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Virial Identity and Dispersive Estimates

for the n-Dimensional Dirac Equation

By Federico Cacciafesta

Abstract. We extend to general dimension n ≥ 1 the virial iden-
tity proved in [3] for the 3D magnetic Dirac equation. As an ap-
plication we deduce Strichartz estimates for an n-dimensional Dirac
equation perturbed with a magnetic potential.

1. Introduction

The Dirac equation on R
1+n is a constant coefficient, hyperbolic system

of the form

iut + Du + mβu = 0(1.1)

where u : Rt × R
n
x → C

M , the Dirac operator is defined by

D = i−1
n∑

k=1

αk
∂

∂xk
= i−1(α · ∇),

and the Dirac matrices α0 ≡ β, α1, . . . , αn are a set of M × M hermitian
matrices satisfying the anti-commutation relations

αjαk + αkαj = 2δjkIM , 0 ≤ j, k ≤ n.(1.2)

The quantity m ≥ 0 is called the mass and in the classical 3D model is
linked with the mass of a spin 1/2 particle.

Remark 1.1. For each dimension n ≥ 1 there exist different choices
of M and of matrices αj satisfying all of the above conditions; the original
Dirac equation corresponds to n = 3, M = 4, in which case the 4 matrices

2010 Mathematics Subject Classification. 35Q41.
Key words: Singular integrals, weighted spaces, Schrödinger operator, Schrödinger

equation, Strichartz estimates, smoothing estimates.

441
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can be chosen from a well known set of 16 anticommuting matrices (see [22]).
A possible way to construct a familiy of matrices satisfying such properties
is the following.
For n = 1 let

α1
0 =

(
0 1
1 0

)
, α1

1 =
(

1 0
0 −1

)
.

For n ≥ 2 let

α
(n)
j =

(
0 α

(n−1)
j

α
(n−1)
j 0

)
, j = 0, ..., n − 1, α(n)

n =
(

In 0
0 −In

)
.

Notice that in this case M = 2n (for a more detailed analysis of general
Dirac matrices, see [19], [16], [20])

An easy consequence of the anticommutation relations is the identity

(i∂t −D − mβ)(i∂t + D + mβ) = (∆ − m2 − ∂2
tt)IM .(1.3)

which reduces the study of (1.1) to a corresponding study of the Klein-
Gordon equation, or the wave equation in the massless case m = 0. The
analysis of the important Maxwell-Dirac and Dirac-Klein-Gordon systems
of quantum electrodynamics in [1]- [2] was based on this method; notice
however that in the reduction step some essential details of the structure
may be lost, as recently pointed out in [9], [8], [10].

From (1.3) one can deduce in a straightforward way the dispersive prop-
erties of the Dirac flow from the corresponding properties of the wave-Klein-
Gordon flow. Based on this approach, an extensive theory of local and global
well posedness for nonlinear perturbations of (1.1) was developed in [11],
[12], [19], [18]; see also [5], [6] for a study of the dispersive properties of the
Dirac equation perturbed by a magnetic field.

The goal of this paper is to study the dispersive properties of the system
(1.1) perturbed by a magnetic field, thus extending to the n-dimensional
setting the smoothing and Strichartz estimates proved in [3] for the 3D
magnetic Dirac equation. Denoting with

A(x) = (A1(x), ..., An(x)) : R
n → R

n
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a static magnetic potential, the standard way to express its interaction with
a particle is by replacing the derivatives ∂k with their covariant counterpart
∂k − iAk, thus obtaining the magnetic Dirac operator

DA = i−1
n∑

k=1

αk(∂k − iAk) = i−1α · ∇A, ∇A = ∇− iA(x).(1.4)

Here and in the following we denote with a dot the scalar product of two
vectors of operators:

(P1, . . . , Pm) · (Q1, . . . , Qm) =
m∑

j=1

PjQj .

