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Quasineutral Limit of the Schrödinger-Poisson

System in Coulomb Gauge

By Chi-Kun Lin, Yau-Shu Wong and Kung-Chien Wu

Abstract. The zero Debye length asymptotic of the Schrödinger-
Poisson system in Coulomb gauge for ill-prepared initial data is stud-
ied. We prove that when the scaled Debye length λ → 0, the current
density defined by the solution of the Schrödinger-Poisson system in
the Coulomb gauge converges to the solution of the rotating incom-
pressible Euler equation plus a fast singular oscillating gradient vector
field.

1. Introduction

The dimensionless form of the Schrödinger-Poisson system in Coulomb
gauge is given by

iε∂tψ
λ +

ε2

2
∆Aψλ − V ′(|ψλ|2)ψλ = Φλψλ ,

−λ2∆Φλ = |ψλ|2 − Cλ ,

(1.1)

for (x, t) ∈ R
n × R

+ (n = 2, 3). The superscript λ in the wave function
ψλ and in the electric potential Φλ indicates the λ-dependence, and Cλ > 0
is the given impurity (or doping) profile which is given by the difference
between the densities of positive charged donor ions and negative charged
acceptor ions ([18]). For the following, we shall exclude mobile impuri-
ties and assume that Cλ is a function of the position variable x only, i.e.
Cλ = Cλ(x). The nonlinear function V ′ is the first derivative of a twice
differentiable nonlinear real-valued function over R

+. Thus, V ′ is the po-
tential energy and V is the potential energy density of the fields. The gauge
is defined by

∇ · A = 0
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where A is the magnetic vector potential, i.e., A is a divergence free vector
field. The notation ε∇A denotes the covariant gradient defined by ε∇A ≡
ε∇− iA, and the Laplacian ε2∆A is given by

ε2∆A ≡ ε∇A · ε∇A = ε2∆ − 2εiA · ∇ − |A|2 .

The Poisson equation (1.1)2 for the scaled electrostatic potential function Φλ

serves as a constraint of the charge density. Here, (1.1)2 denotes the second
equation in (1.1), and similar notation will be employed in this paper. The
dimensionless parameters ε and λ are the scaled Planck’s constant and the
scaled Debye length respectively, and they are given by

ε2 =
�

2

2mκBT0L2
and λ2 =

λ0κBT0

Nq2L2

where κB is the Boltzmann’s constant, T0 the electron temperature, q the
electron charge, m the electron mass, λ0 > 0 the permittivity of the system,
N the number density of electrons and L the characteristic length. The
case for 0 < ε � 1, i.e., the characteristic length L is much larger compared
to the de Broglie length �/

√
2mκBT0, is the famous semiclassical limit.

Here, we study the zero Debye length asymptotic, 0 < λ � 1, in which
the characteristic device length L is much larger than the Debye length√

λ0κBT0/Nq2 and the limit λ → 0, and this is referred to the quasi-neutral
limit. Since electrons are mobile, plasmas are excellent conductors and
any charges that develop are readily neutralized. In many cases, plasmas
can be treated as being electrically neutral. This makes the research of
the quasi-neutral limit interesting and challenging, especially for topics in
plasma physics, fluid dynamics and kinetic theory (see [5, 18] for the physical
background).

The connection between the Schrödinger equation and the classical fluid
mechanics was noted by Madelung in 1927. This can also be extended to
other Schrödinger type equations and the Klein-Gordon equation (see [15]
and references therein). Following this idea, we introduce the geometric
optic ansatz

ψλ = Rλ exp
( i

ε
Sλ

)
=

√
ρλ exp

( i

ε
Sλ

)
(1.2)

the so-called Madelung transformation and define the hydrodynamical vari-
ables: density ρλ, velocity uλ and momentum (or current) Jλ respectively
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by

ρλ = (Rλ)2, uλ = ∇Sλ, Jλ = ρλuλ.(1.3)

To study the effect of the magnetic field A, we define the relative velocity
uλ

A and relative momentum (current) Jλ
A with respect to A by

uλ
A = uλ − A , Jλ

A = Jλ − ρλA = ρλuλ
A .(1.4)

Thus, we have the following quantum hydrodynamical formulation of the
Schrödinger-Poisson system in Coulomb gauge[13]

∂tρ
λ + ∇ · Jλ

A = 0 ,(1.5)

∂tJ
λ
A + ∇ ·

(
Jλ

A ⊗ Jλ
A

ρλ

)
+ ∇P (ρλ) + ρλ∇Φλ + GA(Jλ

A)

+ρλ∂tA =
ε2

4
∇ ·

(
ρλ∇2 log ρλ

)
,

(1.6)

−λ2∆Φλ = ρλ − Cλ(x) ,(1.7)

where P (ρλ) = ρλV ′(ρλ)−V (ρλ) is the pressure and GA(Jλ
A) = (curlA)×Jλ

A

plays the role of rotation. The symbol ⊗ denotes the tensor product of two
vectors. Note that −ρλA can be regarded as the background momentum
(current) created by the divergence free magnetic field A; and by combining
with Jλ, this constitutes the real momentum (current). We observe that the
magnetic field A affects both the equation of continuity and the momentum
equation, and the dispersive term on the right side (1.6) can be rewritten
as follows:

ε2

4
∇ ·

(
ρλ∇2 log ρλ

)
=

ε2

2
ρλ∇

(
∆

√
ρλ√

ρλ

)

=
ε2

4
∆∇ρλ − ε2∇ ·

(
∇

√
ρλ ⊗∇

√
ρλ

)
where ε2

2
∆
√

ρλ√
ρλ

is the Bohm quantum potential which can be considered

as a quantum correction to the pressure. Equations (1.5)–(1.7) comprise a
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closed system governing ρλ, Jλ and Φλ that have the perturbation form of
the compressible rotating Euler-Poisson equations with the pressure given
by P (ρλ). As noted in [9], if the Euler part of these equations is hyperbolic,
then the pressure P must be a strictly increasing function of ρλ; in that
case, P ′(ρλ) = ρλV ′′(ρλ) > 0. This implies that V must be a strictly
convex function of ρλ and corresponds to a defocusing nonlinear Schrödinger-
Poisson system. When A = 0, the global existence of weak solutions to a
class of quantum hydrodynamics systems (1.5)–(1.7) with arbitrarily large
initial data is proved by Antonelli and Marcati in [2].

