Holomorphic Curves into the Product Space of the Riemann Spheres

By Yusaku Tiba

Abstract

We prove the second main theorem for the product space of the Riemann spheres by using the meromorphic connection. We deal with the divisors which are totally geodesic with respect to this meromorphic connection.

1. Introduction

The purpose of this paper is to prove the second main theorem for a holomorphic map from the complex plane \mathbb{C} to the product space of the onedimensional projective spaces $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$. Let $\left[X_{0}: X_{1}\right]$ and $\left[Y_{0}: Y_{1}\right]$ be the homogeneous coordinates in the first and second factors of the product space of the $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$. Let $m^{\prime}, n^{\prime}, m^{\prime \prime}, n^{\prime \prime}$ be positive integers. We define the effective divisors $D^{\prime}, D^{\prime \prime}$ on $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ by the polynomials $X_{0}^{m^{\prime}} Y_{0}^{n^{\prime}}-X_{1}^{m^{\prime}} Y_{1}^{n^{\prime}}, X_{0}^{m^{\prime \prime}} Y_{1}^{n^{\prime \prime}}-X_{1}^{m^{\prime \prime}} Y_{0}^{n^{\prime \prime}}$. We prove the second main theorem for divisors D^{\prime} and $D^{\prime \prime}$.

We state our main theorem precisely. Let $H_{1,0}, H_{1,1}, H_{2,0}$ and $H_{2,1}$ be the hyperplanes in $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ which are defined by the monomials X_{0}, X_{1}, Y_{0} and Y_{1}. Put $Z_{0}=\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$. Then there exists the sequence of the blowing-up

$$
\begin{aligned}
\pi_{1,0}: Z_{1} & \rightarrow Z_{0} \\
\pi_{2,1}: Z_{2} & \rightarrow Z_{1} \\
& \vdots \\
\pi_{k, k-1}: Z_{k} & \rightarrow Z_{k-1} .
\end{aligned}
$$

which satisfies the following condition $(*)$:
Put $\pi_{j, i}=\pi_{i+1, i} \circ \cdots \circ \pi_{j, j-1}$ for $i<j$. Let $\widetilde{D}^{\prime}, \widetilde{D}^{\prime \prime}$ and $\widetilde{H}_{i, j}, 1 \leq i \leq$ $2,0 \leq j \leq 1$ be the proper transform of $D^{\prime}, D^{\prime \prime}$, and $H_{i, j}$ under $\pi_{k, 0}$. Let

2010 Mathematics Subject Classification. Primary 30D35; Secondary 32H30.
$E_{i}, 1 \leq i \leq k$ be the exceptional divisor of the blowing-up $\pi_{i, i-1}$, and let \widetilde{E}_{i} be the proper transform of E_{i} under $\pi_{k, i}$. Then
(*) $\quad \widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} \widetilde{H}_{i, j}+\sum_{i=1}^{k} \widetilde{E}_{i} \quad$ is simple normal crossing in Z_{k}.

Our goal is the following theorem.
Theorem 1 (Main Theorem). Let $f: \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ be a nonconstant holomorphic map. Let $\widetilde{f}: \mathbb{C} \rightarrow Z_{k}$ be the lift of f. Assume that

$$
\begin{aligned}
& f(\mathbb{C}) \not \subset\left\{\left(\left[X_{0}: X_{1}\right],\left[Y_{0}: Y_{1}\right]\right)\right. \\
&\left.\in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \quad \mid \quad C_{0} X_{0}^{r_{1}} Y_{0}^{r_{2}}-C_{1} X_{1}^{r_{1}} Y_{1}^{r_{2}}=0\right\}
\end{aligned}
$$

for all $\left(r_{1}, r_{2}\right) \in \mathbb{Z} \times \mathbb{Z} \backslash\{(0,0)\}$ and all $\left(C_{0}, C_{1}\right) \in \mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$, and assume that there exist no holomorphic functions g_{1}, g_{2} on \mathbb{C} and no $(a, b) \in$ $\mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$ such that

$$
\begin{gathered}
f=\left(\exp g_{1}, \exp g_{2}\right) \\
a g_{1}+b g_{2}=(\text { constant })
\end{gathered}
$$

on \mathbb{C}. Then it follows that

$$
\begin{aligned}
T_{\widetilde{f}}\left(r,\left[\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right]\right) & \leq N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime}\right)+N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime \prime}\right) \\
& +2 \sum_{i=1}^{2} \sum_{j=0}^{1} N_{1}\left(r, \widetilde{f}^{*} \widetilde{H}_{i, j}\right)+2 \sum_{i=1}^{k} N_{1}\left(r, \widetilde{f}^{*} \widetilde{E}_{i}\right)+S_{f}(r)
\end{aligned}
$$

where $S_{f}(r)=O\left(\log ^{+} T_{f}(r)+\log ^{+} r\right) \|$. Here " $\|$ " means that the inequality holds for all $r \in(0,+\infty)$ possibly except for subset with finite Lebesgue measure.

In Section 4 , we prove that $\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}$ is a big divisor on Z_{k}. Hence we can compute defects for holomorphic curves $f: \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$.

The second main theorem for hypersurfaces in $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ is first obtained in Noguchi [3]. In Section 5 of Noguchi [3], there are some additional conditions for maps from \mathbb{C} to $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$. In our paper, we do not assume these conditions.

In Siu [7], a meromorphic connection is used to prove the second main theorem. Because $\mathbb{C}^{*} \times \mathbb{C}^{*}$ is a Lie group, there exists the canonical connection on $\mathbb{C}^{*} \times \mathbb{C}^{*}$. We extend this connection to the meromorphic connection ∇ on $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$. This meromorphic connection ∇ is used in Section 5 of Noguchi [3]. We also use ∇ to prove our main theorem. This connection does not "vary" under the blowing-up, and plays an important role in our arguments.

Let $i: \mathbb{C}^{*} \times \mathbb{C}^{*} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ be the inclusion map where $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$. Then Z_{k} is the compactification of semi-Abelian variety $\mathbb{C}^{*} \times \mathbb{C}^{*}$. If holomorphic map $f: \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ does not intersect $H_{1,0}, H_{1,1}, H_{2,0}, H_{2,1}$, then f is a holomorphic map from \mathbb{C} to semi-Abelian variety $\mathbb{C}^{*} \times \mathbb{C}^{*}$. In Noguchi, Winkelmann and Yamanoi [5], [6], the second main theorem for holomorphic map f from \mathbb{C} to a semi-Abelian variety A with D is proved, where D is an effective reduced divisor on A.

Theorem 2 ([6]). Let $f: \mathbb{C} \rightarrow A$ be a holomorphic map such that the image of f is Zariski dense in A. There is the compactification of A such that \bar{A} is smooth, equivalent with respect to the A-action, independent of f, and it follows that

$$
T_{f}(r,[\bar{D}]) \leq N_{1}\left(r, f^{*} D\right)+\varepsilon T_{f}(r,[\bar{D}]) \|_{\varepsilon}
$$

for all $\varepsilon>0$, where \bar{D} is the closure of D in \bar{A}.
If $A=\mathbb{C}^{*} \times \mathbb{C}^{*}$, and $D=D^{\prime}+D^{\prime \prime}$ in Theorem 2 , our main theorem deals with the holomorphic curves into \bar{A}.

Acknowledgements. I would like to express my sincere gratitude to Professor Junjiro Noguchi. He gave me a lot of fruitful ideas and suggestions, and he inspired me a lot. I am also grateful to Professor Yoshihiro Aihara for his helpful comments. I am grateful as well to the referee, whose suggestions helped improve the exposition.

2. Notation and Preliminaries

We introduce some functions which play an important role in the Nevanlinna theory. Let E be an effective divisor on \mathbb{C}. We write $E=\sum m_{j} P_{j}$,
where $\left\{P_{j}\right\}$ is a set of discrete points in \mathbb{C} and m_{j} are positive integers. Put $n_{k}(r, E)=\sum_{\left|P_{j}\right|<r} \min \left\{k, m_{j}\right\}$. We define the counting function of E by

$$
N_{k}(r, E)=\int_{1}^{r} \frac{n_{k}(t, E)}{t} d t
$$

Let X be a complex projective algebraic manifold, and let D be a divisor on X. Let $[D]$ be the holomorphic line bundle on X which is defined by the divisor D, and let $\operatorname{supp} D$ be the support of D. Let σ be a holomorphic section of $[D]$ such that the zero divisor of σ is D. Let $f: \mathbb{C} \rightarrow X$ be a non-constant holomorphic map. We define the proximity function of D by

$$
m_{f}(r, D)=\int_{0}^{2 \pi} \log \frac{1}{\left\|\sigma\left(f\left(r e^{i \theta}\right)\right)\right\|} \frac{d \theta}{2 \pi}
$$

where $\|\cdot\|$ is a Hermitian metric in L. Let $R(L,\|\cdot\|)$ be the curvature form of the metrized line bundle $(L,\|\cdot\|)$ representing the first Chern class. Then we define the characteristic function of L by

$$
T_{f}(r, L)=\int_{1}^{r} \frac{d t}{t} \int_{\Delta(t)} f^{*} R(L,\|\cdot\|)+O(1)
$$

where $\Delta(t)=\{z \in \mathbb{C}| | z \mid<t\}$. We set $T_{f}(r)=T_{f}(r, L)$ if L is an ample line bundle on X. The equation

$$
T_{f}(r, L)=N\left(r, f^{*} D\right)+m_{f}(r, D)+O(1)
$$

is called the First Main Theorem (cf. Noguchi and Ochiai [4], Chapter V, $\S 2)$. If $X=\mathbb{P}^{1}(\mathbb{C}), f$ is a meromorphic function on \mathbb{C}. Then we have the lemma on logarithmic derivative (cf. Noguchi and Ochiai [4], Chapter VI, §1)

$$
\int_{0}^{2 \pi} \log ^{+}\left|\frac{f^{\prime}\left(r e^{i \theta}\right)}{f\left(r e^{i \theta}\right)}\right| d \theta \leq S_{f}(r)
$$

where $\log ^{+} r=\max \{0, \log r\}$, and $S_{f}(r)=O\left(\log ^{+} T_{f}(r)+\log ^{+} r\right) \|$. Here "\|" means that the inequality holds for all $r \in(0,+\infty)$ possibly except for a subset with finite Lebesgue measure.

The following lemma is also fundamental in Nevanlinna theory.

Lemma 1. Let $h(r)>0$ be a monotone increasing function in $r \geq 1$. Then, for arbitrary $\delta>0$, we have

$$
\frac{d h(r)}{d r} \leq(h(r))^{1+\delta} \|
$$

Proof. See Noguchi-Ochiai [4], Chapter V, §5.
Let X be a complex projective algebraic manifold, and let Y be a smooth hypersurface of X. Let s be the holomorphic function on an open subset $U \subset X$ such that $Y \cap U=\{x \in U \mid s(x)=0\}$. Let ∇ be a holomorphic connection on U. We write

$$
\nabla^{(m)}=\overbrace{\nabla \circ \cdots \circ \nabla}^{m \text {-times }} .
$$

Then the following lemma holds (see the proof of Lemma 11.13. of J.-P. Demailly [1]).

