of the results on the linear case from the previous

section, but first we need to “glue” the basic flows constructed in the two

pipes. In this part of the paper we do not claim any originality and we use

a classical approach. We denote by z ∈ R+ the axial coordinate in both

cylinders and we define the “truncated pipes”

Ori := {(x, z) ∈ Oi : z < r} i = 1, 2,

and we also define the truncated domain

Or := O0 ∪Or1 ∪Or2.(2.22)

We first define a field (which is as smooth as wi) defined on O and such that

is equal to wi in the sets Oi\O1
i . This extension is obtained by freezing the

time variable and by gluing together the functions wi by cut-off functions

φi = φi(z) ∈ C∞(R), depending just on the axial coordinate z, and such

that

φi(z) =

{
1 (x, z) ∈ Oi\O3/4

i ,

0 (x, z) ∈ O
1/2
i .
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Next, we observe that V0 :=
∑2
i=1 φiwi vanishes on ∂O and that

V0(t, x, z) :=

2∑
i=1

φi(z)wi(t, x)

∈ H1
uloc(R;L2(Or)) ∩ L2

uloc(R;H2(Or)) ∀ r > 0,

V0 ≡ wi in Oi\O1
i ,

(2.23)

and the regularity follows since the mapping (w1, w2) �→ V0 is bi-linear and

the extension does not involve the time-variable.

Remark 2.13. Even if we are in a different functional framework from

[3, 27] the same procedure can be applied because the properties of the

extension with respect to the time variable are the same of those of the

basic flows (wi, πi).

This is not exactly the required extension, since the function V0 is not

divergence-free. To this end first recall that since V0 = wi in Oi\O1
i , it

is divergence-free in O\O1. To “correct” the divergence one can use the

Bogovskĭı formula to solve the linear problem in the bounded domain O1:

Find B V0 such that{
∇ · (B V0) = −∇ · V0, x ∈ O1

B V0 = 0, x ∈ ∂O1.

Since ∇ · V0 ∈ H1
0 (O1) and the compatibility condition

∫
O1 ∇ · V0 = 0 is

satisfied this problem has a solution B V0 ∈ H2
0 (O1). Denoting again by

B V0 the null extension of B V0 off O1, we finally set

w := V0 + B V0.(2.24)

The explicit integral form of the solution of the divergence equation shows

that the L2-regularity (the time variable t is just a parameter) of ∂tV0 is

inherited by ∂tBV0, see e.g. Pileckas [28]. The regularity of the solution

of the divergence equation and the previous argument show that if wi ∈
H1

uloc(R;L2
loc(Oi)) ∩ L2

uloc(R;H2
loc(Oi)), then

w = wi in Oi\O1
i
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and

‖w‖H1
uloc(R;L2(O1))∩L2

uloc(R;H2(O1))

≤ c

2∑
i=1

‖wi‖H1
uloc(R;L2(Di))∩L2

uloc(R;H2(Di))
,

for some c = c(O0, O1, O2).

We have finally the following result.

Lemma 2.14. Let (wi, πi) be solutions of the basic flow with the regu-

larity of Theorem 2.2. Then, the extended function w ∈ L∞(R;H1(Or)) ∩
H1

uloc(R;L2(Or)) ∩ L2
uloc(R;H2(Or)), ∀ r > 0, is Stepanov almost periodic

and

‖w‖L∞(R;H1
0 (O1))∩H1

uloc(R;L2(O1))∩L2
uloc(R;H2(O1))

≤ c
2∑
i=1

‖wi‖L∞(R;H1
0 (Di))∩H1

uloc(R;L2(Di))∩L2
uloc(R;H2(Di))

,

for some constant c depending only on Oi, i = 0, 1, 2.

With this classical extension result, we can seek now for solutions of the

nonlinear problem in the form

u = U + w, p = P + π.

The nonlinear problem we have to solve is the following: Find a vector

valued function U belonging to L∞
uloc(R;H1

0 (O)) ∩ L2
uloc(R;H2(O)) such

that 
∂tU − ν∆U + (U · ∇)U + (U · ∇)w

+(w · ∇)U +∇P = F, x ∈ O, t ∈ R,

∇ · U = 0, x ∈ O, t ∈ R,

U = 0, x ∈ ∂O, t ∈ R,

(2.25)

where

F (t, x, z) := −
(
∂tw(t, x)− ν∆w(t, x) + (w(t, x) · ∇)w(t, x)

)
+

2∑
i=1

∂

∂z
(z φi(z)πi(t)).

(2.26)
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Remark 2.15. We are looking for a solution u which is not bounded

in any Sobolev space over O, but which is the sum of a function U which is

globally bounded and of w which is a.e. in time only locally (in space) in

H2(O), and is also only locally in any Lebesgue space. Most likely related

results in spaces of global weighted functions can be obtained by following

the argument in Pileckas [29].

From the results of the previous section we can infer that F ∈ S2(R;

L2(O)), hence we can now use standard results to show existence of an

almost periodic solution U . Observe also that U is a function belonging

globally to H1
0 (O), hence carrying a vanishing flux: The flux f(t) is carried

by w, which does not belong to any global (summable on the whole O)

Lebesgue space.

In particular, one main point is that, for each t ∈ R the support of F

is compact and more precisely it is contained in the bounded subset O1.

Hence, we can use the standard variational techniques to show existence of

a unique solution, provided that the viscosity is large enough.

In the sequel the only relevant property that we need to check is that

(w(t, x) · ∇)w(t, x) is almost periodic. First, recall that w = wi in Oi,

hence (w(t, x) ·∇)w(t, x) ≡ 0 in Oi\O1
i and moreover ∂twi− ν∆wi−πi ≡ 0

in the same set. All other terms in the summation defining F are clearly

almost periodic. The nonlinear one can be estimated as follows by using

the definition of w∫ t+1

t

∫
O1

∣∣∣(w(s, x) · ∇)w(s, x)
∣∣∣2dxds

≤
∫ t+1

t
‖∇w(s)‖2L2(O1)‖w(s)‖2L∞(O1) ds

≤ C
2∑
i=1

sup
s∈R

‖∇wi(s)‖2L2(Di)

∫ t+1

t
‖∆wi(s)‖2L2(Di)

ds,

and this proves that F ∈ S2(R;L2(O)). By using this expression and from

the estimate (2.1) on (wi, πi), we obtain that

‖F‖2L2
uloc(R;L2(O)) = ‖F‖2L2

uloc(R;L2(O1)) ≤ C
(
ν + 1 +

1

ν5

)
‖f‖4H1

uloc(R)

+ C
(
ν2 + 1 +

1

ν

)
‖f‖2H1

uloc(R).

(2.27)
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As in the previous section, we need to show that there exists a solution

U ∈ L2
uloc(0,+∞;H2(O)), and this will follow by using that the right-

hand side is in L2
uloc(0,+∞;L2(O)). The existence of a local solution

U ∈ L2
loc(0,+∞;H1

0 (O)) follows by standard arguments. In particular, one

has to perform a truncation in the space variables (which is possible since

F is of compact support, see again [3]) and the usual a-priori estimates. In

addition to these rather standard results, we now prove that the solution

is strong (provided that the viscosity is large enough, which is nevertheless

needed also for weak solutions) and that the solution is uniformly bounded

in H1(O) and belongs also to L2
uloc(R;H2(O)). We present just the a priori

estimates, which can be justified by the usual Galerkin method and trunca-

tion of the domain.

Proof of Theorem 2.4. We multiply (2.25) by −P∆U and we care-

fully treat the various terms. First note that∫
O1

(−P∆U) · (U · ∇)U dxdz

=
∑
k≥1

∫ k+1

k

∫
D1

(−P∆U) · (U · ∇)U dx dz

≤ C
∑
k≥1

‖U‖L4((k,k+1)×D1)‖∇U‖L4((k,k+1)×D1)‖P∆U‖L2((k,k+1)×D1)

≤ C
∑
k≥1

‖U‖H1((k,k+1)×D1)‖∇U‖H1((k,k+1)×D1)‖∆U‖L2((k,k+1)×D1)

≤ C
∑
k≥1

‖U‖H1((k,k+1)×D1)‖U‖2H2((k,k+1)×D1)

≤ C
(

max
k≥1

‖U‖H1((k,k+1)×D1)

)∑
k≥1

‖U‖2H2((k,k+1)×D1)

≤ C
(

max
k≥1

‖U‖H1((k,k+1)×D1)

)
‖U‖2H2(O1)

≤ C‖U‖H1(O1)‖U‖2H2(O1),

because the constants of the Sobolev embedding H1((k, k + 1) × Di) ⊂
L4((k, k+1)×Di) are uniformly bounded in each of the strips (k, k+1)×Di,

see [12, Lemma 2.1]. The estimates in O2 follow the same lines, and those
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in O0 are even simpler. Hence, we finally get∫
O
(−P∆U) · (U · ∇)U dxdz =

2∑
i=0

∫
Oi

(−P∆U) · (U · ∇)U dxdz

≤ C‖U‖H1(O)‖U‖2H2(O).