We shall also use the unified notation

H = i−1α · ∇A + mβ = DA + mβ(1.5)

to include both the massive and the massless case.
Thus we plan to investigate the dispersive properties of the flow eitHf

defined as the solution to the Cauchy problem

iut(t, x) + Hu(t, x) = 0, u(0, x) = f(x).(1.6)

It is natural to require that the operator H be selfadjoint. Several sufficient
conditions are known for selfadjointness (see [22]). For greatest general-
ity, we prefer to make an abstract selfadjointness assumtpion; we also in-
clude a density condition which allows to approximate rough solutions with
smoother ones, locally uniformly in time, and is easily verified in concrete
cases. The condition is the following:

Self-Adjointness Assumption (A). The operator H is essentially
selfadjoint on C∞

c (Rn), and in addition for initial data f ∈ C∞
c (Rn) the

flow eitHf belongs at least to C(R, H3/2).

Remark 1.2. It is easy to show, using Fourier transform, the conser-
vation of the mass under the magnetic Dirac flow: being eitH unitary we
have indeed

‖eitHf‖L2 = ‖f‖L2 .
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The main tool used here is the method of Morawetz multipliers, in the
version of [7], [3]. This method allows to partially overcome the small-
ness assumption on the potential which was necessary for the perturbative
approach of [6]. An additional advantage is that the assumptions on the po-
tential are expressed in terms of the magnetic field B rather than the vector
potential A; indeed, B is a physically measurable quantity while A should
be thought of as a mathematical abstraction. We recall that in dimension
3 the magnetic field B is defined as

B = curlA.

In arbitrary dimension n, a natural generalization of the previous definition
is the following

Definition 1.1. Given a magnetic potential A : R
n → R

n, the mag-
netic field B : R

n → Mn×n(R) is the matrix valued function

B = DA − DAt, Bjk =
∂Aj

∂xk
− ∂Ak

∂xj

and its tangential component Bτ = R
n → R

n is defined as

Bτ =
x

|x|B.

Notice indeed that Bτ (x) is orthogonal to x for all x.

Remark 1.3. The previous definition reduces to the standard one in
dimension n = 3: indeed the matrix B satisfies for all v ∈ R

3

Bv = curlA ∧ v

and in this sense B can be identified with curlA. Notice also that

Bτ =
x

|x| ∧ curlA.

Our first result is the following (formal) virial identity for the n-dimen-
sional magnetic Dirac equation (1.6):
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Theorem 1.2 (Virial identity). Assume that the operator H defined
in (1.5) satisfies (A), and let φ : R

n → R be a real valued function. Then
any solution u(t, x) of (1.6) satisfies the formal virial identity

2
∫

Rn

∇Au · D2φ · ∇Au − 1
2

∫
Rn

|u|2∆2φ +

+ 2
∫

Rn

	
(
u∇φ · B · ∇Au

)
+

+
∫

Rn

u ·
∑
j<k

αjαk(∇φ · ∇Bjk)u =

= − d

dt

∫
Rn



(
ut(2∇φ · ∇Au + u∆φ)

)
.

(1.7)

Remark 1.4. If φ = φ(|x|) is a radial function, as we shall always
assume in the following, the virial identity can be considerably simplified.
In particular, notice that∑

j<k

αjαk(∇φ · ∇Bjk) = φ′(|x|)
∑
j<k

αjαk∂rB
jk.

As a direct consequence of the previous virial identity, we can prove a
smoothing estimate for the n-dimensional magnetic Dirac equation (1.6).

In the following we shall denote respectively with ∇r
Au and ∇τ

Au the
radial and tangential components of the covariant gradient, namely

∇r
Au :=

x

|x| · ∇Au, ∇τ
Au := ∇Au − x

|x| · ∇
r
Au

so that
|∇r

Au|2 + |∇τ
Au|2 = |∇Au|2.

We shall use the notation

[B]1 =
n∑

j,k=1

|Bjk|

to denote the �1 norm of a matrix (i.e. the sum of the absolute values of
its entries), and we shall measure the size of matrix valued functions using
norms like

‖B‖L∞ = ‖[B(x)]1‖L∞
x
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Then we have:

Theorem 1.3 (Smoothing estimates). Let n ≥ 4. Let the operator H
defined in (1.5) satisfies assumption (A). Let B = DA − DAt = B1 + B2

with B2 ∈ L∞, and assume that

|Bτ (x)| ≤ C1

|x|2 ,
1
2
[∂rB(x)]1 ≤ C2

|x|3(1.8)

for all x ∈ R
n and for some constants C1, C2 such that(

9
4

)
C2

1 + 3C2 ≤ (n − 1)(n − 3)(1.9)

Assume moreover that

C0 = ‖|x|2B1‖L∞(Rn) <
(n − 2)2

4
.