Lemma 2. Let X and U be as above. Let $f: \mathbb{C} \rightarrow X$ be a holomorphic function. Assume that Y is totally geodesic with respect to ∇ on U. Then there exist holomorphic functions $h_{0}, h_{1}, \cdots, h_{m}$ on U such that

$$
\begin{aligned}
d s \cdot \nabla_{f^{\prime}}^{(m)} f^{\prime}(z) & =h_{0}(f(z)) s \circ f(z) \\
& +\sum_{i=1}^{m} h_{i}(f(z)) \frac{d^{i}(s \circ f)}{d z^{i}}(z)+\frac{d^{m+1}(s \circ f)}{d z^{m+1}}(z),
\end{aligned}
$$

for $z \in f^{-1}(U)$.
Let X and \widetilde{X} be n-dimensional complex projective algebraic manifolds. Let $\pi: \widetilde{X} \rightarrow X$ be a surjective holomorphic map. Then there exists a proper subvariety S of X such that $\widetilde{X} \backslash \pi^{-1}(S)$ and $X \backslash S$ are locally biholomorphic. Let ∇ be a meromorphic connection on X. Let V be a small neighborhood of $p \in \widetilde{X}$, and let u, v be holomorphic vector fields on a small neighborhood V of p. Then $V \backslash \pi^{-1}(S)$ is locally biholomorphic with $\pi(V) \backslash S$. We define the meromorphic connection $\pi^{*} \nabla$ on $\tilde{X} \backslash \pi^{-1}(S)$ by

$$
\left.\left(\pi^{*} \nabla\right)_{u} v\right|_{V \backslash \pi^{-1}(S)}=\left(\left.\pi_{*}\right|_{V \backslash \pi^{-1} S}\right)^{-1} \nabla_{\pi_{*} u} \pi_{*} v .
$$

Then the meromorphic vector field $\left(\pi^{*} \nabla\right)_{u} v$ on $V \backslash \pi^{-1} S$ is uniquely extended to the meromorphic vector field $\left(\pi^{*} \nabla_{u} v\right)$ on V. In this way, we define the meromorphic connection $\pi^{*} \nabla$ on \widetilde{X}.

3. Meromorphic Connection and Blowing-Up

Let $D^{\prime}, D^{\prime \prime}$ be divisors on $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ defined by the polynomials $X_{0}^{m^{\prime}} Y_{0}^{n^{\prime}}-X_{1}^{m^{\prime}} Y_{1}^{n^{\prime}}, X_{0}^{m^{\prime \prime}} Y_{1}^{n^{\prime \prime}}-X_{1}^{m^{\prime \prime}} Y_{0}^{n^{\prime \prime}}$. Let $i: \mathbb{C}^{*} \times \mathbb{C}^{*} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ be the inclusion map. Then $\operatorname{supp} i^{*} D^{\prime}$ is a subgroup of $\mathbb{C}^{*} \times \mathbb{C}^{*}$. Therefore there exists the canonical connection ∇ on $\mathbb{C}^{*} \times \mathbb{C}^{*}$ such that supp $i^{*} D^{\prime}$ is totally geodesic with respect to ∇. This connection is extended to the meromorphic connection on $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$. We also denote this extended connection by ∇. Let $U_{i, j}=\left\{\left(\left[X_{0}: X_{1}\right],\left[Y_{0}: Y_{1}\right]\right) \in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid X_{i} \neq\right.$ $\left.0, Y_{j} \neq 0\right\}, 0 \leq i, j \leq 1$. Take the canonical local coordinate system (z, w) on $U_{i, j} \simeq \mathbb{C} \times \mathbb{C}$. Then, the meromorphic connection ∇ is written by

$$
d+\left(\begin{array}{cc}
-\frac{d z}{z} & 0 \\
0 & -\frac{d w}{w}
\end{array}\right)
$$

on $U_{i, j}$. It is easy to see that $\operatorname{supp} i^{*} D^{\prime \prime}$ is also totally geodesic with respect to ∇.

The universal covering space of $\mathbb{C}^{*} \times \mathbb{C}^{*}$ is $\mathbb{C} \times \mathbb{C}$. The connection on $\mathbb{C} \times \mathbb{C}$ which is induced by ∇ is the flat connection d on $\mathbb{C} \times \mathbb{C}$. Let $f: \mathbb{C} \rightarrow \mathbb{C}^{*} \times \mathbb{C}^{*}$ be a non-constant holomorphic map, and let $F: \mathbb{C} \rightarrow \mathbb{C} \times \mathbb{C}$ be the lift of f. Then $f^{\prime} \wedge \nabla_{f^{\prime}} f^{\prime} \equiv 0$ if and only if F is a translation of a linear map.

Lemma 3 . Let $f: \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ be a non-constant holomorphic map such that $f(\mathbb{C})$ is not contained in the support of $H_{i, j}, i=1,2, j=0,1$. Then f satisfies

$$
f^{\prime} \wedge \nabla_{f^{\prime}} f^{\prime} \equiv 0
$$

if and only if f satisfies the following condition (i) or (ii):

$$
\begin{equation*}
f(\mathbb{C}) \subset\left\{\left(\left[X_{0}: X_{1}\right],\left[Y_{0}: Y_{1}\right]\right) \in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid X_{0}^{r_{1}} Y_{0}^{r_{2}}-C X_{1}^{r_{1}} Y_{1}^{r_{2}}=0\right\} \tag{i}
\end{equation*}
$$

for some $\left(r_{1}, r_{2}\right) \in \mathbb{Z} \times \mathbb{Z} \backslash\{(0,0)\}$ and some $C \in \mathbb{C} \backslash\{0\}$.
(ii)

There exist holomorphic functions g_{1}, g_{2} on \mathbb{C} and $(a, b) \in \mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$ such that

$$
f=\left(\exp g_{1}, \exp g_{2}\right): \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})
$$

$$
a g_{1}+b g_{2}=(\text { constant })
$$

on \mathbb{C}.
Proof. Without loss of generality, we may assume that $f(0) \in \mathbb{C}^{*} \times \mathbb{C}^{*}$. The holomorphic map

$$
(\exp (2 \pi \sqrt{-1} \cdot), \exp (2 \pi \sqrt{-1} \cdot)): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}^{*} \times \mathbb{C}^{*}
$$

is the universal covering of $\mathbb{C}^{*} \times \mathbb{C}^{*}$. The induced connection on the covering space $\mathbb{C} \times \mathbb{C}$ by ∇ is the flat connection d. We put $f=\left(f_{1}, f_{2}\right)$ where f_{1} and f_{2} are meromorphic functions on \mathbb{C}. Let

$$
h_{i}=\frac{1}{2 \pi \sqrt{-1}} \log f_{i}, \quad i=1,2
$$

Assume that $f^{\prime} \wedge \nabla_{f^{\prime}} f^{\prime} \equiv 0$. Then there exists a meromorphic function h on \mathbb{C} such that

$$
\binom{h_{1}^{\prime \prime}(z)}{h_{2}^{\prime \prime}(z)}=h(z)\binom{h_{1}^{\prime}(z)}{h_{2}^{\prime}(z)}
$$

on \mathbb{C}.
This means that

$$
h_{i}^{\prime}(z)=h_{i}^{\prime}(0) \exp H(z), \quad i=1,2
$$

in a simple connected neighborhood U of $0 \in \mathbb{C}$. Here

$$
H(z)=\int_{0}^{z} h(t) d t
$$

If $h_{i}^{\prime}(0)=0$, it follows that h_{i} is a constant function. Hence $\left(h_{1}^{\prime}(0), h_{2}^{\prime}(0)\right) \in$ $\mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$. It holds that

$$
h_{i}(z)=h_{i}^{\prime}(0) \int_{0}^{z} \exp H(t) d t+h_{i}(0), \quad i=1,2
$$

It follows that

$$
h_{2}^{\prime}(0) h_{1}(z)-h_{1}^{\prime}(0) h_{2}(z)=h_{2}^{\prime}(0) h_{1}(0)-h_{1}^{\prime}(0) h_{2}(0)
$$

Conversely, assume that there exists $(a, b) \in \mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$ such that

$$
a h_{1}(z)+b h_{2}(z)=(\text { constant })
$$

on \mathbb{C}. Then $a h_{1}^{\prime}(z)+b h_{2}^{\prime}(z)=0, a h_{1}^{\prime \prime}(z)+b h_{2}^{\prime \prime}(z)=0$. Hence it follows that $f^{\prime} \wedge \nabla_{f^{\prime}} f^{\prime} \equiv 0$.

Therefore $f^{\prime} \wedge \nabla_{f^{\prime}} f^{\prime} \equiv 0$ if and only if there exists $(a, b) \in \mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$ such that

$$
a \log f_{1}(z)+b \log f_{2}(z)=(\text { constant })
$$

on \mathbb{C}.
Assume that

$$
\begin{equation*}
a \log f_{1}(z)+b \log f_{2}(z)=c \tag{1}
\end{equation*}
$$

for some $(a, b) \in \mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}, c \in \mathbb{C}$. Without loss of generality, we may assume that $a=1$. For $x \in \mathbb{C}$, we put

$$
f_{i}(z)=(z-x)^{r_{i}} h_{i}(z), \quad i=1,2
$$

where $r_{i} \in \mathbb{Z}, h_{i}(z)$ is a holomorphic function on an open neighborhood of x such that $h_{i}(x) \neq 0$. Then, by (1), we have $r_{1}+b r_{2}=0$. When $r_{2} \neq 0$ for some $x \in \mathbb{C}$, it follows that

$$
\log \left(f_{1}(z)\right)^{r_{2}}+\log \left(f_{2}(z)\right)^{-r_{1}}=r_{2} c
$$

Then it holds that the meromorphic function $\left(f_{1}(z)\right)^{r_{2}}\left(f_{2}(z)\right)^{-r_{1}}$ is a constant function on \mathbb{C}. This means that

$$
f(\mathbb{C}) \subset\left\{\left(\left[X_{0}: X_{1}\right],\left[Y_{0}: Y_{1}\right]\right) \in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid X_{1}^{r_{2}} Y_{0}^{r_{1}}-C X_{0}^{r_{2}} Y_{1}^{r_{1}}=0\right\}
$$

for $r_{1} \in \mathbb{Z}, r_{2} \in \mathbb{Z} \backslash\{0\}, C \in \mathbb{C}$. When $r_{2}=0$ for all $x \in \mathbb{C}$, we have $r_{1}=0$ for all $x \in \mathbb{C}$. This means that there exist holomorphic functions g_{1}, g_{2} on \mathbb{C} such that $f_{i}=\exp g_{i}, i=1,2$. Then $g_{1}+b g_{2}=c$.

Conversely, if f satisfies the condition (i) or (ii). It is easy to see that there exists $(a, b) \in \mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$ such that

$$
a \log f_{1}(z)+b \log f_{2}(z)=(\text { constant })
$$

on \mathbb{C}.

REmark 1. The condition of (b) in Lemma 3 does not mean the algebraical degeneracy of $f(\mathbb{C})$. For example, take

$$
f(z)=(\exp z, \exp \sqrt{-1} z): \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})
$$

The divisor

$$
D^{\prime}+D^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j}
$$

is not simple normal crossing at $\{([0: 1],[0: 1]),([0: 1],[1: 0]),([1: 0],[0:$ $1]),([1: 0],[1: 0])\} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$. Put $Z_{0}=\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$. Let $\pi_{1,0}: Z_{1} \rightarrow Z_{0}$ be the blowing-up of Z_{0} at the center $\{([0: 1],[0: 1]),([0:$ $1],[1: 0]),([1: 0],[0: 1]),([1: 0],[1: 0])\}$. Let $D_{1}^{\prime}, D_{1}^{\prime \prime}, H_{i, j, 1}$ be the strict transform of $D^{\prime}, D^{\prime \prime}, H_{i, j}$ under $\pi_{1,0}$, and let E_{1} be the exceptional divisor of $\pi_{1,0}$.

