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Uniform Estimates for Distributions
of the Sum of i.1.d. Random Variables with Fat Tazil
in the Threshold Case

By Kenji NAKAHARA

Abstract. We show uniform estimates for distributions of the
sum of i.i.d. random variables in the threshold case. Rozovskii showed
several uniform estimates but the speed of convergence was not known.
Our main uniform estimate implies a speed of convergence. We also
compare our estimates with Nagaev’s estimate which is valid in the
non-threshold case and, moreover, give a necessary and sufficient con-
dition for Nagaev’s estimate to hold in the threshold case.

1. Introduction

Let (2, F, P) be a probability space and X,,,n = 1,2,..., be indepen-
dent identically distributed random variables whose probability laws are p.
Let F: R — [0,1] and F : R — [0, 1] be given by F(x) = u((—o0,z]) and
F(z) = p((x,0)), = € R. We assume the following.

(A1) F(z) is a regularly varying function of index —a for some a > 2, as
T — oo,l.e., if we let

(A2) fBOO z|oH00u(dz) < oo for some &y € (0,1), [pa®u(dz) = 1 and

Jgap(dz) = 0.
S.V. Nagaev [5] proved the following theorem.
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THEOREM 1 (Nagaev). Assume (Al) for a > 2 and (A2). Then we
have

P30 Xi > nl/?
(1) sup | (Zk:l k>N S)

= -1} —0, n — 0Q.
s€[1,00) (I>0<5> + nF(nl/Qs) ‘

Here @y : R — R is given by
1 00 y2
@x:—/ exp(—=)dy, r e R.

In this paper, we assume (A1) for o = 2 (threshold case), (A2) and the
following.
(A3) The probability law u is absolutely continuous and has a density func-
tion p : R — [0, 00) which is right continuous and has a finite total variation.

We show two uniform estimates. Our main estimate gives the speed of
convergence. The other one is similar to (1).

Let us define &, : R - R,k =1,2,3 by

1 22 d
Dy () Eexp( ?) 2 o(7),
and
jop V1
(I)k(l‘)—( 1) a drk—1 1(:6)7 k=23

1/2
Let v, = [" " #?u(dx) for n > 1.
Our main result is the following.

THEOREM 2. Assume (Al) for a = 2, (A2) and (A3). Then for any
0 € (0,1), there is a constant C > 0 such that

PO X > nl/2s)
(2) sup Zk: 1 i
s€[1,00) H(n, Un 8)

— 1| < CL(n/?)'79,

Here

H(n,s) = ®p(s)+ n/s F((s — 2)v}?n}?)®, (x)da

—0o0
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We also show a similar uniform estimate to (1) and a necessary and
sufficient condition for (1) to hold under the three assumptions.

THEOREM 3. Assume (Al) for a =2, (A2) and (A3). Then we have

P X > nt/?s
@ s | ke
s€[l,o0) Po(vy ' 78) + nF(nl/2s)

-1 —0, n — oo.

Rozovskii [6] showed different types of uniform estimate. (see Theorems
1, 2 and 3b in [6].) The estimates in Theorems 1 and 2 in [6] were proved
under more general assumptions but they were complex and the speed of
convergence was not proved. The estimate in Theorem 3b in [6] is strongly
related to (3) but does not necessarily imply our result. The proof of uniform
estimates in [6] is different from ours.

We also prove the following.

THEOREM 4. Assume (Al) for a« = 2, (A2) and (A3). If

limsup,,_, (1 — vy,) log 7

m = O, then we have

—1/2 (0 1/2
(4) sup Dy(vy, ' 75) +_TLF1(TQL s)
s€[1,00) (I)O(S) + nF(n / S)

—1]—0, n — 0o.

1
If limsup,, (1 — vy) log L2 > 0, then (4) does not hold.

Combining Theorems 2 and 3 gives a necessary and sufficient condi-
tion for (1) to hold, i.e. if we assume (Al) for a = 2, (A2), (A3) and

lim sup,,_, o (1 — v, ) log 7 =0, then (3) holds, namely

P(Z Xj > 8) ~ ®o(n~Y2s) + nF(s), for s > nt/2.
k=1

" . 1
The condition limsup,, (1 — vy,) log L)

[6]. Hence the estimate with B, = n'/? in Theorem 3b in [6] is not valid
under our assumptions.

= 0 corresponds to (56) in
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We also prove the following to obtain Theorem 2.

THEOREM 5. Assume (Al) for a = 2, (A2) and (A3). Then for any
0 € (0,1), there is a constant C > 0 such that

n
IPO) Xy, > sn'/?) = H(n,v,'?s)| < CL(n'?)*7,  s>1.
k=1

Throughout this paper we assume (A1) for « = 2, (A2) and (A3). Then
1—wv,

we see that L(t) — 0, t — oo and L(nl/2)

— 00, n — oo (see (5) and (6)).

2. Preliminary Facts

We summarize several known facts (c.f. Fushiya-Kusuoka|[2]).