Finally, in the massless case restrict the choice to B1 = B, B2 = 0 in the
above assumptions.

Then for all f ∈ L2 the following smoothing estimate holds

sup
R>0

1
R

∫ +∞

−∞

∫
|x|≤R

|eitHf |2dxdt � ‖f‖2
L2 .(1.10)

Remark 1.5. As in [13] and [3], a sharper estimate can be proved if
inequality (1.9) is strict, but we won’t deal with the details of this aspect
here.

The limitation to n ≥ 3 space dimensions is intrinsic in the multiplier
method; low dimensions n = 1, 2 require a different approach (see e.g. [4] for
a general result in dimension 1). In the present paper we shall only deal with
the case n ≥ 4, the 3-dimensional case being exaustively discussed in [3].
Notice that, as it often occurs, the three dimensional case yields different
hypothesis on the potential, being slightly different the multiplicator that
one needs to consider.

A natural application of the smoothing estimate (1.10) is to derive
Strichartz estimates for the perturbed flow eitHf , both in the massless and
massive case. Our concluding result is the following:
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Theorem 1.4 (Strichartz estimates). Let n ≥ 4. Assume H, A, B

are as in Theorem 1.3, and in addition assume that∑
j∈Z

2j sup
|x|∼=2j

|A| < ∞.(1.11)

Then the perturbed Dirac flow satisfies the Strichartz estimates

‖|D|
1
q
− 1

p
− 1

2 eitHf‖LpLq � ‖f‖L2(1.12)

where, in the massless case m = 0, the couple (p, q) is any wave admissibile,
non-endpoint couple i.e. such that

2
p

+
n − 1

q
=

n − 1
2

, 2 < p ≤ ∞ 2(n − 1)
n − 3

> q ≥ 2,(1.13)

while in the massive case the same bound holds for all Schrödinger adim-
missible couple, non-endpoint (p, q), i.e. such that

2
p

+
n

q
=

n

2
, 2 < p ≤ ∞ 2n

n − 2
> q ≥ 2.(1.14)

The paper is organized as follows: in Section 2 we shall prove Theo-
rem 1.2, deriving it from a classical virial identity for the wave equation
(see Theorem 2.1) plus the algebric structure of the Dirac operator. In
Section 3 we shall use the multiplicator technique to prove the smoothing
estimate (1.10) from Theorem 1.2. Finally in Section 4 we shall derive the
Strichartz estimates of Theorem 1.4 by a perturbative argument based on
the smoothing estimates. Section 5 is devoted to the proof of a magnetic
Hardy inequality for the Dirac operator, needed at several steps in the proof
of the previous theorems.

Acknowledgments. The author wishes to thank the referee for many
useful suggestions.

2. Proof of the Virial Identity

Let u be a solution to equation (1.1). Using identity

0 = (i∂t −H)(i∂t + H)u = (−∂tt −H2)u,
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we see that u solves the Cauchy problem for a magnetic wave equation:
utt + H2u = 0

u(0) = f

ut(0) = iHf.

(2.1)

In [3] the following general result was proved for a solution u(t, x) of wave-
type equations:

Theorem 2.1 ([3]). Let L be a selfadjoint operator on L2(Rn), and let
u(t, x) be a solution of the equation

utt(t, x) + Lu(t, x) = 0.

Let φ : R
n → R and define the quantity

Θ(t) = (φut, ut) + R((2φL − Lφ)u, u).(2.2)

Then u(t, x) satisfies the formal virial identities

Θ̇(t) = R([L, φ]u, ut)(2.3)

Θ̈(t) = −1
2
([L, [L, φ]]u, u).(2.4)

In order to apply this proposition to our case we thus need to compute
explicitly the commutators in (2.3), (2.4) with the choice L = H2. We begin
by expanding the square

H2 = (H0 − α · A)2 = H2
0 −H0(α · A) − (α · A)H0 + (α · A)(α · A),

and we recall that the unperturbed part of the operator

H0 = D + mβ = i−1α · ∇ + mβ

satisfies
H2

0 = (m2 − ∆)IM .