The asymptotic limit of the 2D Schrödinger-Poisson system under the
influence of a large magnetic field has been studied by Puel in [22]. For the
“well-prepared” initial data, the solution converges to a dissipative solution
of the incompressible Euler equations as both the permittivity and Planck’s
constant go to zero. The proof uses the notion of dissipative solution to
the Euler equations introduced by Lions [17], as well as an adaptation of
the modulated energy method introduced by Brenier in the classical con-
text [6]. In fact, the modulated energy method allows one to reduce the
proof to elegant convexity arguments, so that neither a WKB analysis nor a
Wigner function approach is needed. Let us remark that the “well-prepared
assumption” implies that the initial data is monokinetic, namely each posi-
tion x corresponds to a unique “initial velocity”. The initial velocity in the
modulated energy eventually gives the initial datum for the limiting Euler
equations.

The main purpose of this paper is to study the quasi-neutral limit of
the Schrödinger-Poisson system in the Coulomb gauge (1.1) for general ill-
prepared initial data. As pointed out in [14], the general doping function
determines the limiting behavior of the particle density. By formally letting
λ → 0 in the Poisson equation; we obtain Cλ → C and ρλ = C(x). This will
affect the limiting behavior for the momentum ρλuλ; for instance, replace
the ρλ by C in (1.7) and let λ → 0. Similar to [14], we consider the simplest
case

Cλ(x) = 1 + λg(x),(1.8)

so that the fast oscillating singular term will be produced by the nondiver-
gence free part of initial current (momentum), and this has to be treated
carefully in order to pass into the quasineutral limit.
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The Schrödinger-Poisson system is a nonlinear Schrödinger equation of
the mean field type, in that the potential is given by the Poisson equation
with the square of the unknown wave function as the source term. The
system has been used to model electron-electron Coulomb interactions, typ-
ically in semi-conductor devices [4]. It also serves as a standard model in
quantum mechanics describing the electrons moving on a positive charged
background. Moreover, the time-dependent Schrödinger-Poisson system can
be derived as the weak coupling limit of the N -body linear Schrödinger equa-
tion with Coulomb potential [3]. Employing the modulated energy method
introduced by Brenier [6], Puel [21] considers the Schrödinger-Poisson sys-
tem in the quasi-neutral limit and the asymptotic regime where the Planck’s
constant and the permittivity of the system go to zero simultaneously. It
is then shown that the divergence-free components of the current (which is
given in terms of the wave function) converge to a dissipative solution (in
the sense of Lions) of the Euler equation. The combined semi-classical and
quasi-neutral limit of the bipolar defocusing nonlinear Schrödinger-Poisson
system in the whole space was discussed by Jüngel and Wang in [11]. The
limit system is the compressible Euler equations with a nonlinear pressure
depending on the plasma density only. The proof relies upon a modulated
energy method and the Wigner transform of the equation. The modu-
lated energy method has been successfully applied to the coupled rotating
Schrödinger equations and the coupled Schrödinger equations [12, 16] for
well-prepared initial data. Indeed, Brenier’s modulated energy method has
been extended by Masmoudi [19] (see also [20]) to treat the general ini-
tial data allowing the presence of high oscillations in time and this idea is
also applied to the quantum hydrodynamic model of semiconductors [14],
Navier-Stokes-Poisson system [10] and magnet-hydrodynamic equation [8].
We also refer to [7] for the intuitive discussion of the modulated energy.

The rest of the paper is organized as follows. In Section 2, we derive the
equations of charge, momentum and energy associated to the Schrödinger-
Poisson system in Coulomb gauge which play the key roles for the estimates
of the modulated energy. The main theorem (Theorem 2.2) is presented,
and the limit rotating incompressible Euler system and the coupled linear
rotating, oscillating gradient vector field are also studied. Section 3 devotes
to the proof of the main theorem. It is based on the spectral analysis of the
associated highly oscillating wave operator which is similar to the acoustic



470 Chi-Kun Lin, Yau-Shu Wong and Kung-Chien Wu

wave in the low Mach number limit of the compressible fluid equations.

