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Invariant Differential Operators on the Schrödinger

Model for the Minimal Representation

of the Conformal Group

By Atsutaka Kowata and Masayasu Moriwaki

Abstract. We consider the Schrödinger model of the minimal
representation for the conformal group O(2n, 2) (n > 1) which was
constructed by Kobayashi-Ørsted [Adv. Math. 2003], and enriched
by a series of papers by Kobayashi-Mano [Memoirs of AMS 2011, etc].
We get the joint spectra of the differential operators on the model
for generators of the center of the Lie algebra of U(k) × U(n − k) ×
U(1) for k = 1, . . . , n − 1. Further, we obtain the generators of the
algebra consisting of all invariant differential operators for two compact
subgroups I1 ×SO(2n− 1)×SO(2) and SO(2n)×SO(2) of O(2n, 2).

1. Introduction and Statement of Main Results

1.1. Differential operators on L2(R2n−1, |x|−1dx)
We consider three differential operators on R2n−1:

D1 :=
(

x1 +
x1

4
∆ − 1

2
E

∂

∂x1
− n − 1

2
∂

∂x1

)
,(1.1)

D2 :=
√
−1

n−1∑
j=1

(
x2j

∂

∂x2j+1
− x2j+1

∂

∂x2j

)
,(1.2)

D3 := |x|
(

1
4
∆ − 1

)
,(1.3)

where |x| denotes the norm (
∑2n−1

j=1 x2
j )

1/2 for any x = (x1, . . . , x2n−1) ∈
R2n−1, ∆ the Laplace operator

∑2n−1
j=1 ∂2/∂x2

j and E the Euler operator∑2n−1
j=1 xj∂/∂xj .
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The following theorem implies that D1, D2 and D3 are natural differ-
ential operators not on the Hilbert space L2(R2n−1) with respect to the
ordinary Lebesgue measure but on the Hilbert space L2(R2n−1, |x|−1dx) of
square integrable functions on R2n−1 with respect to the weighted measure
|x|−1dx = |x|−1dx1 . . . dx2n−1.

Theorem 1.1. (1) The differential operators D1, D2 and D3 extend to
self-adjoint operators on L2(R2n−1, |x|−1dx).

(2) D1, D2 and D3 mutually commute.
(3) D1, D2 and D3 have only discrete spectra on L2(R2n−1, |x|−1dx),

respectively.
(4) The set of the joint eigenvalues of (D1, D2, D3) is given as follows:{

(x, y, z) ∈ Z3 :
x + y + z − n + 1 ≡ 0 mod 2

|x| + |y| ≤ −z − n + 1

}
.(1.4)

(5) D1, D2 and D3 are algebraically independent.

The properties of D3 were studied by Kobayashi–Mano [9, Introduction
and Section 3.4]. This operator corresponds to the Schrödinger operator on
the Schrödinger model of the Weil representation (see Introduction in [9]).
Since D2 is the vector field generated by one-parameter subgroups of a
compact group, it is not hard to get the properties of D2. D1 is one of the
operators which are called fundamental differential operators by Kobayashi–
Mano [11].

We shall show the more general theorem than Theorem 1.1 in Section 4.
The idea of proving this theorem is to use representation theory. For the in-
definite orthogonal group O(2n, 2) and its identity component SO0(2n, 2), it
is known in [9, Section 3.1] that a unitary highest weight representation π+

of SO0(2n, 2) can be realized on L2(R2n−1, |x|−1dx) through the Schrödinger
model of O(2n, 2) given by Kobayashi–Ørsted [12, Part III]. Then we con-
sider a compact subgroup U := U(n1)×U(n2)×U(1) (n1, n2 ≥ 1, n1+n2 =
n) of SO0(2n, 2). Here U is minimal among the subgroups of the direct prod-
uct form U(n1) × · · · × U(nk) × U(1) (n1, . . . , nk ≥ 1, n1 + · · · + nk = n)
to which the restriction of π+ is still multiplicity-free (see Introduction and
statement of main results in [13] and (2.3) in Section 2.2). Under the re-
striction SO0(2n, 2) ↓ U if n1 = 1, one can see that D1, D2 and D3 are
given as the infinitesimal action of the center of the Lie algebra u of U
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(see Section 2.3). In addition, we use the explicit branching formula of the
restriction π+|U (see (2.3) and Proposition 3.3) to show the theorem.

1.2. Invariant differential operators on R2n−1 \ {0}
By (1) of Theorem 1.1, they extend to self-adjoint operators on H, where

we set H := L2(R2n−1, |x|−1dx). Let H∞ denote the space of all C∞-vectors
for (π+,H) of SO0(2n, 2). Here, we recall that if v ∈ H is such that the
function π+(g)v is of class C∞ from SO0(2n, 2) to H, then v is called a C∞-
vector. We consider the universal enveloping algebra U(so(2n, 2)C) of the
complexification of the Lie algebra so(2n, 2) of SO0(2n, 2) and the algebra
D(R2n−1 \ {0}) consisting of all differential operators on R2n−1 \ {0}. Then,
for the infinitesimal action dπ+ we have

dπ+(U(so(2n, 2)C)) ⊂ D(R2n−1 \ {0}) ∩ End(H∞).(1.5)

Here, we note that the origin is the singular point of the measure |x|−1dx

on R2n−1.
Now, we briefly review the following algebras of invariant differential

operators on representation theory:

(1) (Harmonic analysis) Let (G, K) be a Riemannian symmetric pair. We
consider the algebra D(G/K)G consisting of all G-invariant differen-
tial operators on a Riemannian symmetric space G/K. The spherical
functions on G/K are obtained as the joint eigenfunctions for all dif-
ferential operators in D(G/K)G. Then D(G/K)G is generated by l

algebraically independent differential operators, where l is the rank of
G/K (see [4, Chapter II, §4] for example).

(2) (Characters) Let G be a connected semisimple Lie group and D(G)G

the algebra consisting of all left G-invariant differential operators on
G. The character of each irreducible representation of G is a joint
eigenfunction or eigendistribution of the differential equations defined
by all right-invariant differential operators in D(G)G. This is given
by Harish-Chandra (see [5, Chapter X, §4] for example). The right
invariants of D(G)G is isomorphic to the center of U(gC).

We will consider the invariant differential operators for (π+,H) of
SO0(2n, 2). In the above cases (1) and (2), the actions of G on the func-
tion spaces of the left-regular representations are induced by the actions on
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the base manifolds respectively. In our case, it is remarkable that not all
elements in SO0(2n, 2) act on R2n−1 \ {0} (see [9]), however, they act on
the function space H. For this, the infinitesimal action dπ+ of so(2n, 2) on
H contains not only vector fields but also differential operators of second
order, such as D1 and D3.

For any subgroup H of SO0(2n, 2), we define an algebra D(R2n−1\{0})H

consisting of all invariant differential operators under the action π+(H) by

(1.6) D(R2n−1 \ {0})H :={
D ∈ D(R2n−1 \ {0}) : D ◦ π+(h) = π+(h) ◦ D, for any h ∈ H

}
.

When H = SO0(2n, 2), the algebra D(R2n−1 \{0})SO0(2n,2) is C because π+

is an irreducible representation of SO0(2n, 2). When H = U , by Proposi-
tion 3.3 in Section 3.4 one can see that each D ∈ D(R2n−1 \ {0})U can be
diagonalized with respect to the same fixed basis. Indeed, by the multiplic-
ity freeness, Schur’s lemma implies that D acts as a scalar multiplication
on any irreducible summand. Hence, we have

Lemma 1.2. The algebra D(R2n−1 \ {0})U is commutative.

Then we ask:

Question 1.3. Determine the structure of the commutative algebra
D(R2n−1 \ {0})U . Namely, find the generators of D(R2n−1 \ {0})U .

We recall an immediate consequence of (2.3) in Section 2.2 and Propo-
sition 3.3.

Corollary 1.4. For any subgroup H of SO0(2n, 2) which contains U ,
the restriction π+|H is multiplicity-free.

In the same way as that to show Lemma 1.2, we have

Lemma 1.5. For any subgroup H of SO0(2n, 2) which contains U , the
algebra D(R2n−1 \ {0})H is commutative.

We note that the larger subgroups H tend to be, the smaller the algebras
D(R2n−1 \ {0})H become.
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Hereafter we set G := SO0(2n, 2) and compact subgroups K :=
SO(2n) × SO(2), H := I1 × SO(2n − 1) × SO(2), and R := I1 × SO(2n −
1) × I2 
 SO(2n − 1) of G. Then we have

G ⊃ K ⊃ H ⊃ R.(1.7)

The restriction of π+ to H is multiplicity-free (see (2.3) and Proposition 3.1).
That of π+ to R is not multiplicity-free (see Remark 3.2), however, the ex-
plicit branching formula of π+|R is given by Kobayashi–Mano (see Fact 3.5).
By this formula, we get the following result:

Theorem 1.6. We have the following:

D(R2n−1 \ {0})H = C[D3, D4],(1.8)

where D4 is the differential operator on R2n−1 \ {0} defined by

D4 :=
∑

1≤i<j≤2n−1

(
xi

∂

∂xj
− xj

∂

∂xi

)2

.(1.9)

Here, D4 is nothing but the Casimir operator with respect to SO(2n−1) 
 R,
up to a scalar constant.