Since β anticommutes with each αj we get

H2 = H2
0 − i−1(α · ∇)(α · A) − i−1(α · A)(α · ∇) + (α · A)(α · A).(2.5)
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We need a notation to distinguish the composition of the operators (mul-
tiplication by) Ak and ∂j , which we shall denote with ∂j ◦ Ak, i.e.,

∂j ◦ Aku = ∂j(Aku)

and the simple derivative ∂jA
k. After a few steps we obtain (we omit for

simplicity the factor IM in diagonal operators)

H2 = H2
0 + i(∇ · A) + i(A · ∇) + |A|2 + i

n∑
j �=k

αjαk(∂j ◦ Ak + Aj∂k).

or equivalently

H2 = (m2 − ∆A) + i
n∑

j �=k

αjαk(∂j ◦ Ak + Aj∂k),(2.6)

where

∆A = (∇− iA)2 = ∇2
A.

Now we observe that∑
j �=k

αjαk(∂j ◦ Ak + Aj∂k)

=
∑
j<k

αjαk[(∂j ◦ Ak + Aj∂k) − (∂k ◦ Aj + Ak∂j)] =

=
∑
j<k

αjαk(∂jA
k − ∂kA

j)

=
∑
j<k

αjαkB
jk =

=
1
4

n∑
j,k=1

(αjαk − αkαj)Bjk

since B is skewsymmetric. If we introduce the matrix S = [Sjk] whose
entries are the matrices

Sjk =
1
4
(αjαk − αkαj) ≡

1
2
αjαk
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and we use the notation

[ajk] · [bjk] =
n∑

j,k=1

ajkbjk

for the scalar product of matrices, the above identity can be compactly
written in the form ∑

j �=k

αjαk(∂j ◦ Ak + Aj∂k) = S · B.

In conclusion we have proved that

H2 = (m2 − ∆A)IM + iS · B(2.7)

and hence for the massless case

D2
A = −∆AIM + iS · B.(2.8)

Thus the commutator with φ reduces to

[H2, φ] = [m2, φ] − [∆A, φ] + i[S · B, φ] = −[∆A, φ].

Using the Leibnitz rule

∇A(fg) = g∇Af + f∇g,

we arrive at the explicit formula

[H2, φ] = −[∆A, φ] = −2∇φ · ∇A − (∆φ).(2.9)

Recalling (2.2) and (2.3) we thus obtain

Θ̇(t) = −

∫

Rn

ut(2∇φ · ∇Au + u∆φ).(2.10)

We now turn to the second commutator. By formulas (2.7) and (2.9) we
have

[H2, [H2, φ]] = [∆A, [∆A, φ]] − i[S · B, [∆A, φ]].(2.11)
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The first commutator is well known and was computed e.g. in [7]; taking
formula (2.19) there (with V ≡ 0) we obtain

(u, [∆A, [∆A, φ]]u) = 4
∫

Rn

∇AuD2φ∇Au −
∫

Rn

|u|2∆2φ +(2.12)

+ 4	
∫

Rn

u∇φBτ · ∇Au.

By (2.9) the last term in (2.11) becomes

[S · B, [∆A, φ]] = 2[S · B,∇φ · ∇A] =

= 2(S · B∇φ · ∇A −∇φ · ∇AS · B) =

=
∑
j<k

αjαkB
jk∇φ · ∇A −∇φ · ∇A

∑
j<k

αjαkB
jk =

=
∑
j<k

αjαk[Bjk,∇φ · ∇A] =

= −
∑
j<k

αjαk(∇φ · ∇Bjk).(2.13)

Identity (1.7) then follows from (2.4), (2.10), (2.11), (2.12) and (2.13).