2. Main Results

We now consider the n dimensional (n = 2, 3) defocusing nonlinear
Schrödinger-Poisson system in Coulomb gauge (1.1) with nonlinear potential
V ′(|ψλ|2) = |ψλ|2(γ−1) − 1, γ ≥ 2. The system can be rewritten in the
symmetric form by letting φλ =: λΦλ;

iε∂tψ
λ +

ε2

2
∆Aψλ −

(
|ψλ|2(γ−1) − 1

)
ψλ =

1
λ

φλψλ ,

−λ∆φλ = |ψλ|2 − 1 − λg(x) ,

ψλ(x, 0) = ψλ
0 (x) , φλ(x, 0) = φλ

0(x) ,

(2.1)

where the given function g(x) and the initial data ψλ
0 (x) and φλ

0(x) satisfy
the compatibility condition

−λ∆φλ
0 = |ψλ

0 |2 − 1 − λg(x) .(2.2)

To avoid the complications at the boundary, we concentrate below on the
case where x ∈ T

n, the n-dimensional torus. We assume ψλ
0 (x) ∈ Hs(Tn),

s > n
2 + 2, g(x) ∈ C∞

0 (Tn) and A ∈ C∞([0,∞)×T
n) with ∇ ·A = 0. More-

over, the Poisson equation (2.2) on the torus T
n does not necessary have a

solution, unless we impose the zero mean condition on the nonhomogeneous
term, hence ∫

Tn

|ψλ
0 |2dx =

∫
Tn

(
1 + λg(x)

)
dx .(2.3)

We define the density(charge) ρλ and the momentum(current) Jλ in
terms of the wave function ψλ respectively by

ρλ = |ψλ|2 = ψλ(ψλ)∗, Jλ =
iε

2

(
ψλ∇(ψλ)∗ − (ψλ)∗∇ψλ

)
.(2.4)

Here, ∗ denotes the complex conjugate of a complex number. Hence the
velocity uλ can be defined as the ratio of Jλ and ρλ by

uλ =
Jλ

ρλ
=

iε

2
1

|ψλ|2
(
ψλ∇(ψλ)∗ − (ψλ)∗∇ψλ

)
.(2.5)
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The energy density is defined by

eλ =
ε2

2
|∇Aψλ|2 +

1
2
|∇φλ|2 + U(|ψλ|2)

=
1
2
ρλ|uλ − A|2 +

ε2

2
|∇

√
ρλ|2 +

1
2
|∇φλ|2 + U(ρλ) ,

(2.6)

where

U(|ψλ|2) = U(ρλ) =
1
γ

(
(ρλ)γ + (γ − 1) − γρλ

)
(2.7)

is a strictly convex function of ρλ, and the minimum occurs at ρλ = 1 and
satisfies U(ρλ) ≥ 0. The initial charge, velocity, and momentum (current)
are given respectively by

ρλ(x, 0) = ρλ
0(x), uλ(x, 0) = uλ

0(x), Jλ(x, 0) = Jλ
0 (x) = ρλ

0(x)uλ
0(x) .

Similar to (1.5)–(1.7), we have the following equations of charge (density),
momentum (current) and energy associated with the Schrödinger-Poisson
system in Coulomb gauge (2.1):
(A) Charge (density) equation

∂tρ
λ + ∇ · Jλ

A = 0 .(2.8)

(B) Momentum (current) equation

∂tJ
λ
A + ∇ ·

(
Jλ

A ⊗ Jλ
A

ρλ

)
+

1
λ

ρλ∇φλ +
γ − 1

γ
∇(ρλ)γ + GA(Jλ

A)

+ρλ∂tA =
1
4
ε2∇ ·

(
ρλ∇2 log ρλ

)
.

(2.9)

(C) Energy equation

∂t

[
eλ + ∇ · (φλ∇φλ)

]
− ε2

2
∇ ·

(
∇Aψλ∂t(ψλ)∗ + (∇Aψλ)∗∂tψ

λ
)

= −∂tA · Jλ
A .

(2.10)
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Note that the momentum and the energy equations (2.9)–(2.10) are not
necessary conservative because of the existence of the magnetic field A. We
deduce from the energy equation (2.10) that

d

dt

∫
Tn

eλdx ≤ ‖∂tA‖L∞(Tn)

∫
Tn

∣∣√ρλuλ
A

∣∣∣∣√ρλ
∣∣dx

≤ C1

( ∫
Tn

eλdx + ‖ρλ‖L1(Tn)

)
.

Using the charge equation (2.8) and applying the Gronwall’s inequality, we
obtain ∫

Tn

eλ(·, t)dx ≤ eC1t
[ ∫

Tn

eλ(·, 0)dx + C1t‖ρλ
0‖L1(Tn)

]
.(2.11)

This proves the uniform boundness of the total energy. Employing (2.11)
and the duality argument, for s ≥ n

2 + 2 and for all f ∈ C∞
0 (Tn), we have

∣∣∣ ∫
Tn

Jλ
A(x, t)f(x)dx

∣∣∣ ≤ ∫
Tn

∣∣√ρλuλ
A

∣∣∣∣√ρλf
∣∣dx

≤ C
( ∫

Tn

ρλf2dx
)1/2

≤ C‖ρλ‖1/2
L1(Tn)

‖f‖L∞(Tn) ≤ C‖f‖Hs(Tn) .

(2.12)

Thus we have shown that Jλ
A ∈ L∞([0, T ];H−s(Tn)). We now briefly de-

scribe the limit system which is composed of the divergence free and the
oscillating parts [14, 19]. The divergence free part satisfies the incompress-
ible rotating Euler equation

∂tv + P∇ ·
(
vA ⊗ vA

)
+ PGA(vA) = 0 ,

∇ · v = 0 ,

v(x, 0) = v0(x) =: P(J0)(x) ,

(2.13)

where the divergence free initial condition v0(x) ∈ Hs(Tn), s > n
2 + 1, and

vA = v−A is the relative velocity with respect to the magnetic field A. Let
v ∈ C([0, T ];Hs(Tn)) be a divergence-free vector field, then the oscillating
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terms describing by (∇q,∇φ) satisfy the coupled linear systems ([14, 19])