ProrosiTiION 1. We have
L(ax)

sup — 1, T — 00,
1/2<a<2 L(x)
and
L
inf (az) — 1, T — 00.

1/2<a<2 L(x)

PROPOSITION 2. For any ¢ € (0,1), there is an M(g) > 1 such that

M(e) ly— < li(gf)) < M(e)y® x,y > 1.

ProposITION 3. (1) For any B < —1,

1 o 1
- B -
tﬁHL(t)/t 2’ L(x)dx — R t — oo.
(2) For any > —1,
1 ! 1
- 8 -
tﬁHL(t)/l x” L(x)dx — RS t — oo.
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(3) Let f :[1,00) — (0,00) be given by

(1) = /ltx_lL(x)dx P> 1

Then f is slowly varying. Moreover if lim;_,~ f(t) < co, we have

1 /°° 1
— x”L(z)dxr — oo, t — oo.
o)

PrOPOSITION 4. There is a constant Cy > 0 such that
@ ()] < Co(1+ ) @y (x), x>0,k=1,2
and

Cy'®1(z) < a®o(z) < Co®i(),  z>1/2.

PROPOSITION 5. (1) For any m > 1, let rem : R — C be given by

teR.

m
Tem(t) = exp(it) Z

k=1
Then we have

min([¢t|™ L, 2(m + 1)[t|™)
(m+1)!

[Tem(t)] < , t e R.

(2) For any m > 1, let r, : {z € C; |2] < 1/2} — C be given by

m
rim(2) = log(1+ z) — Z ko 2eC |2 <1)2.
k=1

Then we have

rn(2)] < 212", 2 €C 2 <1/2.
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Let u(t),v(t), t > 0, be probability measures on (R, B(R)) given by

W(O(A) = (- F(1) " u(An (~o0, 1)),
v(t)(4) = F(O) (AN (t, ),

for any A € B(R). Let o(-; u(t)) (resp. o(;v(t))), t > 0, be the character-
istic function of the probability measure p(t) (resp. v(t)),i.e.,

H(€ () = /]R exp(izé)u(t)(dz), £ €R.

PRrROPOSITION 6. There is a constant cg > 0 such that for any t > 2,
& € R and positive integers n, m with n > m,

[p(n 126 ()" < (14 2ef) /4,

PROPOSITION 7. Let v be a probability measure on (R, B(R)) such that
fo2y(da:) < 00. Also, assume that there is a constant C' > 0 such that the
characteristic function p(;v) : R — C satisfies

lp(& )| <O+ |€])72, £ eR.

Then for any x € R and v > 0

v((r,00)) = Do) +

2

e—ixﬁ 1}52
[ Sl — e

3. Estimate for Moments and Characteristic Functions

Let

t
m(t) = / Hulde), 1> 0, k=12,

—00

and

n3(t) 2/1 :E?’,u(dx), t>1.
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Then we see that

Co(t) = /t " plds) = /t T B(a)dn + LF(), >0,

1—m(t) = /00 22 p(dr) = 2/00 e F(x)dx + 12 F(t), t>0,
and
)= F) -~ PR 43 [ 2P 151
1

In particular, we see that

5) L(t) < 1—m(t) 0, t— oo,
1 —ma(t)
(6) I — 00, t— 00.

For any § > 0, let t,, = n1/2L(n1/2)5. Note that n=1/%¢, — 0, n — oo.

ProproOSITION 8. For any € > 0, there is a constant C' > 0 such that

™ e < CLu )
(8) nF () < CL(nY/2)-2-2
(9) m2(n'/?) = ma(tn) < CL(n/?)172
(10) —n1/2771(tn) S CL(n1/2)1—25
(1) 0 (1) < CL(Y?)

for anyn > 1.
PROOF. From Proposition 2, there is an M(g) > 0 such that

L(ty) L(ty) —e
L(nl/2) N L(t,L(n1/2)-9) < ML)
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Hence we have (7). Similarly, we see that

nF(tn) = L(n"/?) 2 L(t,) = L(nl/Q)l—%LL(T(;’Z)
and
nl/2
(') = ma(tn) = Llta) = L(n'/?) +2 / Liz)dz
L(tn)~9 L(tny)
_ _ L(nl/2
= L(tn) — L( )—|—2L(tn)/1 L(tn)ydy

L(tn)~
< L(ta) — L(n"/?) + 2L(t) M (2) / e dy
1

M(e)
e

< L(tp) — L(n'/?) 42 L(ty)(L(n'/?)750 —1).

Therefore by (7), we have (8) and (9).
Let

er(t) = ﬁ /too 2 2L(z)dz — 1

and

e5(t) = ﬁ/l L(z)da — 1.

