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Matrix Coefficients with Minimal K-Types of
the Spherical and Non-Spherical Principal Series
Representations of SL(3,R)

By Keiju SoNno

Abstract. We compute the holonomic system of rank 6 for the
radial part of the matrix coefficients of spherical and non-spherical
principal series representations of SL(3,R). We obtain six power se-
ries solutions corresponding to the set of six characteristic roots, and
express the matrix coefficients by linear combinations of these power
series. Among others, the c-functions of non-spherical principal series
are obtained.

1. Introduction

It is a classical result to have the matrix coefficient of the spherical
(or class one) principal series of a semisimple real Lie group as a linear
combination of asymptotic power series solutions [1]. Among others there
appear c-functions as the coefficients of this linear combination, which are
obtained as certain explicit products of the gamma factors. The functions
of this kind were firstly computed explicitly by G. Schiffmann [7] only for
the case of class one representations (see also chap.9 of Warner [8]). It is
generally believed that we have a similar formula for non-spherical case. But
in spite of this folklore, we find few references even for small Lie groups.
One of the reasons is that the inductive argument used in [7] does not work
for non-spherical case.

In this paper, we investigate the matrix coefficients of the spherical
and non-spherical principal series representations of G = SL(3,R). Let us
introduce the contents of this paper. We take K = SO(3,R) as a maximal
compact subgroup of G. Given a principal series representation (m, H;) of
G, the matrix coefficients of 7 are regarded as the elements of the space of
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the spherical functions defined by

Cro(K\G/K)
={¢:G — V, @ V;|¢(krgky")
= (n(kr) @ 7(kRr)) ¢(9), kL, kr € K, g € G}

with some finite dimensional representations (1, V;), (7, V;) of K. We con-
sider the following two cases. If m is the spherical principal series repre-
sentation, then we take n = 7 = 1, the trivial representation of K, and if
7 is the non-spherical principal series representation, we take n = 7 = 7,
the three dimensional tautological representation of K. In other words, we
restrict the vectors of the matrix coefficients to the elements of the minimal
K-type of 7.

The basic method is to construct and investigate the differential equa-
tions satisfied by the spherical functions we mentioned above. Let g be the
Lie algebra of G and U(g) its universal enveloping algebra. The spherical
function attached to the class one principal series is completely determined
by the actions of the Capelli elements C'py, Cps, which are the generators
of the center of U(g) together with the regularity at the identity of G. This
part is more or less a classical fact. Meanwhile, to investigate the spherical
functions attached to the non-spherical principal series representations, we
construct the following two kinds of differential equations: (a) the differen-
tial equations characterized by the action of the Casimir element of degree
two (this is also one of the generators of the center of U(g)), (b) the dif-
ferential equations characterized by the action of the gradient operator (or
the Dirac-Schmid operator). We have three different non-spherical principal
series with the same infinitesimal characters Z(g) — C. We cannot distin-
guish them only by the elements of Z(g). This is the reason we need the
gradient operator which has distinct eigenvalues for different non-spherical
principal series. This part seems to be new. In both cases, we obtain six
power series solutions corresponding to the six characteristic roots. Since
the explicit forms of the coefficients of the power series solutions are quite
complicated, they are introduced in the “Appendix”, section 7 of this paper.

The main theorems in this paper are Theorem 5.6 and Theorem 6.6,
which give the exact power series expansions of the matrix coefficients of
the spherical and non-spherical principal series representations. We express
the matrix coefficients by the linear combinations of the power series solu-
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tions. The method we use is classical (for example, introduced in [3]). We
investigate a part of the monodromy data of our holonomic system to have
the unique solutions invariant under the fundamental group of the regular
part of the split Cartan subgroup in SL(3,R).

The author expresses his gratitude to Professor Takayuki Oda for con-
stant encouragement and for suggestions of the computation of the holo-
nomic system in this paper. He also thanks Professors Masatoshi lida and
Tadashi Miyazaki for valuable advice.

2. Preliminaries

2.1. Notation
Let G = SL(3,R) and fix K = SO(3,R) as a maximal compact sub-
group of G, and set g = Lie(G) =sl(3,R), ¢ = Lie(K) = s0(3). Put

3
Hai =1,a €R>0}

A= {diag(al,ag,ag) eqd
i=1

and set a = Lie(A). The Cartan involution # : G — G is defined by
g+ (*¢)7! (g € G), and its Lie algebra version is 6 : g — g, X — —!X.
Then

K=G"={geGlog) =g}
and
t=g’={X eg/0(X) =X}
Put
p=g'={Xegl0(X)=-X}.

Then we have g = € @ p, called the Cartan decomposition. Let E;; (1 <
i,7 < 3) be the matrix unit with 1 at the (7,j)-th entry and 0 at other
entries. Put

H@j = Ei,i — E]’J S Cl(i 75 ])

Put Xi,j = E@j + Ej,i (Z 75 j) cp and Ki,j = Ei,j — Ej,i (’L ?é ]) €t
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2.2. The principal series representations

Let Py be a minimal parabolic subgroup of G given by the upper trian-
gular matrices in G, and Py = M AN be the Langlands decomposition of
Py with

M = K n{diagonals in G}, and

1 1 X2
N = 0 1 x3 eGlz;eRi=1,2,3
0 0 1

To define a principal series representation with respect to the minimal
parabolic subgroup Py of G, we firstly fix a character ¢ of M and a linear
form v € a* ®@r C = Hompg (a, C) . We write v(diag(t1,t2,t3)) = viti +vata.
Then we can define a representation o ® a” of M A, and extend this to Py
by the identification Py/N ~ M A. Then we set

Moy = C’oolndJGpO(a ®a"TP @ 1y).

Here p is the half sum of positive roots of (g,a) given by a? = a3as, for
a = diag(ay,ag,a3) € A. The representation space is

Clit) () = {F € C(K) f(mh) = o(m) f(K), m € M,k € K)
and the action of G is defined by
(m(2)f)(k) = a(kx)" P f(k(kx)) (z € G, k € K).

Here, for g € G, g = n(g)a(g)x(g) (n(g) € N,a(g) € A,k(g) € K) is the
Iwasawa decomposition. Next, we define characters o; (j = 0,1,2,3) of M
as follows. The group M consisting of four elements is a finite abelian group
of (2,2)-type, and its elements except for the unity are given by

1 0 O -1 0 0 —1 00
mi = 0 -1 0 , Mo = 0 1 0 ,m3 = 0 -1 0
0 0 -1 0 0 -1 0 0 1

Since M is commutative, all irreducible unitary representations of M are
1-dimensional. For any o € M , we have 02 = 1. Therefore, the set M
consisting of 4 characters {o;|j = 0,1,2,3} , where each o;, except for
the trivial character og, is specified by the following table of values at the
elements m; (i =1,2,3).
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o1 |1 -1 | -1
g9 -1 1 -1
o3 |-1 |-1 |1

The correspondence of a character of M and the minimal K-type of 7., is
as follows ([6]).

ProOPOSITION 2.1. 1) If o is the trivial character of M, the represen-

tation ms, 1s spherical or class one. That is, it has a unique K-invariant
vecter in Hy .
2) If o is not trivial, the minimal K-type of the restriction my |k to K
is a 3-dimensional representation of K, which is isomorphic to the unique
standard one (12, V). In this case, we call 7., the non-spherical principal
series representation. The multiplicity of this minimal K-type is one:

dimcHOmK(TQ, HUJ/) =1.

2.3. The definition of spherical functions
Let (m, Hy) be the principal series representation of G = SL(3,R). We
want to study the matrix coefficient

Qyy:G—C, g (w,m(g)v) (we H;ve Hy).

Let (77, V1) be a K-type of H! and (7r,Vr) be a K-type of Hr. And let
t: ¥R — ™ W7 be a K x K embedding. The bilinear form (w, v) — @y,
is the element of Homgxg(H: ® Hy, C*(G)). We define a homomorphism
Homgua(HE @ Hy, C*(G)) — Hompg (VL @ Vg, C®(G)) by @ — P o
The space Homg x g (Vz, @ Vg, C*°(G)) is identified with a space

K\G/K)
= {F G — ij ® Vﬁ’F(k‘lgk’g)
= (1} W 7h) (k1, k3 VF(9), k1, k2 € K, g € G}

(
* ok
TL ’TR

by the correspondence

(Fg(g),v1 ®v2) = ¢(v1 ®v2)(9) (V(v1,v2) € VL x VR)



6 Keiju Sono

for ¢ € Homgxi(Vr ® VR, C®(G)), Fy € %DJE(K\G/K)' Hence the

matrix coefficient

P(v1 ® v2)(g) = (v1,7(g)v2)

with v1 € Vi, va € Vg is determined by Fj, € Cfg K\G/K). Elements
of ng,ﬁg, (K\G/K) are called spherical functions. In particular, the ele-
aT?%(K \G/K) which is realized as the image of the bilinear form

(w,v) = @y (w € HY,v € Hy) is called the spherical function attached to
the principal series representation w. Because of the Cartan double coset

?T}*% (

ment of Cﬁg

decomposition G = K AK, spherical functions are determined by their re-
striction to A.

3. The Double Coset Cartan Decomposition

Because G has the double coset decomposition G = K AK, we consider
the decomposition of the standard elements in p with respect to the double
coset decomposition:

g=Ad(@a e +a+t

Here a € A is a regular element in A. For z € R, put sh(z) = 3(z — 1),

ch(z) = 3(z + 1). We have the following decomposition:

LEMMA 3.1. We have

X ;= ! Ad( —1)K~-+0+Ch(%)f<-- ;
W () T R sh(Z) "

H;j=0+H;; +0

with respect to the decomposition g = Ad(a=1)e+ a+ €.
4. The (g, K)-Modules of Principal Series Representations

4.1. The Capelli elements
The center Z(g) of the universal enveloping algebra U(g) has two in-
dependent generators, and they are obtained as Capelli elements because
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g = sl3 is of type As (see [2]). For i = 1,2,3, we put

3
/ 1

The following proposition ([6], Proposition 3.1 ) gives the explicit description
of the independent generators of Z(g).

PROPOSITION 4.1.  The independent generators {Cpa,Cps} of Z(g) are
given as follows:

Cp2 :(E/m - 1)E;,2 + Eé,2(E;,,3 +1) + (Eil - 1)(E:/3,3 +1)
— FEo3F30— F13E31 — E12F>
Cps :(Eig - 1)E;,2(E:;,3 + 1)+ E12F23F31 + E13F21E3
- (Ei,l —1)Ey3E39 — E1,3Eé,2E3,1 - E1,2E2,1(Eé73 +1).