If the divisor

$$
D_{1}^{\prime}+D_{1}^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, 1}+E_{1}
$$

is not simple normal crossing in Z_{1}, we blow up Z_{1} at the points where this divisor is not simple normal crossing. We repeat this process for several times. We put the l-th blowing-up $\pi_{l, l-1}: Z_{l} \rightarrow Z_{l-1}$. Let E_{l} be the exceptional divisor of $\pi_{l, l-1}$. We define

$$
\pi_{j, i}=\pi_{i+1, i} \circ \pi_{i+2, i+1} \circ \cdots \circ \pi_{j, j-1},
$$

for $i \leq j$ (we define $\pi_{i, i}=\mathrm{Id}$). Let $D_{l}^{\prime}, D_{l}^{\prime \prime}, H_{i, j, l}$ be the strict transform of $D^{\prime}, D^{\prime \prime}, H_{i, j}$ under $\pi_{l, 0}$, and let $E_{i, l}, 1 \leq i \leq l$, be the strict transform of E_{i} under $\pi_{l, i}$.

Then there exists a positive integer k such that

$$
D_{k}^{\prime}+D_{k}^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, k}+\sum_{i=1}^{k} E_{i, k}
$$

is simple normal crossing. We put $\widetilde{D}^{\prime}=D_{k}^{\prime}, \widetilde{D}^{\prime \prime}=D_{k}^{\prime \prime}, \widetilde{H}_{i, j}=H_{i, j, k}$, and $\widetilde{E}_{i}=E_{i, k}$.

Example 1. Let $D^{\prime}, D^{\prime \prime}$ be the divisor which are defined by the polynomials

$$
X_{0}^{2} Y_{0}-X_{1}^{2} Y_{1}, \quad X_{0}^{3} Y_{1}^{2}-X_{1}^{3} Y_{0}^{2}
$$

Let $\pi_{1,0}: Z_{1} \rightarrow Z_{0}$ be the blowing-up as above. Then $D_{1}^{\prime}+D_{1}^{\prime \prime}+$ $\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, 1}+E_{1}$ is not simple normal crossing at four points in Z_{1}. Then $\pi_{2,1}: Z_{2} \rightarrow Z_{1}$ is the blowing-up at these four points. We see that $D_{2}^{\prime}+D_{2}^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, 2}+\sum_{i=1}^{2} E_{i, 2}$ is not simple normal crossing at two points in Z_{2}. Then $\pi_{3,2}: Z_{3} \rightarrow Z_{2}$ is the blowing-up at these two points. Then $D_{2}^{\prime}+D_{2}^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, 2}+\sum_{i=1}^{2} E_{i, 2}$ is normal crossing.

Let E_{i}^{\prime} and $E_{i}^{\prime \prime}$ be unions of irreducible components of E_{i} such that $\pi_{i, 0}\left(\operatorname{supp} E_{i}^{\prime}\right) \subset \operatorname{supp} D^{\prime}$ and $\pi_{i, 0}\left(\operatorname{supp} E_{i}^{\prime \prime}\right) \subset \operatorname{supp} D^{\prime \prime}$. Then $E_{1}=E_{1}^{\prime}+E_{1}^{\prime \prime}$, $E_{2}=E_{2}^{\prime}+E_{2}^{\prime \prime}$ and $E_{3}=E_{3}^{\prime \prime}$. Let $\widetilde{E}_{i}^{\prime}$ and $\widetilde{E}_{i}^{\prime \prime}$ be the proper transform of E_{i}^{\prime} and $E_{i}^{\prime \prime}$. Then it follows that

$$
\pi_{3,0}^{*} D^{\prime}=\widetilde{D}^{\prime}+\widetilde{E}_{1}^{\prime}+2 \widetilde{E}_{2}^{\prime}
$$

and

$$
\pi_{3,0}^{*} D^{\prime \prime}=\widetilde{D}^{\prime \prime}+2 \widetilde{E}_{1}^{\prime \prime}+3 \widetilde{E}_{2}^{\prime \prime}+6 \widetilde{E}_{3}^{\prime \prime}
$$

Lemma 4. There exist affine open coverings $\left\{U_{s}^{l}\right\}_{1 \leq s \leq N_{l}}$ of Z_{l}, for $0 \leq$ $l \leq k$, such that every U_{s}^{l} satisfies the following five conditions:
(i)

$$
U_{s}^{l} \simeq \mathbb{C} \times \mathbb{C}
$$

Let (z, w) be the canonical local coordinate system of U_{s}^{l}.
(ii)

$$
\left.\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, l}\right|_{U_{s}^{l}}+\left.\sum_{1 \leq i \leq l} E_{i, l}\right|_{U_{s}^{l}}=(z)+(w)
$$

on U_{s}^{l}.
(iii)

$$
\left.D_{l}^{\prime}\right|_{U_{s}^{l}}=\left(z^{p^{\prime}}-w^{q^{\prime}}\right) \quad\left(\text { or } \quad\left(1-z^{p^{\prime}} w^{q^{\prime}}\right) \quad \text { respectively }\right)
$$

on U_{s}^{l}, where p^{\prime} and q^{\prime} are non-negative integers (p^{\prime}, q^{\prime} may depend on l and $s)$.
(iv)

$$
\left.D_{l}^{\prime \prime}\right|_{U_{s}^{l}}=\left(1-z^{p^{\prime \prime}} w^{q^{\prime \prime}}\right) \quad\left(\text { or } \quad\left(z^{p^{\prime \prime}}-w^{q^{\prime \prime}}\right) \quad \text { respectively }\right),
$$

on U_{s}^{l}, where $p^{\prime \prime}$ and $q^{\prime \prime}$ are non-negative integers ($p^{\prime \prime}, q^{\prime \prime}$ may depend on l and $s)$.
(v)

$$
\left.\pi_{l, 0}^{*} \nabla\right|_{U_{s}^{l}}=d+\left(\begin{array}{cc}
-\frac{d z}{z} & 0 \\
0 & -\frac{d w}{w}
\end{array}\right)
$$

on U_{s}^{l}.
Proof. We take affine open coverings $\left\{U_{s}^{l}\right\}_{1 \leq s \leq N_{l}}$ by induction over l. For $l=0$, we put $\left\{U_{s}^{0}\right\}_{1 \leq s \leq 4}=\left\{U_{i, j}\right\}_{0 \leq i, j \leq 1}$. Here $U_{i, j}=\left\{\left[X_{0}\right.\right.$: $\left.\left.X_{1}\right],\left[Y_{0}: Y_{1}\right] \in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid X_{i} \neq 0, Y_{j} \neq 0\right\}$. Then $\left\{U_{s}^{0}\right\}_{1 \leq s \leq 4}$ satisfies above five conditions. Assume that we take the affine open covering $\left\{U_{s}^{l-1}\right\}_{1 \leq s \leq N_{l-1}}$ of Z_{l-1} for $l \leq k$ which satisfies the above five conditions. Let $U_{t}^{l-1} \in\left\{U_{s}^{l-1}\right\}_{1 \leq s \leq N_{l-1}}$. Take the canonical local coordinate system (z, w) of $U_{t}^{l-1} \simeq \mathbb{C} \times \mathbb{C}$.

If $\left.D_{l-1}^{\prime}\right|_{U_{t}^{l-1}}=\left(z^{p^{\prime}}-w^{q^{\prime}}\right)$ for some positive integers p^{\prime}, q^{\prime}. Then

$$
\left.D_{l-1}^{\prime \prime}\right|_{U_{t}^{l-1}}=\left(1-z^{p^{\prime \prime}} w^{q^{\prime \prime}}\right)
$$

for some non-negative integers $p^{\prime \prime}, q^{\prime \prime}$. The divisor

$$
D_{l-1}^{\prime}+D_{l-1}^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, l-1}+\sum_{1 \leq i \leq l-1} E_{i, l-1}
$$

in Z_{l-1}, is not normal crossing at $(0,0) \in U_{t}^{l-1}$. Then $(0,0)$ is contained in the center of the blowing-up $\pi_{l, l-1}$. We have

$$
\pi_{l, l-1}^{-1}\left(U_{t}^{l-1}\right)=\left\{\left((z, w),\left[W_{0}: W_{1}\right]\right) \in U_{t}^{l-1} \times \mathbb{P}^{1}(\mathbb{C}) \mid z W_{1}=w W_{0}\right\}
$$

Let $V_{i}=\left\{\left((z, w),\left[W_{0}: W_{1}\right]\right) \in \pi_{l, l-1}^{-1}\left(U_{t}^{l-1}\right) \mid W_{i} \neq 0\right\}, i=0,1$. Then $\left\{V_{0}, V_{1}\right\}$ is an affine open covering of $\pi_{l, l-1}^{-1}\left(U_{t}^{l-1}\right)$. We show that affine open
sets V_{0} and V_{1} satisfy the five conditions of lemma. Let $u=W_{1} / W_{0}$ be the holomorphic function on V_{0}. Then (z, u) is the local coordinate system of V_{0}. It is easy to verify that V_{0} satisfies (i), (ii), (iii) and (iv). Since

$$
\pi_{l, l-1}^{*} z=z, \quad \pi_{l, l-1}^{*} w=z u
$$

we have

$$
\pi_{l, l-1 *}\left(\frac{\partial}{\partial z} \frac{\partial}{\partial u}\right)=\left(\frac{\partial}{\partial z} \frac{\partial}{\partial w}\right)\left(\begin{array}{cc}
1 & 0 \\
u & z
\end{array}\right)
$$

Let Γ be the connection form of $\left.\pi_{l, l-1}^{*} \nabla\right|_{V_{0}}$ with respect to the frame $\partial / \partial z$, $\partial / \partial u$. Then it follows that

$$
\begin{aligned}
\Gamma= & \left(\begin{array}{ll}
1 & 0 \\
u & z
\end{array}\right)^{-1} d\left(\begin{array}{cc}
1 & 0 \\
u & z
\end{array}\right) \\
& +\left(\begin{array}{ll}
1 & 0 \\
u & z
\end{array}\right)^{-1} \pi_{l, l-1}^{*}\left(\begin{array}{cc}
-\frac{d z}{z} & 0 \\
0 & -\frac{d w}{w}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
u & z
\end{array}\right) .
\end{aligned}
$$

Since

$$
\left(\begin{array}{ll}
1 & 0 \\
u & z
\end{array}\right)^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{u}{z} & \frac{1}{z}
\end{array}\right)
$$

we have

$$
\begin{aligned}
\Gamma & =\left(\begin{array}{cc}
0 & 0 \\
\frac{d u}{z} & \frac{d z}{z}
\end{array}\right)+\left(\begin{array}{cc}
1 & 0 \\
-\frac{u}{z} & \frac{1}{z}
\end{array}\right)\left(\begin{array}{cc}
-\frac{d z}{z} & 0 \\
0 & -\frac{d z}{z}-\frac{d u}{u}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
u & z
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 0 \\
\frac{d u}{z} & \frac{d z}{z}
\end{array}\right)+\left(\begin{array}{cc}
-\frac{d z}{z} & 0 \\
\frac{u}{z} \frac{d z}{z} & -\frac{1}{z}\left(\frac{d z}{z}+\frac{d u}{u}\right)
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
u & z
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & 0 \\
\frac{d u}{z} & \frac{d z}{z}
\end{array}\right)+\left(\begin{array}{cc}
-\frac{d z}{z} & 0 \\
\frac{u}{z} \frac{d z}{z}-\frac{u}{z}\left(\frac{d z}{z}+\frac{d u}{u}\right) & -\frac{d z}{z}-\frac{d u}{u}
\end{array}\right) \\
& =\left(\begin{array}{cc}
-\frac{d z}{z} & 0 \\
0 & -\frac{d u}{u}
\end{array}\right) .
\end{aligned}
$$

Hence V_{0} satisfies (v). In the same way, we can show that V_{1} satisfies the conditions of the lemma.