Then from Proposition 3 (1) and (2) we have £1(t) — 0 and e3(t) — 0 as
t — 0.
Hence we see that

M pt)) = 2 <tnF(tn)+ /t OoF(a:)da:)
= L(n'?)°L(ty) (2 + e1(tn))

_ 1/2v1-5_L(tn)
= @Ha) L)'

and
n Y Pns(ty) = nTYEFR(1) 4 (24 es(ta)) L(n'/?)° L(ty)

= w21+ (2 + es(t) L(n 2*”%‘

From (7), we have (10) and (11). O
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4. Asymptotic Expansion of Characteristic Functions

Remind that v,, = ff;/f 2?p(dx) and t, = n'/2L(n'/?)%. In this section,
we prove the following lemma.

LEMMA 1. Let

Rao(€) = exp(Sre®)(1— F(ta)) o(n~ "% ultn))"
~( 4 (1= F(ta))p(n & plta)) = 1) + €.

Roa(€) = exp(5€)(1 = F(ta))"p(n "6 p(ta))" 1,
Run(§) = exp(5€)(1 = F(ta))" " p(n ™26 (b)) ~ 1.
Then there is a constant C' > 0 such that
(12) [Ruo(©)] < CL(n'?)*7|¢]
and
(13) [Rn1(€)] + [Bna(§)] < CL(n'/2) 2]

for any n > 8 and £ € R with |¢] < L(n/?)=°
As a corollary to Lemma 1, we have the following.

COROLLARY 1. Let
Ro(n,s) = (1— F(ty)"u(tn)™((sn'/%, 00)) — ®o(v;/2s)
B L e—isé n((1— F(t,)) (n71/2£‘ (tn) — 1) + V&2
2 R 15 n))¥ y U(ln 9
X e_vnfz/Qdé'

and

Rip(n,s) = (L= F(ta))" " u(tn) P ((sn'/?,00))
— Bo(v;,2s), kE=0,1.
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Then there is a constant C' > 0 such that for any n > 1, we have for s € R

(14) |Ro(n, s)] < CL(n!/?)%%
and
(15) |R10(n,s)| + |Ri1(n, s)| < CL(nY/?)1=4,

PrOOF. From Proposition 8, we see that

Ro(n,s)
1 —is§ ~ i
R Reif (1= Pta)) (™26 ()" — &%
2 2
—(n((1 = F(tn))e(n 28 p(tn)) — 1) + U"f )e*%)dg
_ 1 e8¢ Cone?)
= o Jo i Fmo(©et e

By Lemma 1, there is a constant Cy > 0 such that

/ |Rn,0(§)|d£ S COL(nl/Q)Qfﬁts'
lel<Lmi/zy-s €]

It is easy to see from Proposition 5 (1) that

2
nl(1 = F(ta))o(n "2 pultn)) — 1 < 0" (ta) €] + %

£ eR.
From the above inequality and Proposition 7, we see that for any m > 2/4,
there is a constant C; > 0 such that for any n > 2m and ¢ € R with
€] > L(n'/?)72,

(™1 2¢; u(tn))]"

+ ’n((l - F(tn))w(n*1/2€; atn)) —1) + 1+ V2| _vne?

e 2 §C1|§|7m

Hence we have

Un52

/ €71 (1 = Fltn)) oln 26 p(ta))" — e
|é|>L(nt/2)—0
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v 2
— (n@ ~ Pt 6 () - 1) + )

2
Up, 2
x e | dg
< 201/ |§|7m71d£ — &L(n1/2)m5 < &L(n1/2)2'
L(n1/2)=¢ m m
Therefore we have (14). We see also that
~ 1 eis8
Rik(n,s) = o R
n — — n— _’Un52
o R e L
1 efisg 5
= — —vnf /2d
I R Zf Rn71+k(£)e 6

Similarly to the first equation, we have (15). OJ

We make some preparations to prove Lemma 1. Let

2
Ro(n,€) = (1= F(ta))p(n ™€, (1) ~ (1 = v 5.

First we prove the following.

ProprosITION 9.  There is a constant C' > 0 such that for any n > 8,
and € € R with €| < L(n'/?)79,

InRo(n,&)| < CL(n'/?) =2 |¢]
and
n|(1— F(t,)e(n Y2¢ u(t,)) —1| < CL(nY?)7.

In particular,

(16) sup{|nRo(n, &) €] < L(n'*)7°} -0,  n— oo
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PROOF. We can easily see that
Pl t) = [ explize)p(t)(da)

i€)? !
— 1+771(t)(i§)+n2(t)%+ / re2(§x)pu(dx)

# [ reateomidn) + g [ reotantan)

Hence we have that
i 2
(L= F(t) Ro(m€&) = n"mu(ta)(i€) + (nalta) — ma(n/2)) EL

2n
1
+/ re72(n_1/2§a:),u(dx)

Then we see that

€

nRom Ol < nM i (ta)llE]+ (ma(n?) = ma(ta)

1
02 [ fap o)
L 1) 3
O
+n1/2F(tn)/ wlu(dn)e],  EeRt>2,
R

where dg is in (A2). Hence from Proposition 5, we see that there is a constant
C > 0 such that

|7’LRO(71, §)|
< C (L(n1/2)1_25|§| —I—L(n1/2)1_5|§|2 +n—50/2|§|2+50 +L(n1/2)|§|3> )

Therefore we have the first inequality.
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Since n((1— F(t,))p(nY2& u(tn)) — 1) = nRo(n, &) —n2(n'/2)€2/2, we
have the second inequality.