4.2. Reduction of Capelli elements

To compute the actions of Capelli elements on spherical functions at-
tached to the spherical principal series, we may regard the above two ele-
ments as elements in Z(g) (modU (g) ), because these functions are annihi-
lated by the right action of €. Cpg, Cps (modU(g)¢) are given in [6]. They
are as follows:

LEMMA 4.2.  The Capelli elements Cpo,Cps satisfy the following con-
gruences:

Cpy =(E1q — 1)Eyg + Ego(Ey3+1) + (B —1)(E35+1)
- E22,3 - Ei:& - E%g (mod U(g)¥),

Cps =(Eyy — 1)Ey (B g+ 1) + E1oFo 3E1 3+ By 3E10Fa 3 — B
- E§,3(E1,1 -1) - E12,3E2,2 - E%,z(Ez,s +1)
(mod U(g)¥).
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4.3. Eigenvalues of Cps, Cps

In order to construct the partial differential equations satisfied by spher-
ical functions attached to the spherical principal series, we have to compute
the eigenvalues of the actions of the Capelli elements Cpy, Cps. For the
spherical principal series, 0 = oy is the trivial character of M. Let fy be the
generator of the minimal K-type in H,,, normalized such that fo|K = 1.
The actions of Cps, Cps on fy are computed in [6], and the result is as
follows:

ProproSITION 4.3. The Capelli elements Cpa, Cps act on fo by scalar
multiples, and the eigenvalues are given as follows:
) §(

1 1
Cpafo = 5o <§<2u1 1) .

1
—v1 4 219), —5 (11 + V2)> fo,

1 1 1
Cp3zfo = S3 <§(2V1 — 1), 5(—V1 + 21s), —§(V1 + V2)> fo-

Here, S3(a,b,c) = ab+ bc + ca, S3(a,b,c) = abc.

5. The Matrix Coefficient of the Spherical Principal Series Rep-
resentation

5.1. Construction of the differential equations
We put

y1 = y1(a) := ai/az, y2 = y2(a) := az/a3

for a = diag(ay, az,a3) € A. By definition of the action of Lie algebra, we
have the following formula.

LEMMA 5.1.  For f(y1,y2) = f(a) € C>*(A), we have

0

0 0 0
12f < Y1 an Y2 8y2> f, Haosf ( Y1 on Y2 8y2> f

Now we want to construct the partial differential equations satisfied by
spherical functions attached to the spherical principal series representation
Too,v- We define differential operators 0y, 02 by

0; = yia% (1=1,2).
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By direct computations, we have the following two lemmas.

LEMMA 5.2. For 1 <4,j <3 such that i # j, we have

[Ki,j,Ad(a_l)K@j] = —2sh <—> Hi,j-

LEmMMA 5.3. Fori,j, k€ {1,2,3} such thati # j,j # k,k # i, we have

[K-mu4mipﬁﬂgua*W(4ﬁM@K-
1,7 a jk - Sh(g—;) a Z,k Sh(g—;) Z,k7
sh(2) sh(2)
K Ad(a VK] = —2"Ad(a DK, — — 2K 1.

By combining Lemma 5.1, Lemma 5.2, and Lemma 5.3, the actions of
Cpo, Cps in Lemma 4.2 on fy are obtained by direct computations. The
eigenvalues are obtained in Proposition 4.3. Therefore, we can construct
two differential equations characterized by the actions of Capelli elements
Cp2, Cps.

Let us compute the action of C'py on the bi- K-invariant spherical func-
tion F'(y1,y2) € C°(K\G/K)|a. Firstly, since we have

/ 2 1
Ey 1 =5Hi2+ ;Has,

3 3
p 1 1
Foo=—H —H
2,2 34112 + 3123
/ 1 2
FEoo=—-Hj9— -H
3,3 3 1,2 3 2,3

the actions of ELl, E;Q, Eé73 on F' are given by 01, —01 + 02, —02 respec-
tively. Therefore, the action of (E11 — 1)E572 + Eéz(Eé’g +1) + (E11 —
1)(E5 5+ 1) on F is given by

(01 = 1)(=01+ 02) + (=01 + Do) (=02 + 1) + (01 — 1)(=02 + 1)
=0} + 0100 — 03 + 01+ 0y — 1.
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Next, since

1
Ey3=—-(Ka3+ Xa3)

1 1 1 Ch(g_i)
=5 {—MAd(a VK23 + (sh(“—2) + 1) Kz,s}

[\)

as as

and F is annihilated by the action of Ad(a=1)U(g) and U(g)E, the action
of E§73 on I is equivalent to that of

! Ch(g_i)ﬂ Ky 3Ad(a YK
1sh(%2) \ sh(22) 2AAEE R

By using Lemma 5.2, this equals

(250 ()1 (25 )

h(—= 2
c (”3) _ zgi and the action of Hy 3 is given by —0; +202, we conclude
2

ys +1
y3 — 1

(E33F)(y1,y2) = % ( + 1) (=01 + 202)F(y1,y2).

Similarly, we have

1 (Py3+1
(B4 F) . e) = (— +1) (01 + )P, ),
2 yiys — 1
1 /y?2+1
(E%,zF)(yl,ZD) =3 (zé 1 + 1> (201 — 02)F(y1,y2)-
1

From Proposition 4.3, the eigenvalue xcp, is given by

1
XCpy = —g(’/12 — Ve + V%)
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By combining these results, we have following differential equation:

(—0F + 0109 — 03+ 0y + Oy — 1)F(y1, 10)
_}(_y§+1 yiys +1  yi+1l
2\ -1 yiyi-1 yi-1
1 y2+1 y2y2—|—1 y2+1

__<22 192 Y
y3—1 yfy3—1 yi-1

+ 2) 01 F(y1,v2)

5 + 2> 02 F(y1,y2)

1
= —g( T — v+ 3)F(y1, y2)-

By multiplying both sides by -2, we have

2(8? — 0102 + 03)F(y1, y2)
ys+1  ylys+1 i+
) 2,2 +2 2
3/2_1 1/13/2_1 yl_l
y+1 oyl +1l oy +1
+ (2 02F (y1,y2)

> NE(y1,y2)

_.I_ —
yi—1 ylys—1 yi—1

2
+ {g(l/% — V19 + 1/22) + 2} F(yl,yg) =0.

The construction of the differential equation characterized by the action of
Cps is more complicated, but the way is similar. We omit this computation.
After all, we have the following two differential equations.

THEOREM 5.4. Let ' € CY4(K\G/K) be a spherical function attached
to the spherical principal series representation my, .. Then its restriction to
A: Fla = F(y1,y2) satisfies two partial differential equations:

2(07 — 0102 + 05)F
yi+1  ylyd+1 yi+1
-2 L OLF
yy — 1 y1y2—1 yr —1
(5.1) <2y§+1 yiys +1 y%+1> O, F

vz -1 -1
2
—5(1/% —vive + 13) +2}F:0,
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Y3 yiys
D10y F — 0105 F + (—1+ e 1)8%}?

vi—1 iyl —
2 2 2 2,2
" <_y§2y—2 1 ysy—l 1> Dl <1 - yfyi 1 ylegyi 1) O%F
N (} B yivs 3yiv3
2 (B -Div—-1) (-1 1)
(52) . yiys oyl oy 2 ) o F
(i =iy —1) 205 —1) v3-1 yi—1
N (_ 3 yiys _ 3yivs
2 (y3-Diys—1) (yi—D(y—1)
N yiys Y+ 2y . _ui ) O F
(Wi-Dwlys—1) 20iys—1) ws3—1 yi—1

1

27 (21/1 — 1/2)(21/2 — 1/1)(1/1 + I/g)F =0.

5.2. The expansion of the matrix coefficients in terms of the
power series around y; =y2 =0
For the spherical function F' € C7%(K\G/K) above, we want to find

its series expansion at the origin y; = O, y2 = 0 by solving (5.1) and (5.2).
Firstly, we put

(5:3) Fy1,y2) Z anmyy My (a00 # 0).

n,m=0

The first task is to compute the characteristic roots (u1, u2). By substitut-

ing (5.3) for F' into the equation (5.1) , and picking up the coefficient of
YTy T2 e have the following equation satisfied by {an.m}:
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{2(n" —4)2 = 2(n' —4)(m' — 4) 4+ 2(m’ — 4)?
+2(n —4)+2(m —4) + A} an_am-4a
+{=2(n —4)2+2(n —4)(m —2) —2(m" —2)?
—4(n' —4) +2(m' —2) — A}an_am-2
(5.4) +{=20n =22 +2(n —2)(m —4) —2(m  — 1)
+2(n —2) —4(m —4) — A}an_2.m-4
+{2(n —2)2 —2(n" —2)m' +2m? +2(n —2) —4m' + Nan_om
+{2n2 =20/ (m' = 2) +2(m' —2)® —4n' +2(m" —2) + Nanm_2
+ (=202 +2n'm —2m% +2n +2m" — Naym = 0.

Here, A := —%(1/12 — v +v3) + 2, n = n+ p, m = m + p2, and a; ; =0
ifi<0Oorj<0.

PROPOSITION 5.5.  The characteristic roots (u1, p2) take following six
values:

1 1
(1, p2) = (§(2V1 — )+ 1, *§(2V2 —v1) + 1) ;

1 1
5(21/2 —v)+1, —5(21/1 —vy) + 1) ,

(5.5)

PROOF. Because a;; =0 (ifi < 0or j <0), and ago # 0, by putting
n=m =0 1in (5.4), we have

—2(pf — papig + p5 — gy — p2) — A = 0.
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This equation is equivalent to

(56 (=17 = (1~ s~ 1)+ (g2~ 17 = 207 — vars +14).

Next, by computing the recurrence equation given by equation (5.2), and
substituting n = m = 0 in the coefficient of ay, ,,, we have

i(2V1 — 1/2)(21/2 — 1/1)(1/1 —+ 1/2).

Hipe = s = pd s+ = e = = o

This equation is equivalent to

{(pr = 1) = (p2 = D} — 1)(p2 — 1)
(5.7) 1

= _ﬁ(le —19)(2v2 — v1) (V1 + 12).