If

$$
\left.D_{l-1}^{\prime}\right|_{U_{t}^{l-1}}=\left(1-z^{p^{\prime}} w^{q^{\prime}}\right),\left.\quad D_{l-1}^{\prime \prime}\right|_{U_{t}^{l-1}}=\left(z^{p^{\prime \prime}}-w^{q^{\prime \prime}}\right)
$$

for some non-negative integers p^{\prime}, q^{\prime} and some positive integers $p^{\prime \prime}, q^{\prime \prime}$. In the same way as above, we can take the affine open sets in $\pi_{l, l-1}^{-1}\left(U_{t}^{l-1}\right)$ which satisfy the five conditions of the lemma.

If

$$
\left.D_{l-1}^{\prime}\right|_{U_{t}^{l-1}}=\left(1-z^{p^{\prime}} w^{q^{\prime}}\right),\left.\quad D_{l-1}^{\prime \prime}\right|_{U_{t}^{l-1}}=\left(1-z^{p^{\prime \prime}} w^{q^{\prime \prime}}\right),
$$

for some non-negative integers $p^{\prime}, q^{\prime}, p^{\prime \prime}, q^{\prime \prime}$. Then $U_{t}^{l-1} \simeq \pi_{l, l-1}^{-1}\left(U_{t}^{l-1}\right)$ because U_{t}^{l-1} does not contain the center of the blowing-up $\pi_{l, l-1}$. By the assumption of induction, the affine open subset $\pi_{l, l-1}^{-1}\left(U_{t}^{l-1}\right)$ satisfies the five conditions of the lemma. This completes the proof.
4. Proof of the Bigness of $\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}$

In this section, we show that $\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}$ is big in Z_{k}. We note that there exists the proof of the bigness for more general cases in Proposition 3.9. of [6].

To prove the bigness of the line bundle $\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}$, it is sufficient to show the following lemma (cf. Theorem 2.2.16. of R. Lazarsfeld [2]).

LEMMA 5. The divisor $\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}$ is nef and $\left(\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right)^{2}>0$.
Proof. Because

$$
\left(\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right)^{2}=\left(\widetilde{D}^{\prime}\right)^{2}+2 \widetilde{D}^{\prime} \cdot \widetilde{D}^{\prime \prime}+\left(\widetilde{D}^{\prime \prime}\right)^{2}
$$

it is enough to show that $\left(\widetilde{D}^{\prime}\right)^{2}=\left(\widetilde{D}^{\prime \prime}\right)^{2}=0$ and \widetilde{D}^{\prime} and $\widetilde{D}^{\prime \prime}$ are nef. Without loss of generality, we may assume that $m^{\prime} \leq n^{\prime}$. Let E_{1}^{\prime} be the reduced divisor on Z_{1} such that

$$
\pi_{1,0}^{*} D^{\prime}=D_{1}^{\prime}+m^{\prime} E_{1}^{\prime}
$$

Let F^{\prime} be the divisor on Z_{k} such that

$$
\pi_{k, 1}^{*} D_{1}^{\prime}=\widetilde{D}^{\prime}+F^{\prime}
$$

It follows that

$$
\begin{aligned}
\left(\widetilde{D}^{\prime}\right)^{2}= & \left(\pi_{k, 0}^{*} D^{\prime}-F^{\prime}-m^{\prime} \pi_{k, 1}^{*} E_{1}^{\prime}\right)^{2} \\
= & \left(\pi_{k, 0}^{*} D^{\prime}\right)^{2}+\left(F^{\prime}\right)^{2}+m^{2}\left(\pi_{k, 1}^{*} E_{1}^{\prime}\right)^{2}-2 \pi_{k, 0}^{*} D^{\prime} \cdot F^{\prime} \\
& +2 m^{\prime} F^{\prime} \cdot \pi_{k, 1}^{*} E_{1}^{\prime}-2 m^{\prime} \pi_{k, 1}^{*} E_{1}^{\prime} \cdot \pi_{k, 0}^{*} D^{\prime} \\
= & 2 m^{\prime} n^{\prime}+\left(F^{\prime}\right)^{2}-2 m^{\prime 2}-2\left(\widetilde{D}^{\prime}+F^{\prime}+m^{\prime} \pi_{k, 1}^{*} E_{1}^{\prime}\right) \cdot F^{\prime} \\
& +2 m^{\prime} F^{\prime} \cdot \pi_{k, 1}^{*} E_{1}^{\prime}-2 m^{\prime} \pi_{k, 1}^{*} E_{1}^{\prime} \cdot\left(\pi_{k, 1}^{*} D_{1}^{\prime}+m^{\prime} \pi_{k, 1}^{*} E_{1}^{\prime}\right) \\
= & 2 m^{\prime} n^{\prime}-2 m^{\prime 2}-\left(F^{\prime}\right)^{2}-2 \widetilde{D}^{\prime} \cdot F^{\prime}-2 m^{\prime} D_{1}^{\prime} \cdot E_{1}^{\prime}-2 m^{\prime 2}\left(E_{1}^{\prime}\right)^{2}
\end{aligned}
$$

Because $D_{1}^{\prime} \cdot E_{1}^{\prime}=2 m^{\prime}$, we have

$$
\begin{equation*}
\left(\widetilde{D}^{\prime}\right)^{2}=2 m^{\prime} n^{\prime}-2 m^{\prime 2}-\left(F^{\prime}\right)^{2}-2 \widetilde{D}^{\prime} \cdot F^{\prime} \tag{2}
\end{equation*}
$$

If $m^{\prime}=n^{\prime}$, then $\widetilde{D}^{\prime}=D_{1}^{\prime}, F^{\prime}=0$ and we have $\left(\widetilde{D}^{\prime}\right)^{2}=0$.
Now we prove $\left(\widetilde{D}^{\prime}\right)^{2}=0$ by the induction over the positive integer $m^{\prime}+n^{\prime}$. Let $E_{i}^{\prime}, i=2, \cdots k$ be reduced effective divisors on Z_{i} such that

$$
\operatorname{supp}\left(\pi_{i, i-1}^{*} D_{i-1}^{\prime}-D_{i}^{\prime}\right)=\operatorname{supp} E_{i}^{\prime}
$$

Let $\widetilde{E}_{i}^{\prime}$ be the strict transform of E_{i}^{\prime} under $\pi_{k, i}$. There exist non-negative integers $a_{2}, a_{3}, \cdots, a_{k}$ such that

$$
F=a_{2} \widetilde{E}_{2}^{\prime}+a_{3} \widetilde{E}_{3}^{\prime}+\cdots+a_{k} \widetilde{E}_{k}^{\prime}
$$

Now we take another divisor A^{\prime} on $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ which is defined by the polynomial

$$
X_{0}^{m^{\prime}} Y_{0}^{n^{\prime}-m^{\prime}}-X_{1}^{m^{\prime}} Y_{1}^{n^{\prime}-m^{\prime}}
$$

There is, as in Section 3, the sequence of the blowing-up

$$
\begin{aligned}
\sigma_{1,0}: & W_{1} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \\
& \vdots \\
\sigma_{k-1, k-2}: & W_{k-1} \rightarrow W_{k-2}
\end{aligned}
$$

such that the following condition $(* *)$ satisfies:

Let S be the reduced divisor such that

$$
\operatorname{supp}\left(\sigma_{k-1,0}^{*}\left(A^{\prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j}\right)\right)=\operatorname{supp} S
$$

where $\sigma_{k-1,1}=\sigma_{1,0} \circ \cdots \circ \sigma_{k-1, k-2}$. Then
(**) $\quad S$ is normal crossing in W_{k-1}.
Let B_{i}^{\prime} be the exceptional divisor of $\sigma_{i, i-1}$, and let $\widetilde{B}_{i}^{\prime}$ be the strict transform of B_{i}^{\prime} under $\sigma_{i+1, i} \circ \cdots \circ \sigma_{k-1, k-2}$. Let \widetilde{A}^{\prime} be the strict transform of A^{\prime} under $\sigma_{1,0} \circ \cdots \circ \sigma_{k-1, k-2}$. It follows that

$$
\left(\sigma_{1,0} \circ \cdots \circ \sigma_{k-1, k-2}\right)^{*} A^{\prime}=\widetilde{A}^{\prime}+a_{2} \widetilde{B}_{1}^{\prime}+a_{3} \widetilde{B}_{2}^{\prime}+\cdots+a_{k} \widetilde{B}_{k-1}^{\prime}
$$

and

$$
\widetilde{E}_{i}^{\prime} \cdot \widetilde{E}_{j}^{\prime}=\widetilde{B}_{i-1}^{\prime} \cdot \widetilde{B}_{j-1}^{\prime}, \quad \widetilde{D}^{\prime} \cdot \widetilde{E}_{i}^{\prime}=\widetilde{A}^{\prime} \cdot \widetilde{B}_{i-1}^{\prime}
$$

for all $2 \leq i, j \leq k$. Put $G^{\prime}=a_{2} \widetilde{B}_{1}^{\prime}+a_{3} \widetilde{B}_{2}^{\prime}+\cdots+a_{k} \widetilde{B}_{k-1}^{\prime}$. We have

$$
\begin{equation*}
\left(F^{\prime}\right)^{2}=\left(G^{\prime}\right)^{2}, \quad \widetilde{D}^{\prime} \cdot F^{\prime}=\widetilde{A}^{\prime} \cdot G^{\prime} \tag{3}
\end{equation*}
$$

It follows that

$$
\begin{aligned}
\left(\widetilde{A}^{\prime}\right)^{2} & =\left(\sigma_{k-1,0}^{*} A^{\prime}-G^{\prime}\right)^{2} \\
& =2 m^{\prime}\left(n^{\prime}-m^{\prime}\right)-2 \sigma_{k-1,0}^{*} A^{\prime} \cdot G^{\prime}+\left(G^{\prime}\right)^{2} \\
& =2 m^{\prime}\left(n^{\prime}-m^{\prime}\right)-2\left(\widetilde{A}^{\prime}+G^{\prime}\right) \cdot G^{\prime}+\left(G^{\prime}\right)^{2} \\
& =2 m^{\prime}\left(n^{\prime}-m^{\prime}\right)-\left(G^{\prime}\right)^{2}-2 \widetilde{A^{\prime}} \cdot G^{\prime}
\end{aligned}
$$

By the assumption of the induction, we have

$$
\begin{equation*}
\left(G^{\prime}\right)^{2}+2 \widetilde{A}^{\prime} \cdot G^{\prime}-2 m^{\prime}\left(n^{\prime}-m^{\prime}\right)=0 \tag{4}
\end{equation*}
$$

By (2), (3) and (4), it follows that

$$
\begin{aligned}
\left(\widetilde{D}^{\prime}\right)^{2} & =2 m^{\prime} n^{\prime}-2 m^{\prime 2}-\left(F^{\prime}\right)^{2}-2 \widetilde{D}^{\prime} \cdot F^{\prime} \\
& =2 m^{\prime}\left(n^{\prime}-m^{\prime}\right)-\left(G^{\prime}\right)^{2}-2 \widetilde{A}^{\prime} \cdot G^{\prime}=0
\end{aligned}
$$

Then we complete the induction. By the same way, we can show that $\left(\widetilde{D}^{\prime \prime}\right)^{2}=0$.