3. Smoothing Estimates

We shall use the following radial multiplier (for a detailed description
see [13], [3]):

φ̃R(x) = φ(x) + ϕR(x)(3.1)

where
φ(x) = |x|

for which we have

φ′(r) = 1, φ′′(r) = 0, ∆2φ(r) = −(n − 1)(n − 3)
r3

with the notation r = |x|, and ϕR is the rescaled ϕR(r) = Rϕ0(
r

R
), of the

multiplier

ϕ0(r) =
∫ r

0
ϕ′(s)ds(3.2)
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where

ϕ′
0(r) =

{
n−1
2n r, r ≤ 1

1
2 − 1

2nrn−1 , r > 1
(3.3)

and so

ϕ′′
0(r) =

{
n−1
2n , r ≤ 1
n−1
2nrn , r > 1.

Thus we have

ϕ′
R(r) =

{
(n−1)r
2nR , r ≤ R

1
2 − Rn−1

2nrn−1 , r > R
(3.4)

ϕ′′
R(r) =

{
1
R

n−1
2n , r ≤ R

1
R

Rn(n−1)
2nrn , r > R

.(3.5)

∆2ϕR = −n − 1
2R2

δ|x|=R − (n − 1)(n − 3)
2r3

χ[R,+∞).(3.6)

Notice that ϕ′
R, ϕ′′

R, ∆ϕR ≥ 0 and moreover sup
r≥0

ϕ′(r) ≤ 1
2
.

Thus it’s easy to show the bounds for the derivatives of the perturbed
multiplier

sup
r≥0

φ̃′
R ≤ 3

2
, ∆φ̃R ≤ n

r
.(3.7)

We separate the estimates of the LHS and the RHS of (1.7)

Estimate of the RHS of (1.7)
Consider the expression∫

Rn

ut(2∇φ · ∇Au + u∆φ) = (ut, 2∇φ · ∇Au + u∆φ)L2

appearing at the right hand side of (1.7). Since u solves the equation we
can replace ut with

ut = −iHu = −imβu − iDAu.
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By the selfadjointess of β it is easy to check that


[−im(βu, 2∇φ · ∇Au) − im(βu,∆φu)] = 0

so that


[(ut, 2∇φ · ∇Au + u∆φ) = 2I(DAu,∇φ · ∇Au)] + I(DAu, ∆φu)

and by Young inequality we obtain∣∣∣∣
(∫
Rn

ut(2∇φ · ∇Au + u∆φ)
)∣∣∣∣ ≤ 3

2
‖DAu‖2

L2 + ‖∇φ · ∇Au‖2
L2 +(3.8)

+
1
2
‖u∆φ‖2

L2 .

Now we put in (3.8) the multiplicator φ̃ defined in (3.1). From the bound-
edness of ϕ and the magnetic Hardy inequality (5.2) we have, with the
choice ε = (n − 2)2 − 4C0 which is positive in virtue of the assumption
C0 < (n − 2)2/4,

‖∇φ̃ · ∇Au‖2
L2 ≤ 3

2
1

(n − 2)2 − 4C0
‖DAu‖2

L2 .(3.9)

The third term in (3.8) can be estimated again using Hardy inequality with

‖u∆φ̃‖2
L2 ≤ 4n

(n − 2)2 − 4C0
‖DAu‖2

L2 .(3.10)

Summing up, by (3.8), (3.9) and (3.10) we can conclude∣∣∣∣
(∫
Rn

ut(2∇φ · ∇Au + u∆φ)
)∣∣∣∣ ≤ c(n)‖DAu‖2

L2 .(3.11)

Estimate of the LHS of (1.7)
We shall make use of the following identity, that holds in every dimen-

sion:

∇AuD2φ∇Au =
φ′(r)

r
|∇τ

Au|2 + φ′′(r)|∇r
Au|2.(3.12)
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For the seek of simplicity, we divide this part in two steps, first consider-
ing just the multiplier φ(r) = r, for which the calculations turn out fairly
straightforward, and then perturbating it to φ̃.

Step 1.
With the choice φ(r) = r, by (3.12) we can rewrite the LHS of (1.7) as

follows:

2
∫

Rn

|∇τ
Au|2
|x| dx +

(n − 1)(n − 3)
2

∫
Rn

|u|2
|x|3 dx +(3.13)

+2
∫

Rn

	(uBτ · ∇Au)dx +
∫

Rn

u ·
∑
j<k

αjαk∂rB
jku.