By combining (5.6) and (5.7), we have the result. O

Since the explicit forms of these power series are quite complicated, and
we do not use them at all in the computation of c-functions, we leave them
to the “Appendix”, section 7 of this paper.

Now we have known that the equations (5.1) and (5.2) have six power
series solutions corresponding to the six characteristic roots in Proposition
5.5. And the coefficients of each power series satisfy the recurrence relation
(5.4). For a characteristic root («, 3), we express the power seires solution
corresponding to («, 3) by ¥, 3. We assume that the constant term of 9, 3
is 1. By Proposition 5.5, § takes following three values:

1 1 1
B = g(Vl +r2)+ 1,8 = —§(2V1 —v)+ 1,0 = —§(2V2 — )+ 1

And for each j3;, we have two power series solutions. Therefore, we can write
matrix coefficient F' by

F(y1,92) chaz Y1, Y2 y21-

Here, ¢; (i = 1,2,3) are some constants and a;(y1,y2) (i = 1,2, 3) are some
analytic functions around y» = 0 . By substituting ai(yl,yg)yg"' into the
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equation (5.1), we have

y?i{2(8fai(y1, Y2) — 01020 (y1,y2) — BiOrai(y1, y2)
+ B3ai(y1, y2) + 26:02ai(y1,y2) + B ai(y1,y2))

2 2.2 2
ys +1 yiys + 1 3/1"‘1)

+ <— +2 01ai(y1,y2)
yi—1 yiyi—1 Tyi-1) 7

+<2y§+1+y%y%+1_y%+1
ys—1 yiys—1 yi-1

2
+ <_§(V% — vy +13) + 2) ai(yl"w)} =0

> (D2ai(y1, y2) + Biai(y1,y2))

Dividing both sides by yg’ and taking the limit yo» — 0, then we obtain

Y+ 1
yi —1

28%ai(y1, 0) + (2 — Qﬂz) 81ai(y1, O)

(5.8)

2

+1 2

+ <2ﬂ12 - :Zé 1,31‘ —308; — g(V% — Vv + l/22) + 2> ai(y1,0) = 0.
2 —

We put y? = u, fi(u) = a;(y1,0). Then the equation (5.8) becomes

d?f; u+1 df;
2 1 _ . 3
Su JuZ + (4 1 408; + 8) U

(5:9) +1 2
u
+ (2522 — P36 g(Vlz — vy +13) + 2) fi=0.

Next, we put f;(u) = u”g;(u) (z € C) and substitute this into (5.9). Then
we have

d%g; u+1 dg;
8u? 4 —48; + 8 + 16z | u—"
udu2+(u—1 it 8+ x>udu
2 2 2. 2
(5.10) —l—(&x —l—(4—4ﬁi)x+2@»—4ﬁi—§(1/1—1/11/2—|—1/2)
8xr — 20;
—|—2+u>g¢:0.
u—1

Now, we choose z; satisfying

2
8x? + (4 — 4 x; + 267 — 40; — g(y12 — v FU3)+2=0
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and substitute x = z; into (5.10). Then we have

gi = 0.

dg; 1 dgi i — 20
(5.11)  8u*=ZL 4 2L g 8y 16a, ) 029 BT 20
du u—1 du u—1

Finally, we put v = 1 and substitute this into (5.11). Then we have

¢
g dgi
I (5060 = o 1)+ 56— a4 3)0) 2
5.12
+(~ai+ Zyg =0,

(5.12) is a Gaussian hypergeometric differential equation, and if we define
Di, q; as the complex numbers satisfying

1
Lt pi+ai= 50 —4zi +3),

Diqi = —%i + %

and define r; by

1
ry = 5 (6 — 4w + 1),

then the solution is expressed by

0 1 00
P 0 0 pi ;¢
L—ri mi—pi—a 4
0 1 00
=P 0 0 pi ;1—¢

ri—pi—q 1—=ri g
Here, P{ } denotes Riemann’s P-function. The regular solution is,
9i(y1) = 2F1 (pir g3 1 —ri +pi + ¢i; 1 =€)

1
=2k (piaQi§1_Ti+pi+Qi§1_ ?>
1
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(See [9]). Since 2F) satisfies a formula ([5])

2 F1(a,b;¢; 2)
_JL(T(b—a) 1
(5.13) =(1-2) mzﬂ(mc—b;l—i—a—b;l_z)
—l—(l—z)—b%zlﬂ <b,c—a;1+b_a; 1iz>7
we have

gA(yl) :y2pi F(l —ri+pi+ qi)F(Qz‘ - Pz‘)
' ! I'(1 =7+ ¢)T(q)
g2 L(1—ri+pi+q)l(pi — )
! I'(1 =7+ pi)(ps)
X o F1(qi, 1 — 7 + qis 1+ ¢ — pis v2).

o Fy (piy 1 — 73 +pis 1+ pi — qi591)

Therefore, we have

ai(y1,0) = u"igi(y1) = v gi(v1)
_ R2pite) (A —ri+ pi+q)T(q — pi)
L1 =7+ q)l(q)
(5.14) x oFy(pi, 1 — i + pis 1+ i — a3 y7)
4yt L(1—r +pi+q)T(pi — qi)
I'(1—ri+pi)(p:)
X 9By (i, 1 — i + @i 1+ ¢ — pis y7)-

Next, for i = 1,2,3, we compute (z;, p;, g, 7;). Although the equation for
x; has two different solutions in general, the result doesn’t depend on the
choice of z;.

A)Incaseof 3; = 1 = %(V1+V2)+1, T1 = zV1—gl2, D1 = —%V1+%V2+%7
q = %, ry = —%V1+%V2—|-1.

B) In case of 5; = B2 = —%(21/1—@)4—1, To = —%yl—i—%ug, Py = —§V2—|—%,
@ =3 Tr2=—3m+1
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C) In case of B = B3 = =% (2v2—v1)+1, 23 = 211 — 219, p3 = — 511+ 3,
q3 = %
By substituting these results into equation (5.14), we have

,7"3:—%1/14-1.

al(yla O)

1 1
1(2va—v1)+1 F(§V1 - §V2)
1

\/%F(%yl—%yg—i—%)
1 1 11 1 1
J 2 - - - oL - 1: 2
X 2 1( 2V1+2V2+2727 2V1+21/2+ ,y1>
N y§(2y1—u2)+1 T(—3v1 + 310)
1 \/7_1'1_‘(—%1/14—%1/2—{-%)
1 1 111 1
Fo 2y — = - oo, = 1: 2
X 2 1(21/1 21/2+2,2,2V1 2 2 + 7y1)a

=y

az(y1,0)
Lot T(5e) 111 1

— .3 Fi(—cvo+ =, =1 —=vg+ 1;
Y1 /T )2 1 V2+2,2, 2V2+ Y1

(
. . (-1, 1 111
(2va—v1)+ ( 2 2) oFy <—1/2 + 5’ 53 57/2 + 1;y%> )

ol Vil (—d 57 T \2
as(y1,0)

_ yl_%(yl_'_m)—’_l%QFl <_%V1 + %, %; —%Vl + 1§y%>
oy \/EFF((—%QIZIL %)QFI <%V1 * % % %Vl T yf)

Therefore, by compairing the leading terms, we have

w%(Qljz—l/l)—l—L%(lIl—‘er)—l—l(yl? y2)
1 11 1 1
1t gt 1;y%>

L(2uy— 1 1
3 VI)HZ/S(VIWQ)HQFl <__V1 + o2+ 579 Y

— U 2 2" 3

+ (higher order terms with respect to ya),
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w%(21/1—y2)+1,%(l/1+1/2)+1(yl7y2)
l(21/1—1/2)—{-1 ,l(ljl—l-llg)—‘,-l 1 1 111 1 2
— 3 3 Fi (v — Zvp+ =, =1y — =up + 1;
Y1 Y9 211 2V1 2V2+2,2,21/1 21/2+ U1

+ (higher order terms with respect to ys),

w—%(V1+V2)+1,—%(2V1—V2)+1 (y1,92)

-3 O (L2 111 1
=y 3 (vitv2)+ Yo 5 (2v1—12)+ o F1 (—§z/2 + 3 5;_57/2 + 1;y%)

+ (higher order terms with respect to y2),

w%(21/2—V1)+1,—%(2V1—l/2)+1 (y17 y2)

Loy, 1 —Lop,— 1 1 111
:?/13(U2 ot Yo 3wt 21 (51/2-#5,5%57/2-!—1;?/%)

+ (higher order terms with respect to ys),

w—%(V1+V2)+1,—%(2V2—V1)+1 (Y1, 2)

_1 1 —L1p,— 1 1 11 1
=y 5 (n1+v2)+ Y 3 Qra—v1)+ JF) <_§V1 n 5’5;_§V1 " 1;y%>

+ (higher order terms with respect to y2),

w%(21/1—V2)+1,—%(2V2—V1)+1 (y17 y2)

Loy _ 1 —Liop,— 1 1 111
:ylg,( v1—v2)+ s 3(2v2—v1)+ o F) <§V1+§7§;§V1+1§y%>

+ (higher order terms with respect to ys),
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and

_ L(zv1 — g12) "

- VAT (Jvi — vg + §) s ramrd L)+l

n I(—3v1 + 312) "

VAL (<L + Lig 1 1) T 5@+
F(EVQ)

e {m¢—%(V1+V2)+1,—%(2u1—y2)+1

(5.15)

I'(—3v)
3 ¥
VAL(—hup + 3) 3o nmet

F(iyl)
tes —l)w—%(V1+V2)+1,—%(2V2—y1)+1
2

\/7_TF(—§U1 + %)wé@m1/2)+1,%(2l/2u1)+1} .