Now we show that \widetilde{D}^{\prime} is nef. Let $m^{\prime}=d p, n^{\prime}=d q$, where d is the greatest common divisor of m^{\prime} and n^{\prime}. Then it follows that

$$
X_{0}^{m^{\prime}} Y_{0}^{n^{\prime}}-X_{1}^{m^{\prime}} Y_{1}^{n^{\prime}}=\prod_{i=0}^{d-1}\left(X_{0}^{p} Y_{0}^{q}-\left(\varepsilon_{d}\right)^{i} X_{1}^{p} Y_{1}^{q}\right)
$$

where $\varepsilon_{d}=\exp ((2 \pi \sqrt{-1}) / d)$. Let C_{i} be the irreducible divisor on $\mathbb{P}^{1}(\mathbb{C}) \times$ $\mathbb{P}^{1}(\mathbb{C})$ which is defined by the polynomial $X_{0}^{p} Y_{0}^{q}-\left(\varepsilon_{d}\right)^{i} X_{1}^{p} Y_{1}^{q}$, and let \widetilde{C}_{i} be the strict transform of C_{i} under $\pi_{k, 0}$. By the above arguments, we have $\left(\widetilde{C}_{0}\right)^{2}=0$. Because \widetilde{C}_{0} and $\widetilde{C}_{i}, 1 \leq i \leq d-1$, are linearly equivalent, we have

$$
\widetilde{C}_{i} \cdot \widetilde{D}^{\prime}=\left(\widetilde{C}_{i}\right)^{2}=\left(\widetilde{C}_{0}\right)^{2}=0
$$

Therefore \widetilde{D}^{\prime} is nef. By the same way, we can show that $\widetilde{D}^{\prime \prime}$ is nef.

5. Proof of the Main Theorem

Let $f: \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ be the holomorphic map, let $\tilde{f}: \mathbb{C} \rightarrow Z_{k}$ be the lift of f, and let $\widetilde{\nabla}=\pi_{k, 0}^{*} \nabla$.

Let $\widetilde{\sigma}^{\prime} \in \Gamma\left(Z_{k},\left[\widetilde{D}^{\prime}\right]\right), \widetilde{\sigma}^{\prime \prime} \in \Gamma\left(Z_{k},\left[\widetilde{D}^{\prime \prime}\right]\right), \widetilde{h}_{i, j} \in \Gamma\left(Z_{k},\left[\widetilde{H}_{i, j}\right]\right), \widetilde{e}_{i} \in \Gamma\left(Z_{k}, \widetilde{E}_{i}\right)$ be the holomorphic section such that

$$
\left(\widetilde{\sigma}^{\prime}\right)=\widetilde{D}^{\prime}, \quad\left(\widetilde{\sigma}^{\prime \prime}\right)=\widetilde{D}^{\prime \prime}, \quad\left(\widetilde{h}_{i, j}\right)=\widetilde{H}_{i, j}, \quad\left(\widetilde{e}_{i}\right)=\widetilde{E}_{i}
$$

Lemma 6. Assume that

$$
f(\mathbb{C}) \not \subset \operatorname{supp}\left(D^{\prime}+D^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j}\right)
$$

and assume that

$$
f^{\prime} \wedge \nabla_{f^{\prime}} f^{\prime} \not \equiv 0
$$

Then it follows that

$$
\begin{aligned}
& \int_{|z|=r} \log ^{+} \frac{\left\|\widetilde{f}^{\prime} \wedge \widetilde{\nabla}_{\tilde{f}^{\prime}} \widetilde{f}^{\prime}(z)\right\|_{\wedge^{2} T Z_{k}}}{\left\|\widetilde{\sigma}^{\prime}(\widetilde{f})\right\|_{\left[D^{\prime}\right]}\left\|\widetilde{\sigma}^{\prime \prime}(\widetilde{f})\right\|_{\left[D^{\prime \prime}\right]} \prod_{i=1}^{2} \prod_{j=0}^{1}\left\|\widetilde{h}_{i, j}(\widetilde{f})\right\|_{\left[\tilde{H}_{i, j}\right]} \prod_{i=1}^{k}\left\|\widetilde{e}_{i}(\widetilde{f})\right\|_{\left[E_{i}\right]}} \frac{d \theta}{2 \pi} \\
& \leqq S_{f}(r) .
\end{aligned}
$$

Proof. For the convenience of the notation, we assume that D^{\prime} and $D^{\prime \prime}$ are irreducible. Put

$$
A=\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} \widetilde{H}_{i, j}+\sum_{i=1}^{k} \widetilde{E}_{i}
$$

and put

$$
\xi(z)=\frac{\left\|\widetilde{f}^{\prime} \wedge \widetilde{\nabla}_{\tilde{f}^{\prime}} \tilde{f}^{\prime}(z)\right\|_{\wedge^{2} T Z_{k}}}{\left\|\widetilde{\sigma}^{\prime}(\widetilde{f})\right\|_{\left[\tilde{D}^{\prime}\right]}\left\|\widetilde{\sigma}^{\prime \prime}(\widetilde{f})\right\|_{\left[\tilde{D}^{\prime \prime}\right]} \prod_{i=1}^{2} \prod_{j=0}^{1}\left\|\widetilde{h}_{i, j}(\widetilde{f})\right\|_{\left[\tilde{H}_{i, j}\right]} \prod_{i=1}^{k}\left\|\widetilde{e}_{i}(\widetilde{f})\right\|_{\left[\tilde{E}_{i}\right]}}
$$

Note that A is simple normal crossing in Z_{k}.
Let

$$
x \in \bigcup_{i=1}^{2} \bigcup_{j=0}^{1} \operatorname{supp} \widetilde{H}_{i, j} \cap \bigcup_{i=1}^{k} \operatorname{supp} \widetilde{E}_{l} .
$$

By Lemma 4, there exists an affine open neighborhood U_{x} of x and local coordinate system z_{x}, w_{x} on U_{x} which satisfy the five conditions of Lemma 4. We put

$$
V_{x}=U_{x} \backslash \operatorname{supp}\left(\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right)
$$

and put

$$
\tilde{f}_{1}=z_{x} \circ \tilde{f}, \quad \tilde{f}_{2}=w_{x} \circ \tilde{f}
$$

on $\widetilde{f}^{-1}\left(V_{x}\right)$. It follows that

$$
\widetilde{f}^{\prime} \wedge \widetilde{\nabla}_{\tilde{f}^{\prime}} \widetilde{f}^{\prime}=\left(\widetilde{f}_{1}^{\prime} \widetilde{f}_{2}^{\prime \prime}-\widetilde{f}_{1}^{\prime \prime} \widetilde{f}_{2}^{\prime}+\widetilde{f}_{1}^{\prime} \widetilde{f}_{2}^{\prime} \frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}}-\widetilde{f}_{1}^{\prime} \widetilde{f}_{2}^{\prime} \frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}}\right) \frac{\partial}{\partial z_{x}} \wedge \frac{\partial}{\partial w_{x}}
$$

on $\tilde{f}^{-1}\left(V_{x}\right)$. Then it follows that

$$
\begin{equation*}
\xi(z)=\left(\frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}^{\prime}} \frac{\widetilde{f}_{2}^{\prime \prime}}{\widetilde{f}_{2}}-\frac{\widetilde{f}_{1}^{\prime \prime}}{\widetilde{f}_{1}} \frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}}+\left(\frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}}\right)^{2} \frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}}-\frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}}\left(\frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}}\right)^{2}\right) \Phi_{x}(f(z)) \tag{5}
\end{equation*}
$$

on $\tilde{f}^{-1}\left(V_{x}\right)$, where Φ_{x} is a smooth function on V_{x}.
Let

$$
\begin{array}{r}
x \in \operatorname{supp} \widetilde{D}^{\prime} \cap\left(\bigcup_{i=1}^{2} \bigcup_{j=0}^{1} \operatorname{supp} \widetilde{H}_{i, j} \cup \bigcup_{i=1}^{k} \operatorname{supp} \widetilde{E}_{i}\right) \\
\left(\text { or } \quad x \in \operatorname{supp} \widetilde{D}^{\prime \prime} \cap\left(\bigcup_{i=1}^{2} \bigcup_{j=0}^{1} \operatorname{supp} \widetilde{H}_{i, j} \cup \bigcup_{i=1}^{k} \operatorname{supp} \widetilde{E}_{i}\right), \text { respectively }\right)
\end{array}
$$

By Lemma 4, there exists an affine open neighborhood U_{x} of x and local coordinate system z_{x}, w_{x} on U_{x} which satisfy the five condition of Lemma 4. Because D^{\prime} and $D^{\prime \prime}$ are irreducible, it follows that

$$
\left.D^{\prime}\right|_{U_{x}}=\left(z_{x}-1\right) \quad\left(\text { or }\left.D^{\prime \prime}\right|_{U_{x}}=\left(z_{x}-1\right), \text { respectively }\right)
$$

and $z_{x}(x)=1, w_{x}(x)=0$. We take $z_{x}^{\prime}=z_{x}-1$. Let V_{x} be an affine open subset of U_{x} such that

$$
\left.A\right|_{V_{x}}=\left(z_{x}^{\prime}\right)+\left(w_{x}\right)
$$

and

$$
\left.\nabla\right|_{V_{x}}=d+\left(\begin{array}{cc}
-\left(d z_{x}^{\prime}\right) /\left(z_{x}^{\prime}+1\right) & 0 \\
0 & -\left(d w_{x}\right) / w_{x}
\end{array}\right)
$$

We note that $z_{x}^{\prime}(x)+1 \neq 0$ on $\tilde{f}^{-1}\left(V_{x}\right)$. We put

$$
\tilde{f}_{1}=z_{x}^{\prime} \circ \tilde{f}, \quad \tilde{f}_{2}=w_{x} \circ \tilde{f}
$$

on $\tilde{f}^{-1}\left(V_{x}\right)$. It follows that

$$
\begin{align*}
\xi(z)= & \left(\frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}} \frac{\widetilde{f}_{2}^{\prime \prime}}{\widetilde{f}_{2}}-\frac{\widetilde{f}_{1}^{\prime \prime}}{\widetilde{f}_{1}} \frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}}-\frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}}\left(\frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}}\right)^{2}\right) \Phi_{x}(f(z)) \tag{6}\\
& +\widetilde{f}_{1}^{\prime} \frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}} \frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}} \Psi_{x}(f(z))
\end{align*}
$$

on $\widetilde{f}^{-1}\left(V_{x}\right)$, where Φ_{x} and Ψ_{x} are smooth functions on V_{x}.
Let $x \in \operatorname{supp} \widetilde{D}^{\prime} \cap \operatorname{supp} \widetilde{D}^{\prime \prime}$. There exists an affine open neighborhood V_{x} of x and holomorphic functions z_{x}, w_{x} on V_{x} such that

$$
\begin{gathered}
\left.\widetilde{D}^{\prime}\right|_{V_{x}}=\left(z_{x}\right),\left.\quad \widetilde{D}^{\prime \prime}\right|_{V_{x}}=\left(w_{x}\right), \\
\left.A\right|_{V_{x}}=\left(z_{x}\right)+\left(w_{x}\right),
\end{gathered}
$$

on V_{x}. It follows that $d z_{x}$ and $d w_{x}$ are linearly independent on V_{x}. We put

$$
\tilde{f}_{1}=z_{x} \circ \tilde{f}, \quad \widetilde{f}_{2}=w_{x} \circ \widetilde{f}
$$