For £k =0,1, let

Rip(n,&) = (n—k)log ((1 = F(tn))p(n™ "% u(tn)))
= n((1 = F(ta)p(n™ /¢ u(ts)) - 1).

ProprosSITION 10. There is a constant C' > 0 such that for any € € R
with [€] < L(n'/?)=% and k = 0,1,

|Rik(n, )] < Cn~ ' L(n'?)7%¢|.
In particular, for k = 0,1 we have

(17) sup{|R1 x(n,&)[; €] < L(nl/Q)*‘S} — 0, n — oo.

PROOF. First, for any £ € R with |¢| < L(n'/?)~%, we have

log (1= F(ta))e(&, u(t)) = (1= F(ta))p(&, p(t))

=141 ((1 = F(tn))e(& n(t)) — 1).
Hence we have
Rip(n,€) = —klog ((1— F(ta))p(n™ 26 u(tn)))
+nry1 (1= Ftn))en™2& p(tn)) — 1).

From Proposition 9, we see that there is a constant C' > such that

IRk, &) < (1= F(ta))o(n 26 utn)) — 1
+2n|(1 — F(ta))o(n 1 2€; u(ty)) — 112
Cn'L(n'?)7%)¢], ¢ < L(n*)7°. 0

IN

Let us prove Lemma 1. Note that for £ = 0,1 we have

log (e /2(1 = F(t))" Fp(n ™26 ju(ta))" %) = nRo(n, &) + R 4(n, €).
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We see that
(1= F(t,))™ *o(n Y26 u(tn))" ™ = exp(nRo(n, €) + Rix(n,€)).
Hence we see that

Roo(€) = €™ &/2(1— F(ta)"o(n Y26 u(ta))™ — (1 + nRo(n,€))
exp(nRo(n,§)) — (1 +nRo(n,§)
+ exp(nRo(n, £))(exp(Ri (n, €)) — 1).

By (16), we see that there is a constant C' > 0 such that

|Ri0(€)] < C (InRo(n, §)* + [Ri0(n,€)]) -
Therefore we have (14) from Propositions 9 and 10. The proof of (15) is
similar to (14).

5. Proof of Theorem 5

Note that

n

P(ZXZ > snt/?) = Zlk(n, s),

=1 k=0

where
n n
Ix(n,s) = P(ZX[ > sn1/2,z Lix;>tny = k), k=0,1,...,n.
=1 =1
Then we have

n
Ix(n,s) = <Z>P(ZXZ >sn? Xy > tp,i=1,...,k,
=1

ngtn,j:k;—i—l,...,n)

- @Fun)’“u = F(t))" ™ pu(ta) 7 v (k) (0125, 00)),

for k =0,1,...,n. We estimate I1(n,s), Iz(n,s) and > ;_, Ix(n,s) one by
one. This approach was originally used in A.V. Nagaev’s papers ([3], [4])-
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Let Fo(z) = P(X; > n'/?2,X; < t,) = (1 - F(t

and Fy,1(x) = P(X; > n2z X, > tn). Note that =
F(n'/%z).

n))i(tn) (0!, 00)
Fo(z) + Fo(2)

ProprosiTiON 11. There is a constant C > 0 such that

o, ) = (1 = m)o(u;, /2s) = S (0, /%)

n/F’ o(s—vl/2 )P (x)dx|
R

< CL(n1/2)2_55, n>1s>1.

PrRoOOF. First, we see that

/F ofs = vM22), () dz — Bo(v:/2s)
R

= [7 g (Lo Feptn Pent) - et ) o

1 [ emist i N
= 5r [ e (0= Fln)o(n™ 26 pulta) = 1e” e

Hence we have

n</F 0(5—1)1/2 )& (z)dz — Bo(v;, -1/2 )) + ‘I’z( -1/2 s)
R

1 —is& ) i 2
R Reif ("<<1*F@n))so(n*ms;u(tn))f1>+%)6 €2 e.

By Corollary 1, we have our assertion. [

PRrROPOSITION 12. There is a constant C > 0 such that

|I1(n,s) — n/ Foi(s— 0} 22)®) (2)dx| < CL(n'/?)>9, n>1s>1.
R

PROOF. We see that
Ii(n,s) = nF(tn)(1 = F(ta))" 'w(ta) * p(tn) "D ((n'/?s,00))
— nF I n—1 *(n—1)
Ftn) /]R (1= F(t)™ p(tn)
x (n'?(s — n™Y22), 00))v(tn)(dz)
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n/RFn,l(s — vimx)@l(x)dx

nE(t,) /]R V() (02 (s — v1/22). 00)) 1 () dar

nF () / V() (025 — @, 00))B1 (n= 20~ 2012~ 2y
R

nF(tn)/ B (v 25 — V20 20\ w(t,) (da).
R

Hence we have

Li(n,s) — n/ Fpi(s — vl/22)® (z)da
R

= Bt [ (= P ) 0 (0125~ 2),00)

— <I>0(v;1/2(3 - nil/zx))> v(ty)(dx).