Moreover, the Poincaré inequality and standard regularity theory for the

Stokes operator in (2.20)-(2.21) show also that∣∣∣∣∫
O
(P∆U) · (U · ∇)U dxdz

∣∣∣∣ ≤ C‖∇U‖L2(O)‖P∆U‖2L2(O).

The term
∫
O1

(U ·∇)w ·(−P∆U) dxdz is then estimated as follows: By using

the same splitting into slices (cf. (80-81) in [3]) of width 1 in the z-direction,

and by using the Sobolev embedding H2(Di) ⊂ L∞(Di) one gets∫ k+1

k

∫
Di

(U · ∇)w · (−P∆U) dxdz

≤
∫ k+1

k
‖U‖L∞(Di)‖∇w‖L2(Di)‖P∆U‖L2(Di)dz

≤ C‖∇wi‖L2(Di)

∫ k+1

k
‖U‖2H2(Di)

dz.

By adding to the contribution of the two pipes also that of the bounded set

O0 we easily get∫
O
(U · ∇)wP∆U dxdz ≤ C

2∑
i=1

‖∇wi‖L2(Di)‖U‖2H2(O)

≤ C
2∑
i=1

‖∇wi‖L2(Di)‖P∆U‖2L2(O).

(2.28)

The other term
∫
O(w·∇)U P∆U dxdz is estimated in the same way. Adding

together the various terms, we finally we arrive at the differential inequality

d

dt
‖∇U‖2L2(O) +

(
ν − C1(‖∇U‖L2(O) + ‖∇w‖L2(O1))

)
‖P∆U‖2L2(O)

≤ C2

‖F‖2L2(O1)

ν
,
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for some constants C1, C2 > 0 depending only on O.

We fix now the viscosity large enough, so that

ν − C1

2∑
i=1

‖∇w(0)‖L2(Di) > 0.

and this is possible since we have the uniform bound on ‖∇wi‖ ≤ C(
√

ν +

1+1/ν)‖f‖H1
uloc(R) coming from Proposition 2.12. From now on we set, for

simplicity, ν ≥ 1 and we obtain

sup
t∈R

‖∇w(t)‖2L2(O1) ≤ C1 sup
t∈R

2∑
i=1

‖∇wi(t)‖2L2(Di)
≤ C ν‖f‖2H1

uloc(R),

for some constant C1 > 0 depending only on O. Moreover, the support of

F is contained in O1, hence ‖F (t)‖L2(O1) = ‖F (t)‖L2(O) ∈ L2
uloc(R). This is

enough to show existence of a local unique solution, in a time interval [0, δ[,

for some positive δ, which depends on the data of the problem.

The next step is to show that, under suitable assumptions on ν, the

solution is global. This is rather standard: Fix ν1 = ν1(f,O) ≥ 1 large

enough such that

if ν > ν1 then ν − C1

2∑
i=1

‖∇wi(t)‖L2(Di) ≥
ν

2
∀ t ∈ R.

For such ν > ν1 ≥ 1 we are reduced to the differential inequality (possibly

redefining the constants)

d

dt
‖∇U‖2L2(O) + C1

(ν
2
− ‖∇U‖L2(O))

)
‖∇U‖2L2(O) ≤

C2

ν
‖F‖2L2(O).

Hence, by using (2.27) to bound from above the right-hand-side, and if we

define Z(t) as the solution of the following Cauchy problem{
Z ′ + C1

(
ν
2 −

√
Z
)
Z = C2

ν ‖F‖2L2(O),

Z(0) = ‖∇U(0)‖2L2(O) = 0,
(2.29)

we have that 0 ≤ ‖∇U(t)‖2L2(O) ≤ Z(t), ∀ t ≥ 0. We employ now a fixed

point argument in the space of functions which are continuous and bounded
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over [0,+∞] to show that Z(t) is well defined and bounded in the same

half-line. Let be given z ∈ Cb[0,+∞) such that

z(0) = 0 and 0 ≤ z(t) ≤ ν2

16
∀ t ∈ [0,+∞).

Solve then the linear problem{
z′ + C1

(
ν
2 −

√
z
)
z = C2

ν ‖F‖2L2(O).

z(0) = 0.

Since ν
4 ≤ ν

2 −
√

z ≤ ν
2 and both the initial value and the right-hand-side

are non-negative, it follows that z(t) ≥ 0. Hence z(t) satisfies

z′ +
C1ν

4
z ≤ C2

ν
‖F‖2.(2.30)

The same argument employed in the proof of Proposition 2.11 (see also [25,

§ 2]) shows that

0 ≤ z(t) ≤ 9C2

C1ν2
‖F‖2L2

uloc(R;L2(O)) ≤ C3(‖f‖2H1
uloc(R) + ‖f‖4H1

uloc(R))

Then, fix ν0 ≥ ν1 ≥ 1 large enough such that

C3(‖f‖2H1
uloc(R) + ‖f‖4H1

uloc(R)) ≤
ν2
0

16
.

For ν ≥ ν0, consider now the map Φ : z �→ z and given τ > 0 define

Kτ :=

{
z ∈ C0([0, τ ]) : z(0) = 0, 0 ≤ z(t) ≤ ν2

16
, ∀ t ∈ [0, τ ]

}
.

Clearly we have Φ(Kτ ) ⊆ Kτ and the map is relatively compact by Ascoli-

Arzelà theorem since z is Lipschitz continuous as solution of (2.30). Hence

Φ as a fixed point which is a solution to (2.29). Since τ > 0 is arbitrary this

proves that Z exists on the whole interval [0,+∞). A standard comparison

argument shows that ‖∇U(t)‖2L2(O) ≤ Z(t) ≤ ν2

16 , for all t ≥ 0.

This estimate implies, by using standard arguments well-established for

the Navier-Stokes equations, that there exists a solution

U ∈ Cb(0,+∞;H1
0 (O)) ∩ L2

uloc(0,+∞;H2(O)) ∩H1
uloc(0,+∞;L2(O)),
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and due to its regularity this solution turns out to be unique.

Next, one can construct a global solution, by solving the following family

of problems in [−n,∞)×O,

∂tUn − ν∆Un + (Un · ∇)Un + (Un · ∇)w

+(w · ∇)Un +∇Pn = F x ∈ O, t ∈ [−n,∞),

∇ · Un = 0 x ∈ O, t ∈ [−n,∞),

Un = 0 x ∈ O, t ∈ [−n,∞),

Un(−n, x) = 0 x ∈ O.

Again by prolongation we define a velocity on the whole real line by

Ũn(t, x) =

{
Un(t, x) t ≥ −n,

0 t < −n.

We can show that, as n → +∞, the function Ũn(t, x) converges to a weak

solution U such that

U ∈ Cb(R;H1
0 (O)) ∩ L2

uloc(R;H2(O)) ∩H1
uloc(R;L2(O)).

To conclude the proof we need to show that if the external force is almost

periodic, then U is almost periodic too. For this result we need a result of

“asymptotic equivalence,” which is obtained as follows. Let us suppose the

we have two solutions of (2.25) on the interval [t0,+∞) corresponding to

different initial data, but to the same external force. Then the difference

Ũ := U1 − U2 satisfies

∂tŨ − ν∆Ũ + (U1 · ∇)U1 − (U2 · ∇)U2+

+(Ũ · ∇)w + (w · ∇) Ũ +∇P̃ = 0 x ∈ O, t ∈ [t0,+∞[,

∇ · Ũ = 0 x ∈ O, t ∈ [t0,+∞[,

Ũ = 0 x ∈ ∂O, t ∈ [t0,+∞[,

Ũ(t0, x) = Ũ0 x ∈ O.

By multiplication by Ũ and by the usual integration by parts, we can get

L2-estimates, which are enough to show that U ∈ S2(R;L2(O)), but to

prove the main result, that is Stepanov almost periodicity with values in
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H1
0 (O) we need to test with −P∆Ũ . By using standard manipulations we

get

1

2

d

dt
‖∇Ũ‖2 + ν‖P∆Ũ‖2 ≤

∣∣∣ ∫
O
(Ũ · ∇)U1 · P∆Ũ + (U2 · ∇) Ũ · P∆Ũ dxdz

∣∣∣
+
∣∣∣ ∫
O
(Ũ · ∇)w · P∆Ũ + (w · ∇) Ũ · P∆Ũ dxdz

∣∣∣.
By using the same techniques employed before to handle unbounded do-

mains we can show that∣∣∣ ∫
O
(Ũ · ∇)U1 · P∆Ũ + (U2 · ∇) Ũ · P∆Ũ dxdz

∣∣∣
≤ ‖Ũ‖L∞‖∇U1‖L2‖∆Ũ‖L2 + ‖U2‖L3‖∇Ũ‖L2‖∆Ũ‖L2

≤ ‖U1‖H1‖Ũ‖2H2 + ‖U2‖H1‖Ũ‖2H2

≤ (‖∇U1‖L2 + ‖∇U2‖L2)‖P∆Ũ‖2L2

≤ ν

2
‖P∆Ũ‖2L2 ,

where in the last step we used the estimate on Ui coming from the previous

proposition.