By Lemma 2, there exist holomorphic functions $g_{0}, g_{1}, h_{0}, h_{1}$ on V_{x} such that

$$
d z_{x} \cdot \nabla_{\tilde{f}^{\prime}} \widetilde{f}^{\prime}(\gamma)=g_{0}(\widetilde{f}(\gamma)) \tilde{f}_{1}(\gamma)+g_{1}(\tilde{f}(\gamma)) \widetilde{f}_{1}^{\prime}(\gamma)+\widetilde{f}_{1}^{\prime \prime}(\gamma)
$$

for all $\gamma \in \tilde{f}^{-1}\left(V_{x}\right)$, and

$$
d w_{x} \cdot \nabla_{\tilde{f}^{\prime}} \widetilde{f}^{\prime}(\gamma)=h_{0}(\widetilde{f}(\gamma)) \widetilde{f}_{2}(\gamma)+h_{1}(\widetilde{f}(\gamma)) \widetilde{f}_{2}^{\prime}(\gamma)+\widetilde{f}_{2}^{\prime \prime}(\gamma)
$$

for all $\gamma \in \tilde{f}^{-1}\left(V_{x}\right)$. It follows that

$$
\begin{aligned}
\widetilde{f}^{\prime} \wedge \widetilde{\nabla}_{\tilde{f}^{\prime}} \widetilde{f}^{\prime}= & {\left[\widetilde{f}_{1}^{\prime}\left(h_{0}(\widetilde{f}) \widetilde{f}_{2}+h_{1}(\widetilde{f}) \widetilde{f}_{2}^{\prime}+\widetilde{f}_{2}^{\prime \prime}\right)\right.} \\
& \left.-\widetilde{f}_{2}^{\prime}\left(g_{0}(\widetilde{f}) \widetilde{f}_{1}+g_{1}(\widetilde{f}) \widetilde{f}_{1}^{\prime}+\widetilde{f}_{2}^{\prime \prime}\right)\right] \frac{\partial}{\partial z_{x}} \wedge \frac{\partial}{\partial w_{x}}
\end{aligned}
$$

Then it follows that

$$
\begin{align*}
\xi(z)= & \Phi_{x, 1}(\widetilde{f}) \frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}}+\Phi_{x, 2}(\widetilde{f}) \frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}} \tag{7}\\
& +\Phi_{x, 3}(\widetilde{f}) \frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}^{\prime}} \frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}}+\Phi_{x, 4}(\widetilde{f}) \frac{\widetilde{f}_{1}^{\prime}}{\widetilde{f}_{1}} \frac{\widetilde{f}_{2}^{\prime \prime}}{\widetilde{f}_{2}}+\Phi_{x, 5}(\widetilde{f}) \frac{\widetilde{f}_{1}^{\prime \prime}}{\widetilde{f}_{1}} \frac{\widetilde{f}_{2}^{\prime}}{\widetilde{f}_{2}}
\end{align*}
$$

on $\tilde{f}^{-1}\left(V_{x}\right)$, where $\Phi_{x, 1}, \ldots, \Phi_{x, 5}$ are smooth functions on V_{x}.
Let $R=\left\{x \in Z_{k} \mid x\right.$ is contained in two irreducible components of $\left.A\right\}$. Note that R is a finite subset of Z_{k}. For $x \in R$, we take an affine open subset V_{x} and holomorphic functions z_{x}, w_{x} as above arguments. Then $\left\{V_{x}\right\}_{x \in R}$ is an open covering of Z_{k}. We take an open covering $\left\{V_{x}^{\prime}\right\}_{x \in R}$ of Z_{k} such that $V_{x}^{\prime} \subset V_{x}$ and V_{x}^{\prime} is relatively compact in V_{x}. We take a partition of unity $\left\{\phi_{x}\right\}_{x \in R}$ which is subordinate to the covering $\left\{V_{x}^{\prime}\right\}_{x \in R}$. Fix $x \in R$. Let $\widetilde{f}_{1}=z_{x} \circ \widetilde{f}, \widetilde{f}_{2}=w_{x} \circ \widetilde{f}$ be a holomorphic function on $\tilde{f}^{-1}\left(V_{x}\right)$. Then \tilde{f}_{1} and \widetilde{f}_{2} are extended to meromorphic functions on \mathbb{C}. By (5), (6) and (7), we have

$$
\begin{aligned}
& \int_{|z|=r} \phi_{i}(\widetilde{f}(z)) \log ^{+} \xi(z) \frac{d \theta}{2 \pi} \\
& \leq \int_{|z|=r} \Gamma(\widetilde{f}(z)) \frac{d \theta}{2 \pi}+4 \sum_{i=1}^{2} \int_{|z|=r} \log ^{+} \frac{\left|\widetilde{f}_{\prime}^{\prime}(z)\right|}{\left|\widetilde{f}_{i}(z)\right|} \frac{d \theta}{2 \pi} \\
& +\sum_{i=1}^{2} \int_{|z|=r} \log ^{+} \frac{\left|\widetilde{f}_{i}^{\prime \prime}(z)\right|}{\left|\widetilde{f}_{i}(z)\right|} \frac{d \theta}{2 \pi}+\int_{|z|=r} \phi_{i}(\widetilde{f}(z)) \log ^{+}\left|\widetilde{f}_{1}^{\prime}(z)\right| \frac{d \theta}{2 \pi}
\end{aligned}
$$

where Γ is a bounded smooth function on Z_{k}. By using the lemma on logarithmic derivative, it follows that

$$
\int_{|\gamma|=r} \log ^{+} \frac{\left|\widetilde{f_{i}^{\prime}}(\gamma)\right|}{\left|\widetilde{f_{i}}(\gamma)\right|} \frac{d \theta}{2 \pi} \leq S_{\tilde{f}}(r) .
$$

It holds that

$$
\begin{aligned}
\int_{|z|=r} \phi_{i}(\widetilde{f}(z)) \log ^{+}\left|\widetilde{f}_{1}^{\prime}(z)\right| \frac{d \theta}{2 \pi} & =\frac{1}{2} \int_{|z|=r} \phi_{i}(\widetilde{f}(z)) \log ^{+}\left|\widetilde{f}_{1}^{\prime}(z)\right|^{2} \frac{d \theta}{2 \pi} \\
& \leq \frac{1}{2} \int_{|z|=r} \log ^{+}\left\|\widetilde{f}^{\prime}(z)\right\|_{T Z_{k}}^{2} \frac{d \theta}{2 \pi}+O(1)
\end{aligned}
$$

where $\|\cdot\|_{T Z_{k}}$ is a hermitian metric of $T Z_{k}$. By Lemma 1 and the concavity
of \log, we have that

$$
\begin{aligned}
& \frac{1}{2} \int_{|z|=r} \log ^{+}\left\|\widetilde{f}^{\prime}(z)\right\|_{T Z_{k}}^{2} \frac{d \theta}{2 \pi} \\
\leq & \frac{1}{2} \int_{|z|=r} \log \left\{\left\|\widetilde{f}^{\prime}(z)\right\|_{T Z_{k}}^{2}+1\right\} \frac{d \theta}{2 \pi} \\
\leq & \frac{1}{2} \log \left(1+\int_{|z|=r}\left\|\widetilde{f}^{\prime}(z)\right\|_{T Z_{k}}^{2} \frac{d \theta}{2 \pi}\right)+O(1) \\
\leq & \frac{1}{2} \log \left(1+\frac{1}{2 \pi r} \frac{d}{d r} \int_{|z| \leq r}\left\|\widetilde{f}^{\prime}(z)\right\|_{T Z_{k}}^{2} \frac{\sqrt{-1}}{2} d z \wedge d \bar{z}\right)+O(1) \\
\leq & \frac{1}{2} \log \left(1+\frac{1}{2 \pi r}\left(\int_{|z| \leq r}\left\|\widetilde{f}^{\prime}(z)\right\|_{T Z_{k}}^{2} \frac{\sqrt{-1}}{2} d z \wedge d \bar{z}\right)^{1+\delta}\right)+O(1) \| \\
= & \frac{1}{2} \log \left(1+\frac{r^{\delta}}{2 \pi}\left(\frac{d}{d r} \int_{1}^{r} \frac{d t}{t} \int_{|z| \leq r}\left\|\widetilde{f}^{\prime}(z)\right\|_{T Z_{k}}^{2} \frac{\sqrt{-1}}{2} d z \wedge d \bar{z}\right)^{1+\delta}\right)+O(1) \| \\
\leq & \frac{1}{2} \log \left(1+\frac{r^{\delta}}{2 \pi}\left(\int_{1}^{r} \frac{d t}{t} \int_{|z| \leq r}\left\|\tilde{f}^{\prime}(z)\right\|_{T Z_{k}}^{2} \frac{\sqrt{-1}}{2} d z \wedge d \bar{z}\right)^{(1+\delta)^{2}}\right)+O(1) \| \\
\leq & S_{f}(r)
\end{aligned}
$$

where δ is any positive number.
Because $\sum_{x \in R} \phi_{x}(\widetilde{f})=1$ on \mathbb{C}, it follows that

$$
\int_{|z|=r} \log ^{+} \xi(z) \frac{d \theta}{2 \pi}=\sum_{x \in R} \int_{|z|=r} \phi_{x}(\widetilde{f}(z)) \log ^{+} \xi(z) \frac{d \theta}{2 \pi} \leq S_{f}(r)
$$

The following lemma is useful.
Lemma 7. It follows that

$$
\sum_{i=1}^{2} \sum_{j=0}^{1} \pi_{k, 0}^{*} H_{i, j}=\sum_{i=1}^{2} \sum_{j=0}^{1} \widetilde{H}_{i, j}+\sum_{i=1}^{k} \pi_{k, i}^{*} E_{i}+\sum_{i=1}^{k} \widetilde{E}_{i} .
$$

Proof. Let the divisor $H_{i, j, l}$ on Z_{l} be the strict transform of $H_{i, j}$ under $\pi_{l, 0}$, and let $E_{i, l}, i \leq l$, be the strict transform of E_{i} under $\pi_{l, i}$, where $E_{l, l}=E_{l}$.