Theorem 1.6 means that D(R2n−1 \ {0})H = D(R2n−1 \ {0})SO(2n−1) ∩
(ker adD3) since the action of SO(2n−1) is given by rotation and the action
of SO(2) is infinitesimally given by D3. Theorem 1.6 leads to the following
corollary:

Corollary 1.7. We have the following:

D(R2n−1 \ {0})K = C[D3].(1.10)

By Corollary 1.7, D3 is nothing but the generator of the K-invariant
differential operators. The joint eigenfunctions with respect to D(R2n−1 \
{0})K are given in [9].
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1.3. The background of our theorems and question
Theorem 1.1, Question 1.3, Theorem 1.6 and Corollary 1.7 are based on

the philosophy posed by Kobayashi [6] of applying multiplicity-free proper-
ties to problems in analysis. The advantage of the irreducible decomposition
for a multiplicity-free representation is that such a decomposition diagonal-
izes any operator commuting with the group action.

This article is organized as follows. In Section 2, we introduce the rep-
resentation theoretic setting and describe D1, D2, D3 through the action of
certain elements in so(2n, 2). In Section 3, we review various branching
laws for the minimal representation of O(2n, 2) and introduce the action of
D1 (Proposition 3.6). The proof of Proposition 3.6 is given in Appendix
because of a lot of technical computation of special functions. The more
general theorem than Theorem 1.1 is shown in Section 4. Theorem 1.6 and
Corollary 1.7 are shown in Section 5. Theorem 1.6 is the immediate conse-
quence of Proposition 5.1. The proof of this proposition is given in Section 6
since this involves a lot of technical computation.

Acknowledgment . The authors express their deepest gratitude to Pro-
fessor Toshiyuki Kobayashi and Doctor Gen Mano for many discussions and
suggestions, and warm encouragement in this study.

2. The Descriptions of D1, D2, D3

In this section, we review the background of our theorems and state the
source of differential operators D1, D2, D3, owing to notation of Kobayashi,
Ørsted and Mano [8, 9, 12].

2.1. L2-model of the minimal representation
We set N := {0, 1, 2, . . . }. Let (πc, L2(C)) be the L2-model of the

minimal representation of O(2n, 2) for n ∈ N with n > 1 considered by
Kobayashi–Ørsted (see [12, III]). Here, O(2n, 2) is the indefinite orthogonal
group defined by

O(2n, 2) := {g ∈ GL(2n + 2, R) : tgI2n,2 g = I2n,2},
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where I2n,2 := diag(1, . . . , 1,−1,−1) ∈ GL(2n + 2, R). Further, C is the
closed cone:

C = {ζ ∈ R2n \ {0} : Q(ζ) = 0},

where Q(ζ) := ζ2
1 + · · · + ζ2

2n−1 − ζ2
2n. Let C± be the forward and the

backward light cone respectively:

C± :=
{
(ζ1, . . . , ζ2n) ∈ R2n : ±ζ2n > 0, ζ2

1 + · · · + ζ2
2n−1 = ζ2

2n

}
.

Then one can see that C is the disjoint union C+ ∪ C−. The direct sum
decomposition

L2(C) = L2(C+) ⊕ L2(C−)(2.1)

yields a branching law πc = πc
+⊕πc

− with respect to the restriction O(2n, 2) ↓
G = SO0(2n, 2). The irreducible representations πc

+ and πc
− of G are con-

tragradient to each other, one is a highest weight module, and the other is
a lowest weight module.

2.2. Schrödinger model on the flat space R2n−1

The representation (πc
+, L2(C+)) of G = SO0(2n, 2) can be realized on

the space of L2-functions with a weighted measure on R2n−1. In this sub-
section, we review this fact.

We have used the variables ζ = (ζ1, . . . , ζ2n) for C+ ⊂ R2n and will use
x = (x1, . . . , x2n−1) for the coordinate of R2n−1. The projection

p : R2n → R2n−1, (ζ1, . . . , ζ2n−1, ζ2n) �→ (ζ1, . . . , ζ2n−1)(2.2)

induces a diffeomorphism from C+ onto R2n−1 \{0}, and the measure dµ on
C+ is given by δ(Q) (see [3]), and therefore is pushed forward to (2|x|)−1dx,
where dx = dx1 . . . dx2n−1. Thus, we have a unitary isomorphism:

√
2p∗ : L2(R2n−1, |x|−1dx) ∼→ L2(C+).(2.3)

Through this isomorphism, the representation of G is realized on L2(R2n−1,

|x|−1dx). This model is given by Kobayashi–Mano [9, Section 3.1] and called
the Schrödinger model. This representation is π+ in Introduction.
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2.3. The center of the Lie algebra of U

Let us denote by u the Lie algebra of U = U(n1)×U(n2)×U(1) (n1, n2 ≥
1, n1 + n2 = n). In this subsection, we get the infinitesimal action of the
center z(u) of u ⊂ so(2n, 2). Here we use the embedding u(k) ⊂ so(2k)
corresponding to zj = ζ2j−1 +

√
−1ζ2j (zj ∈ C, ζ2j−1, ζ2j ∈ R) for j =

1, . . . , k.
Under our inclusion u ⊂ so(2n, 2), we can identify the Lie algebra u with

u(n1) ⊕ u(n2) ⊕ u(1). Then one can see that generators of z(u) ⊂ so(2n, 2)
are the following:

J
(n1)
1 =

N1 + N1

2
+

n1−1∑
j=1

(−E2j,2j+1 + E2j+1,2j),(2.4)

J
(n2)
2 =

n−1∑
j=n1

(−E2j,2j+1 + E2j+1,2j),(2.5)

J3 =
N2n − N2n

2
.(2.6)

Here, Eij (0 ≤ i, j ≤ 2n + 1) is the matrix with entry 1 in the i-th row and
the j-column and 0 else. Further we set

εj :=

{
1 (1 ≤ j ≤ 2n − 1),

−1 (j = 2n)

and

N j := Ej,0 + Ej,2n+1 − εjE0,j + εjE2n+1,j (1 ≤ j ≤ 2n),

Nj := Ej,0 − Ej,2n+1 − εjE0,j − εjE2n+1,j (1 ≤ j ≤ 2n).(2.7)

We note that N j , Nj are elements of Lie algebra so(2n, 2) and J
(n1)
1 , J

(n2)
2 , J3

are the following block diagonal matrices:

J
(n1)
1 = diag(J, . . . , J︸ ︷︷ ︸

n1

, 0, . . . , 0︸ ︷︷ ︸
2n2

, 0, 0),(2.8)

J
(n2)
2 = diag(0, . . . , 0︸ ︷︷ ︸

2n1

, J, . . . , J︸ ︷︷ ︸
n2

, 0, 0),(2.9)

J3 = diag(0, . . . , 0︸ ︷︷ ︸
2n

, J),(2.10)
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where we set

J :=
(

0 −1
1 0

)
.(2.11)

When n1 = 1, we set

J1 := J
(1)
1 and J2 := J

(n−1)
2 .(2.12)

Namely, we have

J1 =
N1 + N1

2
and J2 =

n−1∑
j=1

(−E2j,2j+1 + E2j+1,2j).(2.13)

It is easily seen that

J
(n1)
1 + J

(n2)
2 = J1 + J2(2.14)

for n1 = 1, . . . , n − 1 and hence

dπc
ε(J

(n1)
1 ) + dπc

ε(J
(n2)
2 ) = dπc

ε(J1) + dπc
ε(J2)(2.15)

for n1 = 1, . . . , n − 1 and ε ∈ {+,−} (see Section 2.4).

2.4. Infinitesimal action of the minimal representation
In order to describe D1, D2, D3, we use the following linear transforma-

tions on the space S ′(R2n) of tempered distributions given in [12, Part III,
Lemma 3.2] and [9, Section 2.4]:

d�̂(N j) := 2
√
−1ζj ,(2.16)

d�̂(Nj) :=
√
−1

(
−(n + 1) εj

∂

∂ζj
− Eζεj

∂

∂ζj
+

1
2
ζj�ζ

)
(2.17)

for N j , Nj (1 ≤ j ≤ 2n) ∈ so(2n, 2), where we set

�ζ :=
∂2

∂ζ2
1

+ · · · + ∂2

∂ζ2
2n−1

− ∂2

∂ζ2
2n

and Eζ :=
2n∑

j=1

ζj
∂

∂ζj
.

We denote by L2(C)K the space of K-finite functions in L2(C), where
K is the maximal compact subgroup SO(2n) × SO(2) of G = SO0(2n, 2).
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The map ı : L2(C)K → S ′(R2n) defined by u(ζ) �→ u(ζ)δ(Q) is well-defined
and injective (see [12, Part III, Section 3.4]). Then we have the following
commutative diagram for any X ∈ so(2n, 2):

L2(C)K
ı−→ S ′(R2n)

dπc(X)
� � d�̂(X)

L2(C)K
ı−→ S ′(R2n).

(2.18)

This gives the infinitesimal action dπc of so(2n, 2).

2.5. The descriptions of D1, D2, D3

We give the differential operators D1, D2, D3 in Section 1.1 through the
explicit descriptions of the infinitesimal actions dπ+(J1), dπ+(J2), dπ+(J3)
on L2(R2n−1, |x|−1dx).