The next work is to determine the values of ¢, co,c3. To do this, we
apply the same method to ys-part. That is, for oy = —%(yl +1)+1lay =
é(2ul —w)+1,as = %(21/2 —v1) 4+ 1, we can write

3
F(y1,y2) = Z dibi(y1, y2)y)"
i=1

and by investigating the differential equations satisfied by b;(0,y2) (i =
1,2,3) and compairing the leading terms with respect to y2, we have



Matriz Coefficients of the Principal Series Representations of SL(3,R) 21

F(%I/l — %1/2)
ro {ﬁr@m e e LS

F(——Vl—i- 1/2)
\/_F(——ul—{— Lyg+ 1 ) —%(V1+V2)+1,—%(2V2—V1)+1

p L(3v2)
B R PR A L et
(5.16)

VAT (—Lvs + %)w§(2”1—y2>+17%<w+w>+1}

d F(%I/l)
T md)%@l@ vi)+1,—5(2v1—v2)+1

ﬁr(—§V1 + %)w%(2V2—V1)+1,%(V1+V2)+1} :

By compairing the coefficients of 1, g in the equation (5.15) and (5.16), we
can determine ¢;,d; (i = 1,2,3) up to constant multiples. In particular,
I'(— V1)
1 v+ )

p)l(=50) L3 — 51)I
, €2 —
+ (=312 +3) L(Avi — 3um + $)T(3

c1 =

N[ N[ =

r(-

wlr—t

F(—%lll + %VQ)F(%VQ)
F(—%Vl + l1/2 + l)F(lVQ + %)

C3 —

For the power series an 0 Qn, my?Jr“lng“Z (app # 0), we call apo the
first term of this power series. We completely determined the six coefficients
appearing in the linear combination of power series. Summing up, we have
the following theorem:

THEOREM 5.6. Let F be a spherical function attached to the spherical
principal series representation Ty, and 1 g be the power series solution
around y; = ya = 0 corresponding to the characteristic root («, [3) whose
first term is equal to 1. Then we have

F(—%yl)F(—%ug)F(%yl — %UQ) wl )
VAL (=i + DD (—Lvs + DTGy — fup + 1) 5@ttt
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F(—%ul)F(—%yg)F(—%ul =+ %1/2)
\/EF(—%ul + %)F(—%VQ + %)F(—%I/l + %1/2 + %)

+

x w§(2ul—u2)+1,§(u1+u2)+1
N F(%I/l — %Z/Q)F(%I/l)r(%ljg) o 1
VAL (A — Tug + DGy + DD wy + §) T st thmg@nmva)tl
N F(%Vl — %VQ)F(%I/l)F(—%VQ) " 1
VAo = s 4 Do + DT (<Lop 1 1) V3@t —den—m)t
F(—%yl + %Z/Q)F(%VQ)F(%Vl)
\/EIT“%Vl+—%V2+-%)F(%V2+-%)F(%V1+-%)w_%(WAﬁQ}+L_%(mQ_Vﬂ+I
F(—%I/l + %VQ)F(%VQ)F(—%Vl)
VAL (=301 + 10 + DT (G + DD (—214 + 2)

x w%(2V1—l/2)—|—1,—%(2y2—u1)+1'

+

+

6. The Matrix Coefficients of the Non-Spherical Principal Seires
Representations

In this section, we investigate the matrix coefficients of the non-spherical
principal series representations whose minimal K-type is the 3-dimensional
tautological representation of K. Let 73 : K = SO(3) — GL(3,R) be the
tautological representation. Then we say that

{51 =%(1,0,0),52 = (0,1,0),s3 = £(0,0,1)}

is the natural basis of this representation 7. We consider a spherical func-
tion ¥ € O, (K\G/K) attached to the non-spherical principal series
representation 7y, , (i = 1,2,3). ¥ can be written in terms of the basis

{S’L’Z = ]-a 27 3}

3 3
=2 dijlg)si @ 55"
i=1 j=1

Note that ¥ satisfies
3

3
U(k1gky ) ZZ )(72(k1)s}) @ (2(ka)s])
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for ki1,ke € K, g € G.
LEMMA 6.1. Fora € A, we have d;j(a) =0 if i # j.
PRrROOF. A subgroup M of G is defined by

M=27kg(A)={k e Klak=ka (Vaec A)}
= {diag(€1,€2,63)|€i € {:l:l}, €1€9€3 = 1}.

Then for m € M, a € A, we have
71.(m)¥(a) = ¥(ma) = ¥(am) = Tr(m ") ¥(a).
Therefore, for example, for ms = diag(—1,—1,1) € M, we have
Ta(m3) @ ¥(a) = 1 ® 12(myz ") ¥(a).

Hence

-1 -1

23

From this, we have di3(a) = ds1(a) = das(a) = ds2(a) = 0. Similarly, the

actions of the other elements of M show that d;;j(a) =0if ¢ # j. O

6.1. The action of Casimir operator

We use the same coordinate y1 = 1,42 = 22 (a = diag(a1, a2, a3) € A)

as in section 5. We compute the action of the Casimir element, which is an
element of Z(g). The Casimir operator C' of SL(3,R) is decomposed into

two parts with respect to the Cartan decomposition g = € @ p:
C=C(p)+ C(¥).

Here,

2 1
C(p) = §(H12,2 + HioHy 3+ H33) + 3 ;Xﬁy
<]
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Firstly, we consider the action of C(p).
2
The action of g(Hf2 + HyoHo 3 + H22,3)>

2
= g{(?@l — 82)2 + (281 — 82)(—81 + 282) + (—81 + 282)2}
= 2(8% — 0109 + 3%)

Next,

a; 2
1 ch(gh)
2 ) - -1 — YK
Xz,] { sh a; Ad(a )K,J + (Z ) }

)
1 -1 2 Ch(g_;) 1
a; a;
ai\2 a;
ch(@)® , @)

[K@j, Ad(a_l)Ki j].

)

[
T Sh(EE N T Sh(E

The bracket product above is given by Lemma 5.2. Therefore, we have

1 _ ch(yl) _
~ Ad(a VK 9)? — Ad(a VK9 K
Z i = 23h yl)g( (@™ )K1.2) Shiy)? (@) K12 Kip

1<]
1 h(y1)2K2 chly)
2sh(y1)2 " sh(y1)
1 1 _ ch(y1y2) _1
+ = Ad(aHK — P Ad(a YK 3 K
53 (ylyz)g( (a")Ky13)? (i)’ (a™ ") K13 Ki3
le (y1y2)2 (y1y2)
SSAV2) 2 +—H
2 sh(y1y2)? h(y1y2) b3
11 ch(y2) -1
Ad 2_ Ad Kys- K.
F e AT = g A K - Ko
1 ch(y2)? ch(yz)

2 sh(y2)? 2 shiyz) %

The actions of (Ad(a™1)K; ;)?, (Ad(a™Y)K; ;) K ;, K on U(g)=>>;
dij(g)st ® sj are given by

(Ad(a ) Ki j)?W(a) = —dii(a)sh" — djj(a)st ],
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(Ad(a™ MK, ;)K; ;¥(a ):djj(a) i+ dig(a)sh,
KZ%]\II( ) = —dii(a ) _djj(a) LR

LR .

on A. Here, we put St = s ® sR Therefore, we have

C(P)‘I’( )
= 2(0{ — 0102 + 32) (a)
ch (y1) Ch (1192) Ch(y2))
92 — Vv
( sh(y1) Sh (v1y2)  sh(yz)) )
( ch(yr) ch (y1y2) ch(y2)
1
2
1
2
1

+

+

sh (y1) Sh (y192) 3h(y?>> i
sh( N ———{dn(a Vs + doa(a)shs}
1
sh(y1y2)?
1
 25h(y2)?
SC:((yl)) {daa(a)stft + dy1(a)sE) + %{d%(a)sﬁ + du (a)s3y'}
+ Sc:(( )) {d33(a)S§IQR + d22(a)3§i§}

1 ch( ;2{d11( Vst 4+ dog(a)si}

sh(y

1 Ch(yl 2)?
sh(
(

S{di1(a)stit + dss(a)sgs'}

————{daa(a)sgs’ + ds3(a)szs}

y1y2)2{d11( a)sii’ + dss(a)sgs’}

1chy)

QSh(yQ)Q{dw( a)syy’ + dgz(a)sgy'}.

Next, the action of C'(€) = —1 3~ ;K ; is given as follows:
C(&)¥(a)
1 1
= S{dn(a)sii" + doo(a)szy'} + 5 {daa(a)szy’ + das(a)sgs")

1
+ 5{6111(@5%1R + dsz(a)sss ).
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Therefore,

(CT)(a)
_ 202 — 0105 + 02)W(a)

ch(y1)  ch(yiy2)  ch(ys)
<zsh<y1> hly1y2) sh<y2>61‘“

ch(y1) ch(y1y2 Ch (y2)
— DV (a
sh(y1) sh(y1y2 sh (y2)

—r(zl)g{dn( a)s{t + dag(a)shy'} — W{dll(a)sfﬁeri”?’(a)sg}
sh(l 2 {daa(a)shy® + dss(a)ssy’}

+Ch(y1){d (a)sER 1 d ()LR}JFM{C[ (@)sHF + 1 (a)sER)
shiy)? 1222 511 11(a)s23 sh(yiyz)2 L8 ) 1114)533
sc:((yg))Q {dsz(a)stft 4 dao(a) st

The next step is to compute the eigenvalue A of the Casimir operator C.
We compute the action on f € Hy, , such that f(e) = 1. Firstly, %(lez +
Hy2H> 3+ H273) acts on f by scalar multiplication. Its scalar is given by

%{(Vl —v+ 1)+ (1 — v+ D)+ 1) + (e +1)%}

2
= g(uf — vy + V2 + 31 + 3).

Next,

3 X~ 5 S = 5 S (B i - 5 Y (B - B

1<J 1<J 1<J 1<j
= (Ei;jEji + EjEij).

1<j

Since X f(e) = 0 for X € n, the action of F; ;F;; is 0. On the other hand,
since

[E;j, Eji] = Hy j,
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we have
Ejilij = Eijlji — Hij.

Thus

1 2 1 K2

52 X5 K|

1<J 1<J
= |\ 2t | f
1<j

= —2H13f = -2(1nn +2).

Therefore, we have

2
A= 5(1/%—1/11/2—{—1/22—}—31/1—}—3) —2(r1 +2)

= g(yf — vy +13) = 2.