The same argument used in the proof of (2.28) shows also that∣∣∣ ∫
O
(Ũ · ∇)w · P∆Ũ + (w · ∇) Ũ · P∆Ũ dxdz

∣∣∣
≤ C

(
‖∇w1‖L2(D1) + ‖∇w2‖L2(D2)

)
‖P∆Ũ‖2,

for some constant depending only on O. Hence by collecting all the estimates

we obtain

1

2

d

dt
‖∇Ũ‖2 +

(ν
2
− C

(
‖∇w1‖L2(D1) + ‖∇w2‖L2(D2)

))
‖P∆Ũ‖2 ≤ 0.

The uniform bounds on wi and U2 in H1
0 (Di) from (2.5), the Poincaré in-

equality, and the estimate for the Leray projection from (2.20)-(2.21) imply

that for large enough viscosity one has

d

dt
‖∇Ũ‖2L2(O) + νC‖∇Ũ‖2L2(O) ≤ 0,
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for some C > 0. This finally shows that

‖∇Ũ‖2L2(O) ≤ ‖∇Ũ(t0)‖2L2(O) e−νC(t−t0), t ≥ t0.

The same argument employed in the proof of Theorem 2.2 can be used here

and, for each sequence {rm} ⊂ R we can find a sub-sequence {rmk
} ⊂ R

and a function F̃ such that

sup
t∈R

∫ t+1

t
‖F (τ + rmk

)− F̃ (τ)‖2L2(O) dτ
k→+∞−→ 0.

Assume by contradiction that U is not almost periodic, hence that there

exist a sequence {hm} ⊂ R and a function f̃ : R→ R such that

sup
t∈R

∫ t+1

t
‖F (τ + hm)− F̃ (τ)‖2 dτ

m→+∞−→ 0,

and a constant δ0 > 0 and three sequences {tp}, {hmp} and {hnp} such that

for all p ∈ N,

sup
t∈R

∫ tp+1

tp

‖U(τ + hmp)− U(τ + hnp)‖2H1
0 (O) dτ ≥ δ0.

There exists two real functions F̃1 and F̃2 such that

sup
t∈R

∫ t+1

t
‖F (τ + tp + hmp)− F̃1(τ)‖2 dτ

k→+∞−→ 0.

sup
t∈R

∫ t+1

t
‖F (τ + tp + hnp)− F̃2(τ)‖2 dτ

k→+∞−→ 0.

It follows in a standard way that F̃ = F̃1 = F̃2 and we consider now the

problem (2.25) with the two forces

F1p(t, x) := F (t + tp + hmp , x) and F2p(t, x) := F (t + tp + hnp , x),

and the corresponding solutions

U1p(t, x) := U(t + tp + hmp , x) and U2p(t, x) := U(t + tp + hnp , x).

By passing to the limit as p → +∞ we construct two solutions U1 and U2

corresponding to the same force F̃ . In particular

U1p → U1 in Cloc(R;H1), U2p → U2 in Cloc(R;H1).
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In addition we have

δ0 ≤
∫ tps+1

tps

‖U(τ + hmps
)− U(τ + hnps )‖

2
H1

0 (O) dτ =

=

∫ 1

0
‖U1ps(τ)− U2ps(τ)‖2H1

0 (O) dτ −→
∫ 1

0
‖U1(τ)− U2(τ)‖2H1

0 (O) dτ.

On the other hand the asymptotic equivalence implies that

‖U1(t)− U2(t)‖2H1
0 (O) ≤ ‖U1(t0)− U2(t0)‖2H1

0 (O) e−νC(t−t0) t ≥ t0,

and letting t0 → −∞ we obtain a contradiction, ending the proof. �

Remark 2.16. The result with f ∈ H1(R) follows in the same, even

simpler, way.

3. Leray’s Problem in the Framework of Besicovitch a. p. Func-

tions

In this section we discuss the same problem in a more general setting,

and first we recall some definitions on almost periodic solutions.

3.1. Generalities on almost periodic functions

In the literature there are different definitions of almost periodic func-

tions and we need now to explain the precise setting we are using. We refer

mainly to [5, ch. I] for further details and references. Let Trig(R) be the set

of all trigonometric polynomials, that is, u ∈ Trig(R) if there exist n ∈ N,

ξ1, . . . , ξn ∈ R and u1, . . . , un ∈ C such that

u(x) =
n∑
k=1

uk ei ξk x, x ∈ R.

Next, a set A ⊆ R is relatively dense if there exists L > 0 such that each

interval of length L contains an element of the set A.

Definition 3.1 (Bohr). A uniformly almost periodic function

(UAP(R)) is a continuous function f : R→ R such that there is a relatively-

dense set of ε-almost-periods. That is for all ε > 0, there exist translations

Tε > 0 of the variable t such that

|f(t + Tε)− f(t)| ≤ ε.
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It is easy to see that all trigonometric polynomials are almost periodic

according to the previous definition. Let UAP(R) be the set of all uni-

formly almost periodic functions. Then UAP(R) coincides with the closure

of Trig(R) with respect to the sup-norm ‖ · ‖L∞ . Alternatively, as recalled

in Section 2, a function f ∈ UAP(R) if the set {f(τ + ·) : τ ∈ R} of trans-

lates of f is relatively compact in C(R). A more general notion of almost

periodicity was introduced by Stepanov in 1925. To this end for p ≥ 1 and

r > 0, define the norm

‖f‖Sp,r := sup
t∈R

(1

r

∫ t+r

t
|f(s)|p ds

) 1
p
.

Then, the space Sp(R) is the closure of Trig(R) with respect to the norm

‖ · ‖Sp,r above. Notice also that while the norm depends on r, the topology

is independent of the value of r, hence we re-obtain the definition used in

Section 2 (Cf. [5]).

The definition was later extended by Weyl in 1927 by considering the

closure Wp(R) of trigonometric polynomials with respect to the semi-norm

‖f‖Wp := lim
r→∞

‖f‖Sp,r.

Finally, Besicovitch [5] defined the space Bp(R) as the closure of Trig(R)

with respect to the semi-norm

‖f‖Bp := lim sup
R→+∞

( 1

2R

∫ R

−R
|f(s)|p ds

) 1
p
.

Notice that one can have ‖f‖Bp = 0 even though f �≡ 0. For example this

happens if f is in Lq(R) with q > p or f ∈ L∞(R) and |f(x)| → 0 as

|x| → ∞. One has the following strict inclusions

UAP(R) ⊂ Sp(R) ⊂ Wp(R) ⊂ Bp(R), for any p ∈]1,+∞[,

(with obvious inclusions with different values of p). It turns out that

the spaces Bp(R) of Besicovitch almost periodic functions are among the

“largest possible” compatible with the treatment of partial differential equa-

tions as we shall see in Proposition 3.2. Let us focus on the case p = 2,

since B2(R) has an Hilbert structure. Given f ∈ L1
loc(R), define

M(f) := lim sup
R→∞

1

2R

∫ R

−R
f(t) dt.
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The mean operator M(f) is defined as the above quantity when the limit

exists. Given f ∈ B1(R), the (generalised) Fourier coefficients of f are

defined as follows

aλ(f) :=M(f(t) eiλt)

(later we will also use the notation f̂(λ) and fλ for the Fourier coefficient

corresponding to the mode λ) and the set

σ(f) := {λ ∈ R : aλ(f) �= 0},

the spectrum of f , is at most countable.

Define the equivalence relation
ap∼ as f

ap∼ g if aλ(f − g) = 0 for all λ ∈ R.

As stated above, | · |Bp is not a norm, as it can be zero on nonzero functions.

It turns out that the quotient space Bp/ ap∼ is a Banach space (see [5]). If

f, g ∈ B2(R) then the mean M(fg) is well-defined and M(f g) =M(f1 g1)

if f
ap∼ f1 and g

ap∼ g1. The space B2/
ap∼ is an Hilbert space when endowed

with the scalar product 〈f, g〉B2 = M(fg) and we have the fundamental

result due to Besicovitch.

Proposition 3.2. The exponential functions t �→ eiλt are an orthonor-

mal Hilbert basis for B2(R). In different words, any f ∈ B2(R) can be

represented by its generalised Fourier series

f(t)
ap∼
∑
λ∈σ(f)

aλ(f) eiλt,(3.1)

and
∑
λ |aλ(f)|2 <∞.

Conversely, if one has a generalised series as above (with square

summable coefficients as a generalised series), then there is a function f ∈
B2(R) having the series as its own generalised Fourier series.

Hence, we can identify a function by means of its generalised series as

follows

B2(R) :=
{
f ∈ L2

loc(R) : ‖f‖2B2 :=
∑
λ∈σ(f)

|aλ(f)|2 < +∞
}

(3.2)

and the identification f(t)
ap∼
∑
λ∈σ(f) aλ(f) eiλt holds in the sense of conver-

gence in B2(R).
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We turn to the pipe problem (2.2) in the almost periodic case. Since

the problem is linear, it is reasonable to find a solution in terms of Fourier

transform (or series). It is clear that, once the problem is solved in the

Fourier space, we are given with coefficients a(ξ) ∈ C for ξ ∈ R and we

are left with the problem of reconstructing the solution by inverse Fourier

transforming. Since the convergence for classical Fourier series is robust in

L2 for >2 coefficients, likewise in the context of almost periodic functions we

consider the (correct) space B2, for which the analogous of the Riesz-Fischer

theorems holds true.