Therefore, by Corollary 1, we have our assertion. [J

Let us prove Theorem 5. From Propositions 11 and 12, we see that there
is a constant C' > 0 such that

[To(n, ) + I1(n, s) = (1 = n)®o (v, "/?s) — %¢2(U;1/28)

_ n/ F(n2(s — v}/22))®y (2)da|
R

< CL<n1/2)2_66.

Note that
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—-1/2
/S

= / ' F(n'?ol 2125 — 2))® (x)da

[e.e]
- /1/2 F(n'?(s —v}/22))® (x)dx

and
n/oj/ZS F((n'?(s — vpx))®1 (2)dx
[ P - g
Let R(z,y) = ®1(z — y) — P1(2) — Pa(2)y, for z > 0,y < 0, then we see
that there is a constant C7 > 0 such that
[R(s,y)| < Cily|"*.

Hence we have

n| /1/2 F(n'?(s — v,2))®1 (x)dz
2

0
—Zvﬁk”n‘k”@k(vﬁ”%)/ y" T F(y)dyl
k=1

—00

0
— \nl/Q/ R(vy V2s,n 120 12y  F(y)dyl
—o0

0
S Cln_61/2'l);(1+61)/2/ ‘y‘1+50F(y)dy

—00

< Cn_51/2,

where C' = Clvf(l+61)/2 ono y' T F(y)dy < oo. Since

0 0 o)
/ F(y)dy = yp(dy) = — /0 yp(dy)

—00 — 00

and
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we see that

1 B B B 0
302(0125) 4 0 el V2 [ P E )y

—00

4P vﬁl/Qs nt/2
= vnly/o v u(dy).

Therefore we have
1
(1 = n) (v, '25) + 5‘1’2(051/28)
—l—n/ F(n'?(s —v}/22))® (x)dx — H(n, v, 2s)|
R
< (On%/2,

We also see that

Sontns) < Y= (32 P - )
k=2 k=2

n(n — 1)F(tn)2 < L(n1/2)2756‘

<
B 2

This completes the proof of Theorem 5. [J
6. Some Estimations
Let
Fis) = [ F(s-aoiat)e @),

A(n,s) = nE,(s)— v 20128 (s) /000 xu(dr)

= nﬁ'n(s)—vgl/znl/g@l(s)/ F(x)dx

0
1/2

n 3 n1/2
— v, 1®y(s) (/0 xF(x)dx — K 5 )> .
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Then we have
H(n,s) = ®o(s)+ A(n,s).
Let
Ho(n, s) = ®(s) + nE(v:/?n1/%s).
In this section we prove the following lemma.

LEMMA 2.

sup

' H(n, s)
s€[1,00) n,s

——1‘—>O, n — 00.

Hy(n, s)

Let up = v/ *n'/2, oy = L(u)'/? and B, = L(un) /12,

ProPOSITION 13. For any € > 0, there is a constant C' > 0 such that
1
nF (ups)

In particular, for s > 3, we have

1
< Oglite
nF(u,s) ~ N

< CL(up) ts*Te, s € [1,00).

Proor. From Proposition 8 we see that for any € > 0 there is a con-
stant C' > 0 such that
1 o 1 L(uy)
———— = S
nF (u,s) L(uy) L(uys)
< CL(uy) ts**=.

Since L(u,)~! = 12 < 52 for s > 3,, we have the second inequality. O

Let nF,(s) = S3_, Ix(n, s), where

hns) = 0 [ F((s - 2)u)i(@)ds

Iy(n,s) = n/\;%nﬁ’((s—x)un)@l(:v)dm,
N

I3(n,s) = n/ F((s — x)up)®1(z)dx

—S
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and

Iy(n,s) = n/s F((s — 2)uyp)®1(z)dz.

Let

R(n757y) = (I)l(S—U;ly)
— (®1(8) + uy, 'y DPa(s)), forn>1, s,y €[l,00).

PROPOSITION 14.

sup Ho(n,s)”'|I1(n,s) Zv_k/Q ~(k=22¢, (s)
$€[1,00) 1

QnUn _
x / y*IF(y)dyl -0,  n— oo
0

ProOoOr. We see that

2 o
Ti(n,s) = 3 vgt2n= =22, (s) / 1 E(y)dy
k=1 0

it [ F ) (@165 = ) — 010 — g yal) dy
0

= ! [ PR 0)dy.
0
Note that for any y € [0, apuy],
|R(n,s,y)| < u;2y2 sup  |®3(2)]

ZE€[s—an,s]
Con 2 (1 4 5)2®1 (s — o)

<
< C2n7 M2 (1 + 5)3®o(s) exp(ans).