For W(g) = >0, >o0_, dij(g)st @ st € O, (K\G/K), we put

i T2,T2
dii(a) = F(a) = F(y1,v2),
da2(a) = G(a) = G(y1,92),

ds3(a) = H(a) = H(y1,y2)-

Then, by compairing the coefficients of sﬁR in both sides of the equation
CV¥ = \VU, we have the following theorem:

THEOREM 6.2. Let ¥ =%(F,G, H) be a spherical function attached to
the non-spherical principal series representation m,, , (i =1,2,3) restricted
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to A. Then, F, G, H satisfy the following differential equations:
2(07 — 0102 + 93)F(y1,y2)

(o o) B
o (S )
- (sh(w)2 - Sh(y1y2)2> Fy1,y2)
scl? ((yyll))2 G(y1,y2) + SC: ((yy11522))2 (y1,y2)
= AF(y1,¥2),
2007 — 0105 + 03)G(y1, y2)
O L
o CH SR e
B <Sh(yl)2 " Sh(y2)2> G(y1,2)
Sc,il((yyll))z (y1,92) + SC;Z ((522))2 H(yr, o)
= \G(1, 1),
207 — 000y + 03)H (y1, o)
(2 EZ&; - izgﬁi - zzgi;) O H (y1,y2)
(6.3) (_ Z%LEZS 22%23 ZZ%Z;) Do H (y1,9y2)
B <8h(y2)2 " Sh(y1y2)2> H(y1,12)
sc:&lf))? (1, 2) + SC;?(ZQ))? Gy, o)

= )\H(yla y2)



Matriz Coefficients of the Principal Series Representations of SL(3,R) 29
Here, A = %(V% — vy +v3) — 2.

6.2. The gradient operator
For a spherical function ¥(g) € C°_ (K\G/K) attached to the non-

2,2
spherical principal series representation m,,, (i = 1,2,3), we define the

right gradient operator V¥ as follows:

DEFINITION 6.3. For the orthonormal basis {X;}?_; of p, the right
gradient operator V¥ is defined by

5
VAU =Y Rx, ¥ ® X/
=1

Here, X} is the dual basis of X; with respect to the inner product (X,Y) €
pxp—Tr(XY)ecC.

If we take {Hl,g,H273,X172,X2,3,X1,3} as a basis of p, its dual basis is
{3(2H12 + Ha3), 5(H12 + 2Ha23), 3 X1,2, 3 X2,3, X1,3}. Therefore,

1 1
Vel =58,V © (2Hip + Ha) + g Ry U © (Hip + 2Hz)

1
+ 5 g RXZ.’J.\I/ & Xi,j-
i<j

Cramv 1. We define {w;|0 < i <4} C pc =p @R C by
wo = —2(H273 —V —1X273)
Wy 1= *2(H2,3 =+ *1X2’3)
2
Wy 1= §(2H172 + H2’3)
wy = X173 =+ —1X172
w3 = —X13+V—1X1.

Then {w;|0 <i < 4} becomes a basis of pc.
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With this basis, the gradient operator V¥ is written as

16 6
1 3
— Ry ¥ ®@ws+ ngQ\I/ X wa

4
1/1 1
= 1 —Ryp, ¥ @ wo + —Ruypo¥ @ wy — Ry ¥ Q wy

1 1 1
vEy =—R,, ¥V Quwy+ 1—Rw0\11 Qwy — Zng‘I’ ® w1y

4 4

3
—Rwl\lf@)wg + §Rw2\1/ ®w2> .

K acts on pc by adjoint action. We denote this representation by (74, Wy).
By the Clebsh-Gordan theorem, 7 ® 74 has the irreducible decomposition

Ty R T4 =Ty DTy D Te.

Here, each 7, is a (n + 1)-dimensional irreducible representation of K. In
this decomposition, the projector of K-modules

pro T @ T4 — T

is described as in the following table:

Table 1. Table of pra(s; ® w).

wo w1 w2 w3 Wy
S1 0 —%(83 + \/—_152) —%81 %(83 — \/—_152) 0
S9 %(82 — \/—183) —Q‘ﬁ %82 —Q‘ﬁ %(82 =+ \/—153)
s3 | -3(s3 +v/—1s2) —151 %83 151 2(—s3+V—1s2)

VEV is a (3 ®72) @ po-valued function. Then, by mapping s* ®sf®wk
to sk ® sfwk (here, sfwk = prg(sf ® wg)) , we have a K-homomorphism

pra o VA O (K\G/K) — O, (K\G/K).

72,72

Since the minimal K-type 7 is of multiplicity one, pis o VF is a map of
scalar multiplication.

We compute 4pis(VE)(a) for ¥U(g) =Y, > dij(g)st ® sf, acA
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1)
1 1
ZPW(RM‘I’ ® wo)(a) = 1pr2(R—2(H2,3+\/—_1X2,3)‘I’ ® wo)(a)
1 .
= —§p7‘2(RH273\I/ ® wO)(a)
-1
5 prg(RXM\II ® wo)(a)
Firstly,
1 .
- _pTQ(RHz,:s\II ® wo)(a)

2
1 3
—5(—81 + 282) Z d”(a)sZL (4 sf‘wo

=1
1 an
= _Z(_al + 20y dgo(a)shdt + T( O + 209)daa(a) skl

v—1 1
+— 1 ( 81+262)d33( )832R 4( 81—|—282)d33( )835

Next, since

1 _ ch(yz)
Xog = ———Ad(a~ ") Koz + 92 g,
23 sh(yz) (@) Kz sh(ya)  >°

we have

1
pTZ(RXz,a\IJ X wO)(a)

v—l 1 ch(y2)
p 2 Sh( )RAd(a DKa 3

Ric, U & wo) (a)

sh(y2)
<4sh (42) 4Cshh(gjy22)) d22(a)) &
+ ( 4;2(_;2 (a) + %dm(@) S5y
+ < 4;2(_;2 (@) + %d‘gg(@) si
n ( @+ %d%(a)) oL
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Therefore, we have

172 Run ¥ © o))

_ i(—81+282)d22( )sLE +§( 1 + 202)dps(a) s
\/f( 01 + 20)ds3(a)shst + i( D1 + 202)d3s(a) sy’

+ (gt - aigin) 4

(T 1) 1

o f i)

(@ Gyl 4

2) Similarly, we have

1972y ¥ © w0

— 111( O1 + 200)das(a)shft — g( O + 20;)daa(a)s53"
‘/f( O1 + 202)ds3(a)skyt + — ( O1 + 205)ds3(a) 583"

(- )

; (4@ s “;f(h() (e ) s

+ (@~ d(e)) s

* ( 4sh1(y2 Cshh((y;))d?’?’( )> -

— pra(Ruw, ¥ ® wi)(a)
= p%Q(RXLg\II by wl)(a) - \/__1p%2(RX1,2 ® wl)(a)-



Matriz Coefficients of the Principal Series Representations of SL(3,R)

Firstly,

pra(Rx, s ¥ ® w1)(a)

3
1
:_ﬁRAda K 3 (Z )s; ®SZR> wy

sh(y1y2

ch
+7(y1y2)RK13 (Zd” sk @ s )

sh(y1y2) pa
1
Sh(ywz)( 11(a)sy @ s1'w1 + dsz(a)sy @ s3wi)
ch(y1y2) LR L
_chny2) ;
Sh(yly2)< 11(a)sy ® szwy + dzz(a)sz ® s1'wr)

————ds3(a) — %du(ao stit

\/__10h(yly2) LR

" (48h(y1yz)d“( )+ 4sh(y1y2) dgg(a)) 732
( 1

ch(y1y2) ) LR
_—d a +—d a S
11(a) Tsh(sys) 33(a) ) s33".

Next,

3
VvV —1ch(
_ le yl RK12 <Zd“ )s; ®sﬁ)w

— s\f{(y_ll)( dy1(a)sy @ sfwy + dag(a)st @ sfw)

 Vehw)
sh(y1)

B 1 ch(y1)

= (i@~ 01,0 )

V-1 V—=Ich(y1)
(@@~ )

(—du(a)sf ® sé{wl + dgg(a)sg ® s{%wl)

33



34

Therefore, we have

— pra(Ru, ¥ @ wr)(a)
d22 (a) +

ch(y1y2) a) —

4sh(yiys)
Nt
i <4sh< )

1
4$h(yly2

(-
+ ( 4sh1(y1
(-

_l’_

1
4sh( ylyz

_l’_

4) Similarly, we have

4sh(yrys)

d 1(@) —

Keiju Sono

1
—+ <—mdll(a) +

ch(y1) <hly) 4 )> SLR.

4sh(y1)

1

dssz(a)
ch(y1)
4sh<yll>d”(a)> st

\/__10h(y1 ) doo (CL)) LR

S
4sh(y1) #

\/—_1ch(y1y2) d33(a)> LR

4sh(y1y2) 732
ch(y1)
Sh(yl) d22(a)> 2

ch(y1y2) LR
4 h(sya) d33(a)> S33 -

— pro( Ry, ¥ ®@ w3)(a)

_ (#
~ \4sh(y1y2)
1

(yl)
\/_1

4sh(y1
V=1

(-

+ <4sh (ya)”
(50
(-

(a) =

33

22(a) —

ch(y1y2) (a)
4sh(y1y2) H

P ) st

4sh(y1)
d22(a)> s53°

\/_dl(yl)
vl Vo) o) ) st

4sh(y1)

4sh(y1y2)
Ch(yl)
Sh(yl)d22(a)> &

ch(y1y2) d
s h(y1y2)

33(@) Sg?f%
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5) Finally,
3
3PT2(Ru, ¥ @ w2)(a)
3
- §pr2(R§(2H1,2+H2,3)\P ® w2)(a)
3
= Rop, y+Ha (Z dii(a)s{ © SZR> (0
=1
1 1
= —aldll(a)sflR + 5816122((1)8%2}% + 581d33(a)s§§.
By combining these results, we have
4pry(VrY)(a)

ch(y1) | ch(yiye)
- {‘ <81 + ashn) 2sh<y11y22>> din(a)

1
+—d a +—d a SLR
250y 2 ¥ Sy )} i

1 ch(y1)  ch(yz)
{ g (-0 5585 - 2t

1 1
{1 = iy

ch(y2) | ch(yiy2)
" <82 " 2sh(y2) * 28h(@/1y2)> d33(a)} séﬁ

This equals \; 2?21 djj(a)sij, where \; (i = 1,2,3) are some constants
depending on the choice of 0 = o; of the principal series representation.
The eigenvalues \; (i = 1,2,3) are computed in [6], and they are \; =
—%(21/1 —19), Ao = %(l/l —219), \g = %(1/1 + v2). Summing up, we have the
following result:

THEOREM 6.4. Let U(g) =30 37 dij(g)st@slt € C%, (K\G/K)
be a spherical function attached to the non-spherical principal series repre-

sentation 7y, , (1 =1,2,3). Put

di1(a) = F(y1,92), d22(a) = G(y1,y2),ds3(a) = H(y1,y2).
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Then F, G, H satisfy the following differential equations:

ch(y1) ch(y1y2)
- <81 " 2sh(y1) - 2sh(y1y2)