Let ∆ be the Laplace operator
∑2n−1

j=1 ∂2/∂x2
j . We recall from [9, Section

3.4] the following fact:

Fact 2.1. dπ+(J3) is described as the following differential operator:

dπ+(J3) =
√
−1|x|

(
1
4
∆ − 1

)
.(2.19)

Obviously, exp tJ2 is an element in I2×U(n−1)×I2 ⊂ R = I1×SO(2n−
1)×I2. Hence, by the explicit action of the representation (πc, L2(C)) in [9,
(2.2.3)], through (2.2) π+(exp tJ2) acts on L2(R2n−1, |x|−1dx) by the pull-
back of the action as the rotation on R2n−1. Thus we get

Proposition 2.2. dπ+(J2) is described as the following differential
operator:

dπ+(J2) =
n−1∑
j=1

(
−x2j

∂

∂x2j+1
+ x2j+1

∂

∂x2j

)
.(2.20)

Let E be the Euler operator
∑2n−1

j=1 xj∂/∂xj . For J1 =
(
N1 + N1

)
/2,

one can describe dπ+(J1) as a differential operator on L2(R2n−1, |x|−1dx)
by equations (2.3.15), (2.3.18) and (2.3.19) in [11].
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Proposition 2.3. dπ+(J1) is described as the following differential
operator:

dπ+(J1) =
√
−1

(
x1 +

x1

4
∆ − 1

2
E

∂

∂x1
− n − 1

2
∂

∂x1

)
.(2.21)

Therefore, by Fact 2.1 and Propositions 2.2 and 2.3, (D1, D2, D3) in
Theorem 1.1 is nothing but (dπ+(J1), dπ+(J2), dπ+(J3))/

√
−1.

Remark 2.4. By (2.14) and (2.15), we have

dπ+(J (n1)
1 ) =

√
−1

(
x1 +

x1

4
∆ − 1

2
E

∂

∂x1
− n − 1

2
∂

∂x1

)
(2.22)

+
n1−1∑
j=1

(
−x2j

∂

∂x2j+1
+ x2j+1

∂

∂x2j

)

and

dπ+(J (n2)
2 ) =

n−1∑
j=n1

(
−x2j

∂

∂x2j+1
+ x2j+1

∂

∂x2j

)
.(2.23)

3. Branching Laws of πc
± and π+

In this section, we consider the K-type formula of L2(C±), the restriction
of L2(C±) to U and the explicit irreducible decomposition of L2(R2n−1,

|x|−1dx)K with respect to the restriction K ↓ R in order to get the joint
eigenvalues of (D1, D2, D3).

3.1. K-type decomposition
In order to recall the K-type formula of L2(C±), we review the basic

facts of spherical harmonics.
For m ∈ N with m ≥ 2, the space of spherical harmonics of degree a ∈ N

is defined to be

Ha(Rm) = {f ∈ C∞(Sm−1) : ∆Sm−1f = −a(a + m − 2)f},(3.1)

where ∆Sm−1 is the Laplace–Beltrami operator on the unit sphere Sm−1

endowed with the standard Riemannian metric. Each Ha(Rm) is irreducible
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as an O(m)-module, and still irreducible as an SO(m)-module (m > 2);
however,

Ha(R2) = Ce
√
−1aθ ⊕ Ce−

√
−1aθ for a ≥ 1(3.2)

as SO(2)-modules. In addition, we have an irreducible decomposition of
O(m − 1)-modules:

Ha(Rm)|O(m−1) 

⊕

0≤b≤a

Hb(Rm−1).(3.3)

This is also an irreducible decomposition of SO(m − 1)-modules (m > 3).
The K-type formula of (πc

±, L2(C±)) is given as follows (see [9, Section
2.3] for example):

L2(C±)K 

⊕

a,b∈N

a+n=b+1

Ha(R2n) � Ce±b
√
−1θ,(3.4)

where each Ha(R2n) � Ce±b
√
−1θ is an outer tensor product representation

of K.
Likewise, the representation (πc, L2(C)) of O(2n, 2) decomposes when

it is restricted to its maximal compact subgroup as follows (see [12, Part I,
Theorem 3.6.1]):

L2(C)O(2n)×O(2) 

⊕

a,b∈N

a+n=b+1

Ha(R2n) � Hb(R2).(3.5)

By (3.2), each Hb(R2) in the right-hand side of (3.4) decomposes into
Ce

√
−1bθ ⊕ Ce−

√
−1bθ. This decomposition corresponds to (2.1):

L2(C) = L2(C+) ⊕ L2(C−),

for which the K-type formula is given by (3.4).

3.2. Branching formulas of the restriction of πc
± to H = I1 ×

SO(2n − 1) × SO(2)
By the K-type formula (3.4), we get the branching formula of the re-

striction of πc
± to H.
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Proposition 3.1. When (πc
±, L2(C±)) is restricted to H, its irre-

ducible decomposition is multiplicity-free. Then we have an isomorphism
as H-modules:

L2(C±)K 

⊕
l,a∈N

l≤a

Hl(R2n−1) � Ce±(a+n−1)
√
−1θ.(3.6)

Proof. Applying (3.3) with respect to the restriction SO(2n) ↓
SO(2n − 1) (n > 1) to the right-hand side of the K-type formula (3.4),
we have

L2(C±)K 

⊕

a,b,l∈N

a+n=b+1
0≤l≤a

Hl(R2n−1) � Ce±b
√
−1θ(3.7)



⊕
l,a∈N

l≤a

Hl(R2n−1) � Ce±(a+n−1)
√
−1θ.(3.8)

Since Hl(Rk) (k ≥ 3) and em
√
−1θ (m ∈ Z) are irreducible and mutually

inequivalent as SO(k)-modules and SO(2)-modules respectively, it is clear
that the decomposition (3.6) is multiplicity-free. �

Remark 3.2. When (πc
±, L2(C±)) is restricted to R = I1 × SO(2n −

1)× I2, its irreducible decomposition is not multiplicity-free and the multi-
plicity of each irreducible summand is infinite. However, the explicit branch-
ing formula of π+|R is given by Kobayashi–Mano [9] (see Fact 3.5).

3.3. Spherical harmonics on Cn

First, we identify Cn with R2n by zj = ζ2j−1 +
√
−1ζ2j (j = 1, . . . , n).

In order to get the branching formulas of the restrictions πc
±|U , we review

the facts about the U(n)-modules Hp,q(Cn) by fixing the inclusion U(n) ⊂
SO(2n) corresponding to the coordinate change zj = ζ2j−1 +

√
−1ζ2j (j =

1, . . . , n).
Considering Cn as a real vector space, we denote by P(Cn) the algebra

over C of polynomials in z1, . . . , zn and z̄1, . . . , z̄n. Then we see that P(Cn) 
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P(R2n). The Laplace operator is written as

∆ζ =
2n∑

j=1

∂2

∂ζ2
j

= 4
n∑

j=1

∂2

∂zj∂z̄j
.(3.9)

Thus we set

H(Cn) := {p ∈ P(Cn) : ∆ζp = 0},(3.10)

and each element in H(Cn) is called a harmonic polynomial on Cn.
For l, l′ ∈ N, let P l,l′(Cn) be the subspace of P(Cn) consisting of ho-

mogeneous polynomials p(z) ≡ p(z, z̄) of degree l in zj and of degree l′ in
z̄j :

p(cz) = clc̄l′p(z), for c ∈ C \ {0}.(3.11)

Then we set

H l,l′(Cn) := H(Cn) ∩ P l,l′(Cn).(3.12)

Polynomials in P l,l′(Cn) are uniquely determined by their values on the unit
sphere

S2n−1 
 {z ∈ Cn : |z1|2 + · · · + |zn|2 = 1}.(3.13)

Hence a space Hl,l′(Cn) is defined by restricting functions from H l,l′(Cn)
onto S2n−1. In particular, Hl,l′(Cn) is regarded as a subspace of the space
of spherical harmonics Hl+l′(R2n).

Each space Hl,l′(Cn) is invariant under the action of U(n) on Hl+l′(R2n),
because U(n) ⊂ SO(2n) commutes with J̃ = diag(J, . . . , J) ∈ GL(2n, R)
(J is given in (2.11)). Hence each Hl,l′(Cn) defines a representation of
U(n). We denote by Hl,l′(Cn) this representation. It is known that the
Hl,l′(Cn) are irreducible and mutually inequivalent U(n) modules (see [15,
Section 11.2.2] for example). Further, the group C×∩U(n) of scalar unitary
matrices acts on Hl,l′(Cn) as

c �→ c−l+l′(3.14)
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for any c = e
√
−1θIn ∈ C× ∩ U(n). We note that Hl,l′(Cn) is nonzero for

any l, l′ ≥ 0 if n ≥ 2 and only

Hl,0(C) = Czl and H0,l′(C) = Cz̄l′(3.15)

are nonzero when n = 1, that is,

Hl,l′(C) = {0} for l, l′ ≥ 1.(3.16)

3.4. Multiplicity-free decompositions of πc
± under the restriction

to U

For U = U(n1)×U(n2)×U(1) ⊂ O(2n, 2) (n1, n2 ≥ 1, n1 + n2 = n), by
[13, Theorem A’] one can get the following proposition:

Proposition 3.3. The restriction of (πc
±, L2(C±)) to U is discretely

decomposable and multiplicity-free. Then we have an isomorphism as U -
modules:

L2(C±)K 

⊕

M∈S1

Hm1,m′
1(Cn1) � Hm2,m′

2(Cn2) � Ce±m
√
−1θ,(3.17)

where we set

S1 :=


M ∈ N5 :

M = (m1, m
′
1, m2, m

′
2, m)

f(m1, m
′
1, m2, m

′
2) + m − n + 1 ≡ 0 mod 2

g(m1, m
′
1, m2, m

′
2) ≤ m − n + 1


(3.18)

and

f(m1, m
′
1, m2, m

′
2) := m1 − m′

1 + m2 − m′
2,(3.19)

g(m1, m
′
1, m2, m

′
2) := m1 + m′

1 + m2 + m′
2.(3.20)