∂t∇q +
1
2
Q∇ ·

(
vA ⊗∇q + ∇q ⊗ vA

)
+

1
2
Q

(
g(x)∇φ

)
+

1
2
QGA(∇q) = 0 ,

∇q(x, 0) = ∇q0(x) =: Q(J0)(x) ,

(2.14)



∂t∇φ +
1
2
Q∇ ·

(
vA ⊗∇φ + ∇φ ⊗ vA

)
−1

2
Q

(
g(x)∇q

)
+

1
2
QGA(∇φ) = 0 ,

∇φ(x, 0) = ∇φ0(x) ,

(2.15)

with initial condition (∇q0,∇φ0) ∈ Hs(Tn)×Hs(Tn). Here, P is the Leray
projection operator onto the divergence-free vector field and Q is its orthog-
onal complement and they are defined for u ∈ L2(Tn) as

Qu = ∇∆−1∇ · u, P = I −Q, ∇ · Pu = 0.(2.16)

Let Rj denote the Riesz transform which is defined by Rj = ∂j√
−∆

, i.e. for

f ∈ L2 by F(Rjf) = iξj

|ξ| f̂(ξ). Then P is easily defined on L2 as P = I−R⊗
R where R is the vector of the Riesz transform: (Pf)j = fj +

∑
k RjRkfk.

Since RjRk is a Calderón-Zygmund operator, P may be defined on many
Banach spaces.

For the initial value problem (2.13)–(2.15), we have the following local
existence result.

Proposition 2.1. Let v0 ∈ Hs(Tn), s > n
2 + 1, then there exists

a function v ∈ C([0, T ];Hs(Tn)) solving the rotating incompressible Eu-
ler equation (2.13). For a given divergence free vector field v ∈ C([0, T ];
Hs(Tn)), let (∇q0,∇φ0) ∈ (Hs(Tn))2, then there exists (∇q,∇φ) ∈(
C([0, T ];Hs(Tn))

)2 solve the coupled system (2.14) − (2.15). Moreover,
we have the energy relation

∂t

∫
Tn

e(·, t)dx = −
∫

Tn

∂tA · vAdx ,(2.17)
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where the energy density e(x, t) is given by

e(x, t) =
1
2
(
|vA|2 + |∇q|2 + |∇φ|2

)
.(2.18)

The proof of this proposition proceeds the lines of the proof for the
standard incompressible Euler equation [17] with modifications because the
rotating term GA(vA) contributes nothing to the energy estimate and it is
a linear function of vA only.

Let Re(z) and Im(z) denote the real and imaginary parts of the complex
number z. We introduce the modulated energy Hλ

A defined by

Hλ
A(t) =

1
2

∫
Tn

∣∣∣(ε∇A − i(vA + Re
(
G(t)eit/λ)

))
ψλ

∣∣∣2dx

+
1
2

∫
Tn

|∇φλ − Im(G(t)eit/λ)|2dx +
∫

Tn

U(|ψλ|2) dx ,

(2.19)

where G(t) = ∇q + i∇φ. Assuming Hλ
A(0) → 0 as λ → 0, the initial

modulated energy Hλ
A(0) is given by

Hλ
A(0) =

1
2

∫
Tn

|
(
ε∇A − i(vA0 + ∇q0)

)
ψλ

0 |2dx

+
1
2

∫
Tn

|∇φλ
0 −∇φ0|2dx +

∫
Tn

U(|ψλ
0 |2) dx .

(2.20)

Here vA0(x) = vA(x, 0) = v0(x)−A is the initial value of the relative velocity
vA(x, t). Employing a combination of the equations of charge, momentum
and energy of the rotating Schrödinger-Poisson system (2.8)–(2.10) and the
limit equations (2.13)–(2.15), we can prove

Hλ
A(t) ≤ Hλ

A(0) + Cλ +
∫ t

0
Hλ

A(s)ds ,

and then deduce by the Gronwall’s inequality that Hλ
A(t) tends to zero as

λ → 0. The main result of this paper is stated as follows.

Theorem 2.2. Let (ψλ, φλ) be the solution of the Schrödinger-Poisson
system in Coulomb gauge (2.1) with initial condition (ψλ

0 , φλ
0), for which
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ψλ
0 ∈ Hs(Tn), s > n

2 + 2, and satisfying (2.2), (2.3) and (2.20). Let
(v,∇q,∇φ) be the solution of the system (2.13)–(2.15) and the initial con-
dition (v0,∇q0,∇φ0) ∈

(
Hk(Tn)

)3, k > n
2 + 1, then there exists T > 0 such

that Hλ
A(t) → 0 as λ → 0 uniform in t ∈ [0, T ]. Moreover, we have

ρλ → 1 strongly in L∞(
[0, T ];Lγ(Tn)

)
,(2.21)

Jλ ⇀ v weakly ∗ in L∞(
[0, T ];L

2γ
γ+1 (Tn)

)
,(2.22)

∇φλ ⇀ 0 weakly ∗ in L∞(
[0, T ];L2(Tn)

)
.(2.23)

Let us remark that in Proposition 2.1, the initial condition v0 ∈ Hs(Tn),
s > n

2 + 1, but in Theorem 2.2 we require ψλ
0 ∈ Hs(Tn), s > n

2 + 2, because
it satisfies the Poisson equation.

3. Proof of the Theorem 2.2

This section presents the proof of the main theorem. For convenience,
we will divide the proof into the following four steps.

Step 1. Spectral analysis and cancelation of the oscillations.