1
o > F(y1,y2) + mG(yla Y2)

1
+ 7H 9 = AzF 5
2sh(y192) (y1,22) (y1,y2)
1 ch(y)  ch(ys) )
- —FF—F(y1, + (01 — O + _ Gy,
(6.5) 2sh(y1) (v1,32) ( 1 2 2sh(y1)  2sh(ys) (y1,92)
' 1
+ 7H 5 = )\’LG ,
2sh(y2) (y1,92) (y1,2)
Y rm) - — Gl
(6 6) 2Sh(y1y2> Y1, 92 23h(y2) Y1,Y2
' ch(yz) | ch(yiys) )
3 + H , — AzH ’ .
< * " 2sh(y2)  2sh(yiv) (v1,92) (¥1,92)
Here, \i = —§(21 = ), Do = 5(v1 = 2w), Xy = (1 + 1),

6.3. The expansion of the matrix coefficients in terms of the
power series around y; =yo =0

We put
y17y2 Z an, myn+“1 m+,u2
n,m=0
0o
Gy, y2) = > bmyr ys 2,
n,m=0

n-+p m+ 2
H(y1,y2) E Cnmyy a

n,m=0

((ao,0,b0,0,c0,0) # (0,0,0)). We want to find the recurrence relations be-
tween (anm), (bnm), (cnm) and the values of characteristic roots (p1, p12).
Hereafter, we assume that 1,1, 15 are linearly independent over Q. By in-
serting these power series into the Casimir equation (6.1), (6.2), (6.3) and
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the gradient equation (6.4), (6.5), (6.6) and picking up the coefficient of

Yy 2 e have the following recurrence relations:
22 —n'm +m? —n' —m') - Aanm
o0 o0
+2 z(—Qn +m + 2k)an—okm + 2 z(n —2m + 4k)an m—2k
k=1 k=1
(6.7) <,
+2 Z(—” —m + 2k)an—okm—2k
k=1
o0 (o]
+2) (2k = Dbn_gksim +2 Y (2% = 1)en—akr1m—2641 = 0,
k=1 k=1
2m?—n'm +m?—n' —m') - Atbnm
o (0.]
+23 (=20 +m 4 2k)by_gm + 2D (= 2m + 2k)by ok
k=1 k=1
(6.8) > , /
+ 2 Z(—n -—m —+ 4k)bn—2k,m—2k:
k=1
o o
+2 Z(% —1)an—2k1,m +2 Z(% —1)enm—2k41 =0,
k=1 k=1
2n?—n'm +m?—n' —m') - AYenm
o0 (0.]
+23 (=20 +m 4+ 4k)en_oem +2 D (0 = 2m +2k)cp m—ok
k=1 k=1
(6.9) > / /
+2) (= —m 4 2k)cn—2km-ok
k=1
o (0. ]
+2 Z(Zk —1D)an—2pt1,m—2k+1 + 2 Z(% = Dbpm—2k11 =0,
k=1 k=1
o @] oo
(_n +1- )\i)an,m + Z Gn—2k,m + Z An—2k m—2k
(6.10) h=t k=t

o0 oo
> bnakitm — Y Cn-2kt1m-2k41 =0,
k=1 k=1
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o (0.0}
(0 = m = A)bnm = Y bnkm + D b2k
k=1 k=1

(6.11) - .
+ Z An—2k+1,m — Z Cnom—2k+1 = 0,
k=1 k=1
o0 (o]
(m/ —1—=Xi)enm — Z Cnym—2k — Z Cn—2k,m—2k
(6.12) h= =

o0 oo
+ ) tn-gkitm—2ks1 T > bnm—zkr1 = 0.
k=1 k=1

Here, n' = n + ", m =m+ a2, A is the eigenvalue of the Casimir oper-
ator given in Theorem 6.2, and \; (i = 1,2,3) are the eigenvalues of the
gradient operator given in Theorem 6.4. In these identities, we assume that
aij,bij,ci; = 01if i <0 or j <0. Note that in this computation, we used
the power series expansions

ch(y) G 2k 1 G 2k—1
=-1-23 y* —os =23y
sh(y) ,; sh(y) kzzl

_4Zk 2% Ch )2 2i Y21

k=1
(ly| < 1). By inserting n = m = 0 into (6.7), (6.8), (6.9), we have

(6.13) 2(ui — pap2 + p3 — 1 — p2) — A =0.

Moreover, by inserting n = m = 0 into (6.10), (6.11), (6.12), we have
(—p1+1—X)apo=0
(1 — p2 — Ai)boo =0

(MQ —1- )\Z‘)CQQ = 0.

Since (ao,0, bo,0, c0,0) 7 (0,0,0), at least one of —pu1 +1—N;, 1 —p2—Ai, 2 —
1—; is 0. By combining this with the equation (6.13), we can compute the
values of (i1, u2). (Because of the assumption of the linearly independence
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of 1,1, 9, we know that just one of —pg +1—XA;, g1 — o — A, o — 1 — X
is 0, and the other two are not 0.)

PROPOSITION 6.5. 1) In case of 0 = 01, A\ = A\ = —1(2v1 — 12).
a) If —p1 +1— X1 =0,

21 — 19+ 3 v — 219+ 3 201 —19+3 v +19+3
(/1’1’/1’2): 3 ) 3 , 3 ) 3

and a(),o 7& 0, b070 = O, 6070 =0.
b) If p1 — p2 — A1 = 0,

( )_ 200 —v1+3 v+ +3 - —1+3 v —21n+3
/’L17/'L2 - 3 9 3 9 3 9 3

and ap,0 = 0, bo}o 75 O, Co,0 = 0.
c) If pp—1—=X =0,

( )_ 209 — 11+ 3 vo— 211+ 3 —v1—1vy+3 vn—2uv1+3
w1, p2) = 3 ’ 3 3 3 ) 3

and ago = 0,bo,0 = 0,c00 # 0.

2) The change of notation Ay — Ao, V1 +— Vo, Vo — 1y in 1) gives the
values of (p1,p12) in case of o = oo, and the change of notation Ay — s,
v — —u1, Vg — —v1+ 1y in 1) gives the values of (p1, p2) in case of o = o3.

Because of the same reasons we mentioned in section 5, we leave the
explicit formulas for the power series to the “Appendix”, section 7 of this
paper. Now, we have known that there exsists six power series corresponding
to the six characteristic roots given in Proposition 6.5, and the coefficients
of power series satisfy the recurrence relations from (6.7) to (6.12). Firstly,
we take o = oy for the character of M. Let ¥ = !(F,G, H) be the matrix
coefficient with K-type of three dimensional tautological representation, and
Va8 = "(fa,3: 9a8, has) be the power series solution around y; = yo = 0
corresponding to the characteristic root (a, 3) whose first term is (1,0, 0)
or 1(0,1,0) or ¥(0,0,1).

By Proposition 6.5, a takes following three values:

1 1 1
a1 = —g(Ul —I—I/Q) + 1, a0 = §(2V1 — 1/2) +1,a3 = §(2V2 — 1/1) + 1.
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Therefore, we can write

F(y1,42) Zdb (y1,92)y
G(y1,92) Zdb (y1,y2)y

H(y1,y2) Zdb (y1,92)y

Here, d;(i = 1,2, 3) are some constants and bz(-j ) (y1,y2) are analytic functions
for 0 < y2 < 1 and 0 < y; < 1. By inserting F' = bg )(yl y2)y;?, G =
b( )(yl, Y)Yy 2 H = bg )(yl,yg)y‘f‘2 into the equation (6.1), we have

yi? {2(3558)(@/1, y2) + 200165 (y1, y2) + 308 (41, 12)

- 3132521)(3/1, y2) — ocz@zbél)(yl, y2) + 3355 )(@/17 Y2))
ch(y1) | ch(yiy2)  ch(yo) (1) (1)
+ (28h<y1) 5h(y1y2) Sh(yg) (a2b2 (ylva) + 81b2 (yl»yZ))
ch(y1) | ch(yiyz) Ch(y2)) 1)
- 2 2ob) (1,
( shiyn) T shlye) T Zsh(ya) ) 2P W08

! 1 (1)
- b
(Sh(y1)2 * Sh(y1y2)2) s (Y1, y2)

ch(y1) , (2) ch(y1y2) ,(3)
Sh(y1)2b2 (ylay2)+ h(y y) b ( 153/2)

— )\bgl)(yl, yg)} =0.

By dividing both sides by yi? and taking the limit y; — 0, we have

2

2
+1
+ <2a% — Z% 1a2 — 3o — )\) bél)(O, y2) = 0.

2

2
+1
20268(0, ) + <zz§ - 2a2) 9,0 (0, 2)

Note that because of Proposition 6.5, since ag o # 0 if o = a, bgl)(O, y2) is
not identically 0. Hereafter the same statement holds for all the functions
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we compute. This equation is the same type of equation as (5.8). By solving
this, we have

29—V 1 r lV 1 11
bgl)((] Y2) =Yy s(ra—m)t #))QFI <— 35

VAl (5v2 + 2
oo __T(bo) RN
3 F - - . 1:
+y2 \/_F( I/2+ )2 1 2V2+27272V2+ s Yo

and by compairing the leading terms, we have

1 T (@u1—v2)+1,— % (2va— 1/1)+1<y1 Y2)
Lovi—v)+1 —L(2ue—v1)+ 1 1 1 1
)

+ (higher order termswith respect to ),

f% 2V1*l/2)+1 l(ul+u2)+1(y17 yZ)

1o 11 1 1 1 1
yf’(yl va)+ yf(yﬁw) 2F1< V2+2 33 2+1;y%)

+ (higher order termswith respect to )

and
F(%Vg)
U =dy {mw%(2V1—V2)+1,—%(2V2—V1)+1
(6.14) I(—3vs)

+ﬁr(—%u2 - %)¢%<2V1—vz>+1,%<m+vz>+1}

+ (linear combination of the other four solutions).