We show

$$
\sum_{i=1}^{2} \sum_{j=0}^{1} \pi_{l, 0}^{*} H_{i, j}=\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, l}+\sum_{i=1}^{l} \pi_{l, i}^{*} E_{i}+\sum_{i=1}^{l} E_{i, l}
$$

by induction over l. If $l=1$, we have

$$
\sum_{i=1}^{2} \sum_{j=0}^{1} \pi_{1,0}^{*} H_{i, j}=\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, 1}+2 E_{i}
$$

Therefore the statement of the induction holds for $l=1$. Assume that the statement holds for $l-1,1<l \leq k$. Let $C_{i} i=1,2, \ldots, r$ be irreducible divisor on Z_{l-1} such that

$$
\operatorname{supp}\left(\sum_{i=1}^{2} \sum_{j=0}^{1} \pi_{l-1,0}^{*} H_{i, j}\right)=\bigcup_{i=1}^{r} \operatorname{supp} C_{i}
$$

There exist positive integers $a_{1}, a_{2}, \ldots, a_{r}$ such that

$$
\sum_{i=1}^{2} \sum_{j=0}^{1} \pi_{l-1,0}^{*} H_{i, j}=\sum_{i=1}^{r} a_{i} C_{i}
$$

By the assumption of the induction, we have

$$
\sum_{i=1}^{l} \pi_{l, i}^{*} E_{i}=\sum_{i=1}^{r}\left(a_{i}-1\right) C_{i}
$$

Let $x \in Z_{l-1}$ be one of the points of the center of $\pi_{l, l-1}$, and let F_{l} be the irreducible component of E_{l} such that $\pi_{l, l-1}\left(\operatorname{supp} F_{l}\right)=x$. Assume that $x \in \operatorname{supp} C_{p} \cap \operatorname{supp} C_{q}$ for $1 \leq p<q \leq r$. Then the coefficients of F_{l} in $\sum_{i=1}^{2} \sum_{j=0}^{1} \pi_{l, 0}^{*} H_{i, j}$ is $a_{p}+a_{q}$, and the coefficient of F_{l} in $\sum_{i=1}^{l-1} \pi_{l, i}^{*} E_{i}$ is $a_{p}+a_{q}-2$. Therefore we have

$$
\sum_{i=1}^{2} \sum_{j=0}^{1} \pi_{l, 0}^{*} H_{i, j}-\sum_{i=1}^{l} \pi_{l, i}^{*} E_{i}=\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, l}+\sum_{i=1} E_{i, l}
$$

This complete the induction, and the lemma follows.

Proof of the Main Theorem. We put $W_{\tilde{\nabla}}(\tilde{f})=\widetilde{f}^{\prime} \wedge \widetilde{\nabla}_{\tilde{f}^{\prime}} \widetilde{f}^{\prime}$. We denote by $\operatorname{ord}_{z} g$ the order of zero of g at z, where g is a holomorphic section of a line bundle on a neighborhood of z. By (5), (6) and (7) in Lemma 6, it follows that

$$
\begin{aligned}
& \operatorname{ord}_{z}\left(\widetilde{\sigma}^{\prime}(\widetilde{f}) \widetilde{\sigma}^{\prime \prime}(\widetilde{f}) \prod_{i=1}^{2} \prod_{j=0}^{1} \widetilde{h}_{i, j}(\widetilde{f}) \prod_{i=1}^{k} \widetilde{e}_{i}(\widetilde{f})\right)-\operatorname{ord}_{z}\left(W_{\widetilde{\nabla}}(\widetilde{f})\right) \\
& \leq \min \left\{\operatorname{ord}_{z} \widetilde{\sigma}^{\prime}(\widetilde{f}), 2\right\}+\min \left\{\operatorname{ord}_{z} \widetilde{\sigma}^{\prime \prime}(\widetilde{f}), 2\right\} \\
& +2 \sum_{i=1}^{2} \sum_{j=0}^{1} \min \left\{\operatorname{ord}_{z} \widetilde{h}_{i, j}(\widetilde{f}), 1\right\}+2 \sum_{i=1}^{k} \min \left\{\operatorname{ord}_{z} \widetilde{e}_{i}(\widetilde{f}), 1\right\} .
\end{aligned}
$$

Therefore it follows that

$$
\begin{align*}
& \quad T_{\widetilde{f}}\left(r, K_{Z_{k}}\right)+T_{\tilde{f}}\left(r,\left[\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right]\right)+\sum_{i=1}^{2} \sum_{j=0}^{1} T_{\widetilde{f}}\left(r, \widetilde{H}_{i, j}\right)+\sum_{i=1}^{k} T_{\widetilde{f}}\left(r, \widetilde{E}_{i}\right) \tag{8}\\
& \leq \\
& \quad N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime}\right)+N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime \prime}\right)+2 \sum_{i=1}^{2} \sum_{j=0}^{1} N_{1}\left(r, \widetilde{f}^{*} \widetilde{H}_{i, j}\right) \\
& \quad+2 \sum_{1 \leq i \leq k} N_{1}\left(r, \widetilde{f}^{*} \widetilde{E}_{i}\right)+S_{f}(r)
\end{align*}
$$

where $K_{Z_{k}}$ is the canonical line bundle of Z_{k}. The canonical line bundle of Z_{k} is equal to

$$
\pi_{k, 0}^{*} K_{\mathbb{P}^{1}}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})+\pi_{k, 1}^{*} E_{1}+\pi_{k, 2}^{*} E_{2}+\cdots+E_{k}
$$

By Lemma 7, it follows that
(9) $\quad-T_{f}\left(r, K_{\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})}\right)=T_{f}(r, \mathcal{O}(2,2))=\sum_{i=1}^{2} \sum_{j=0}^{1} T_{\check{f}}\left(r, \pi_{k, 0}^{*} H_{i, j}\right)$

$$
\begin{aligned}
= & \sum_{i=1}^{2} \sum_{j=0}^{1} T_{\tilde{f}}\left(r, \widetilde{H}_{i, j}\right)+\sum_{i=1}^{k} T_{\tilde{f}}\left(r, \pi_{k, i}^{*} E_{i}\right) \\
& +\sum_{i=1}^{k} T_{\tilde{f}}\left(r, \widetilde{E}_{i}\right)
\end{aligned}
$$

By (8), (9), it follows that

$$
\begin{aligned}
T_{\widetilde{f}}\left(r,\left[\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right]\right) & \leq N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime}\right)+N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime \prime}\right) \\
& +2 \sum_{i=1}^{2} \sum_{j=0}^{1} N_{1}\left(r, \widetilde{f}^{*} \widetilde{H}_{i, j}\right)+2 \sum_{i=1}^{k} N_{1}\left(r, \widetilde{f}^{*} \widetilde{E}_{i}\right)+S_{f}(r)
\end{aligned}
$$

By Lemma 3 and Lemma 5, our main theorem follows.
Corollary 1. Let $f: \mathbb{C} \rightarrow \mathbb{C}^{*} \times \mathbb{C}^{*} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ be a non-constant map. Assume that

$$
\begin{aligned}
& f(\mathbb{C}) \not \subset\left\{\left(\left[X_{0}: X_{1}\right],\left[Y_{0}: Y_{1}\right]\right)\right. \\
&\left.\in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid C_{0} X_{0}^{r_{1}} Y_{0}^{r_{2}}-C_{1} X_{1}^{r_{1}} Y_{1}^{r_{2}}=0\right\}
\end{aligned}
$$

for all $\left(r_{1}, r_{2}\right) \in \mathbb{Z} \times \mathbb{Z} \backslash\{(0,0)\}$ and all $\left(C_{0}, C_{1}\right) \in \mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$, and assume that there exists no $(a, b) \in \mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$ such that

$$
a \log f_{1}+b \log f_{2}=(\text { constant })
$$

on \mathbb{C}. Then it follows that

$$
T_{\widetilde{f}}(r,[\widetilde{D}]) \leq N_{2}\left(r, f^{*} D^{\prime}\right)+N_{2}\left(r, f^{*} D^{\prime \prime}\right)+S_{f}(r)
$$

Proof. Because $N_{2}\left(r, \widetilde{f}^{*} \widetilde{H}_{i, j}\right)=0$ and $N_{2}\left(r, \widetilde{f}^{*} \widetilde{E}_{i}\right)=0$, we have the corollary.

Example 2. Let $D^{\prime}, D^{\prime \prime}$ be the divisor which are defined by the polynomials

$$
X_{0} Y_{0}-X_{1} Y_{1}, \quad X_{0} Y_{1}-X_{1} Y_{0}
$$

Then

$$
D_{1}^{\prime}+D_{1}^{\prime \prime}+\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j, 1}+E_{1}
$$

is normal crossing in Z_{1}. Therefore $\widetilde{D}^{\prime}=D_{1}^{\prime}, \widetilde{D}^{\prime \prime}=D_{1}^{\prime \prime}$. Let $E_{(0,0)}, E_{(0, \infty)}$, $E_{(\infty, 0)}, E_{(\infty, \infty)}$ be irreducible components of E_{1} such that

$$
\pi_{1,0}\left(\operatorname{supp} E_{(0,0)}\right)=([0: 1],[0: 1]), \quad \pi_{1,0}\left(\operatorname{supp} E_{(0, \infty)}\right)=([0: 1],[1: 0])
$$

$\pi_{1,0}\left(\operatorname{supp} E_{(\infty, 0)}\right)=([1: 0],[0: 1]), \quad \pi_{1,0}\left(\operatorname{supp} E_{(\infty, \infty)}\right)=([1: 0],[1: 0])$.
Let $f=\left(f_{1}, f_{2}\right): \mathbb{C} \rightarrow Z_{0}$ be a non-constant holomorphic map, and let $\tilde{f}: \mathbb{C} \rightarrow Z_{1}$ be the lift of f. It follows that

$$
T_{\tilde{f}}\left(r,\left[\widetilde{D}^{\prime}\right]\right)=T_{\tilde{f}}\left(r,\left[\pi_{1,0}^{*} D^{\prime}\right]\right)-T_{\check{f}}\left(r,\left[E_{(0, \infty)}\right]\right)-T_{\check{f}}\left(r,\left[E_{(\infty, 0)}\right]\right)
$$

and

$$
T_{\tilde{f}}\left(r,\left[\pi_{1,0}^{*} D^{\prime}\right]\right)=T_{f}(r, \mathcal{O}(1,1))=T\left(r, f_{1}\right)+T\left(r, f_{2}\right)
$$

where

$$
T\left(r, f_{i}\right)=\int_{|z|=r} \log ^{+}\left|f_{i}\right| \frac{d \theta}{2 \pi}+N\left(r,\left(f_{i}\right)_{\infty}\right)
$$

for $i=1,2$. By the first main theorem, we have

$$
\begin{aligned}
& T_{\tilde{f}}\left(r, E_{(0, \infty)}\right)=N\left(r, \widetilde{f}^{*} E_{(0, \infty)}\right)+m_{\tilde{f}}\left(r, E_{(0, \infty)}\right), \\
& T_{\tilde{f}}\left(r, E_{(\infty, 0)}\right)=N\left(r, \tilde{f}^{*} E_{(\infty, 0)}\right)+m_{\tilde{f}}\left(r, E_{(\infty, 0)}\right)
\end{aligned}
$$

It holds that

$$
m_{\tilde{f}}\left(r, E_{(0, \infty)}\right)=\int_{|z|=r} \log ^{+} \frac{1}{\sqrt{\left|f_{1}\right|^{2}+\left|f_{2}^{-1}\right|^{2}}} \frac{d \theta}{2 \pi}
$$

and

$$
m_{\tilde{f}}\left(r, E_{(\infty, 0)}\right)=\int_{|z|=r} \log ^{+} \frac{1}{\sqrt{\left|f_{1}^{-1}\right|^{2}+\left|f_{2}\right|^{2}}} \frac{d \theta}{2 \pi}
$$