In the following we shall also need spaces of the type Sobolev-

Besicovitch, which are defined in the following way.

Definition 3.3. Given a real s > 0, a function f ∈ B2(R) belongs to

Bs,2(R) if

‖f‖2Bs,2 :=
∑
λ∈σ(f)

(1 + |λ|2)s|aλ(f)|2 < +∞.

In particular, if f ∈ B1,2(R), then the Fourier series for the (formal)

derivative f ′ of f is convergent and defines an element of B2(R).

3.2. Construction of the “basic flow” in the Besicovitch setting

In this section we solve problem (2.2) in the unknowns (w, π), with the

Besicovitch meaning. As a by-product of the method we obtain also a new

proof of the existence of the basic flow in the periodic case.

Theorem 3.4. Given f ∈ B1,2(R) there are w ∈ B2(R;H2(D) ∩
H1

0 (D)), with ∂tw ∈ B2(R;L2(D)), and π ∈ B2(R) such that

∂tw − ν∆w
ap∼π and

∫
D

w(t, x) dx
ap∼ f(t).

Moreover, w and π are unique up to identification as almost periodic func-

tions. Finally, there exists c > 0 such that

‖∆w‖B2(L2(D)) ≤ c‖f‖B2 +
c

ν
‖f ′‖B2 ,

‖π‖B2 + ‖∂tw‖B2(L2(D)) ≤ cν‖f‖B2 + c‖f ′‖B2 .
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In order to prove the theorem, we restate the problem by spectral anal-

ysis in terms of Fourier transform with respect to the time variable t (with

conjugate variable ξ). Once Fourier transformed, problem (2.2) reads as

follows: Find (ŵ, π̂) such that
i ξ ŵ(ξ, x)− ν∆ŵ(ξ, x) = π̂(ξ), x ∈ D, ξ ∈ R,

ŵ(ξ, x) = 0, x ∈ ∂D, ξ ∈ R,∫
D ŵ(ξ, x) dx = f̂(ξ) ξ ∈ R.

(3.3)

Clearly, the same result follows by a decomposition in Fourier series. The

first equation yields ŵ(ξ, x) = π̂(ξ)Wξ(x), where

Wξ(x) :=
(
(i ξ Id− ν∆)−111

)
(x)

is defined to be the solution to the linear, stationary, and complex system{
i ξ Wξ − ν∆Wξ = 1, x ∈ D,

Wξ(x) = 0, x ∈ ∂D,
(3.4)

parametrized by ξ ∈ R. Set

aξ :=

∫
D

Wξ(x) dx,

then by Fourier transforming the flux condition in (2.2) we get f̂(ξ) = aξπ̂(ξ)

and in conclusion the solution to (2.2) (or, more precisely, to (3.3)), is given

by

π̂(ξ) =
1

aξ
f̂(ξ) and ŵ(ξ, x) =

1

aξ
f̂(ξ)Wξ(x).(3.5)

The problem reduces to analyse the behaviour of the two terms aξ and Wξ

with respect to ξ ∈ R. The main properties are summarised in the following

lemma.

Lemma 3.5. For every ξ ∈ R it holds

1. aξ = ν
∫
D |∇Wξ(x)|2 dx− iξ

∫
D |Wξ(x)|2 dx,

2. ν
∫
D ∆Wξ(x) dx = iξaξ − 1,
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3. ν2
∫
D |∆Wξ(x)|2 dx + ξ2

∫
D |Wξ(x)|2 dx = 1.

Proof. To prove the first property, take the complex conjugate of the

equation satisfied by Wξ, multiply by Wξ and integrate by parts, obtaining∫
D

Wξ(x) dx =

∫
D

(−iξ|Wξ|2 − νWξ∆Wξ) dx

= ν

∫
D
|∇Wξ(x)|2 dx− iξ

∫
D
|Wξ(x)|2 dx.

For the second property, just integrate the equation for Wξ on D. In order

to prove the third, take again the complex conjugate of the equation for Wξ,

but this time multiply by ∆Wξ. Next, integrate by parts and use the first

two properties to get

iξaξ − 1 = ν

∫
D

∆Wξ dx = −ν2

∫
D
|∆Wξ|2 dx + iνξ

∫
D
|∇Wξ|2 dx

= −ν2

∫
D
|∆Wξ|2 dx + iξaξ − ξ2

∫
D
|Wξ|2 dx,

which proves the equality. �

Next, we need to understand the growth/decay of aξ and Wξ(x) with

respect to ξ, in order to show that the formal expression (3.5) defines a

solution (in a suitable sense).

Lemma 3.6. The map ξ �→ Wξ is continuous on R with values in

H2(D) ∩ H1
0 (D). Moreover, as |ξ| → +∞ we have Wξ → 0 in H2(D)

and also

lim
|ξ|→+∞

ξ‖∇Wξ‖2L2(D) = 0, and lim
|ξ|→+∞

ξ2‖Wξ‖2L2(D) = 1.(3.6)

Finally, the map ξ → aξ is continuous on R and ξaξ → −i as |ξ| → ∞.

Proof. Fix ξ, ξ0 ∈ R, with ξ �= 0, and set V := Wξ0 − Wξ. By

symmetry we can assume that ξ > 0 and start with the case ξ0 > 0. The

new function V solves iξV − ν∆V = i(ξ − ξ0)Wξ0 . Multiply by ∆V and

integrate by parts to get

iξ‖∇V ‖2L2(D) + ν‖∆V ‖2L2(D) = i(ξ − ξ0)

∫
D
∇Wξ0 · ∇V dx.
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The imaginary part of the above formula yields

ξ‖∇V ‖2L2(D) = (ξ − ξ0)!
(∫
D
∇Wξ0 · ∇V dx

)
≤

≤ ξ

2
‖∇V ‖2L2(D) +

(ξ − ξ0)
2

2ξ
‖∇Wξ0‖2L2(D),

and so ‖∇V ‖L2(D) ≤ |ξ−ξ0|
|ξ| ‖∇Wξ0‖L2(D). On the other hand the real part

yields

ν‖∆V ‖2L2(D) = (ξ0 − ξ)"
(∫
D
∇Wξ0 · ∇V dx

)
≤

≤ |ξ − ξ0| ‖∇Wξ0‖L2(D)‖∇V ‖L2(D) ≤
(ξ − ξ0)

2

|ξ| ‖∇Wξ0‖2L2(D),

and as ξ → ξ0, continuity follows.

In the case ξ0 = 0 the proof is slightly different, since one can prove

directly by taking the real part that

ν‖∆V ‖2L2(D) ≤ |ξ|‖∇Wξ0‖2L2(D).

Since V ∈ H1
0 (D), this proves that as ξ → 0, V tends to zero in H2(D), but

now with order |ξ| 12 .

Finally, we consider the limit at∞. By the previous lemma we know that

ν‖∆Wξ‖L2(D) ≤ 1 and |ξ| ‖Wξ‖L2(D) ≤ 1, so for every sequence |ξk| → ∞
there is a sub–sequence converging weakly in H2(D) (hence strongly in

L2(D)) to some function W∞ ∈ H2(D). By the bound in the L2 norm, it

turns out that W∞ = 0 and, by a standard contradiction argument, that

Wξ ⇀ 0 in H2(D) for |ξ| → ∞. In particular, using the second property of

the previous lemma, ξaξ → −i and, by taking the real and imaginary part

of the first property, (3.6) follows. Finally, by (3.6) and the third property

of the previous lemma, ‖∆Wξ‖L2(D) → 0, which, together with the weak

convergence, implies Wξ → 0 strongly in H2(D). �

Remark 3.7. Notice that

‖ξWξ + i‖2L2(D) = ξ2‖Wξ‖L2(D) + 2"(ξaξ) + 1→ 0,
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and so ξWξ → −i in L2(D), as |ξ| → ∞. With a little more effort one can

show that ξWξ → −i point-wise as |ξ| → +∞, but we are not going to use

this property in the sequel.

Proof of Theorem 3.4. We use the identification (3.2) of an almost

periodic function with its Fourier series and of the B2 semi-norm with the

sum of squares of Fourier coefficients (namely, Parseval’s identity). Con-

sider f
ap∼
∑
ξ f̂(ξ) eiξt, then we only need to prove suitable bounds for the

quantities |aξ|, ‖∆Wξ‖L2(D), and ‖Wξ‖L2(D).

Indeed, solving problem (3.3) for the Fourier components yields

w(t, x)
ap∼
∑
ξ

Wξ(x)

aξ
f̂(ξ) eiξt and π(t)

ap∼
∑
ξ

f̂(ξ)

aξ
eiξt .

In order to capture the dependence of constants on ν, we observe that

Wξ = 1
ν W̃ξ/ν , where W̃ξ is the solution to (3.4) corresponding to ν = 1. Set

n0(ξ) = ‖W̃ξ‖2L2(D), n1(ξ) = ‖∇W̃ξ‖2L2(D), n2(ξ) = ‖∆W̃ξ‖2L2(D).