In particular, Proposition 3.3 when n1 = 1 and n1 = n2 = 1 is expressed
as the following corollary:

Corollary 3.4. For U = U(1) × U(n − 1) × U(1) when n1 = 1, the
branching formula of the restriction of (πc

±, L2(C±)) to U is given as follows:

L2(C±)K 

⊕

M∈S2

Cem1
√
−1ψ � Hm2,m′

2(Cn−1) � Ce±m
√
−1θ,(3.21)
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where we set

S2 :=


M ∈ Z × N3 :

M = (m1, m2, m
′
2, m)

m1 + m2 − m′
2 + m − n + 1 ≡ 0 mod 2

|m1| + m2 + m′
2 ≤ m − n + 1


 .(3.22)

In particular, for U = U(1)×U(1)×U(1) when n = 2, the branching formula
of the restriction of (πc

±, L2(C±)) to U is given as follows:

L2(C±)K 

⊕

M∈S3

Cem1
√
−1ψ � Cem2

√
−1ϕ � Ce±m

√
−1θ,(3.23)

where we set

S3 :=
{

M = (m1, m2, m) ∈ Z2 × N :
m1 + m2 + m − 1 ≡ 0 mod 2

|m1| + |m2| ≤ m − 1

}
.

(3.24)

3.5. Branching formula of the restriction of L2(R2n−1, |x|−1dx)K

to R and the action of dπ+(J1)
We shall recall the explicit irreducible decomposition of L2(R2n−1,

|x|−1dx)K with respect to the restriction K ↓ R in order to get the ex-
plicit action of dπ+(J1).

We use the polar coordinate

R+ × (0, π) × S2n−3 � (r, θ, η) �→
(

r cos θ

r sin θ η

)
∈ R × (R2n−2\{0}).(3.25)

Obviously, R× (R2n−2\{0}) is a open set of R2n−1. We write η of the polar
coordinates (3.25) as:

η =




cos θ1

sin θ1 cos θ2

· · ·
sin θ1 sin θ2 . . . sin θ2n−4 cos θ2n−3

sin θ1 sin θ2 . . . sin θ2n−4 sin θ2n−3


 ∈ S2n−3.(3.26)

We recall from Section 2.2 that L2(C+) 
 L2(R2n−1, |x|−1dx). Here, we
use the following explicit decomposition of the K-type formula (3.4) when
it is restricted further to the subgroup R = I1 × SO(2n − 1) × I2.
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Fact 3.5 ([9, Section 3.2]). Let Lα
n(x) be a Laguerre polynomial of

degree n. Then we have the explicit irreducible decomposition with respect
to the restriction K ↓ R:

L2(R2n−1, |x|−1dx)K =
⊕
a,l∈N

l≤a

Wa,l(3.27)

where we set

Wa,l := fa,l · Hl(R2n−1),(3.28)

and fa,l are defined by fa,l(r) := L2n−3+2l
a−l (4r) rle−2r on R+.

By Fact 7.1, Hl(R2n−1) is spanned over C by the following basis:

(3.29)
{
Cν1,k

l (cos θ)Cν2,k1

k (cos θ1) · · ·
· · ·Cν2n−3,k2n−4

k2n−5
(cos θ2n−4)e−

√
−1k2n−4θ2n−3 :

k, k1, . . . , k2n−3 ∈ Z with l ≥ k ≥ k1 ≥ · · · ≥ k2n−5 ≥ |k2n−4|
}
,

where νj := (2n− 2− j)/2 and Cν,m
l (x) are associated Gegenbauer polyno-

mials (see Section 7.1). Then, we have

Hl(R2n−1) =
⊕

0≤k≤l

Cν1,k
l (cos θ)Hk(R2n−2).(3.30)

As is well-known, (3.30) corresponds to the irreducible decomposition under
the restriction SO(2n − 1) ↓ SO(2n − 2). Hence we have

Wa,l =
⊕

0≤k≤l

fa,l(r) Cν1,k
l (cos θ)Hk(R2n−2).(3.31)

For any a, l, k ∈ N with a ≥ l ≥ k, we define an element uk
a,l by

uk
a,l := fa,l(r) Cν1,k

l (cos θ).(3.32)

Here, we set uk
a,l = 0 unless a ≥ l ≥ k. We note that each u ∈ Wa,l can

be expressed as a linear combination by uk
a,l ϕk, where ϕk ∈ Hk(R2n−2).

By (2.21), one can get the action of dπ+(J1).
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Proposition 3.6. For any a, l, k ∈ N with a ≥ l ≥ k, we have

dπ+(J1)
(
uk

a,l ϕk

)
(3.33)

= − 4(l + 1 − k)
2n − 3 + 2l

√
−1uk

a,l+1 ϕk

− (2n − 4 + l + k)(2n − 3 + a + l)(a − l + 1)
4(2n − 3 + 2l)

√
−1uk

a,l−1 ϕk.

We shall show this proposition in Appendix.

4. Proof of Theorem 1.1

In this section, we shall show the more general theorem than Theo-
rem 1.1. Then we have Theorem 1.1 by this theorem, (2.3) and the explicit
descriptions of dπ+(J1), dπ+(J2) and dπ+(J3) as the differential operators
on L2(R2n−1, |x|−1dx) (see Section 2.5).

Theorem 4.1. Suppose that ε ∈ {+,−}, and n1, n2 ∈ N with n1, n2 ≥
1 and n1 + n2 = n.

(1) The infinitesimal actions dπc
ε(J

(n1)
1 ), dπc

ε(J
(n2)
2 ) and dπc

ε(J3) extend
to self-adjoint operators on L2(Cε).

(2) dπc
ε(J

(n1)
1 ), dπc

ε(J
(n2)
2 ) and dπc

ε(J3) mutually commute on L2(Cε).
(3) dπc

ε(J
(n1)
1 ), dπc

ε(J
(n2)
2 ) and dπc

ε(J3) have only discrete spectra on
L2(Cε) respectively.

(4) The set of the joint eigenvalues of (dπc
ε(J

(n1)
1 ), dπc

ε(J
(n2)
2 ),

dπc
ε(J3))/

√
−1 is given as follows:

σ :=
{

(x, y, z) ∈ Z3 :
x + y + z − n + 1 ≡ 0 mod 2

|x| + |y| ≤ −εz − n + 1

}
.(4.1)

(5) dπc
ε(J

(n1)
1 ), dπc

ε(J
(n2)
2 ) and dπc

ε(J3) are algebraically independent.

We note that the properties of dπc
+(J3/

√
−1) are given in [9, Sections

3.4] and dπc
−(J3/

√
−1) = −dπc

+(J3/
√
−1).

Proof. (1) Since (πc
ε, L

2(Cε)) is a unitary representation of G =
SO0(2n, 2), the infinitesimal action

√
−1dπc

ε(X) for any X ∈ so(2n, 2) ex-
tends to a self-adjoint operator on L2(Cε). Hence, (1) holds.
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(2) This assertion follows from the fact that J
(n1)
1 , J

(n2)
2 and J3 are the

generators of the center z(u).
(3) and (4) Hereafter, we identify each U -module

Hm1,m′
1(Cn1) � Hm2,m′

2(Cn2) � Ceεm
√
−1θ(4.2)

appearing in the summation of the right-hand side of (3.17) with the cor-
responding subspace of L2(Cε)K .

By the definitions, we see that exp tJ
(n1)
1 ∈ U(n1), exp tJ

(n2)
2 ∈ U(n2)

and exp tJ3 ∈ U(1). Hence, by (3.14) and (3.17) we see that each infinites-
imal action dπc

ε(J
(n1)
1 ), dπc

ε(J
(n2)
2 ) and dπc

ε(J3) acts on the space (4.2) as a
scalar multiplication as follows:

(4.3) (dπc
ε(J

(n1)
1 ), dπc

ε(J
(n2)
2 ), dπc

ε(J3))

= (−m1 + m′
1,−m2 + m′

2,−εm)
√
−1.

Thus, (3) follows from (4.3).
Further, by the commutativity (2), the infinitesimal actions (4.3) and

S1 (see (3.18)), we see that the map S1 → σ defined by

(m1, m
′
1, m2, m

′
2, m) �→ (−m1 + m′

1,−m2 + m′
2,−εm)

is surjective. Hence, we have shown the assertion (4).
When U = U(1)×U(n− 1)×U(1) and U(1)×U(1)×U(1), we also get

the same σ.
(5) Suppose that there exists a non-zero polynomial P ∈ C[X1, X2, X3]

such that

P (dπc
ε(J

(n1)
1 ), dπc

ε(J
(n2)
2 ), dπc

ε(J3)) ≡ 0(4.4)

on L2(Cε)K . For any (x, y, z) ∈ σ, there exists a non-zero joint eigenfunction
h ∈ L2(Cε)K with respect to an eigenvalue (x, y, z)

√
−1 of (dπc

ε(J
(n1)
1 ),

dπc
ε(J

(n2)
2 ), dπc

ε(J3)). Then we have

P (dπc
ε(J

(n1)
1 ), dπc

ε(J
(n2)
2 ), dπc

ε(J3))h = P (x
√
−1, y

√
−1, z

√
−1)h(4.5)

and by assumption

P (x
√
−1, y

√
−1, z

√
−1)h = 0.(4.6)
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Hence, we see that P (x
√
−1, y

√
−1, z

√
−1) = 0 for any (x, y, z) ∈ σ.