Consider the eigenvalue problem of the isometry operator L defined on
the space H =: L2(Tn) × {∇ϕ : ϕ ∈ H1(Tn)} , by

LU = µU, U ∈ H ,

such that

L

(
w

0

)
= 0 if ∇ · w = 0 and L

(
∇χ

∇ϕ

)
=

(
−∇ϕ

∇χ

)
.(3.1)

Obviously, the operator L has three eigenvalues µ = ±i, 0 with the corre-
sponding eigenspaces

E±i =
{ (

∇ϕ

∓i∇ϕ

)
: ϕ ∈ H1(Tn)

}
,

E0 =
{ (

ω

0

)
: ∇ · ω = 0, ω ∈ H1(Tn)

}
.
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Let L be the evolution group associated with the operator L, L(τ) ≡ eτL,
τ ∈ R. As L is skew-symmetric, the operator L(τ) is unitary for all times
τ , in all Sobolev space Hs(Tn) × Hs(Tn), s ≥ 1 (see [14] for the proof). It
holds for W = (ω, 0)t + (∇χ,∇ϕ)t that

L(τ)W =
(

ω

0

)
+

1
2
eiτ

(
∇χ + i∇ϕ

−i∇χ + ∇ϕ

)

+
1
2
e−iτ

(
∇χ − i∇ϕ

i∇χ + ∇ϕ

)
.

(3.2)

We now rewrite the Schrödinger-Poisson system (2.1) as

∂tρ
λ + ∇ · Jλ

A = 0 ,

∂tJ
λ
A +

1
λ
∇φλ + F λ + Gλ = 0 ,

∂t∇φλ − 1
λ
Q(Jλ

A) = 0 ,

(3.3)

where

F λ = ∇ ·
(
ρλuλ

A ⊗ uλ
A

)
−∇ · (∇φλ ⊗∇φλ) − 1

2
∇(|∇φλ|2)

+g∇φλ +
γ − 1

γ
∇(ρλ)γ + ρλ∂tA + GA(Jλ

A) ,

(3.4)

and

Gλ = −1
4
ε2∆∇ρλ + ε2∇ ·

(
∇

√
ρλ ⊗∇

√
ρλ

)
.(3.5)

It is obvious from (3.3)2,3 that ∂tJ
λ
A and ∂t∇φλ are of order O(1/λ) and

are highly oscillatory as λ → 0. This is the main reason why we have to
introduce the wave group in order to filter out the fast oscillating wave.
Comparing with Eq.(3.3)3, it is natural to project the momentum equation
(3.3)2 on the gradient vector fields

∂tQ(Jλ
A) +

1
λ
∇φλ + Q(F λ + Gλ) = 0 .(3.6)
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Combing (3.6) with the Poisson equation (3.3)3, we obtain

∂tQ(Jλ
A) +

1
λ
∇φλ + Q(F λ + Gλ) = 0 , ∂t∇φλ − 1

λ
Q(Jλ

A) = 0 .(3.7)

Thus, we will study the evolution of the vector fields Ũλ =
(

Q(Jλ
A)

∇φλ

)
.

For convenience, let

Uλ =
(

P(Jλ
A)

0

)
+ Ũλ

and rewrite equation (3.7) as

∂tŨ
λ =

1
λ

LŨλ −
(

Q(F λ + Gλ)
0

)
,

which can be converted into

∂tṼ
λ = −L

(−t

λ

) (
Q(F λ + Gλ)

0

)
, Ṽ λ = L

(−t

λ

)
Ũλ

by applying the operator L(−t
λ ). We also define

V λ = L
(−t

λ

)
Uλ = L

(−t

λ

) (
P(Jλ

A)
0

)
+ Ṽ λ ,

then it follows from (3.3) that V λ satisfies

∂tV
λ = −L

(−t

λ

) (
F λ + Gλ

0

)
.(3.8)

To passing the limit, we need more compactness of the solutions sequence in
space variables x. By (2.12), one can show that V λ is uniformly bounded in
L∞(

[0, T ], H−s(Tn)
)

for s ≥ n
2 + 2. Similar argument as (2.12) shows that

F λ+Gλ is uniformly bounded in L1
(
[0, T ];H−m(Tn)

)
for m ≥ n

2 +3, and by
the isometry property of L, we can show that ∂tV

λ is uniformly bounded in
L1

(
[0, T ];H−m(Tn)

)
. Therefore, we deduce from the Lions-Aubin’s lemma

that there exists a subsequence of {V λ}λ which we still denote by {V λ}λ

and V ∈ L1
(
[0, T ];H−m(Tn)

)
, such that

V λ → V strongly in L1
(
[0, T ];H−m(Tn)

)
.(3.9)
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We also have the similar compactness for {Ṽ λ}λ;

Ṽ λ → Ṽ strongly in L1
(
[0, T ];H−m(Tn)

)
.(3.10)

Indeed, the limits V and Ṽ can be specified as

V =
(

v − A

0

)
+ Ṽ , Ṽ =

(
∇q

∇φ

)
.

Similarly, we have

V =
(

vA

0

)
+ Ṽ , Ṽ =

(
∇q

∇φ

)
.

Step 2. Uniform estimate of the modulated energy Hλ
A(t).

We observe that

Re(G(t)eit/λ) = L1( t
λ)Ṽ , Im(G(t)eit/λ) = L2( t

λ)Ṽ ,

and the modulated energy (2.19) can be rewritten as

Hλ
A(t) =

1
2

∫
Tn

∣∣∣(ε∇A − i(vA + L1( t
λ)Ṽ )

)
ψλ

∣∣∣2dx

+
1
2

∫
Tn

|∇φλ − L2( t
λ)Ṽ |2dx +

∫
Tn

U(|ψλ|2) dx .