The first thing to be done is to prove this quantity to be positive. For what
concerns the perturbative term, assuming that

|Bτ | ≤
C1

|x|2

we have

−
∣∣∣∣2 ∫

Rn

	(uBτ · ∇Au)dx

∣∣∣∣(3.14)

≥ −2
(∫

Rn

|u|2
|x|3 dx

) 1
2
(∫

Rn

|x|3|Bτ |2|∇τ
Au|2dx

) 1
2

≥ −2C1K1K2,

where

K1 =
(∫

Rn

|u|2
|x|3 dx

) 1
2

K2 =
(∫

Rn

|∇τ
Au|2
|x| dx

) 1
2

.

Analogously, assuming∥∥∥∑
j<k

αjαk∂rB
jk(x)

∥∥∥
M×M

≤ 1
2
[∂rB(x)]1 ≤ C2

|x|3
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(recall that here ‖ · ‖M×M denotes the operator norm of M × M matrices
and [·]1 denotes the sum of absolute values of the entries of a matrix) we
have

−

∣∣∣∣∣∣
∫

Rn

u ·
∑
j<k

αjαk∂rB
jkudx

∣∣∣∣∣∣ ≥ −
∫

|u|2
∥∥∥∑

j<k

αjαk∂rB
jk

∥∥∥
M×M

dx(3.15)

≥ −C2K
2
1

where K1 is as before. Thus we have reached the following estimate

2
∫

Rn

|∇τ
Au|2
|x| dx +

(n − 1)(n − 3)
2

∫
Rn

|u|2
|x|3 dx +(3.16)

+2
∫

Rn

	(uBτ · ∇Au)dx +
∫

Rn

u ·
∑
j<k

αjαk∂rB
jku ≥

≥ 2K2
2 − 2C1K1K2 − C2K

2
1 +

(n − 1)(n − 3)
2

K2
1 =: C(C1, C2, K1, K2).

As usual, we want to optimize the condition on the constants C1, C2 under
which the quantity C is positive for all K1, K2. Fixing K2 = 1 and requiring
that (

(n − 1)(n − 3)
2

− C2

)
K2

1 − 2C1K1 + 2 ≥ 0

we can easily conclude that the resulting condition on the constants is given
by

C2
1 + 2C2 ≤ (n − 1)(n − 3).(3.17)

Thus, if condition (3.17) is satisfied, we have that the quantity in (3.13) is
positive.

Step 2.
We now perturb the multiplier to complete the proof. We thus put the

multiplier φ̃R as defined in (3.1) in the LHS of (1.7), and repeat exactly the
same calculations as in Step 1. Notice that multiplier ϕR with properties
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(3.4)-(3.6) yield the estimate, through (3.12),

2
∫

Rn

∇AuD2ϕR∇Au − 1
2

∫
Rn

|u|2∆2ϕR ≥(3.18)

≥ C(n)

(
1
R

∫
|x|≤R

|∇Au|2dx + 2
∫ |∇τ

Au|2
|x|

)
+

+
n − 1
4R2

∫
|x|=R

|u|2dσ(x) +
(n − 1)(n − 3)

4

∫ |u|2
|x|3

for some positive constant C(n). Using now the complete multiplier φ̃R we
notice that estimates (3.14) and (3.15) still hold with the rescaled constants
C̃1 = 3

2C1, C̃2 = 3
2C2, so that we can rewrite (3.16) as follows

1
R

∫
|x|≤R

|∇Au|2dx + 2
∫

Rn

|∇τ
Au|2
|x| dx +(3.19)

+
(n − 1)(n − 3)

2

∫
Rn

|u|2
|x|3 dx +

+2
∫

Rn

	(uBτ · ∇Au)dx +
∫

Rn

u ·
∑
j<k

αjαk∂rB
jku ≥

≥ 1
R

∫
|x|≤R

|∇Au|2dx + C(C̃1, C̃2, K1, K2).