We fix x0, y0 ∈ Z. Let P̃ be a polynomial of one variable defined by
P̃ (Z) := P (x0

√
−1, y0

√
−1, Z) and VP̃ the set of the roots of P̃ . It is well

known that �VP̃ ≤ deg P̃ , where �VP̃ is the cardinality of VP̃ and deg P̃ is
the degree of P̃ . On the other hand, let σx0,y0 be the subset of σ for (x0, y0)
defined by

σx0,y0 =
{

(x0, y0, z) ∈ Z3 :
x0 + y0 + z − n + 1 ≡ 0 mod 2

|x0| + |y0| ≤ −εz − n + 1

}
.(4.7)

Then �σx0,y0 is infinite and P (x0

√
−1, y0

√
−1, z

√
−1) = 0 for any

(x0, y0, z) ∈ σx0,y0 because σx0,y0 ⊂ σ. However, those contradict the fact
that �VP̃ ≤ deg P̃ . Hence, we see that P̃ = 0. Moreover, we get the equa-
tions Pj |√−1Z2 = 0 for 0 ≤ j ≤ deg P̃ , where Pj are the polynomials of two
variables defined by

P (X1, X2, X3) =
∑

0≤j≤deg P̃

Pj(X1, X2)X
j
3 .(4.8)

Since Pj |√−1Z2 = 0, one can see that Pj = 0. Thus, we have P = 0.
Hence, for any non-zero polynomial P ∈ C[X1, X2, X3], the differen-

tial operator P (dπc
ε(J

(n1)
1 ), dπc

ε(J
(n2)
2 ), dπc

ε(J3)) must be non-zero. Namely,
dπc

ε(J
(n1)
1 ), dπc

ε(J
(n2)
2 ), dπc

ε(J3) are algebraically independent. �

Remark 4.2. Through (2.3), Theorem 1.1 is given by the results of
Fact 2.1, Propositions 2.2, 2.3 and Theorem 4.1 if ε = +.

5. The Commutative Algebras of Invariant Differential Opera-
tors

In this section, we prove Theorem 1.6 and Corollary 1.7. However,
Proposition 5.4 used in the proof is shown in next section.

5.1. Proofs of Theorem 1.6 and Corollary 1.7
In order to show Theorem 1.6, we consider the algebra D(R2n−1 \ {0})R

(see the definition in Section 1.2), where R = I1 × SO(2n − 1) × I2. Then
we have the inclusive relation:

D(R2n−1 \ {0})R ⊃ D(R2n−1 \ {0})H ,(5.1)
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where H = I1 ×SO(2n− 1)×SO(2). Since D3 is given by the infinitesimal
action of I2n×U(1) 
 I2n×SO(2) (see Section 2.5), D3 commutes with the
action of H. Hence, we get

D(R2n−1 \ {0})H =
{
D ∈ D(R2n−1 \ {0})R : [D, D3] = 0

}
.(5.2)

Since D4 is the Casimir operator with respect to R (see Section 1.2), it
also commutes with the action of H. In particular, D4 commutes with D3.
The following proposition leads to Theorem 1.6.

Proposition 5.1. If a differential operator D ∈ D(R2n−1 \ {0})R sat-
isfies [D, D3] = 0, then D belongs to C[D3, D4].

We show this proposition in the next subsection after proving Theo-
rem 1.6.

Proof of Theorem 1.6. By the equation (5.2) and Proposition 5.1,
we have

D(R2n−1 \ {0})H ⊂ C[D3, D4].(5.3)

The reverse inclusive relation of the above clearly holds. Therefore, we have
shown Theorem 1.6. �

Next, we shall show Corollary 1.7.

Proof of Corollary 1.7. Let D be an element in D(R2n−1 \{0})K .
By Theorem 1.6 (or Proposition 5.1), there exists a polynomial Q ∈ C[x, y]
such that D = Q(D3, D4). On the other hand, by Proposition 3.6 we have

D1(va,l) = (
√
−1)−1dπ+(J1)(va,l) = c1(l)va,l+1 + c2(a, l)va,l−1(5.4)

for a ≥ l ≥ 0, where we set

va,l := u0
a,lϕ0,(5.5)

c1(l) := − 4(l + 1)
2n − 3 + 2l

,(5.6)

c2(a, l) := −(2n − 4 + l)(2n − 3 + a + l)(a − l + 1)
4(2n − 3 + 2l)

.(5.7)
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The restrictions of the differential operators D3 and D4 to Wa,l are scalar
operators since D3 and D4 commute with the action of R (see Fact 3.5). In
fact, they act by χ3(a) := −a − n + 1 and χ4(l) := −l(l + 2ν) respectively,
where we set 2ν = 2ν1 = 2n − 3 (see Section 7.3).

Since [D, D1] = 0, for a ≥ l ≥ 0, we have

0 = [D, D1](va,l)(5.8)

= DD1(va,l) − D1D(va,l)

= c1(l) (Q(χ3(a), χ4(l + 1)) − Q(χ3(a), χ4(l))) va,l+1

+ c2(a, l) (Q(χ3(a), χ4(l − 1)) − Q(χ3(a), χ4(l))) va,l−1.

Here, (5.8) if a = l = 1 equals

0 = c2(1, 1) (Q(χ3(1), χ4(0)) − Q(χ3(1), χ4(1))) v1,0(5.9)

because va,l+1 = 0. Since c2(1, 1) �= 0 and v1,0 �= 0, we have
Q(χ3(1), χ4(0)) = Q(χ3(1), χ4(1)). If a ≥ 2 and 1 ≤ l ≤ a − 1, then
one can see that

Q(χ3(a), χ4(l + 1)) = Q(χ3(a), χ4(l)) = Q(χ3(a), χ4(l − 1))(5.10)

because {va,l+1, va,l−1} is linearly independent and c1(l) �= 0, c2(a, l) �= 0.
Hence, we obtain

Q(χ3(a), χ4(l)) = Q(χ3(a), χ4(0)) = Q(χ3(a), 0)(5.11)

for a ≥ l ≥ 0. Here we note that (5.11) if a = 0 clearly holds.
We set F (x, y) := Q(x, y)−Q(x, 0) and Γ := {(−a−n+1,−l(l +2ν)) ∈

Z2 : a, l ∈ N, a ≥ l}. Then (5.11) means that F |Γ = 0.
We fix an l ≥ 0. The polynomial F (x,−l(l + 2ν)) of one variable x

vanishes on the countable set {m ∈ Z : m ≤ −n− l+1}. Hence, F (x,−l(l+
2ν)) is zero.

We represent F (x, y) as

F (x, y) =
∑

0≤j≤k

Fj(y)xj(5.12)

by polynomials Fj(y) of one variable y. Then each Fj(y) vanishes on the
countable set {−l(l + 2ν) : l ∈ N} and Fj(y) is zero.

Thus F (x, y) is zero. Therefore we see that

D = Q(D3, D4) = Q(D3, 0),(5.13)

and have proved Corollary 1.7. �
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5.2. Proof of Proposition 5.1
We identify R2n−1 \ {0} with R+ × S2n−2 by polar coordinates:

R+ × S2n−2 � (r, ω) �→ rω ∈ R2n−1 \ {0}.(5.14)

We remark that S2n−2 = SO(2n − 1)/SO(2n − 2) is a rank 1 Riemannian
symmetric space and hence the invariant differential operators on it are
generated by the Laplacian. Since π+(R) acts on L2(R2n−1, |x|−1dx) as the
action induced by the natural action of SO(2n − 1) on R2n−1, we have the
following lemma.

Lemma 5.2. Under the polar coordinate, we have

D(R2n−1 \ {0})R 
 D(R+) ⊗ C[∆S ],(5.15)

where D(R+) is the algebra of the differential operators on R+ and ∆S is
the abbreviated notation instead of ∆S2n−2.

Thus we can regard each element in D(R+) ⊗ C[∆S ] as a differential
operator in D(R2n−1 \ {0})R under the identification (5.15). In particular,
1 ⊗ ∆S is identified with D4. For the sake of simplicity, we will omit ⊗ for
each element in D(R+) ⊗ C[∆S ].

By the polar coordinates (5.14), the Euler operator E is described as
r∂/∂r. We set ϑ := r d/dr in D(R+). Then ϑ is regarded as E under the
identification (5.15). Simple computation shows that

(
d

dr

)j

= r−jϑ(ϑ − 1) · · · (ϑ − j + 1), for j ∈ N \ {0}.(5.16)

Hence we have the following lemma:

Lemma 5.3. D(R+) is generated by ϑ and 1 over C∞(R+). Namely,

D(R+) =




m∑
j=0

fjϑ
j : m ∈ N, fj ∈ C∞(R+)


 .(5.17)
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For any a, b ∈ R, we set A := r−1ϑ2 + ar−1ϑ + br and B := r−1. When
a = 2n − 3 and b = −4, we have

D3 = A + B∆S(5.18)

= r−1ϑ2 + ar−1ϑ + br + r−1∆S .

Let ad A be the linear mapping adA : D(R+) → D(R+) defined by
ad A(D) := [A, D] = AD − DA. It is clear that Ker adA ⊃ C[A].

Proposition 5.4. If b �= 0, then we have Ker adA = C[A].

Proposition 5.4 is shown in Section 6.