Indeed,

‖∆w‖2B2(R;L2(D)) =
∑
ξ

‖∆ŵ‖2L2(D) =
∑
ξ

1

|aξ|2
|f̂(ξ)|2‖∆Wξ‖2L2(D)

=
∑
ξ

|f̂(ξ)|2 ν2n2(
ξ
ν )

ν2n1(
ξ
ν )

2 + ξ2n0(
ξ
ν )

2

≤ c1‖f‖2B2(R) +
c2

ν2
‖f ′‖2B2(R),

since for |ξ| ≤ ν,

ν2n2(
ξ
ν )

ν2n1(
ξ
ν )

2 + ξ2n0(
ξ
ν )

2
≤ n2(

ξ
ν )

n1(
ξ
ν )

2
≤ max

|σ|≤1

n2(σ)

n1(σ)2
= c1,

while for |ξ| ≥ ν,

ν2n2(
ξ
ν )

ν2n1(
ξ
ν )

2 + ξ2n0(
ξ
ν )

2
≤ 1

ν2
ξ2 n2(

ξ
ν )[( ξ

ν

)2
n0(

ξ
ν )
]2

≤ 1

ν2
ξ2 sup

|σ|≥1

n2(σ)(
σ2n0(σ)

)2 =
c2

ν2
ξ2.
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Similarly,

‖∂tw‖2B2(L2(D)) =
∑
ξ

ξ2‖ŵ(ξ)‖2L2(D) =
∑
ξ

ξ2

|aξ|2
|f̂(ξ)|2‖Wξ‖2L2(D)

=
∑
ξ

|f̂(ξ)|2 ν2ξ2n0(
ξ
ν )

ν2n1(
ξ
ν )

2 + ξ2n0(
ξ
ν )

2

≤ c3ν
2‖f‖2B2(R) + c4‖f ′‖2B2(R),

since for |ξ| ≤ ν,

ν2ξ2n0(
ξ
ν )

ν2n1(
ξ
ν )

2 + ξ2n0(
ξ
ν )

2
≤ ν2

n0(
ξ
ν )
≤ ν2 max

|σ|≤1

1

n0(σ)
= c3ν

2,

while for |ξ| ≥ ν,

ν2ξ2n0(
ξ
ν )

ν2n1(
ξ
ν )

2 + ξ2n0(
ξ
ν )

2
≤ ξ2 1( ξ

ν

)2
n0(

ξ
ν )
≤ ξ2 1

inf
|σ|≥1

σ2n0(σ)
= c4ξ

2.

Finally, with similar computations,

‖π‖B2 =
∑
ξ

|π̂(ξ)|2 =
∑
ξ

1

|aξ|2
|f̂(ξ)|2 =

∑
ξ

|f̂(ξ)|2 ν4

ν2n1(
ξ
ν )

2 + ξ2n0(
ξ
ν )

2

≤ c5ν
2‖f‖2B2 + c4‖f ′‖2B2 ,

where c5 = max|σ|≤1
1

n1(σ)2
. The quantities c1, . . . , c5 are easily seen to be

finite by the previous lemma. �

Remark 3.8. The computations in the proof of Theorem 3.4 provide

an alternate proof to Theorem 1 in [3], as well as to Corollary 2.10, once

(generalised) Fourier transform is replaced by (generalised) Fourier series

expansion. Moreover, the following estimates hold,∫
R
‖∆w‖2L2(D) dt ≤ c‖f‖2L2(R) +

c

ν2
‖f ′‖2L2(R),∫

R
‖∂tw‖2L2(D) dt +

∫
R
|π(t)|2 dt ≤ cν2‖f‖2L2(R) + c‖f ′‖2L2(R),

sup
t∈R

‖∇w(t)‖2L2(D) ≤ c
(
ν‖f‖2L2(R) +

1

ν
‖f ′‖2L2(R)

)
.
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Indeed, in the proof above we have shown that

‖∆Wξ‖L2(D)

|aξ|
≤ cmax

{
1, ν−1|ξ|

}
,

|ξ| ‖Wξ‖L2(D)

|aξ|
≤ cmax

{
|ξ|, ν

}
,

1

|aξ|
≤ cmax

{
|ξ|, ν

}
.

(3.7)

Hence, by Parseval’s identity, we get∫
R
‖∆w‖2L2(D) =

∫
R

1

|aξ|2
|f̂(ξ)|2‖∆Wξ‖2L2(D) ≤ c‖f‖2L2(R) +

c

ν2
‖f ′‖2L2(R),

and the other inequalities are obtained similarly. Finally, the inequality

for ∇w follows by integration by parts and the identity d
dt‖∇w‖2L2(D) =

−2
∫
D wt∆w dx.

3.3. On the meaning of the solution

We need to spend a few words about the notion of solution we con-

structed. We observe that a given f ∈ B1,2(R) is clearly identified in the

sense of B1,2(R), hence by means of its generalised Fourier series. This im-

plies, for instance that if w is a solution in the sense of Besicovitch spaces,

then w + w̃ is also a solution, for any w̃ ∈ L2(R;H2(D)) ∩H1(R;L2(D)).

This poses some restrictions to the interpretation of the result. One would

like to have some embedding in the space of continuous functions, in order

to have a more precise identification of the solution. A larger spaces in

which we are able to solve the equation is balanced by a weaker notion of

solution.

In general one cannot expect the validity of the usual Sobolev embed-

dings in Bs,p(R) as is explained for instance in Pankov [26] and especially

the identification with UAP(R) functions is not a trivial fact. Classical

counterexamples can be found in the references cited, while the following

general embedding result is proved for instance in [19].

Proposition 3.9. Let Ξ ⊂ R be countable and assume there is β > 0

such that the generalised sum satisfies∑
ξ∈Ξ

1

|ξ|γ

{
< +∞ for γ > β

= +∞ for γ < β.
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If β < 2s, then for every f ∈ Bs,2(R) such that σ(f) ⊂ Ξ, we have f ∈
Cr,α(R) ∩ UAP(R) for all α ∈ [0, s − r − β/2), where r = #s − β

2 $ (with

corresponding inequality for the norms).

Remark 3.10. To simplify the notation from now on we denote by fξ
the (generalised) Fourier coefficient f̂(ξ) that is (more precisely) written as

aξ(f) in (3.1).

To understand this result, let us observe that if cξ ∈ >1(C), then the

series
∑
ξ cξ eiξt converges uniformly and can be identified with a continuous

almost periodic function f
ap∼
∑
ξ cξ eiξt.

Moreover, for classical Fourier series, i. e. σ(f) = Ξ ⊆ Z, the β-condition

is satisfied for β = 1 and this shows that if {cj}j∈Z, {j cj}j∈Z ∈ >2(C), then∣∣∣∑
j∈Z

cj eijt
∣∣∣2 ≤ ∣∣∣∑

j∈Z

|cj |
∣∣∣2 ≤ (∑

j∈Z

j2|cj |2
)( ∑

j∈Z\0

1

j2

)
< +∞.

This is the guideline to understand the result for Bs,2(R), since one has –

roughly speaking – to show an inequality similar to∣∣∣ ∑
ξ∈σ(f)

cξ eiξt
∣∣∣2 ≤ ∣∣∣ ∑

ξ∈σ(f)
|cξ|
∣∣∣2 ≤ ( ∑

ξ∈σ(f)
|ξ|2s|cξ|2

)( ∑
ξ∈σ(f)

1

|ξ|2s
)

< +∞.

For instance Proposition 3.9 implies the following result.

Corollary 3.11. Let be given f ∈ B1,2(R), with f
ap∼
∑
ξ fξ eiξt such

that ∑
ξ∈σ(f)

1

|ξ|2 < +∞.

Then, there are w ∈ B2(R;H2(D)) ∩ UAP(R;H1
0 (D)), with ∂tw ∈

B2(R;L2(D)), and π ∈ B2(R) such that (2.2) is satisfied in the sense of

Besicovitch.

This makes also possible to consider the flux as

f(t) = f1(t) + f2(t),
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with f1 ∈ B1,2(R) and f2 ∈ H1(R), so that ‖f2‖B1,2 = 0. One can construct

the solutions w1 ∈ B1,2(R;L2(D)) and w2 ∈W 1,2(R;L2(D)) corresponding

to f1 and f2 respectively, and add them together.

This is not completely satisfactory, since we still do not have a precise

identification of the pressure. To this end one would like to have a solution in

the classical UAP(R) space for example. This can be achieved by assuming

stronger conditions on f (rather than on its spectrum), as shown by the

following result.

Proposition 3.12. Let f be given, with f
ap∼
∑
ξ fξ eiξt, such that∑

ξ

(1 + |ξ|)|fξ| < +∞.

Then, there exists a unique solution (w, π) to (2.2) such that∑
ξ

‖∆wξ‖L2(D) ≤ c
∑
ξ

|fξ|+
c

ν

∑
ξ

|ξ| |fξ|,∑
ξ

|πξ|+
∑
ξ

|ξ| ‖wξ‖L2(D) ≤ cν
∑
ξ

|fξ|+ c
∑
ξ

|ξ| |fξ|,
(3.8)

where wξ and πξ are the (generalised) Fourier coefficients of w and π, re-

spectively. In particular, w ∈ UAP(R;H2(D)), ∂tw ∈ UAP(R;L2(D)) and

π ∈ UAP(R).