Next, by Proposition 6.5, § takes following three values:

1 1 1
Bi=-1+1r2)+1,0= —§(2V1 —1)+ 1,03 = —5(27/2 —u)+ 1

3
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Therefore, we can write
F(y1,y2) Zcz (1, y2)us",
G(y1,92) Zcz yl,y2 y2 )

H(y1,y2) Zcz (y1,y2) yz :

By inserting F' = a5 (y1, )02, G = a2 (g1, )22, H = oS (1, y2)2?

into the equation (6.3) and applying the same method, we have
F(%VQ)
e { VAT (b + 5 Hem i en

(6.15) L(—3v2)
+ wl - 1,— L@ —v 1
VAT (P R ien s
+ (linear combination of the other four solutions).
1 4
i )<y1ay2)y2ﬁ 7G =

Next, we take ¢ = 1 or 3. By inserting F = al(
Y1, yg)yg" into the equation (6.1), we have

ol (g1, y2)ys' H = al”)(

ygi{2(3%a(l)(y1 y2) — 8182a(1)(y1, Y2) — 5i31a§1)(y1,y2)

+6§a()(y1,y2)+2ﬂl (g1, p2) + ﬁ?agl)(yl,w))
ch(yr) | chlyryz) chlya) 5 (1)
(25 Sty ~ s ) el o)
+< ch(y1) | ch(yiy2) | ,ch(y2)
(

+
sh(yi1) = sh(yiye)  sh(y2)

1 1 (1)
_ + \ ,
<sh<yl>2 sh(ylyﬁ)“% (91, 2)

1) (@) oy y PD) @)

a,; a
sh(y1)? " sh(yiy2)? "

- )‘agl)(ylva)} =0.

> (5¢a§1)(y17 Yy2) + 320051)(3/1, Yy2))

y17y2)

1



Matriz Coefficients of the Principal Series Representations of SL(3,R) 43

By dividing both sides by ygi and taking the limit yo — 0, we have

241
2686 0,0) + (207 -2 00,0
2 _
y1 +1 Ayt (1)
6.16 + (267 — Bi—3B8i — —5— — A\ a;(y1,0
@0 (20 - 17 -0
201 + 1)
Z Y1,0) = 0.
(y7 — 1)? Y0
Next, by inserting F = al! )(yl yg)yg’,G = az(?)(yhyz)yg",ﬂ =
al® )(yl, yg)ym into the equation (6.4), we have

Gif o (1) _ch(y1) )
yz{ ora; (y1,y2) 2sh(y) Y (y1,y2)

ch(y1y2) (1) 1 e
2Sh(y1y2)ai (ylay2)+ 23h(y1) 1 (ylayQ)
1 )

S S—S oy _
Jr25h(y1y2)aZ (y1,92) = My (ylayQ)} 0.

By dividing both sides by ygl and taking the limit yo — 0, we have

M (y,0) = 010 (11,0)

yi —1
(6.17) 2
yi +1 LARNED
A== )a 0).
(st ) o)
By combining equations (6.16) and (6.17) to eliminate agz) (y1,0), we have

2020\ (y1,0) + (4y1 t1
Y3

1

- 2@) 81t (y1,0)

P41
+ <z§+1(2h —@—1)+25§—3@--A+1> alV (y1,0) = 0.
2 _

We put 3/1 =u, fi(u) = a(l)(yl, 0) and define a differential operator d; by
o i =ul d . Then the equation becomes

8, f(u) + (8 4@+i> b1 fi(w)

+ <25i2 — 4B +2M\1 — A+ %) fi(u) = 0.
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Next, we put f;(u) = u”g;(u) (x € C). Then the equation becomes

- 16 -
8812%(“) + <8 —40; + = + 16$> O19i(u)

162 + 44X\ — 206; — 2
gi(u)

—|—<8x2+(8—4ﬁi)x+2ﬁf—4ﬁi+2)\1—)\+ —
=0.

We take © = x; as the number satisfying
8x2 + (8 — 48;)wi + 282 — 46, + 20 — A = 0.

Then we have

du? 1) “du
16.’1)1 + 4)\1 — 2,81 -2
+
u—1

8u2t Y +(16—4ﬂ¢+16xi+r> i

gi(u) = 0.

Finally, we put u = % Then the equation becomes

d2g;
=15
(6.18) + <<%Bz —2z; + 2) ¢— %ﬁz’ + 2wz‘) Cfl—gg

1 1 1

(6.18) is a Gaussian hypergeometric differential equation, and if we define
pi,q; by complex numbers satisfying

1
L+pi+qg= 5@'—2%’4—2
1 1 1
piqi = —2m; — 5)\1 + Zﬁi +t1
and r; by

1
ri = 50 — 2%,
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then the general solution is expressed by

0 1 00
P 0 0 pi 3G
L=ri mi—pi—q G
0 1 00
=P 0 0  pi;1-¢

ri—pi—q 1= g
The regular solution is given by

i) = 2F1 (i, gi; 1 —ri+pi+qi; 1 — Q)

1
=2k (piaQi§1_ri+pi+Qi§1_ ?>
1

Since o F satisfies a formula (5.13), we have
9i(y1) :yfpi At FZ —_i_fz 1 ZZ;?EZ) pZ)QFl(pia IL—ri+psl+pi— %y%)
n y%qi 'l =ri+pi+a)T(pi — @)
L1 —r; +pi)l'(p:)
X 9F1(gi, 1 — i+ qi 1+ ¢i — pis y7)-

Therefore, we have

1 ) .
al (y1,0) = u®ig;(11) = y2 gi(y1)
 opitan (L =i + pi + @)1 (g — pi)

4 T(1—7r; + g)0(q:)
(6.19) X oFy (pi, 1 — i + pis 1+ pi — i3 y1)
4yt T(1 =7 +pi + @)U (pi — qi)
L1 =7+ pi)l(pi)

x oFy(gi, 1 —7i +qi; 1+ i — pis ¥3)

for i = 1,3. The values (x;, p;, qi,7i) (i = 1,3) are given as follows:
A) When i = 1, we have

L 1 L —i—l +1
==V — =V = ——V —V
X1 31 62’ b1 21 22 s
1 1 1 1
N =5, T1:—§V1+§V2+§.
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B) When i = 3, we have

By inserting these results into (6.19), we have

1
at" (y1,0)
_ y%(2y2—ul)+2 F(%m - %Vz - %)
1 ﬁF(%ul—%yg—i—l)

11 3 01 1 3,
X oF} —§V1+§V2+17§;—§V1+§V2+§;y1

I y%(2v1—l/2)+1 QF(_%Vl + %”2 + %)
! VAl (=3v1 + 31 + 1)

1 1 11 1 1
X 2F} (§V1 Bbich L, Jight et 5&%) ;

al (y1,0)
1

—3(witv2)+2 T(511 —3) 3

1 3 1
= Fi{—sun+1,5i—sv+ 550t
. VAl (3 +1)? 1( 2t T T T yl)

Lo )41 20 (=301 + 3) 1 11 1,
+ y3 Fil-rn+1,=;-v1+ =; .
. VAl (—lm+ 17 2" 1t 5

(1)

2 22 2
Here, we used I'(3) = /7, ['(3) = @ From the equation of ay ' (y1,0), we
have

f%(QVl—l/Q)-F].,%(Vl-I-VQ)—‘,—]_ (y17 y?)

,1(2111—1/2)—{-1 l(lll—l-llg)—‘,-l 1 1 11 1 1 2
= 3 3 F — —_ = 1 —. = —_ = -
Y1 Y9 2 1(21/1 2V2+ ,2,27/1 2V2—|-27y1

+ (higher order termswith respect to y2),

f% (2V2—l/1)+1,%(1/1+y2)+1(y17 y2)

1 1
—(2V27V1)+2 —(V1+l/2)+1 ]. ]. 3 ]. ]. 3 2
= 3 3 F _—— —_ 1 —_—— = — -
Yi Ys 2 1( 2V1+2V2+ 1o 2u1+21/2+2,y1

+ (higher order termswith respect to y2).
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. . L@ua—v1)+2 L(i4)+1
And since the coefficient of yf’( 2) yf’( 1+02) of f%(2uz—u1)+1,§(ul+uz)+1
. . 1 . .
in w%@urm)ﬂ,%(uﬁuz)ﬂ s o= if  the coefficient of

2F(7%V1+%l/2+%)
VAL (—ivi+3va+1)7
1 is given by

is the coefficient of

w%(?ul—uz)ﬁ-l,%(lll-‘rl/z)-i-l
W%(2V2*V1)+1,%(V1+V2)+

o~ b=
\/%I‘(%yl — %1/2 + 1)

Therefore, we have

1 1 1
\II:Cl{ D(—3v1 + 4o + 1)

QF(lljl — l1/2 + l)
X(l/l—l/g—l): 21 _Zl 2 .
\/7_TF(2I/1 2V2+1)

\/7_TF(—%Z/1 + %VQ + 1) 3(2—2) 1,5 (1 +ra)+

(6.20) N F(Avy — 310+ 3) "
VL (301 — dvs +1) 5 (2r2—v)+ L5 (vitve) +1

+ (linear combination of the other four solutions).

(1)

Similarly, from the equation of as’(y1,0), we have

I(—3v1+3)
\\/J —C3 1 _ 1 _
ﬁp(féyﬁrl) 3 (2v1—v2)+1,— 3 (2v2—v1)+1
(6.21) (L +1)
=T Y-t 12y
\/771“(%m+1) 5 (1+v2)+1,— 3 2ua—v1)+1

+ (linear combination of the other four solutions).

Next, we insert F = b (y1,92)y5%, G = b2 (41, 92)ys H = b (51, y2)

(¢ = 1,3) into the equation (6.3), (6.6). By applying the same method as
we used above to b(J)(yl,yQ) (1 =1,3,5 =1,2,3) (eliminate b§2)(0,y2) and

%

construct the differential equation with respect to bg?’) (0,y2) ), we have
U =d; (2 1= g%t 3) Y1 v
VT (B — 315 +1) 5 (n1tr2) 4+l -5 (2r—r2)+1
(6'22) F(—%Vl + %VQ + %)
ﬁr(_%yl + %VZ 1) —L(1+v2)+1,— 3 (2va—v1)+1

+ (linear combination of the other four solutions)
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and
F( V1 + )
\Il d {\/_1"( V1+ ) %(2V2*I/1)+1,*%(2I/17V2)+1
(6:25) Mhn+d)
VAL (= Ly + 1) s@emv)Fls e+l

+ (linear combination of the other four solutions).