Conditions (1.8)-(1.9) on the potential ensure the positivity of C(C̃1, C̃2,

K1, K2)
Thus putting all together , taking the supremum over R > 0, integrating

in time and dropping the corresponding nonnegative terms we have reached
the estimate

2
∫ T

−T
dt

∫
Rn

∇AuD2φ∇Au − 1
2

∫ T

−T
dt

∫
Rn

|u|2∆2φ +(3.20)

2I
∫ T

−T
dt

∫
Rn

uφ′Bτ · ∇Au +
∫ T

−T
dt

∫
Rn

|u|2
∑
j<k

αjαk(∇φ · ∇Bjk) ≥

≥ sup
R>0

1
R

∫ T

−T
dt

∫
|x|≤R

|∇Au|2dx ≥

≥ sup
R>0

1
R

∫ T

−T
dt

∫
|x|≤R

|DAu|2dx
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where in the last step we have used the pointwise inequality |DAu| ≤ |∇Au|.
We now integrate in time the virial idetity on [−T, T ], and using (3.20) and
(3.11) we obtain

sup
R>0

1
R

∫ T

−T
dt

∫
|x|≤R

|DAu|2dx � ‖DAu(T )‖2
L2 + ‖DAu(−T )‖2

L2 .(3.21)

Let us now consider the range of DA: from proposition (5.1) we have that
for C0 < (n − 2)2/4 0 
∈ ker(DA), so ran(DA) is either L2 or it is dense in
L2. Fix now an arbitrary g ∈ ran(DA), there exists f ∈ D(DA) = D(H)
such that DAf = g. We then consider the solution u(t, x) to the problem{

iut = −mβu + DAu

u(0, x) = f(x)

with opposite mass, and notice that u satisifies (3.21) since no hypothesis
on the sign of the mass m have been used for it. If we thus apply to this
equation the operator DA we obtain, by the anticommutation rules,{

i(DAu)t = βm(DAu) + DA(DAu)

DAu(0, x) = DAf(x)

or, in other words, the function v = DAu solves the problem{
ivt = Hv

v(0, x) = g

so that v = eitHg. Substituting in (3.21) and letting T → ∞ we conclude
that, in view of Remark (1.2),

sup
R>0

1
R

∫ +∞

−∞

∫
|x|≤R

|eitHg|2 � ‖g‖2
L2

that is exactly (1.10) for g ∈ ran(DA), which is as we have noticed dense in
L2. Density arguments conclude the proof.
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4. Proof of the Strichartz Estimates

We begin by recalling the Strichartz estimates for the free Dirac flow,
both in the massless and in the massive case. They are a direct consequence
of the corresponding estimates for the wave and Klein-Gordon equations:

Proposition 4.1. Let n ≥ 3. Then the following Strichartz estimates
hold:

(i) in the massless case, for any wave admissible couple (p, q) (see (1.13))

‖|D|
1
q
− 1

p
− 1

2 eitDf‖LpLq � ‖f‖L2 ;(4.1)

(ii) in the massive case, for any Schrödinger admissible couple (p, q) (see
(1.14))

‖|D|
1
q
− 1

p
− 1

2 eit(D+β)f‖LpLq � ‖f‖L2 .(4.2)

Proof. We restrict the proof to the case n ≥ 4, refering to [3] for an
exaustive proof of the 3-dimensional case.

Recalling identity (1.3) we immediately have that u(t, x) = eitDf and
v(t, x) = eit(D+β) satisfy the two Cauchy problems

utt − ∆u = 0

u(0, x) = f(x)

ut(0, x) = iDf,

(4.3)


vtt − ∆v + mv = 0

v(0, x) = f(x)

vt(0, x) = i(D + β)f,

(4.4)

and so each component of the M -dimensional vectors u and v satisfy the
same Strichartz estimates as for the n-dimensional wave equation and Klein-
Gordon equation respectively. Thus case (i) follows from the standard esti-
mates proved in [14] and [17], while case (ii) follows from similar techniques
(the details can be found e.g. in the Appendix of [6]). �
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We turn now to the perturbed flow. In the massless case, from the
Duhamel formula we can write

u(t, x) ≡ eitDAf = eitDf +
∫ t

0
ei(t−s)Dα · Au(s)ds.(4.5)

The term eitDf can be directly estimated with (4.1). For the perturbative
term we follow the Keel-Tao method [17]: by a standard application of the
Christ-Kiselev Lemma, since we only aim at the non-endpoint case, it is
sufficient to estimate the untruncated integral∫

ei(t−s)Dα · Au(s)ds = eitD
∫

e−isDα · Au(s)ds.