Proof. First we notice that since
∑
ξ |fξ| < +∞, then

∑
ξ

|fξ|2 ≤
(∑
ξ

|fξ|
)2

,

showing that f ∈ B2(R). The same argument shows also that f ′ ∈ B2(R),

and so Theorem 3.4 ensures the existence of a unique solution. Since wξ =

a−1
ξ Wξfξ and πξ = a−1

ξ fξ, the estimates (3.8) follow immediately from (3.7).

In order to show that w and π are Bohr-almost periodic, we consider a

truncation

fn =
∑

ξ∈σn(f)

fξ eiξt,
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where {σn(f)}n∈N is an increasing sequence of finite subsets of σ(f) such

that
⋃
n σn(f) = σ(f). For each n ∈ N we can consider (2.2) with flux given

by the trigonometric polynomial fn and the estimates (3.8) imply uniform

convergence of the corresponding solutions (wn, πn) towards UAP functions

with the requested properties. �

3.4. The nonlinear case

In this last section we consider the non-linear problem. Assume prelim-

inarily (we shall assume stronger assumptions on f later) that f ∈ B1,2(R)

and denote by w1, w2 the basic flows in the two pipes O1, O2 respectively.

As in the previous section, these are defined (in the appropriate reference

frame) as wi(t, x, z) = (0, 0, w̃(t, x)) for t ∈ R, x ∈ D, and z ≥ 0, where w̃

is the solution provided by Theorem 3.4.

Let V0 be the flow defined as in (2.23), it is clear that V0 is also almost

periodic and keeps the same time regularity properties of w1 and w2, namely

V0 ∈ B2(R;H2(Or)) ∩ B1,2(R;L2(Or)),

for every r > 0 (where the domain Or is defined in (2.22)), as well as the

flow w defined in (2.24). Indeed, both flows are obtained by applying only

linear operators in the space variable to w1 and w2.

Consider the full nonlinear Leray’s problem in the (Besicovitch) almost

periodic setting, namely to find a solution (u, p) to the problem
∂tu− ν∆u + (u · ∇)u +∇p

ap∼ 0,

∇ · u ap∼ 0,

u = 0 on ∂O,

(3.9)

such that

‖u− wi‖B2(R;H1(Oi)) ≤ c0, i = 1, 2,

and this implies that

lim
z→+∞

‖u− wi‖B2(R;H1/2(Di))
= 0, i = 1, 2.(3.10)

If w is the flow defined in (2.24), consider the solution u = U + w as a

perturbation of w. Consequently,{
∂tU − ν∆U + (U · ∇)U + (U · ∇)w + (w · ∇)U +∇P

ap∼F,

∇ · U ap∼ 0,
(3.11)
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where F is defined in (2.26). The main theorem of the section is the follow-

ing.

Theorem 3.13. Assume that the flux f satisfies

φ+ := ‖f‖+ :=
∑
ξ

(1 + |ξ|)|fξ| <∞.(3.12)

Then there exists ν0 > 0, with ν0 = ν0(f,O), such that for every ν ≥ ν0

problem (3.9) admits a solution

u ∈ B2(R;H1(Or)) ∩ B 1
2
,2(R;L2(Or)),

for every r > 0, and which satisfies (3.10).

By our construction the above result will be proved if we can show that,

under the assumptions of the theorem, there is a solution

U ∈ B2(R;H1
0 (O)) ∩ B 1

2
,2(R;L2(O))

of problem (3.11). The rest of the section is devoted to the proof of this

result.

3.4.1 Spectrum and module

Before turning to the analysis of problem (3.11), we recall that, since

f ∈ B2(R), its generalised Fourier series is well-defined and its spectrum

σ(f) is the set of modes ξ ∈ R corresponding to non-zero coefficients fξ in

the Fourier expansion of f .

Since f is real, it follows that fξ = f−ξ and so the spectrum is symmetric,

namely −σ(f) = σ(f).

Definition 3.14. The set µ(f) is the Z-module of the spectrum of f ,

namely the smallest subset of R which contains σ(f) and is closed for the

sum (that is, if ξ, η ∈ µ(f), then a ξ + b η ∈ µ(f), for all a, b ∈ Z).

It is clear that µ(f) is also symmetric and, since σ(f) is at most count-

able, µ(f) is at most countable too. Moreover, it is easy to see that the

spectra of w and F , by linearity, are contained in the spectrum of f . In-

deed, by construction, the terms V0 and w, defined in (2.23) and in (2.24),

respectively have spectrum contained in µ(f).
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In the following, with the purpose of approximations, we shall need to

consider finite dimensional truncations. To this aim, we fix an increasing

sequence {µN (f)}N∈N of subsets of µ(f) converging to µ(f), that is µN (f) ⊂
µN+1(f) and µ(f) =

⋃
N µN (f), and such that µN (f) = −µN (f).

3.4.2 Reduction to a system in Fourier variables

A remarkable feature of the non–linearity we are going to analyse is

that if u1, u2 are Besicovitch almost-periodic, then (u1 · ∇)u2 is also in

the same class. This result on product of almost periodic functions is not

true in general, but as we will see in our case it holds since the spectrum of

the non–linearity is contained in the module generated by σ(u1) and σ(u2).

Having this in mind, we recast problem (3.11) in Fourier variables,

(3.13) iξUξ − ν∆Uξ +
∑
η+θ=ξ

[
(Uη · ∇)Uθ + (Uη · ∇)wθ + (wη · ∇)Uθ

]
+∇Pξ = Fξ,

for ξ ∈ µ(f), with ∇·Uξ = 0, and the sum in the formula above is extended

over all η, θ ∈ µ(f).

We shall use the following strategy to prove Theorem 3.13. We linearise

the non–linearity (by introducing an auxiliary field Ũ) and solve the new

linearised problem (in two steps, first for a finite number of modes, then

for all modes). The assumption on the viscosity allows to have a uniquely

defined map that gives a solution to the linearised problem for each field Ũ .

The same assumption ensures that this map is a contraction and its fixed

point is the solution to problem (3.11).

3.4.3 Preliminary tools

We prove two preliminary tools for the analysis of the problem. We first

consider the fields w and F defined respectively as in (2.24) and (2.26) and

prove the following estimates in terms of φ∗.

Lemma 3.15. Let be given f ∈ B1,2(R), assume that (3.12) holds.

Then, there is c3.15 > 0 (independent of ν) such that

‖F‖B2(R;L2(O)) ≤ c3.15

(
(1 + ν) + (1 + 1

ν )
2‖f‖+

)
‖f‖B1,2(R),∑

ξ

‖Fξ‖L2(O) ≤ c3.15

(
(1 + ν) + (1 + 1

ν )
2‖f‖+

)
‖f‖+.
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Moreover, if u, v ∈ H1
0 (O), then∣∣∣∫

0
u · (v · ∇)wξ dx

∣∣∣+ ∣∣∣∫
0
u · (wξ · ∇) v dx

∣∣∣
≤ c3.15‖∇w̃ξ‖L2(D)‖u‖H1(O)‖v‖H1(O)

for every ξ ∈ µ(f), where (w̃, π̃) is the solution to the basic flow provided by

Theorem 3.4.

Proof. By its construction, F = 0 on O \ O1, hence ‖Fξ‖L2(O) =

‖Fξ‖L2(O1). By the definitions and the continuity of the Bogovskĭı operator

B it easily follows that

‖[∂tw]ξ‖L2(O1) ≤ c‖[∂tw̃]ξ‖L2(D),

‖[∆w]ξ‖L2(O1) ≤ c‖[∆w̃]ξ‖L2(D),

|πξ| ≤ c|π̃|.

For ξ ∈ µ(f), writing the explicit expression for [(w · ∇)w]ξ =
∑
η+θ=ξ(wη ·

∇)wθ, we obtain that

‖[(w · ∇)w]ξ‖L2(O1) ≤ c
∑
η+θ=ξ

‖∇wη‖L2(O1)‖∆wθ‖L2(O1)

≤ c
∑
η+θ=ξ

‖∇w̃η‖L2(D)‖∆w̃θ‖L2(D),

hence

‖(w · ∇)w‖2B2(R;L2(O1)) ≤ c
∑
ξ

( ∑
η+θ=ξ

‖∇w̃η‖L2(D)‖∆w̃θ‖L2(D)

)2

≤ c
(∑
ξ

‖∇w̃ξ‖L2(D)

)2
‖∆w̃‖2B2(R;L2(D)),

and ∑
ξ

‖[(w · ∇)w]ξ‖L2(O1) ≤ c
∑
ξ

∑
η+θ=ξ

‖∇w̃η‖L2(D)‖∆w̃θ‖L2(D)

≤ c
(∑
ξ

‖∇w̃ξ‖L2(D)

)(∑
ξ

‖∆w̃ξ‖L2(D)

)
.
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The estimate of F now follows from Theorem 3.4 and Proposition 3.12.

We prove the second statement of the lemma, for instance on the first

term on the left–hand side. We proceed as in [3, (78)–(80)] and divide the

integral on O in two terms: the first is the integral on O1, the second on

O \O1. Notice that on O \O1 = O1 \O1
1∪O2 \O1

2 the basic flow w coincides

either with w1 or w2, hence∣∣∣∫
0
u · (v · ∇)wξ dx

∣∣∣ ≤ c
(
‖∇wξ‖L2(O1) + ‖∇w̃ξ‖L2(D)

)
‖u‖H1(O)‖v‖H1(O).