Hence for all s € [1,00)

2

Li(n,s) — 3 020622, (s) /0 Y F(y)dy]

k=1
< 8Cosup{z*F(z); z > 0}a,s°®o(s) exp(ans).
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Since o, 32 = L(uy,)'/'2 — 0, n — oo, we have
2
sup ®o(s) " HI1(n,s) — Zv k2= k=228, (s)
s<fn k=1

Qptn 3
< [T Py -0, n -
0

From Proposition 13, we see that for any € > 0 there is a constant C'(¢) > 0
such that

(nF(uys))~t < C(e)st4te.

Hence we see that for s > (3,

(0F ()1, Zv"“ ez o) [T P
< 8C(e)C3sup{z*F(z2); = 2 O}an817+€@0(8) exp(ays).
Since sup,;>1 Sup,sg, s T ®@o(s) exp(ans) < oo, we have
2

sup (nF(uns)) " |1 (n, s) — Z v 2= (=22, (s)
>0, k=1

Qnln N
< [Ty -0,
0

Therefore we have our assertion. [

PROPOSITION 15.

2

s[up )Ho(n, s) " Iy(n,s) — Z v #2202, (s)
s€[l,00 k=1

y*'F(y)dyl — 0, n— co.

(1—1/7/8)uns
x / ¢

nUn
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ProoOF. Similarly to Proposition 14, we see that

(1—+/7/8)uns 3

To(n, ) ZU—W @0las) | Y 1R (y)dy
(1*\/ / Juns
< mt | F(y)|R(n, s, ) ldy
35 9 (1=4/7/8)uns )
< nu, " Fupan)Co(l1+5)°( sup  |P1(2)]) y“dy
2€[\/7/8s,s] UnOn
< 4CynF (unoy)s’®1(\/7/85)

< 4Cl+7/8nF(unan)36<I>0(3)7/8.

Since Ho(n,s)™' < ®g(s)~7(nF(uys))~1/7, it is easy to see that for any
e € (0,4/7), there is a constant C; > 0 such that

2 (1—+/7/8)uns B
Hy(n,s) M Ia(n,s) = > 0,20 R20(s) / " F(y)dyl

k=1 Gntin

< 0186+2/7+8(I)0(8)7/8_6/7L(Un)(1_8)/3_1/7.

Since sup521{56”/7*5(1)0(8)7/8*6/7} <ooand (1 —¢)/3—1/7> 0, we have

sup Ho(n, s) 7| Io(n, s) Zv k20 C=R)2¢, ()
s>1 h—1

y" ' F(y)dy| — 0, n — o0. O

/(1\/7/8)uns
X

nUn

PROPOSITION 16.

sup Ho(n,s) Y| I3(n,s) — nF(u,s)| — 0, n — oo.
s€[1,00)
PROOF.
_ V7/8s _
Is(n,s) = nF(uns)/ Mél(m)dm
s F(ups)

= nF(uys) /\/7/_88 1-Z —2L(un(s = x))él(x)dm.

( 8) L(ups)

—S
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It is easy to see that there is a constant C; > 0 such that

®o(s) < CLL(un) %3, n>1,se[l,(—log L(u,))"?],
V7/8s F(u_n(s — 1))

\ Funs) Oy (z)dzx| < Cy, n>1,s¢€[l,00).

Then we have

sup Hy(n, s) 7 I3(n, s) — nF (ups)|
s<(—log L(uxn))t/2
C1(Cy 4 1) L(uy) 20 F (uy,)

<
< C1(C1 + Dy 'Lun)'? — 0, n — oo.

We take M > 1 arbitrarily, then (—log L(u,))"/* > M for sufficiently large
n. Hence we see that for s > (—log L(uy))"/?

‘/_5%8(1 % 4%@@)@— 1
< ‘ / Sms{u -y e o)
" |/ZW_SS(L(QZL<S£>$)) Uil
+ /[_S,W_SS]C By (x)da
< 2 </A; (1 - ?—2 — 1|y (2)dz + 8<I>0(M))
+ s sup 19 ) 1 2w0(/778s).

t>(—1log L(un))'/2 1— /7/8<a<1 (t)

Hence we have

sup InF(uns)| " 13(n, 8) — nF (uys)| — 0, n — oo.
s>(—log L(un))1/2

So we have our assertion. [J
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PROPOSITION 17.

s I4(n7 5)
up ————=
s€[1,00) H()(n, 3)

— 0, n — 0.

PROOF. |I4(n,s)| < nF(2u,s)®(s). Hence we have

®o(s) " HIs(n, s)| < nF(2uns) < nF(uy) — 0, n — oo. O

PROPOSITION 18.