Using the hydrodynamical variables, it can be expressed as

Hλ
A(t) =

1
2

∫
Tn

ρλ
∣∣∣uλ

A −
(
vA + L1( t

λ)Ṽ
)∣∣∣2dx +

ε2

2

∫
Tn

|∇
√

ρλ|2dx

+
1
2

∫
Tn

|∇φλ − L2( t
λ)Ṽ |2dx +

∫
Tn

U(ρλ) dx .

(3.11)

Moreover, one have

Hλ
A(t) =

∫
Tn

eλ(·, t)dx +
1
2

∫
Tn

(ρλ − 1)
∣∣vA + L1( t

λ)Ṽ
∣∣2dx

+
∫

Tn

e(·, t)dx −
∫

Tn

Jλ
A ·

(
vA + L1( t

λ)Ṽ
)
dx −

∫
Tn

∇φλ · L2( t
λ)Ṽ dx.
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Applying the energy estimate (2.10) and (2.17)

Hλ
A(t) =

∫
Tn

eλ(·, 0) dx +
∫

Tn

e(·, 0)dx +
1
2

∫
Tn

(ρλ − 1)
∣∣vA + L1( t

λ)Ṽ
∣∣2dx

−
∫ t

0

∫
Tn

∂tA · Jλ
Adxds −

∫ t

0

∫
Tn

∂tA · vAdxds

−
∫

Tn

Jλ
A ·

(
vA + L1( t

λ)Ṽ
)
dx −

∫
Tn

∇φλ · L2( t
λ)Ṽ dx

By simply computations, we rewrite the modulated energy Hλ
A(t) as

Hλ
A(t) = Hλ

A(0) +
1
2

∫
Tn

|ρλ
0 − 1||J0 − A|2dx

+
1
2

∫
Tn

(ρλ − 1)
∣∣vA + L1( t

λ)Ṽ
∣∣2dx

−
∫ t

0

∫
Tn

∂s

[
Jλ

A ·
(
vA + L1( s

λ)Ṽ
)]

dxds

−
∫ t

0

∫
Tn

∂s

[
∇φλ · L2( s

λ)Ṽ
]
dxds

−
∫ t

0

∫
Tn

∂tA · Jλ
Adxds −

∫ t

0

∫
Tn

∂tA · vAdxds ,

then using the compatibility conditions (2.2) and the equation (3.3) to-
gether, it yields

Hλ
A(t) ≤ Hλ

A(0) + Cλ −
∫ t

0

∫
Tn

∂tA · Jλ
Adxds −

∫ t

0

∫
Tn

∂tA · vAdxds

+
∫ t

0

∫
Tn

(
F λ + Gλ + 1

λ∇φλ
)
·
(
vA + L1( s

λ)Ṽ
)
dxds

−
∫ t

0

∫
Tn

Jλ
A · ∂svAdxds −

∫ t

0

∫
Tn

Jλ
A · ∂s

(
L1( s

λ)Ṽ
)
dxds
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−
∫ t

0

∫
Tn

1
λQ(Jλ

A) ·
(
L2( s

λ)Ṽ
)
dxds

−
∫ t

0

∫
Tn

∇φλ · ∂s

(
L2

(
s
λ

)
Ṽ

)
dxds .

Decomposing Jλ
A into the divergence and curl free parts, and using the fact

that vA and P(Jλ
A) are divergence free, we have∫ t

0

∫
Tn

∇φλ ·
(
vA + L1( s

λ)Ṽ
)
dxds +

∫ t

0

∫
Tn

Jλ
A · L2( s

λ)Ṽ dxds

−
∫ t

0

∫
Tn

∇φλ · L1( s
λ)Ṽ dxds −

∫ t

0

∫
Tn

Q(Jλ
A) · L2( s

λ)Ṽ dxds = 0 .

Thus we have the following inequality

Hλ
A(t) ≤ Hλ

A(0) + Cλ −
∫ t

0

∫
Tn

∂tA · Jλ
Adxds −

∫ t

0

∫
Tn

∂tA · vAdxds

+
∫ t

0

∫
Tn

(
F λ + Gλ

)
·
(
vA + L1( s

λ)Ṽ
)
dxds

−
∫ t

0

∫
Tn

Jλ
A · ∂svAdxds

−
∫ t

0

∫
Tn

Jλ
A · L1( s

λ)∂sṼ dxds −
∫ t

0

∫
Tn

∇φλ · L2( s
λ)∂sṼ dxds .

To treat the rotating part, we observe the antisymmetric property

GA(Jλ
A) · L1( s

λ)Ṽ =
(
curlA × Jλ

A

)
· L1( s

λ)Ṽ

= −
(
curlA × L1( s

λ)Ṽ
)
· Jλ

A = −GA(L1

(
s
λ)Ṽ

)
· Jλ

A

(3.12)

then by straightforward computation, it gives

Hλ
A(t) ≤ Hλ

A(0) + Cλ + Rλ
1 (t) +

∫ t

0

∫
Tn

Rλ
2dxds −

∫ t

0

∫
Tn

Uλ · L( s
λ)∂sV dxds

−
∫ t

0

∫
Tn

B3(∂tA) · Uλdxds −
∫ t

0

∫
Tn

∂tA · vAdxds
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−
∫ t

0

∫
Tn

B3

(
GA

(
L1( t

λ)V
))