Finally, ‖∇wξ‖L2(O1) ≤ c‖∇w̃ξ‖L2(D) follows as above. �

The second result is the extension to our setting of the usual cancella-

tion property of the nonlinear convective term, when energy estimates are

derived. Define

B+(R;H1
0 (O)) :=

{
h ∈ L1

loc(R;H1
0 (O)) : ‖h‖B
(R;H1

0 (O))

:=
∑
ξ∈σ(h)

(1 + |ξ|)‖hξ‖H1(O) < +∞
}
.

Lemma 3.16. Let be given X =
∑

Xξ eiξt and Y =
∑

Yξ eiξt both be-

longing to B2(R;H1
0 (O)), with Y divergence-free. Assume that the spectra

of X and Y are contained in µ(f) and fix an integer N ≥ 1. Then∑(N)

ξ

∑(N)

η+θ=ξ

∫
O
Xξ · (Yη · ∇)Xθ dx = 0,

where the superscript on the sum above means that the sum is extended only

over modes in µN (f).

Moreover, the same holds true for N =∞ if at least one between X and

Y is in B+(R;H1
0 (O)).

Finally, the statements above hold true if Y is replaced by the basic flow

w (defined at the beginning of the section as in (2.24)).

Proof. Let us denote by n© the sum in the statement of the lemma,

then by a change of summation index

n© =
∑(N)

ξ+η+θ=0

∫
O
Xξ · (Yη · ∇)Xθ dx
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= −
∑(N)

ξ+η+θ=0

∫
O
Xθ · (Yη · ∇)Xξ dx,= − n©,

since Xξ = X−ξ, and the claim is true. To show that the same holds for

N =∞, it is sufficient to prove that the following sum is bounded uniformly

in N . Indeed, if Z is another field,∑(N)

ξ

∑(N)

η+θ=ξ

∫
O
Xξ · (Yη · ∇) Zθ dx

≤ c
∑(N)

ξ

∑(N)

η+θ=ξ

‖∇Xξ‖L2(O)‖∇Yη‖L2(O)‖∇Zθ‖L2(O)

≤ c‖X‖B2(H1(O))‖Y ‖B2(H1(O))‖Z‖B
(H1(O)),

by Young’s inequality for convolutions.

Assume finally that Y is the basic flow w. The first statement holds

true with the same proof once we know that the integral involved are finite.

This is ensured by the second part of Lemma 3.15. Likewise the second

statement follows from the fact that the following estimate is uniform in N ,∑(N)

ξ

∑(N)

η+θ=ξ

∫
O
Xξ · (wη · ∇)Zθ dx

≤ c
∑(N)

ξ

∑(N)

η+θ=ξ

‖Xξ‖H1(O)‖∇w̃η‖L2(D)‖Zθ‖H1(O)

≤ c‖X‖B2(H1(O))‖∇w̃‖B2(L2(D))‖Z‖B
(H1(O)),

where w̃ is the basic flow provided by Theorem 3.4. �

We observe that in the cancellation property above it is fundamental

that we deal with the complex conjugate of X and with the fact that the

spectrum is symmetric, since flux and solution are both real–valued.

The proof of Theorem 3.13 is split into three preliminary steps.

3.4.4 First step: existence for the finite modes approximation

Given Ũ ∈ B2(R;H1
0 (O)) with ∇ · Ũ = 0 and an integer N ≥ 1, we seek

for a solution to the following problem,

(3.14) iξUξ − ν∆Uξ +
∑(N)

η+θ=ξ

[
(Ũη · ∇)Uθ + (Ũη · ∇)wθ + (wη · ∇)Uθ

]
+∇Pξ = Fξ,



122 Luigi C. Berselli and Marco Romito

for ξ ∈ µN (f), where again the superscript on the above sum means that

the sum is extended only over modes in µN (f).

Proposition 3.17. Let f ∈ B1,2(R) and Ũ ∈ B1,2(R;H1
0 (O)) and set

φN+ :=
∑(N)

ξ

(1 + |ξ|)|fξ| and ψN+ :=
∑(N)

ξ

‖Ũξ‖H1(O).

Then, there is a unique solution U (N) = {U (N)
ξ }ξ∈σN (f) of problem (3.14).

Moreover, there are non-negative functions c1(·, ·) and c2(·, ·, ·) increasing

of their arguments and depending only on the domain O, such that

‖U (N)‖
B

1
2 ,2(R;L2(O))

+ ‖U (N)‖B2(R;H1(O))

≤ c(ν, ‖f‖B1,2(R))ψ
N
+ + c(ν, φN+ , ‖f‖B1,2(R)).

(3.15)

Moreover there exists c3.17 > 0 (independent of ν, N , f and Ũ) such that if

ν > c3.17ψ
N
+ + c3.17(1 + 1

ν )φ
N
+ ,

then

(3.16)
(
ν − c3.17ψ

N
+ − c3.17(1 + 1

ν )φ
N
+

)(∑(N)

ξ

‖∇U
(N)
ξ ‖L2(O)

)
≤

≤ c(1 + ν)φN+ + c(1 + 1
ν )

2(φN+ )2 + c(1 + 1
ν )φ

N
+ ψN+ .

Proof. The proof can be carried on with the standard technique of

Fujita (cf. Theorem 1.4 of [32, Ch. 2]) for the case of existence of solutions

for the steady Navier-Stokes equations in unbounded domains (but we have

the additional advantage of the Poincaré inequality (2.20)). We use Galerkin

approximations Un =
∑n
k=1 ukek (not necessarily made with eigenfunctions)

and we consider the projection of (3.14) on the finite dimensional Galerkin

space as a problem on R2nN (the real and imaginary parts of each uk count

as two variables) with the scalar product induced by the one of H1
0 (O)⊗2N .

We show existence of a solution of the finite dimensional problem by

means of Lemma 1.4 of [32, Chapter 2] (which in turns is a consequence

of Brouwer’s fixed point theorem). Let P (Un) be given component-wise by
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the projection of (3.14) so that if P (Un) = 0 then Un is the solution to the

Galerkin projected problem. It is sufficient to show that P (Un) · Un > 0

on |Un| = C0 for some C0 > 0, where product and norm are those we have

given on R2nN . This is immediate by Lemma 3.15 and 3.16 since

P (Un) · Un ≥ ν|Un|2 − c
∑(N)

ξ

∑(N)

η+θ=ξ

‖Ũη‖H1(O)‖∇w̃θ‖L2(D)|Unξ |

− c‖F‖B2(L2(O))|Un|

≥ ν|Un|2 − cψN+ ‖∇w̃‖B2(L2(D))|Un| − c‖F‖B2(L2(D))|Un|,
which is strictly positive if we choose ν such that

C0 > 1
ν

(
ψN+ ‖∇w̃‖B2(L2(D)) + c‖F‖B2(L2(O))

)
.

Passing to the limit in the Galerkin approximation is standard (the non-

linearity contains a finite sum) and follows from uniform bounds (in n) on

Un which are similar to (3.15) and whose proof is formally similar. Hence,

we prove (3.15) directly. For each ξ ∈ µN (f) multiply (3.14) by Uξ, integrate

by parts on O, sum over ξ ∈ µN (f), and use Lemma 3.16 to get

i
∑(N)

ξ

ξ‖Uξ‖2L2(O) + ν
∑(N)

ξ

‖∇Uξ‖2L2(O) +

+
∑(N)

ξ

∑(N)

η+θ=ξ

∫
O
Uξ · (Ũη · ∇)wθ dx =

∑(N)

ξ

∫
O
Uξ · Fξ.

Hence by applying Lemma 3.15, Young’s inequality for convolutions, Theo-

rem 3.4, and by taking the real part we get

ν‖∇U‖2B2(L2(O)) ≤ c3.15

∑(N)

ξ

∑(N)

η+θ=ξ

‖Uξ‖H1(O)‖Ũη‖H1(O)‖∇w̃θ‖L2(D)

+ c‖F‖B(L2(O))‖U‖B2(H1(O))

≤ c
(
ψN+
(
1 +

1

ν

)
‖f‖B2(R) + c‖F‖B2(L2(O))

)
‖U‖B2(H1(O)),

which yields inequality (3.15).

To prove uniqueness, let U
(N)
1 , U

(N)
2 be two solutions corresponding to

the same data, set D(N) := U
(N)
1 − U

(N)
2 and Q(N) := P

(N)
1 − P

(N)
2 , then

iξD
(N)
ξ − ν∆D

(N)
ξ +

∑(N)

η+θ=ξ

(
Ũη · ∇)D

(N)
θ + (wη · ∇)D

(N)
θ

)
+∇Q

(N)
ξ = 0,
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and now taking the scalar product with D
(N)
ξ and using Lemma 3.16 yields

ν‖∇D(N)‖2B2(R;L2(O)) = 0, hence D(N) = 0.