Remark 5.5. Suppose that b = 0 and a = ±1/2. Simple computation
shows that Ker adA = C[D±] � C[A], where

D± =

{
r−

1
2 ϑ + 1

2r−
1
2

(
a = 1

2

)
r−

1
2 ϑ

(
a = −1

2

)
.

(5.19)

Further, we see that (D±)2 = A.

Let C[∆S ]m be the set of all differential operators Q(∆S), where Q(x)
is a polynomial and its degree is less than or equal to m for m ∈ N. Let
O(P ) be the order of the differential operator P . The following lemma
immediately shows Proposition 5.1.

Lemma 5.6. If P is an element of D(R+)⊗C[∆S ] satisfying [D3, P ] =
0, then there exists a polynomial Q such that P = Q(D3, ∆S).

For the proof of Lemma 5.6, we show an inequality (5.24) for any element
of D(R2n−1 \ {0})R. By Lemma 5.2, each P ∈ D(R2n−1 \ {0})R is described
as

P =
m∑

j=0

Pj(∆S)j(5.20)

for some m ∈ N and some Pj ∈ D(R+). If [D3, P ] = 0, then we have

[A, P0] = 0,(5.21)

[A, Pj ] = [Pj−1, B], (1 ≤ j ≤ m)(5.22)

0 = [Pm, B].(5.23)
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Since B(= r−1) is not a constant function, we can easily see by induction
that O(Pj) ≤ 2(m − j) for 0 ≤ j ≤ m. In particular, we have

O(P0) ≤ 2m.(5.24)

Proof of Lemma 5.6. We write deg(Q) for the degree of a one-
variable polynomial Q. We prove this lemma by induction on m. When
m = 0, we take a differential operator P ∈ D(R+) satisfying [D3, P ] = 0.
By (5.24), we have O(P ) = 0. Moreover, by [A, P ] = 0 and Proposition 5.4,
there exists a polynomial Q̂ such that P = Q̂(A). Thus P is a constant.
Hence we have shown the lemma when m = 0.

Assume that the lemma holds for l ∈ N with 0 ≤ l < m. Let P be an
element in D(R+)⊗ C[∆S ]m satisfying [D3, P ] = 0. Then P is described as
(5.20) and (5.21) holds. Hence, by Proposition 5.4 there exists a polynomial
Q such that P0 = Q(A). By (5.24), we have O(P0) ≤ 2m. Further, we see
that deg(Q) ≤ m because O(A) = 2 and O(P0) = O(Q(A)) = 2 deg(Q).
Next we consider the differential operator Q(D3). Since D3 = A + B∆S ,
there exist differential operators νj (1 ≤ j ≤ q) on R+ such that

Q(D3) = Q(A) + ν1∆S + · · · + νq∆
q
S ,

where q = deg(Q). Now we set

P̃ :=
q∑

j=1

(Pj − νj)(∆S)j−1 +
m∑

j=q+1

Pj(∆S)j−1.

Then we can easily see that P − Q(D3) = ∆SP̃ and [D3, P̃ ] = 0. By the
assumption, there exists a polynomial Q̃ such that P̃ = Q̃(D3, ∆S). Hence
we have P = Q(D3) + ∆SQ̃(D3, ∆S) and proved the lemma. �

Proposition 5.1 immediately follows from Lemma 5.6.

6. Proof of Proposition 5.4

For any a, b ∈ R with b �= 0, we consider A = r−1ϑ2 + ar−1ϑ + br. Each
D ∈ ker adA such that O(D) = m is described as

D =
∑

0≤j≤m

fjϑ
j(6.1)
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by fj ∈ C∞(R+). Since the coefficient of each ϑj in [D, A] = 0 must be
zero, one can get the following equations:

Lemma 6.1. We have

(2ϑ + m)(fm) = 0,(6.2)

(2ϑ + ν − 1)(fν−1)(6.3)

= −
{

ϑ2 + aϑ + a

(
ν

ν − 1

)
−

(
ν

ν − 2

)}
(fν)

−
∑

ν+1≤j≤m

{
a

(
j

ν − 1

)
−

(
j

ν − 2

)}
(−1)j−νfj

+ br2
∑

ν+1≤j≤m

(
j

ν

)
fj ,

where ν ∈ N with 1 ≤ ν ≤ m, and

ϑ(ϑ + a)(f0) = br2
∑

1≤j≤m

fj .(6.4)

Here,
(

p

q

)
is the binomial coefficient for p, q ∈ N with p ≥ q.

Then the following proposition holds.

Proposition 6.2. Let D be an element in Ker adA. Then O(D) is
even.

Namely, there is no operator D ∈ D(R+) such that [D, A] = 0 and O(D)
is odd. We shall show Proposition 6.2 after the proof of Proposition 5.4.

Proof of Proposition 5.4. It is sufficient to prove that Ker adA ⊂
C[A]. By Proposition 6.2, the order O(D) = m of each D ∈ Ker adA is even.
D is described as (6.1). By (6.2), there is cm ∈ C such that fm = cmr−m/2.

We use induction on m. If m = 0, then (6.2) leads to the equation D = c0

for some c0 ∈ C. Thus, D ∈ C[A]. We assume that for any Q ∈ Ker adA

with O(Q) < m, Q belongs to C[A]. Here, we consider D−cmAm/2. Then we
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see that O(D−cmAm/2) < m and [A, D−cmAm/2] = 0. By the assumption,
D − cmAm/2 belongs to C[A]. Hence we have shown the proposition. �

It is difficult to get the explicit solutions fj of the system of the linear
differential equations (6.2), (6.3) and (6.4). However, we can prove Propo-
sition 6.2 by using differential operators which annihilate fj . We use the
following notation.

Definition 6.3. For α, β ∈ Z with α ≤ β, we define the following
differential operators in D(R+):

[α ∼ β] := (2ϑ + α)(2ϑ + α + 1) · · · (2ϑ + β),(6.5)

[α] := [α ∼ α] = (2ϑ + α),(6.6)

where we set [α ∼ β] := id when α > β.

Simple computation shows the following equation:

Lemma 6.4. For λ ∈ Z, we have

[λ] ◦ r2 = r2 ◦ [λ + 4].(6.7)

By the assumption of Proposition 6.2, in this subsection we put m =
2l + 1 for some l ∈ N. For any µ ∈ N with 0 ≤ µ ≤ l, we set

(6.8) T2µ+1 := ∏
0≤k≤[ l−µ

2 ]
[4µ + 4k − 2l + 1][4µ + 4k − 2l + 3 ∼ 2l − 4k + 1],

T2µ :=
∏

0≤k≤[ l−µ
2 ]

[4µ + 4k − 2l ∼ 2l − 4k + 1],(6.9)

where [(l − µ)/2] is the greatest integer not greater than (l − µ)/2.
Then, by the definitions we have

T2l = T2l+1 ◦ [2l](6.10)
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and

T2µ = T2µ+1 ◦
∏

0≤k≤[ l−µ
2 ]

[4µ + 4k − 2l][4µ + 4k − 2l + 2],(6.11)

T2µ+1 = T2µ+2 ◦(6.12) 


∏
0≤k≤[ l−µ

2 ]
[4µ + 4k − 2l + 1][4µ + 4k − 2l + 3], (l − µ : odd)

[2µ + 1]
∏

0≤k≤[ l−µ
2 ]−1

[4µ + 4k − 2l + 1][4µ + 4k − 2l + 3],

(l − µ : even)

for any µ with 0 ≤ µ ≤ l − 1.
The right-hand sides of (6.10), (6.11) and (6.12) are the products of

pairwise commuting differential operators. By (6.10), (6.11) and (6.12), we
get the following lemma:

Lemma 6.5. For µ, ν ∈ N with 0 ≤ ν ≤ µ ≤ 2l + 1, if Tµ(f) = 0 for
some f ∈ C∞(R+), then Tν(f) = 0.

Let fj be the solutions of the system of the differential equations in
Lemma 6.1. By Lemma 6.5 we have the following lemma:

Lemma 6.6. For any µ ∈ N with 0 ≤ µ ≤ 2l + 1, we have

Tµ(fµ) = 0.(6.13)

Proof. We show this lemma by induction on µ decreasing. When
µ = 2l + 1, we see that

T2l+1(f2l+1) = [2l + 1](f2l+1) = 0(6.14)

by (6.2). Further, by (6.2) and (6.3) we have

T2l(f2l) = [2l + 1][2l](f2l)(6.15)

= −
{

ϑ2 + aϑ + a

(
2l + 1

2l

)
−

(
2l + 1
2l − 1

)}
[2l + 1](f2l+1)

= 0.
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Assume that Tν(fν) = 0 for any ν ∈ N with 2µ ≤ ν ≤ 2l + 1. We shall
show that T2µ−1(f2µ−1) = T2µ−2(f2µ−2) = 0. By (6.12), we have

T2µ−1 = T2µ ◦(6.16) 


∏
0≤k≤[ l−µ+1

2 ]
[4µ + 4k − 2l − 3][4µ + 4k − 2l − 1], (l − µ : even)

[2µ − 1]
∏

0≤k≤[ l−µ+1
2 ]−1

[4µ + 4k − 2l − 3][4µ + 4k − 2l − 1]

(l − µ : odd)

= U2µ−1 ◦ T2µ ◦ [2µ − 1],

where we set

U2µ−1 :=(6.17) 


[2µ − 3]
∏

0≤k≤[ l−µ
2 ]−1

[4µ + 4k − 2l − 3][4µ + 4k − 2l − 1],

(l − µ : even)∏
0≤k≤[ l−µ

2 ]
[4µ + 4k − 2l − 3][4µ + 4k − 2l − 1]. (l − µ : odd)