Now we have six equations with respect to the matrix coefficient ¥ (i.e.
(6.20), (6.15), (6.21), (6.22), (6.14), (6.23) ). By combining these equations,
we obtain two different expressions of . That is,

U —c (=i + 32+ 3) " 1
—l VAD(= Loy + Loy + 1) 5@ttt bl

T@Vl — 32 +3)
\/_F( v — v+ 1)wé(m’?_”l)“v%(”ﬁw)ﬂ
F(%VQ)
+ co2 { \/7—1_1-‘(%”2 + %)w*%(V1+V2)+1,7%(2u171/2)+1
T(—3v2)
i VaL(—3v + 1)%(2”2_”1)“,_§(2V1_V2)+1

(- V1+ )

\/_F(__V1+ )¢%(2u17u2)+17,%(2,,271,1)+1
(31 +13)
m _%(V1+V2)+17_%(2V2—V1)+1

F@Vl I/z + %)
VT S P T R A

C(—3n1 +3%+3)
ﬁf(—%m + %VQ +1) — 3 (1) +1,— 3 (2ua—v1)+1
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2 {mwé(2l’ll’2)+l,é(21@vu+l
F(—%VQ)
+ ﬁr(—%y2 + %)w%(2V1—V2)+17é(u1+u2)+1

F(Avi+3)
KO e T

F(—%Vl + %)
S0 (= 2y + 1) 32ty (-
2

By compairing the coefficients of 1, g, we have

o — (=31 4+ $H)T(—1vs) o — T3 — e+ DTG+ 3)
D(—3n + DI (=310 + 1)’ F(vi — 3o+ I3 +1)

T(3va)T(=dv + Jva + 1)
F(%I/z =+ %)F(*%I/l —+ %I/g =+ 1)

C3 =

up to the same constant multiples. Thus we obtained the expression of ¥
in case of ¢ = o1. Note that since the transform v — v, v9 +— v does
not change the eigenvalue of Casimir operator A and change the eigenvalue
of gradient operator A; to Ao, this transform gives the expression of ¥ in
case of ¢ = 09. Similarly, the transform vy — —v1,v9 — —vy + 15 gives the
expression in case of o = o3. Trerefore, we obtained the following theorem.

THEOREM 6.6. Let ¥ =!(F,G,H) € CX,,(K\G/K)|a be a spherical
function attached to the non-spherical principal series s, whose mini-
mal K-type is three dimensional tautological representation o, and o g =
Y(fa8s 9B, hayp) be the power series solution around y1 = y2 = 0 corre-

sponding to the characteristic root (a,3) whose first term is '(1,0,0) or
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£(0,1,0) or¥(0,0,1). Then we have
(6.24)

F(—%l/l + %)F(—%VQ)F(—%Vl + 32+ 3)
\/EF(—%yl + 1)F(—%1/2 + %)F(—%l/l + %1/2 + 1)

U =

X VL (20 —1p) 41, (11 +02)+1
F(—§V1 + _)F(_%VQ)F(%V]_ — l1/2 + %)

+

Val(=gv1 + 1) (5w + )F( Vi — 3vs + 1)w%(2V2—V1)+17%(V1+V2)+1
GRS NG 2>r<;u1 gty

1 1
ﬁﬂ%m + 1)F( vy + )F( v — gvo+1) —3(n+v2)+1,— 3 (2r1—v2)+1
L(zv1 + 3)0 (= ﬁyz)F(ém lug+ 1)

" ! wl@l’ —v1)+1,— 1 (2v1—1o)+1

\/7_TF(§U1 ) (__1/2 + )F( VT — —1/2 -+ 1) 3 2T T3 1—V2
. P(=3n + 3)L(r2)l (=501 + 502 + 5)

VAL(=gv1 + DE(Gre + )T (=50 + 52 + 1)
X w%(QVI*V2)+1 1(21/2 v1)+1

F( V1 + )F( VQ)F(—%Vl -+ %I/Q + %)
\/_F( v+ DI (G0 + $T(— 501 + 31a + 1)

X w—%(V1+V2)+17—%(2V2—V1)+1'

The transform vy v« va,v9 — vy in (6.24) gives the expression of ¥ in case
of 0 = o9 and the transform vy — —vi,v9 — —v1 + 1o in (6.24) gives the

expression of ¥ in case of o = o3.
7. Appendix

We give the explicit formulas of the coefficients of power series solutions
of both spherical and non-spherical case under certain assumptions without
proof. The spherical functions corresponding to the matrix coefficients with
minimal K-types are expressed by the linear combinations of these power
series (Theorem 5.6, Theorem 6.6). There is a similar result in [6], in the

case of Whittaker functions.

7.1. In case of spherical principal series representation
Firstly, we consider the matrix coefficient attached to the spherical prin-
cipal series. Let F(y1,y2) be the matrix coefficient of the spherical principal
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series representation restricted to A. Next, we put

1 1 1
F(y1,y2) = sh(y1) " 2sh(y2) 2sh(yiy2) 2G(y1,y2) (0 <y1,y2<1)
and compute the power series of G at the origin y; = yo = 0. We put
(7’1) ylv y2 Z anp myn—ﬂl1 sl (6070 a 0)'
n,m=0

The characteristic roots take six values:

(fi1, fiz) = (p1 — 1, p2 — 1)
for the six values (u1, u2) given in Proposition 5.5. We put

2

p(n,m) = n® —nm +m® + (2 — fig)n + (2fi2 — fin)m

Assume that p(n,m) # 0 if (n,m) # (0,0). Let Py, ,, be the family of all
sets {p(2nk, 2my), -+ ,p(2ng, 2mg)} such that

nE, =n,mg=m,ng=mg =20
and
(nit1,mip1) = (g + i, mg) or (ng,my; + 1;) or (ng + i, mi + 1;)

(3 € Zog), (i=0,--- k—1).

Here, k depends on each set. For {p(2ng,2myg),---,p(2no,2mo)} € Py
and 0 <1i < k — 1, we define d; € Z by d; = —Il;. And we put

k—1
(7.2) Clngmpma,m) = | | di-
i=0
Then, @y, = 0 if n or m is odd, and
d?n,?m
7.3 Clny mpima m _
(7.3) _ Z (1, ngsma k) @0.0-

(02 2m) o p(B10,2m0)} P p(2ng, 2my,) - - - p(2n1, 2mq)

for (n,m) # (0,0).
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7.2. In case of non-spherical principal series representations

Next, we give the explicit formulas for the power series of the matrix
coeflicients of the non-spherical principal series. We give the power series
solution of the equations obtained in Theorem 6.3 and Theorem 6.5. Firstly,
we modify F,G, H by

F(y1,y2) = sh(y1)?sh(y2)? sh(y1y2)? F(y1, y2)

D=

G(y1,y2) = sh(y1)? sh(y2)? sh(y192)? G (1, y2)

G
H(y1,y2) = sh(y1)? sh(y2) 2 sh(y1y2)? H(y1, y2)-

We put

(74) y17 y2 Z a/n myn+H1 m+ji2
n,m=0

(7.5) G(y1,2) Z A T
n,m=0

(7.6) H(yy, y2) Z Gy Py
n,m=0

(@00, bo.0, 0,0) 7 (0,0,0).

Now, we put

p(n, m) = Q(nv m) = T(nv m)

=n? —nm+m?+ (2 — ji2)n + (2fi2 — fu)m

Though p(n,m), g(n,m), r(n,m) are the same polynomials, we use the
different symbols. By doing so, the expressions of the coefficients ay, n,
bn,m, Cn,m become a little easier. The characteristic roots take six values:

(i1, fi2) = (p1 — 1, 2 — 1)

for the six values (u1, u2) given in Proposition 6.5.
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The following formula gives the explicit expressions of the coefficients
(@n;m), (bnm)s (Cnm). Let Py be the family of all sets {ay(ng, mg), -,
ag(ng, mo)} satisfying the following rules:

A)aj=porqorr (i=0,---,k), (ng,mg) = (n,m), (ng, mg) = (0,0),

B) The relations of «;(n;, m;) and a;—1(n;—1,m;—1) are as follows. And
for each correspondence, we associate one number (the number after the
symbol ; ).

In case of a;(n;, m;) = p(n;, m;),

p(n; — 2ll,ml);li or
p(ni,m; —21;);=1; or

(

(
(7.7)  ai—1(ni—1,mi—1) = (n; — 2l;,m; — 21;);1; or
(
(

3

q(n; —20; +1,m;);—(2l; — 1) or
r(ng —2l; + 1,m; — 2l; + 1) ; —(2; — 1).

In case of a;(n;, m;) = q(n;,m;),

q(n; —2l;,m;);1l; or
l

q(ni, m; — 2l;); l; or

p(n; —2l; +1,m;);—(2l; — 1) or

(
(
(78) ai_l(ni_l, mi_l) = q(nl 2li, mg; — 2li) 3 —li or
(
\ r(numz 21i+1)§_(2l7§_1)'

In case of a;(n;, m;) = r(n;,m;),

r(n; — ZZl,m,), —1l; or
r(n;,m; — 2l;); l; or
(ni — 2l;,m; — 21;);1; or
(

(

<

(7.9) a;i—1(ni—1,mij—1) =
p(n; —20; +1,m; —2l; +1);—(2l; — 1) or
q(ng,m; —2l; +1);—(21; — 1).

For each ¢, we denote the number after the symbol ; of each correspon-
dence by d;.
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We put

0,0,00,0,C0,0) (n;even,m;even)

( ) (
a & < ~_ ) (@0,0,€0,0,b0,0) (n;even,m;odd)
(6n,m’ 6n,ma 6n,m) - (~ ) (n’ 0dd7 m; evel’l)
( )

bo,0, @0,0, €0,0
5070, b070, EL0,0 n; Odd, m; Odd)

And we put
P! . =Pum N {a =p}, PL, =PpmN{ =q},
P} = Pugm N {ay =1}
Then we have
(H?:l di) 6g,m

Olk:(nk:a mk) e al(nlaml)’

(7.10) G = >

{og (ng,my), ;a0 (no,mo) } PR 1,

(Hf:l di) 6g,m

ak(”kamk) te al(nl»m1)7

o
I

(7.11)

2.

{ak(ng,my), - a0(no,mo) }PE

n,m

(Hf:l di) 5ﬁ,m

ak(nkamk) T 041(”1, ml).

(7.12)  Cpm = Z
{ag(ng,mp), - ,0(no,mo) }EPT,

for (n,m) # (0,0). Here, Gy m = 0 (resp. bpm = 0,¢pm = 0) if PL, =0
(resp. Pl =0,P) , =0).
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