Finally, to prove (3.16), multiply (3.14) by Uξ, integrate by parts on O

and divide by the non-zero value of ‖∇Uξ‖L2 to get

ν‖∇Uξ‖L2(O) ≤ c‖Fξ‖L2(O) +

+ c
∑(N)

η+θ=ξ

(
‖Ũη‖H1(O)‖Uθ‖H1(O) + ‖Ũη‖H1(O)‖∇w̃θ‖L2(D) +

+ ‖∇w̃η‖L2(D)‖Uθ‖H1(O)

)
.

Inequality (3.16) follows by summing in ξ, using Young’s convolution in-

equality, Proposition 3.12 and Lemma 3.15. �

3.4.5 Second step: existence of a limit as N →∞
Let f ∈ B1,2(R) ∩ B+(R) and assume additionally that the quantity

‖f‖+ :=
∑
ξ

(1 + |ξ|)|fξ|

is finite. This implies in particular, as in Lemma 3.12, that f and f ′ have

representatives which are Bohr-almost periodic. Let Ũ ∈ B2(R;H1
0 (O)),

assume that the quantity
∑
ξ ‖Ũξ‖H1(O) is also finite and consider the prob-

lem

(3.17) iξUξ − ν∆Uξ +
∑
η+θ=ξ

[
(Ũη · ∇)Uθ + (Ũη · ∇)wθ + (wη · ∇)Uθ

]
+∇Pξ = Fξ,

for ξ ∈ µ(f).

Proposition 3.18. There exists ν0 > 0, with ν0 = ν0(f,O), such that

for every ν ≥ ν0 there is ψ+ > 0 such that

ν > c3.17

(
ψ+ + (1 + 1

ν )‖f‖+
)
,

and if ∑
ξ

‖∇Ũξ‖L2(O) ≤ ψ+
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then there is a unique solution U ∈ B2(R;H1
0 (O)) ∩ B1/2,2(R;L2(O)) to

problem (3.17).

Moreover,

‖U‖
B

1
2 ,2(R;L2(O))

+ ‖U‖B2(R;H1
0 (O))

≤ c(ν, ‖f‖B1,2(R))ψ+ + c(ν, ‖f‖+, ‖f‖B1,2(R)),∑
ξ

‖Uξ‖H1(O) ≤ ψ+.

(3.18)

Proof. Let {U (N)}N≥1 be the sequence of solutions to (3.14) pro-

vided by Proposition 3.17. By (3.15) it follows that {U (N)}N≥1 is bounded

in B1/2,2(R;L2(O)) and in B2(R;H1
0 (O)), hence there is a sub–sequence

weakly convergent to a limit point U ∈ B1/2,2(R;L2(O)) ∩ B2(R;H1
0 (O)).

Since in (3.17) Ũ does not depend on N , weak convergence is enough to

pass to the limit in the equation. Uniqueness follows as in Proposition 3.17,

using Lemma 3.16.

We only have to identify ν0 and ψ+. From (3.16) it follows that(
ν − c3.17ψ+ − c3.17(1 + 1

ν )‖f‖+
)(∑

ξ

‖∇Uξ‖L2(O)

)
≤ c(1 + ν)‖f‖+ + c(1 + 1

ν )
2(‖f‖+)2 + c(1 + 1

ν )‖f‖+ψ+,

so everything boils down to show that for ν large enough there is ψ+ such

that

c(1 + ν)‖f‖+ + c(1 + 1
ν )

2‖f‖2+ + c(1 + 1
ν )‖f‖+ψ+

ν − cψ+ − c(1 + 1
ν )‖f‖+

≤ ψ+,

that is

cψ2
+ −

(
ν − 2c(1 + 1

ν )‖f‖+
)
ψ+ + c(1 + ν)‖f‖+ + c2(1 + 1

ν )
2‖f‖2+ ≤ 0.

It is elementary to verify that the above polynomial has two positive solu-

tions for ν large enough. �

Remark 3.19. Clearly, without the assumption on the size of ν in the

previous proposition, one can still show existence and uniqueness of the

solution of (3.17). The size condition on ν is necessary only to get the

second estimate in (3.18), which will be crucial in the next step.
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3.4.6 Third step: the fixed point argument

Under the assumptions of Proposition 3.18 we have a well defined map

Ũ �→ U , where U is the solution to problem (3.17). Denote the map by I,

then it is clear that any fixed point of I is a solution to (3.13) and hence

to (3.11).

Proof of Theorem 3.13. Fix ν ≥ ν0, where ν0 is given in Propo-

sition 3.18. We prove that the map I is a contraction on the set X of all

U ∈ B2(R;H1
0 (O)) ∩ B1/2,2(R;L2(O)) that verify the bounds (3.18).

The fact that I maps X into X clearly follows from Proposition 3.18,

so we only need to prove that I is a contraction. This is obtained as in

the proof of uniqueness of Proposition (3.17). Indeed, if E := Ũ1 − Ũ2 and

D := I(Ũ1)− I(Ũ2), then

iξDξ − ν∆Dξ +
∑
η+θ=ξ

(Eη · ∇) I(Ũ1)θ + (Ũ2
η · ∇)Dθ

+ (Eη · ∇)wθ + (wη · ∇)Dθ +∇Qξ = 0,

with a suitable Q. By multiplying by Dξ, integrating by parts, summing

over ξ and using Lemma 3.16, we get

ν‖∇D‖B2(L2(O)) ≤ c
(
ψ+ + (1 + 1

ν )‖f‖+
)
‖E‖B2(H1(O))

that is ‖D‖B2(H1(O)) ≤ K0‖E‖B2(H1(O)), with

K0 :=
cψ+ + c(1 + 1

ν )‖f‖+
ν

.

Likewise we also have ‖D‖B1/2,2(L2(O)) ≤ νK2
0‖E‖B2(H1(O)). Finally, by

multiplying by Dξ, dividing by ‖∇Dξ‖L2(O) and summing over ξ we get(
ν − c3.17

(
ψ+ + (1 + 1

ν )‖f‖+
))∑

ξ

‖Dξ‖H1(O) ≤ νK0

∑
ξ

‖Eξ‖H1(O).

The coefficient on the right–hand side is positive by assumption, hence if

we set

K1 :=
ν K0(

ν − c3.17

(
ψ+ + (1 + 1

ν )‖f‖+
)) ,
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and we choose ν large enough so that K1 < 1, hence K0 < 1, and ν K2
0 < 1,

the map I is a contraction.

In order to conclude the proof, we need to show that if {Uξ}ξ∈µ(f) is

solution to (3.13), then the Besicovitch almost periodic vector field U having

Fourier coefficients {Uξ}ξ∈µ(f) is a weak solution to (3.11), namely that for

every divergence-free ϕ ∈ C∞
c (O;R3) and every ξ ∈ R,

M
[(
〈∂tU,ϕ〉 − ν〈U,∆ϕ〉 − 〈U,

(
(U + w) · ∇

)
ϕ〉 − 〈w, (U · ∇)ϕ〉

)
eiξt
]

= 0,

which is straightforward due to the bounds (3.18). �

3.4.7 Final considerations

Apparently the assumption (3.12) seems to be essential for the proof in

the Besicovitch setting to work. The technical problem is essentially related

to the term ∑
ξ

∑
η+θ=ξ

Uξ · (Vη · ∇)Wθ

which is of order three, although all bounds on U , V , W are of order two, if

one works in the framework of B2 spaces. Young’s convolution inequalities

tell us that in general there is no possibility to bound the above term under

these assumptions. In terms of the time variable, we are trying to bound

the Navier-Stokes non–linearity over the whole R.

Another possibility would be to use the other a-priori estimate we have

obtained, namely the bound in B1/2,2(R;L2(O)), which plays no role in the

above work, using for instance the results in Section 3.3. This possibility

is ruled out by the non-linear term. In fact, in the standard case of Leray-

Hopf weak solutions one has a better knowledge of the time derivative and

this can be used for instance with the Aubin-Lions compactness lemma to

handle the non–linear term.

Indeed the non-linearity reads in Fourier variables (in time) as a con-

volution and, whatever is the spectrum σ(f) of the flux, the spectrum of

the solution to the non-linear problem will have the Z-module µ(f) as its

spectrum. In different words, the non-linearity creates a full set of harmonic

resonances in the time frequency. The structure of Z-modules in R shows

that the only possibility to use a bound on the derivatives (while obtaining
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a useful information for all times t ∈ R) is the periodic case, previously

studied in [3]. Indeed it is easy to verify the following result.

Proposition 3.20. Let G ⊂ R be a Z-module. Then, either G = κZ

for some κ ∈ R or G is dense in R.
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[22] Ladyžhenskaya, O. A., Stationary motion of viscous incompressible fluids in
pipes, Soviet Physics. Dokl. 124 (4) (1959), 68–70 (551–553 Dokl. Akad.
Nauk SSSR).
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Università di Pisa
Via F. Buonarroti 1/c
I-56127 Pisa, Italia
E-mail: berselli@dma.unipi.it
URL: http://users.dma.unipi.it/berselli

Marco Romito
Dipartimento di Matematica
Università di Pisa
Largo Bruno Pontecorvo 5
I-56127 Pisa, Italia
E-mail: romito@dm.unipi.it
URL: http://www.dm.unipi.it/pages/romito