Hence, by the assumption Tν(fν) = 0 (ν ≥ 2µ) and Lemma 6.5, T2µ in the
right-hand side of (6.16) annihilates the above terms in the right-hand side
of the following equation:

[2µ − 1](f2µ−1) = C2µ(f2µ) + C2µ+1f2µ+1 + · · · + C2l+1f2l+1(6.18)

+ r2(C ′
2µ+1f2µ+1 + · · · + C ′

2l+1f2l+1),

where each Cj (resp. C ′
j) is a differential operator (resp. a constant) given

by (6.3) and commutes with all [α].
Next, by the definition we can get

U2µ−1 ◦ T2µ = V2µ−1 ◦ (r2T2µ+1r
−2),(6.19)
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where V2µ−1 is the following differential operator:


∏
0≤k≤[ l−µ

2 ]
[2l − 4k − 2 ∼ 2l − 4k + 1], (l − µ : odd)

[2µ − 2][2µ ∼ 2µ + 1]

×
∏

0≤k≤[ l−µ
2 ]−1

[2l − 4k − 2 ∼ 2l − 4k + 1]. (l − µ : even)

(6.20)

Then we have

T2µ−1 = V2µ−1 ◦ (r2T2µ+1r
−2) ◦ [2µ − 1].(6.21)

Hence, by (6.16), (6.18) and Lemma 6.4 we have

T2µ−1(f2µ−1) = V2µ−1 ◦ r2T2µ+1(C ′
2µ+1f2µ+1 + · · · + C ′

2l+1f2l+1).(6.22)

By the assumption and Lemma 6.5, it holds that T2µ+1(fν) = 0 (ν ≥ 2µ+1).
Hence we see that T2µ−1(f2µ−1) = 0.

Next, by (6.11) we can get

T2µ−2 = U ′
2µ−2 ◦ T2µ−1 ◦ [2µ − 2],(6.23)

where we set

U ′
2µ−2 :=(6.24) 



∏
0≤k≤[ l−µ

2 ]
[4µ + 4k − 2l − 4]

×
∏

0≤k≤[ l−µ+1
2 ]

[4µ + 4k − 2l − 2], (l − µ : odd)

∏
0≤k≤[ l−µ+1

2 ]
[4µ + 4k − 2l − 4]

×
∏

0≤k≤[ l−µ
2 ]−1

[4µ + 4k − 2l − 2]. (l − µ : even)

Hence, by the assumption Tν(fν) = 0 (ν ≥ 2µ), Lemma 6.5 and
T2µ−1(f2µ−1) = 0 shown above, T2µ−1 in the right-hand side of (6.23) anni-
hilates the above terms in the right-hand side of the following equation:

[2µ − 2](f2µ−2) = C2µ−1(f2µ−1) + C2µf2µ + · · · + C2l+1f2l+1(6.25)

+ r2(C ′
2µf2µ + · · · + C ′

2l+1f2l+1),
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where each Cj (resp. C ′
j) is a differential operator (resp. a constant) given

by (6.3) and commutes with all [α].
Next, by the definition we can get

U ′
2µ−2 ◦ T2µ−1 = V ′

2µ−2 ◦ (r2T2µr−2),(6.26)

where we set

V ′
2µ−2 :=(6.27) 



[2µ − 1]
∏

0≤k≤[ l−µ
2 ]

[2l − 4k − 2 ∼ 2l − 4k + 1], (l − µ : odd)

[2µ − 1 ∼ 2µ + 1]

×
∏

0≤k≤[ l−µ
2 ]−1

[2l − 4k − 2 ∼ 2l − 4k + 1]. (l − µ : even)

Then we have

T2µ−2 = V ′
2µ−2 ◦ (r2T2µr−2) ◦ [2µ − 2].(6.28)

Hence, by (6.25), (6.28) and Lemma 6.4 we have

T2µ−2(f2µ−2) = r2T2µ ◦ C ′(C ′
2µf2µ + · · · + C ′

2l+1f2l+1),(6.29)

where C ′ is a differential operator given by the below term in the right-hand
side of (6.28) and commutes with T2µ. By the assumption, Lemma 6.5 and
T2µ−1(f2µ−1) = 0, it holds that T2µ(fν) = 0 (ν ≥ 2µ). Hence we see that
T2µ−2(f2µ−2) = 0. Therefore we have shown the lemma. �

Let us prove Proposition 6.2.

Proof of Proposition 6.2. We consider the differential operator∏
1≤k≤l

[2k − 2l − 3] ◦ T0,(6.30)

where
∏

1≤k≤l[2k − 2l − 3] := id when l = 0. Applying (6.30) to the both
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sides of (6.4), by Lemma 6.6 when µ = 0 we have

0 =
∏

1≤k≤l

[2k − 2l − 3] ◦ T0 ◦ ϑ(ϑ + a)(f0)(6.31)

=
∏

1≤k≤l

[2k − 2l − 3] ◦ T0


br2

∑
1≤j≤m

fj




= br2
∏

1≤k≤l

[2k − 2l + 1] ◦ W2


 ∑

1≤j≤m

fj


 ,

where we set

W2 :=
∏

0≤k≤[ l
2 ]

[4k − 2l + 4 ∼ 2l − 4k + 5](6.32)

and the last equation is given by Lemma 6.4. Since there exists a differential
operator S2 such that

S2 ◦ T2 = W2,(6.33)

by Lemmas 6.5 and 6.6 the equation (6.31) equals

0 = br2
∏

1≤k≤l

[2k − 2l + 1] ◦ W2(f1)(6.34)

= br2
∏

1≤k≤l−1

[2k − 2l + 1] ◦ W2 ◦ [1](f1).

Applying (6.3) when ν = 2, Lemmas 6.5 and 6.6, and the condition (6.33)
to (6.34), we get

0 = br2
∏

1≤k≤l−1

[2k − 2l + 1] ◦ W2


br2

∑
3≤j≤2l+1

(
j

2

)
fj




and by Lemma 6.4

0 = b2r4
∏

1≤k≤l−1

[2k − 2l + 5] ◦ W4


 ∑

3≤j≤2l+1

(
j

2

)
fj


 ,(6.35)
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where we set

W4 :=
∏

0≤k≤[ l
2 ]

[4k − 2l + 8 ∼ 2l − 4k + 9].(6.36)

Since there exists a differential operator S4 such that

S4 ◦ T4 = W4,(6.37)

by Lemmas 6.5 and 6.6 the equation (6.35) equals

0 =
(

3
2

)
b2r4

∏
1≤k≤l−1

[2k − 2l + 5] ◦ W4 (f3)(6.38)

=
(

3
2

)
b2r4

∏
1≤k≤l−2

[2k − 2l + 5] ◦ W4 ◦ [3] (f3) .

By iteration we get

0 =
(

3
2

)
· · ·

(
2l + 1

2l

)
bl+1r2l+2(6.39)

×
∏

0≤k≤[ l
2 ]

[4k + 2l + 4 ∼ 6l − 4k + 5] (f2l+1) .

Since f2l+1 is an eigenfunction of the differential operator 2ϑ with its eigen-
value −(2l + 1) by (6.2), the equation (6.39) equals

0 =
(

3
2

)
· · ·

(
2l + 1

2l

)
bl+1r2l+2(6.40)

×
∏

0≤k≤[ l
2 ]

(4k + 3) · · · (4l − 4k + 4)f2l+1.

Since b �= 0, by (6.40) we have f2l+1 = 0. Hence we have shown the
proposition. �

7. Appendix

In this section, we shall show Proposition 3.6 by using the results of
spherical harmonics and special functions.
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7.1. A basis of the space of spherical harmonics
We use the polar coordinate:

R+ × Sm−1 → Rm \ {0}, (r, ω) �→ rω,(7.1)

where

ω =




cos θ1

sin θ1 cos θ2

· · ·
sin θ1 sin θ2 . . . sin θm−2 cos θm−1

sin θ1 sin θ2 . . . sin θm−2 sin θm−1


 .(7.2)

In [14], for any l, m, 2ν ∈ Z with l ≥ m ≥ 0, associated Gegenbauer
polynomials Cν,m

l are defined by

Cν,m
l (x) := (1 − x2)m/2 dm

dxm
Cν

l (x) on |x| < 1,(7.3)

where Cν
l (x) is the classical Gegenbauer polynomial. It is obvious that

Cν,0
l (x) = Cν

l (x) and C
1/2,m
l (x) = Pm

l (x), where Pm
l (x) is the associated

Legendre polynomial. Then we have a basis of the space Hl(Rm) of spherical
harmonics on Sm−1 of degree l as follows:

Fact 7.1 ([14]). For l1 ∈ N, Hl1(Rm) is spanned over C by the follow-
ing basis:

(7.4)
{
Cν1,l2

l1
(cos θ1)C

ν2,l3
l2

(cos θ2) · · ·Cνm−2,lm−1

lm−2
(cos θm−2)e−

√
−1lm−1θm−1 :

l2, . . . , lm−2, lm−1 ∈ Z with l1 ≥ l2 ≥ · · · ≥ lm−2 ≥ |lm−1|
}
,

where νj := (m − 1 − j)/2.