· Uλdxds

+
∫ t

0

∫
Tn

B3

(
∂tA

)
· L( s

λ)V + B3

(
gL2( s

λ)V λ
)
· L( s

λ)V dxds

+
∫ t

0

∫
Tn

2B̃
(
Uλ,L( s

λ)V
)
· L( s

λ)V

− B̃
(
L( s

λ)V,L( s
λ)V

)
· L( s

λ)V dxds

where

Rλ
1 (t) =

∫ t

0

∫
Tn

(ρλ − 1)∂tA · L1( t
λ)V dxds

−
∫ t

0

∫
Tn

∇ ·
[
(ρλ − 1)L1( s

λ)V ⊗ L1( s
λ)V

]
· L1( s

λ)V dxds

−1
4
ε2

∫ t

0

∫
Tn

∆∇ρλ · L1( s
λ)V dxds + (γ − 1)

∫ t

0

∫
Tn

∇ρλ · L1( s
λ)V dxds

and

Rλ
2 = ∇ ·

[√
ρλ

(
uλ

A − L1( s
λ)V

)
⊗

√
ρλ

(
uλ

A − L1( s
λ)V

)]
· L1( s

λ)V

+ε2∇ ·
(
∇

√
ρλ ⊗∇

√
ρλ

)
· L1( s

λ)V

−∇ ·
[(
∇φλ − L2( s

λ)V
)
⊗

(
∇φλ − L2( s

λ)V
)]

· L1( s
λ)V

+
1
2
∇

(∣∣∇φλ − L2( s
λ)V

∣∣2) · L1( s
λ)V

+
γ − 1

γ
∇

[
(ρλ)γ + (γ − 1) − γρλ

]
· L1( s

λ)V .

Let ω be a vector in R
n, W1 = (W 1

1 , W 2
1 )t = (ω1 + ∇χ1,∇ϕ1)t and W2 =
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(W 1
2 , W 2

2 )t = (ω2 + ∇χ2,∇ϕ2)t. We define the two vectors B3 and B̃ by

B3(ω) =
(

ω

0

)
, B̃(W1, W2) =

(
B1(W 1

1 , W 1
2 ) + B2(W 2

1 , W 2
2 )

0

)
where B1 and B2 are the bilinear forms given respectively by

B1(W 1
1 , W 1

2 ) =
1
2
∇ ·

(
W 1

1 ⊗ W 1
2 + W 1

2 ⊗ W 1
1

)
,

B2(W 2
1 , W 2

2 ) = −1
2
∇ ·

(
W 2

1 ⊗ W 2
2 + W 2

2 ⊗ W 2
1

)
+

1
2
∇

(
W 2

1 · W 2
2

)
.

Step 3. Rate of Convergence.

It is easy to see that

|Rλ
1 (t)| < Cλ and

∣∣∣ ∫ t

0

∫
Tn

Rλ
2dxds

∣∣∣ < C

∫ t

0
Hλ

A(s)ds .

Using the isometric property of L, we have

Hλ
A(t) ≤ Hλ

A(0) + Cλ + C

∫ t

0
Hλ

A(s)ds −
∫ t

0

∫
Tn

V λ · ∂sV dxds

−
∫ t

0

∫
Tn

L(−s
λ )B3(∂tA) · V λdxds

−
∫ t

0

∫
Tn

L(−s
λ )

[
B3

(
GA

(
L1( t

λ)V
))]

· V λdxds

+
∫ t

0

∫
Tn

L(−s
λ )B3

(
gL2( s

λ)V λ
)
· V dxds

+
∫ t

0

∫
Tn

L(−s
λ )

[
2B̃

(
Uλ,L( s

λ)V
)
− B̃

(
L( s

λ)V,L( s
λ)V

)]
· V dxds .
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To proceed, we introduce the following notations. Let W1 = (W 1
1 , W 2

1 )t =
(ω1 +∇χ1,∇ϕ1)t and W2 = (W 1

2 , W 2
2 )t = (ω2 +∇χ2,∇ϕ2)t, one can define

B(W1, W2) =
(

P∇ · (ω1 ⊗ ω2)
0

)
+

1
2

 Q∇ · (ω1 ⊗∇χ2 + ∇χ2 ⊗ ω1)

Q∇ · (ω1 ⊗∇ϕ2 + ∇ϕ2 ⊗ ω1)

 ,

and

A(W1) =
1
2

 Q
(
g∇ϕ1

)
−Q

(
g∇χ1

)
 .

Similarly, we decompose the rotating part GA(W1) into the divergence free
and the oscillating parts as

GA(W1) =
(

PGA(ω1)
0

)
+

1
2

 QGA(∇χ1)

QGA(∇ϕ1)


After some computations, we have

L
(−t

λ

)
B̃

(
L

( t

λ

)
V,L

( t

λ

)
V

)
= B(V, V ) +

1
2

3∑
k=1

eik t
λ Tk(V, V )

+
1
2

3∑
k=1

e−ik t
λ T ∗

k (V, V ) ,

(3.13)

and

2L
(−t

λ

)
B̃

(
L

( t

λ

)
V λ,L

( t

λ

)
V

)
= B(V λ, V ) + B(V, V λ)

+
3∑

k=1

eik t
λ Tk(V λ, V ) +

3∑
k=1

e−ik t
λ T ∗

k (V, V λ) ,

(3.14)

where Tk(V, V ), k = 1, 2, 3, is a bilinear form and T ∗
k denotes the conjugate

of Tk. Now, we study the convergence result of (3.13) and (3.14) (see also [14,
19]). For (3.13), it is easy to see that L(−t