sup  Ho(n,s)" o /20120, (s) / Fly)dy| —0, n—oo
s€[1,00) \/7/8uns

and

sup Ho(n,s)™!
s€[1,00)
1/2

XU;I(I) S /n yFydy+Lnl/2 — 0, n — 00.
| 2()(\/7/_8%8 () (n ) ] |

PRrROOF. From Proposition 3 (2), we see that there is a constant C7 > 0
such that

n1/2/ Fly)dy < Crs~L((1 — \/T/8)uns).
(1—=4/7/8)uns

We can easily see that

sup @o(s) /2 (s) | Flydy —0,  n— oo
s€[1,8n) (1—4/7/8)n1/2s
and
sup  (nF(n'/2s))"1nl/2®,(s) / F(y)dy — 0, n — oo.
SE[Bn,00) (1—4/7/8)n1/2s
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Also we see that for any € € (0,1), there is a constant Cy > 0 such that
1/2

n _ 1 1/2
/ yF(y)dy = / Mdm < CoL(n'/?)s.
( (

1—+/7/8)uns 1—+/7/8)vi/?s x

Hence we can easily see that

sup Po(s)”!
s€[L,8n)
1/2

X |Pa(s) (/ yF(y)dy + L(n1/2)> | =0, n — oo
(1—+/7/8)uns
and

sup (nF(n'/?s))™!
SE[ﬁn,OO)
1/2

X |®a(s) (/ yF(y)dy + L(n1/2)> | =0, n— oo
(1=4/7/8)uns

Therefore we have our assertion. [

Now let us prove Lemma 2. Note that H(n,s) — Hyo(n,s) = A(n,s) —
nF(sn'/?). So Propositions 14, 15, 16, 17 and 18 imply Lemma 2.

7. Proof of Theorem 2 and 4

First we prove the following lemma.

LEMMA 3. For any § > 0 and § € (0,1), there is a constant C > 0
such that

P X 1/2
sup (> k=1 111723” ) 1< CL(TLI/Z)I_(S.
s>L(nl/2)-8 H(n,v, '“s)

We make some preparation to prove Lemma 3. Similarly to Proposition
26 in Fushiya-Kusuoka [2], we can prove the following.
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ProposiTION 19. (1) For anyt,s >0, and n > 2,

n
6 s
P(Z Xkl{XkStnl/Q} > sn1/2) < exp( —).

2t
=2
(2) For any s,t >0, e € (0,1) witht < (1 —¢)s,

n n
\P(Z X5 > snl/z) —nP(X; + ZXkl{ngml/z} > snl/z,

k=1 P
n
ZXkl{XkStnl/Q} < 65711/2)]
k=2
< 2n(n — 1)F(tn*/?)? + eXp(t_2 _ ;) i nF(tnl/Q)exp(t—Q B Z_j)'

Also we prove the following for the proof of Lemma 3.

PROPOSITION 20. For any v, 0, € € (0,1) and 8 > 0, there is a con-
stant C > 0 such that

n n
|P(X; + ZXkl{ngswnl/z} > snl/Q,ZXkl{ngswnl/z} < 65711/2)
k=2 k=2
—1/2

_/ U P2 (s — v}22))y (2)da

—00

< CF((l _ 6)nl/zs)L(nyQ)1—367 for s> L(n1/2)—ﬁ_

PRrROOF. It is easy to see that there is a constant C'y > 0 such that

n n
[P(X1 + ZXkl{ngs’Ynl/Q} > sn'/?, ZXkl{XkSS’Ynl/Q} < esn'’?)
k=2 k=2

n n
— P(X1+ ZX"? > snl/z, ZXk < 65n1/2,
k=2 k=2

Xy < LnM®°n!2, ... X, < L(n/?)°n'/?)]
< C1F((1 — e)n*/?s)L(n/?)1=39, for s> L(n'/?)75.
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We see that

P(X1+ Y X >sn'? Y X <esn'? Xy <ty Xy S tn)

k=2 k=2
ES

= (1= F(ta)"™" / F(n'2(s — a))plta) "1 (da),

—00

here t,, = L(n1/2)5n1/2. Similarly to the proof of Proposition 12, we have
our assertion. [

Now let us prove Lemma 3. Since

5051/23
H(n,v;%s) — n/ F(n'?(s —v}/22))® (x)dx
'Uii)728
= Bo(v;2%s) + n/ s F(n'?(s —v}/22))®, (x)dx
v, s
o (0112 /2
o2t ) [ ap(an) - ot P T )
0 0
~1/2 nl/2
= Bo(v;/?%s) — Unlw / 2 p(dx)
0

v, 2l P (1= e)n!25) @ (v, 1/25)

+ o721/

(1-e)n/2s
X (/ F(2)(®y (v, V2s —n~ 1207122 — (1)1(1);1/28))(12:) ,
0

it is easy to see that there is a constant C'; > 0 such that

—1/2
evn/s

|H (n, v;l/zs) — n/ F(n1/2(8 — U}L/Qx))q)l(x)dx]

—00

< C’15<I>1(€v,;1/28), for s > 1.

Combining Proposition 19 (2) and 20, we see that there is a constant Cy > 0
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such that
n —1/2
P(3" Xy > snl/?) - n/ F(n2(s — v)/22))®y (2)da|
k=1 -
= 6 s - 6 €s
— Tpl/2)2 2 T 1/2 — =2
< 2n(n—1)F(s"n"/?) +exp(s27 87) +nF(s"n )exp(s27 23‘/)

+ CoF((1 — e)n'/2s)L(n*/?)1=2,

Hence we see that there is a constant C > 0 such that

sup (nF(nlﬂs))_l\P(Z Xj, > sn'/?) — H(n,v; Y/2s)|
s>L(nl/2)-5 k=1

< CL(nl/Q)lfJ.