7.2. Laguerre polynomials and Gegenbauer polynomials
We use the equations of Laguerre polynomials and associated Gegen-

bauer polynomials in Lemmas 7.2 and 7.3 to prove Proposition 3.6.
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Lemma 7.2. Laguerre polynomials satisfy the following equations:(
d2

dx2
− d

dx

)
Lα

n(x) = Lα+2
n−1(x),(7.5) (

x2 d2

dx2
+ (2α − x)x

d

dx
− αx + α(α − 1)

)
Lα

n(x)(7.6)

= (n + 1)(n + α)Lα−2
n+1(x).

Here, we note that the equation (7.5) if n = 0 is the following:(
d2

dx2
− d

dx

)
Lα

0 (x) = 0(7.7)

because Lα
0 (x) ≡ 1.

Proof of Lemma 7.2. With respect to Laguerre polynomials, we re-
call from [2, II, pp. 188–190 (24)(8)(23)(15)(12)(10)] that

Lα−1
n (x) = Lα

n(x) − Lα
n−1(x),(7.8)

(n + 1)Lα
n+1(x) + (x − α − 2n − 1)Lα

n(x) + (n + α)Lα
n−1(x) = 0,(7.9)

xLα+1
n (x) = (n + α + 1)Lα

n(x) − (n + 1)Lα
n+1(x)(7.10)

d

dx
Lα

n(x) = −Lα+1
n−1(x),(7.11)

x
d

dx
Lα

n(x) = nLα
n(x) − (n + α)Lα

n−1(x),(7.12)

x
d2

dx2
Lα

n(x) + (α + 1 − x)
d

dx
Lα

n(x) + nLα
n(x) = 0,(7.13)

where α ∈ C and n ∈ N.
It is easily seen that (7.5) follows from (7.8) and (7.11).
In order to show (7.6), we apply (7.8) to the right-hand side of (7.12)

and have

x
d

dx
Lα

n(x) = nLα−1
n (x) − αLα

n−1(x).(7.14)

By (7.8), (7.10) and (7.14), we obtain

(7.15)
(

(α − 1) x
d

dx
− (α + n)x + α(α − 1)

)
Lα

n(x)

= (n + 1)(n + α)Lα−2
n+1(x).
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Multiplying both sides of (7.13) by a variable x, one can get (7.6) by
(7.15). �

Lemma 7.3. Associated Gegenbauer polynomials satisfy the following
equations:

(l + 1 − m) Cν,m
l+1 (x) = 2(l + ν) x Cν,m

l (x)(7.16)

− (l − 1 + 2ν + m) Cν,m
l−1 (x),

(1 − x2)
d

dx
Cν,m

l (x) = − l x Cν,m
l (x) + (l − 1 + 2ν + m) Cν,m

l−1 (x).(7.17)

Proof. With respect to Gegenbauer polynomials, we recall from [2,
II, pp.175 f. (13)(15)(23)] that

(l + 1)Cν
l+1(x) = 2(l + ν)xCν

l (x) − (l + 2ν − 1)Cν
l−1(x),(7.18)

(1 − x2)
d

dx
Cν

l (x) = −lxCν
l (x) + (l + 2ν − 1)Cν

l−1(x),(7.19)

dm

dxm
Cν

l (x) = 2m(ν)m Cν+m
l−m (x),(7.20)

where ν ∈ C, l ∈ N and (ν)m = Γ(ν + m)/Γ(ν).
It follows from (7.20) that

Cν,m
l (x) = (1 − x2)m/2 2m(ν)mCν+m

l−m (x).(7.21)

First, we show (7.16). Replacing ν and l with ν+m and l−m respectively
in (7.18), one can see that

(l − m + 1)Cν+m
l+1−m(x) = 2(l + ν)xCν+m

l−m (x)(7.22)

− (l − 1 + 2ν + m)Cν+m
l−m−1(x).

We multiply the both sides by (1 − x2)m/2 2m(ν)m, and then get (7.16)
by (7.21).



Invariant Differential Operators for the Conformal Group 391

Next, we show (7.17). By the definition, we have

d

dx
Cν,m

l (x) = (1 − x2)−1(−mx)(1 − x2)m/2 dm

dxm
Cν

l (x)(7.23)

+ (1 − x2)m/2 d

dx

(
dm

dxm
Cν

l (x)
)

= (1 − x2)−1(−mx)Cν,m
l (x)

+ (1 − x2)m/2 d

dx

(
dm

dxm
Cν

l (x)
)

.

Here, by (7.20) we get

d

dx

(
dm

dxm
Cν

l (x)
)

=
d

dx

{
2m(ν)mCν+m

l−m (x)
}

= (1 − x2)−12m(ν)m(7.24)

×
{
−(l − m)xCν+m

l−m (x) + (l − m − 1 + 2ν + 2m)Cν+m
l−m−1(x)

}
= (1 − x2)−1−m/2(7.25)

×
{
−(l − m)xCν,m

l (x) + (l − 1 + 2ν + m)Cν,m
l−1 (x)

}
,

where (7.24) is given by (7.19) and (7.25) by (7.21). Substituting the above
equation into (7.23), we obtain

d

dx
Cν,m

l (x) = (1 − x2)−1(−mx)Cν,m
l (x)(7.26)

+ (1 − x2)−1(m − l)xCν,m
l (x)

+ (1 − x2)−1(l − 1 + 2ν + m)Cν,m
l−1 (x).

Hence we have shown (7.17). �

7.3. Proof of Proposition 3.6

Proof of Proposition 3.6. Under the polar coordinate (3.25),
dπ+(J1) of (2.21) takes the form:

(7.27) dπ+(J1) =
√
−1

(
r cos θ − 1

4
r cos θ

∂2

∂r2
+

1
4

cos θ

r
∆S2n−2

+
1
2

sin θ
∂2

∂r∂θ
+

n − 2
2

sin θ

r

∂

∂θ

)
.



392 Atsutaka Kowata and Masayasu Moriwaki

Hereafter, we write ν as ν1 = (2n− 3)/2. Since Cν,k
l (cos θ) ϕk ∈ Hl(R2n−1),

it is obvious (see Section 7.1) that

∆S2n−2

(
Cν,k

l (cos θ) ϕk

)
= −l(l + 2ν) Cν,k

l (cos θ) ϕk.(7.28)

By (7.10) and (7.28), we have

√
−1

(
r cos θ − 1

4
r cos θ

∂2

∂r2
+

1
4

cos θ

r
∆S2n−2

) (
uk

a,l ϕk

)
(7.29)

= −
√
−1
4

(
r

∂2

∂r2
+ l(l + 2ν)r−1 − 4r

)
(fa,l)(r)

×
{

l − k + 1
2(l + ν)

Cν,k
l+1(cos θ) +

l + k + 2ν − 1
2(l + ν)

Cν,k
l−1(cos θ)

}
ϕk.

Next, by (7.11) and (7.10), we have

√
−1

(
1
2

sin θ
∂2

∂r∂θ
+

n − 2
2

r−1 sin θ
∂

∂θ

) (
uk

a,l ϕk

)
(7.30)

=
√
−1
2

(
∂

∂r
+ (n − 2)r−1

)
(fa,l)(r)

×
{

l(l − k + 1)
2(l + ν)

Cν,k
l+1(cos θ)

− (l + 2ν)(l + k + 2ν − 1)
2(l + ν)

Cν,k
l−1(cos θ)

}
ϕk.

Thus, we get

dπ+(J1)
(
uk

a,l ϕk

)
(7.31)

= − l − k + 1
8(l + ν)

√
−1 Al(fa,l)(r) Cν,k

l+1(cos θ) ϕk

− l + k + 2ν − 1
8(l + ν)

√
−1 Bl(fa,l)(r) Cν,k

l−1(cos θ) ϕk,

where we set

Al := r
∂2

∂r2
− 2l

∂

∂r
+ l(l + 1)r−1 − 4r(7.32)

Bl := r
∂2

∂r2
+ 2(l + 2ν)

∂

∂r
+ (l + 2ν)(l + 2ν − 1)r−1 − 4r.(7.33)
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Here, direct computation shows the following:

∂

∂r
fa,l(r) =

(
∂

∂r
+ (l − 2r)r−1

) (
L2ν+2l

a−l (4r)
)

rle−2r

r
∂2

∂r2
fa,l(r) =(
r

∂2

∂r2
+ 2(l − 2r)

∂

∂r
+ r−1

(
(l − 2r)2 − l

)) (
L2ν+2l

a−l (4r)
)

rle−2r.

By these equations, we get

Al(fa,l)(r) =
(

r
∂2

∂r2
− 4r

∂

∂r

) (
L2ν+2l

a−l (4r)
)

rle−2r(7.34)

Bl(fa,l)(r) =
(

r
∂2

∂r2
+ 4(l + ν − r)

∂

∂r
− 8(l + ν)(7.35)

+ 2(l + ν)(2l + 2ν − 1)r−1

) (
L2ν+2l

a−l (4r)
)

rle−2r.

With respect to (7.34), by (7.15) we obtain

(
r

∂2

∂r2
− 4r

∂

∂r

) (
L2ν+2l

a−l (4r)
)

=

{
16 r L2ν+2l+2

a−l−1 (4r) (a > l)

0 (a = l).
(7.36)

Hence, we have

Al(fa,l)(r) =

{
16 fa,l+1(r) (a > l)

0 (a = l).
(7.37)

On the other hand, one can see that by (7.6) the right-hand side of (7.35)
equals (a + l + 2ν)(a − l + 1)L2ν+2l−2

a−l+1 (4r) r−1. Hence, we have

Bl(fa,l)(r) = (a + l + 2ν)(a − l + 1)fa,l−1(r).(7.38)

Therefore we have shown Proposition 3.6. �
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