λ )B̃
(
L( t

λ)V,L( t
λ)V

)
is bounded in



484 Chi-Kun Lin, Yau-Shu Wong and Kung-Chien Wu

L∞([0, T ];W−1,1(Tn)). For any test function f(t, x) ∈ L1([0, T ];W 1,∞(Tn)),
by Riemann-Lebesgue lemma, we have

lim
λ→0

∫ t1

0

∫
Tn

eik t
λ Tk(V, V )f(t, x)dxdt = 0 ,

this shows

L
(−t

λ

)
B̃

(
L

( t

λ

)
V,L

( t

λ

)
V

)
→ B(V, V )(3.15)

weakly in L∞([0, T ];W−1,1(Tn)). For (3.14), using the technique of
Friedrich’s mollifier we get

‖V λ − V ‖L1([0,T ];H−m) ≤ ‖V λ − V λ
δ ‖L1([0,T ];H−m)

δ→0→ 0

+‖V λ
δ − V δ‖L1([0,T ];H−m)

λ→0→ 0

+‖V δ − V ‖L1([0,T ];H−m)
δ→0→ 0,

(3.16)

where m ≥ n
2 + 2, fδ = Mδ ∗ f with Mδ∗ the Friedrich’s mollifier. Using

(3.16) and repeating the same argument as in the proof of (3.15), we have

2L
(−t

λ

)
B̃

(
L

( t

λ

)
V λ,L

( t

λ

)
V

)
→ B(V , V ) + B(V, V )(3.17)

in the sense of distribution. Moreover, we have the spectral decomposition
of the rotating part;

L
(−t

λ

) [
B3

(
GA

(
L1

( t

λ

)
V

))]
= GA(V )

+
2∑

k=1

eik t
λ Gk

(
GA(V )

)
+

2∑
k=1

e−ik t
λ G∗

k

(
GA(V )

)
where G1 and G2 are linear functionals of GA(V ), G∗

1 and G∗
2 are their com-

plex conjugates respectively. Hence, we deduce from the Riemann-Lebesgue
lemma that

L
(−t

λ

) [
B3

(
GA

(
L1

( t

λ

)
V

))]
→ GA(V )
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weakly in L∞([0, T ];W−1,2(Tn)). Similarly, we also have

L
(−t

λ

)
B3

(
gL2

( t

λ

)
V λ

)
= A(V λ) +

2∑
k=1

eik t
λ Fk(gV λ) +

2∑
k=1

e−ik t
λ F ∗

k (gV λ)

and using the same technique as (3.17), the sequence

L
(−t

λ

)
B3

(
gL2

( t

λ

)
V λ

)
→ A(V )

in the sense of distribution, where F1 and F2 are linear vector functions of
V λ. Let

η(t) = lim sup
λ→0

Hλ(t) .

Using the following equalities (direct calculation)∫
Tn

B(V , V ) · V dx =
∫

Tn

B(V, V ) · V dx = 0 ,

∫
Tn

B(V, V ) · V dx = −
∫

Tn

B(V, V ) · V dx ,∫
Tn

A(V ) · V dx = −
∫

Tn

A(V ) · V dx ,

we can show that∫ t

0

∫
Tn

−V · ∂sV + B(V, V ) · V + A(V ) · V

− GA(V ) · V − B3(∂tA) · V dxds = 0 .

Thus, we derive the Gronwall’s type inequality

η(t) ≤ η(0) + C

∫ t

0
η(s)ds

which implies η(t) = 0 for all t because η(0) = 0. It follows then that if Hλ

is small at t = 0, then it remains small on the interval of time [0, T ].

Step 4. Conclusion of the modulated energy.
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Note that Hλ
A(t) → 0 as λ → 0 uniform in t ∈ [0, T ], and each integral of

(3.11) is positive definite, thus we show that each term of (3.11) will converge
to zero. First, (2.21) follows from the elementary convexity inequality∣∣ρλ − 1

∣∣γ ≤ (ρλ)γ + (γ − 1) − γρλ .

For (2.23), we use the fact

‖∇φλ − L2( t
λ)Ṽ ‖L∞([0,T ];L2(Tn)) → 0 ,(3.18)

then for any ϕ(x, t) ∈ L1([0, T ];L2(Tn))∫ t

0

∫
Tn

∇φλϕdxds =
∫ t

0

∫
Tn

(
∇φλ − L2( t

λ)Ṽ
)
ϕdxds

+
∫ t

0

∫
Tn

(
L2( t

λ)Ṽ
)
ϕdxds ,

the first integral converges to zero by (3.18), and the second integral con-
verges to zero by the Riemann-Lebesgue lemma, this proves (2.23). Finally,
we deduce from the Hölder inequality that

∥∥Jλ −
(
v + L1( t

λ)Ṽ )
)∥∥

L
2γ

γ+1 (Tn)

≤
∥∥Jλ − ρλ

(
v + L1( t

λ)Ṽ )
)∥∥

L
2γ

γ+1 (Tn)
+

∥∥(ρλ − 1)
(
v + L1( t

λ)Ṽ )
)∥∥

L
2γ

γ+1 (Tn)

≤
∥∥√

ρλ
∥∥

L2γ(Tn)

∥∥∥ 1√
ρλ

(
Jλ − ρλ

(
v + L1( t

λ)Ṽ
))∥∥∥

L2(Tn)

+
∥∥ρλ − 1

∥∥
Lγ(Tn)

∥∥v + L1( t
λ)Ṽ

∥∥
L

2γ
γ−1 (Tn)

which converges to 0 as λ → 0. Similarly, for any ϕ(x, t) ∈ L1([0, T ];

L
2γ

γ−1 (Tn)), we have

lim
λ→0

∫ t

0

∫
Tn

(
Jλ(x, s) − v(x, s)

)
ϕ(x, s)dxds = 0 ,

this proves (2.22).
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