Therefore by Lemma 2, we have our assertion.
Now let us prove Theorem 4. By Theorem 2, we see that there is a
constant C7 > 0 such that

PO Xi > sn'/?) = H(n, v, %) < CLL(M?)?702 s> 1.
k=1

Note that for any ¢ > 0, there is a constant Cy > 0 such that nF(n'/2s) >
Cy 's3L(n/?) > Cy ' L(n'/?)149/2 for s < L(n'/?)~%/6. Hence by Lemma
2, we see that there is a constant C3 > 0 such that

H(n,v; %)~ < C3(nF(n'/?s)7!
< 0203L(n1/2)1+5/27 s < L(nl/Q)_é/G.
So we have
P(Ypy X > sn'/?) 1/2\1-8
sup | PRSY — 1] < C1CyC3L(n =) °.
s<L(nl/2)~8/6 H(n,vy, '"s)

From this and Lemma 3, we have Theorem 4. Theorem 2 is an easy conse-
quence of Theorem 4 and Lemma 2.
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8. Proof of Theorem 3

First let us assume limsup,, (1 — v)log ———~ = 0. Then we see
L(nl/Z)

that

—1/2 —
/24 1.2

_ Un Un S 1 B d
Do(s) — Bo(v, '/?s) = / ®1(2)dz = . 9/2%
S S

s
< 2—1)1(1 — n)P1(s)
52
< C’oﬂ(l — ) Po(s).
1 .
Let 2z, = ——~, then we have limsup,,_,..(1 — vy)log z, = 0. Hence we
L(n1/2)
have

@0(051/25) + nF(n'/%s)

sup | = —1|
s€[1,./31og zn) (I)O(S) + nF(nl/Qs)
3C
< QUO(l_Un)IOanHO, n — 00.
1

We also see that for s > /3 log 2y,

Co (1- V)52 ®o(s)
= 201 Bg(s) + nF(nl/2s)

(IJO(U,Zlms) + nF(n'/?s)
Po(s) + nF(nl/2s)

Co (L= va)s'ols) _ C3 o, L@
< 0 < g2/
T 2u1 L(n!/%s) - 2\/27rv15 xp(=+/ )L(nl/Qs)Z
G 2
< s exp(—s“/2)z,
< e p(—s7/2)
2
< OO sup 8% exp(—s%/6) — 0, n — o0o.

2/ 27y s>+/3log zn,

Do vy /%s) + nF (n}/2s)
®o(s) + nF(nl/2s)

Hence we have supgc( o) | -1 —0,n—0.

Next, we assume limsup,,_,. (1 — vy)log 7 > 0. Let g, = (1 —

1
(n'/2)
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vn) log 2z, and s, = \/log z,,. Then limsup,,_, .y, > 0. Hence we see that

lim inf @o(sn) "' Do (v, 1/ 25n) = lim inf v/ 21 (s) ' @1 (v, P 50)

< lim inf exp(—v; " (1 = vn)sp) = exp(— limsupy,) < 1
and
Do (sn) ' nF(n%s,) < Cosn®(sn) s 2L(n'%s,)
< V2rCoM(1)L(n'/?)1/2 — 0, n — oo.
So we have

L @o(vglﬂsn) + nF(nl/an)
lim inf =
n—00 (I)o(Sn) + nF(nl/QSn)

Therefore we have Theorem 3.
We give an example in the rest of this section. Let g > 1 and L :
[zg,00) — (0,00) be a C? slowly varying function satisfying

* L
/ ﬂd:p < 00, L(z) — 0,2 — oo,

s T

sup (|I/(2)] + |"(2)]) < oo.

r>x0
Then we can find F' : R — [0, 1] non-decreasing C? function with F(—oc)
0, F(c0) = 1, [p|F"(x)|dz < co and F(x) = 2~ 2L(x) for sufficient large
x > 0. Let u be a probability measure whose distribution function is F.
Then we see that u satisfies (A3). Let L(x) = (logz)~'(loglogz)™'=% b >0
for sufficiently large > 0. We can easily see that L(z) satisfies the above
conditions. For sufficiently large n > 1, we see that

1—v, = /OO 22 p(dx) :L(n1/2)+2/oo Malgn

1/2 ,nl/2 X

2
= L(n'?)+ 3 (loglogn —log 2)™°

(loglogn) .

2
SN

Hence we have the following.
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PROPOSITION 21. Let L(z) = (logz)~*(loglogz)~'=%, b > 0 for suffi-
ciently large © > 0. Then we have

lim sup(1 — v,) log > 0, for b e (0,1]

n—oo L(nl/Q)
and
nh—>ngo(1 — Un) log W = O, fOT‘ be (1, OO)

Therefore (1) does not hold for b € (0, 1].
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