Using again (4.1) we have∥∥∥∥|D|
1
q
− 1

p
− 1

2 eitD
∫

e−isDα · Au(s)ds

∥∥∥∥
LpLq

�(4.6)

�
∥∥∥∥∫

e−isDα · Au(s)ds

∥∥∥∥
L2

.

Now we use the dual form of the smoothing estimate (1.10), i.e.∥∥∥∥∫
e−isDα · Au(s)ds

∥∥∥∥
L2

≤
∑
j∈Z

2
j
2 ‖|A| · |u|‖L2

t L2(|x|∼=2j),(4.7)

where we have used the dual of the Morrey-Campanato norm as in [21].
Hence by Hölder inequality, hypothesis (1.11) and estimate (1.10) we have∑

j∈Z

2
j
2 ‖|A| · |u|‖L2

t L2(|x|∼=2j) ≤(4.8)

≤
∑
j∈Z

2j sup
|x|∼=2j

|A| · sup
j∈Z

2−
j
2 ‖u‖L2

t L2(|x|∼=2j) � ‖f‖L2

which proves (1.12). The proof in the massive case is exactly the same.

Remark 4.1. The endpoint estimates can also be recovered, both in
the massless and massive case, adapting the proof of Lemma 13 in [15], but
we will not go into details of this aspect.
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5. Magnetic Hardy Inequality

This section is devoted to the proof of a version of Hardy’s inqeuality
adapted to the perturbed Dirac operator

H = DA + mβ, DA = i−1α · ∇A ≡ i−1α · (∇− iA).

The proof is simple but we include it for the sake of completeness.

Proposition 5.1. Let B = DA − DAt = B1 + B2 and assume that

‖|x|2B1‖L∞(Rn) < ∞, ‖B2‖L∞(Rn) < ∞.(5.1)

Then for every f : R
n → C

M such that Hf ∈ L2 and any ε < 1 the following
inequality holds when m 
= 0:

m2

∫
Rn

|f |2 +
(

(1 − ε)
(n − 2)2

4
− 1

2
‖|x|2B1‖L∞

) ∫
Rn

|f |2
|x|2 +(5.2)

+ε

∫
Rn

|∇Af |2 ≤
(

1 +
‖B2‖L∞

2m2

) ∫
Rn

|Hf |2.

When m = 0, the inequality is also true provided we choose B1 = B, B2 = 0
and we interpret the right hand side of (5.2) simply as

∫
|Hf |2.

Proof. Denote with (·, ·) the inner product in L2(Rn, CM ) and with
‖ · ‖ the associated norm. Recalling (2.7), we can write

‖Hf‖2 = m2‖f‖2 + ‖∇Af‖2 + i(S · Bf, f)

where the matrix S · B = [Sjk] · [Bjk] is skew symmetric since

Sjk =
1
2
αjαk, Bjk = ∂jA

k − ∂kA
j .

The selfadjoint matrices αj have norm less than 1 (recall α2
j = I), so that

|(S · Bf, f)| ≤ 1
2
([B]1f, f)

where we denote by [B]1 the �1 matrix norm

[B(x)]1 =
∑
j,k

|Bjk(x)|.
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Now recalling assumption (5.1) we can write

|(S · Bf, f)| ≤ 1
2
‖|x|2B1‖L∞

∥∥∥∥ f

|x|

∥∥∥∥2

+
1
2
‖B2‖L∞‖f‖2

and in conclusion

‖Hf‖2 ≥ m2‖f‖2 + ‖∇Af‖2 − 1
2
‖|x|2B1‖L∞

∥∥∥∥ f

|x|

∥∥∥∥2

− 1
2
‖B2‖L∞‖f‖2.

We now recall the magnetic Hardy inequality proved in [13]:

(n − 2)2

4

∫
Rn

|f |2
|x|2 ≤

∫
Rn

|∇Af |2.(5.3)

Observing now that

‖Hf‖2 = (H2f, f) = m2‖f‖2 + ‖DAf‖2

and that

(1 − ε)
(n − 2)2

4

∥∥∥∥ f

|x|

∥∥∥∥2

+ ε‖∇Af‖2 ≤ ‖∇Af‖2,

the proof is complete. �
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