By these equations, we have

$$
\begin{aligned}
T_{\tilde{f}}\left(r, \widetilde{D}^{\prime}\right)= & N\left(r,\left(f_{1}\right)_{\infty}\right)+N\left(r,\left(f_{2}\right)_{\infty}\right)-N\left(r, \widetilde{f}^{*} E_{(0, \infty)}\right)-N\left(r, \widetilde{f}^{*} E_{(\infty, 0)}\right) \\
& +\int_{|z|=r}\left(\log ^{+}\left|f_{1}\right|+\log ^{+}\left|f_{2}\right|\right) \frac{d \theta}{2 \pi} \\
& -\int_{|z|=r}\left(\log ^{+} \frac{1}{\sqrt{\left|f_{1}\right|^{2}+\left|f_{2}^{-1}\right|^{2}}}+\log ^{+} \frac{1}{\sqrt{\left|f_{1}^{-1}\right|^{2}+\left|f_{2}\right|^{2}}}\right) \frac{d \theta}{2 \pi}
\end{aligned}
$$

Let $f_{1}=P(z), f_{2}=\exp z$, where $P(z)$ is a polynomial of degree p on \mathbb{C}. Then $T\left(r, f_{1}\right)=p \log r+O(1)$, and $T\left(r, f_{2}\right)=|r|+O(1)$. Because

$$
\log ^{+} \frac{1}{\sqrt{\left|f_{1}\right|^{2}+\left|f_{2}^{-1}\right|^{2}}} \leq \log ^{+} \frac{1}{\left|f_{1}\right|}
$$

it follows that

$$
m_{\tilde{f}}\left(r, E_{(0, \infty)}\right) \leq T\left(r, f_{1}^{-1}\right)=T\left(r, f_{1}\right)+O(1)=p \log |r|+O(1)
$$

Therefore we have

$$
m_{\tilde{f}}\left(r, E_{(0, \infty)}\right)=o(r)
$$

By the same arguments, we have

$$
m_{\tilde{f}}\left(r, E_{(\infty, 0)}\right)=o(r)
$$

Then it holds that

$$
T_{\widetilde{f}}\left(r, \widetilde{D}^{\prime}\right)=r+o(r)
$$

Let D^{\prime} and $D^{\prime \prime}$ be divisors on $\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ which are defined by the polynomials

$$
X_{0}^{m} Y_{0}^{n}-X_{1}^{m} Y_{1}^{n}, \quad X_{0}^{n} Y_{1}^{m}-X_{1}^{n} Y_{0}^{m}
$$

(i,e,. $m=m^{\prime}=n^{\prime \prime}$ and $n=n^{\prime}=m^{\prime \prime}$.) We have the following theorem.
THEOREM 3. Let $f: \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$ be a non-constant holomorphic map. Let $\widetilde{f}: \mathbb{C} \rightarrow Z_{k}$ be the lift of f. Assume that

$$
\begin{aligned}
& f(\mathbb{C}) \not \subset\left\{\left(\left[X_{0}: X_{1}\right],\left[Y_{0}: Y_{1}\right]\right)\right. \\
&\left.\in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid C_{0} X_{0}^{r_{1}} Y_{0}^{r_{2}}-C_{1} X_{1}^{r_{1}} Y_{1}^{r_{2}}=0\right\}
\end{aligned}
$$

for all $\left(r_{1}, r_{2}\right) \in \mathbb{Z} \times \mathbb{Z} \backslash\{(0,0)\}$ and all $\left(C_{0}, C_{1}\right) \in \mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$, and assume that there exist no holomorphic functions g_{1}, g_{2} on \mathbb{C} and no $(a, b) \in$ $\mathbb{C} \times \mathbb{C} \backslash\{(0,0)\}$ such that

$$
f=\left(\exp g_{1}, \exp g_{2}\right): \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})
$$

$$
a g_{1}+b g_{2}=(\text { constant })
$$

on \mathbb{C}. Then it follows that

$$
\left(1-\frac{4}{m+n}\right) T_{\widetilde{f}}\left(r,\left[\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right]\right) \leq N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime}\right)+N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime \prime}\right)+S_{f}(r)
$$

Proof. Let $a_{1}=\min \{m, n\}$. It follows that

$$
\pi_{1,0}^{*}\left(D^{\prime}+D^{\prime \prime}\right)=D_{1}^{\prime}+D_{1}^{\prime \prime}+a_{1} E_{1}
$$

on Z_{1}, where D_{1}^{\prime} and $D_{1}^{\prime \prime}$ are proper transforms of D^{\prime} and $D^{\prime \prime}$ under $\pi_{1,0}$. Let $a_{2}=\min \left\{\max \{m, n\}-a_{1}, a_{1}\right\} \leq a_{1}$. It follows that

$$
\pi_{2,0}^{*}\left(D^{\prime}+D^{\prime \prime}\right)=D_{2}^{\prime}+D_{2}^{\prime \prime}+a_{2} E_{2}+a_{1} \pi_{2,1}^{*} E_{1}
$$

on Z_{2}, where D_{2}^{\prime} and $D_{2}^{\prime \prime}$ are proper transforms of D^{\prime} and $D^{\prime \prime}$ under $\pi_{2,0}$. Repeating this process, there exist positive integers $a_{3} \cdots, a_{k}$ such that

$$
\pi_{k, 0}^{*}\left(D^{\prime}+D^{\prime \prime}\right)=\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}+\sum_{i=1}^{k} a_{i} \pi_{k, i}^{*} E_{i}
$$

Without loss of generality, we may assume that $m \leq n$. Then it holds that $m \geq a_{1} \geq a_{2} \geq \cdots \geq a_{k}$. It follows that

$$
T_{\tilde{f}}\left(r,\left[\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right]\right) \geq T_{\tilde{f}}\left(r, \pi_{k, 0}^{*} \mathcal{O}(m+n, m+n)\right)-m \sum_{i=1}^{k} T_{\tilde{f}}\left(r, \pi_{k, i}^{*} E_{i}\right)
$$

By Lemma 7, we have

$$
T_{\widetilde{f}}\left(r, \pi_{k, 0}^{*} \mathcal{O}(2,2)\right)=\sum_{i=1}^{2} \sum_{j=0}^{1} T_{\widetilde{f}}\left(r, \widetilde{H}_{i, j}\right)+\sum_{i=1}^{k} T_{\widetilde{f}}\left(r, \pi_{k, i}^{*} E_{i}\right)+\sum_{i=1}^{k} T_{\widetilde{f}}\left(r, \widetilde{E}_{i}\right)
$$

Then we have

$$
\begin{aligned}
& T_{\widetilde{f}}\left(r,\left[\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right]\right) \\
& \geq \frac{m+n}{2}\left(T_{\tilde{f}}\left(r, \pi_{k, 0}^{*} \mathcal{O}(2,2)\right)-\sum_{i=1}^{k} T_{\tilde{f}}\left(r, \pi_{k, i}^{*} E_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\frac{m+n}{2}-m\right) \sum_{i=1}^{k} T_{\tilde{f}}\left(r, \pi_{k, i}^{*} E_{i}\right) \\
\geq & \frac{m+n}{2}\left(\sum_{i=1}^{2} \sum_{j=0}^{1} T_{\widetilde{f}}\left(r, \widetilde{H}_{i, j}\right)+\sum_{i=1}^{k} T_{\widetilde{f}}\left(r, \widetilde{E}_{i}\right)\right) .
\end{aligned}
$$

By Theorem 1, it follows that

$$
\begin{aligned}
T_{\tilde{f}}\left(r,\left[\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right]\right) \leq & \left.N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime}\right)+N_{2}\left(r, \widetilde{f}^{*} \widetilde{D}^{\prime \prime}\right)\right) \\
& +\frac{4}{m+n} T_{\widetilde{f}}\left(r,\left[\widetilde{D}^{\prime}+\widetilde{D}^{\prime \prime}\right]\right)+S_{f}(r) .
\end{aligned}
$$

Then the theorem follows.
Corollary 2. Assume the hypothesis of Theorem 3, and assume that

$$
f(\mathbb{C}) \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \backslash \operatorname{supp}\left(D^{\prime}+D^{\prime \prime}\right)
$$

If $m+n \geq 5$, then it follows that $f(\mathbb{C}) \subset \operatorname{supp} H_{i, j}$ for $i=1,2$ and $j=0,1$.
Proof. Assume that $f(\mathbb{C})$ is not contained in the support of $\sum_{i=1}^{2} \sum_{j=0}^{1} H_{i, j}$. By Theorem 3, f satisfies the following condition (i) or condition (ii):

$$
\begin{align*}
f(\mathbb{C}) \subset\{([& \left.\left.X_{0}: X_{1}\right],\left[Y_{0}: Y_{1}\right]\right) \tag{i}\\
& \left.\in \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) \mid X_{0}^{r_{1}} Y_{0}^{r_{2}}-C_{1} X_{1}^{r_{1}} Y_{1}^{r_{2}}=0\right\}
\end{align*}
$$

for some $\left(r_{1}, r_{2}\right) \in \mathbb{Z} \times \mathbb{Z} \backslash\{(0,0)\}$ and some $C_{1} \in \mathbb{C} \backslash\{(0)\}$.
(ii) There exist holomorphic functions g_{1}, g_{2} on \mathbb{C} and $(a, b) \in \mathbb{C} \times \mathbb{C} \backslash$ $\{(0,0)\}$ such that

$$
\begin{gathered}
f=\left(\exp g_{1}, \exp g_{2}\right): \mathbb{C} \rightarrow \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}), \\
a g_{1}+b g_{2}=(\text { constant })
\end{gathered}
$$

on \mathbb{C}.
If f satisfies condition (i), without loss of generality, we may assume that $r_{1}>0, r_{2} \geq 0$. Assume that $r_{2}>0$. Let R be an irreducible component
of $\left\{X_{0}^{r_{1}} Y_{0}^{r_{2}}-C X_{1}^{r_{1}} Y_{1}^{r_{2}}=0\right\}$. Then $([0: 1],[1: 0]),([1: 0],[0: 1]) \in$ $\operatorname{supp} R \cap \operatorname{supp} D^{\prime}$, and $\operatorname{supp} R \cap \operatorname{supp} D^{\prime \prime}$ contains at least one point which is $\operatorname{not}([0: 1],[1: 0])$ nor $([1: 0],[0: 1])$. Therefore the holomorphic map

$$
f: \mathbb{C} \rightarrow \operatorname{supp} R \backslash \operatorname{supp}\left(D^{\prime}+D^{\prime \prime}\right)
$$

is a constant map.
Assume that $r_{2}=0$. We have

$$
f(\mathbb{C}) \subset\left\{\left(\left[X_{0}: X_{1}\right],\left[Y_{0}: Y_{1}\right]\right) \in \mathbb{P}(\mathbb{C}) \times \mathbb{P}(\mathbb{C}) \mid X_{0}^{r_{1}}-C X_{1}^{r_{1}}=0\right\}
$$

Let S be an irreducible component of $\left\{X_{0}^{r_{1}}-C X_{1}^{r_{1}}=0\right\}$. Because $m+n \geq 5$, m or n is more than 2 , it follows that $\operatorname{supp} S \cap \operatorname{supp} D^{\prime}$ or $\operatorname{supp} S \cap \operatorname{supp} D^{\prime \prime}$ contains at least three points. Then f is a constant map.

If f satisfies condition (ii), it is easy to see that f is a constant map.
Remark 2. Let $x_{1,0}=([0: 1],[1: 1]), x_{1,1}=([1: 0],[1: 1]), x_{2,0}=$ $([1: 1],[0: 1]), x_{2,1}=([1: 1],[1: 0]) \in Z_{0}=\mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$. Let $W=Z_{0} \backslash$ $\operatorname{supp} D^{\prime} \cup \operatorname{supp} D^{\prime \prime}$, and let $W^{*}=W \backslash\left\{x_{1,0}, x_{1,1}, x_{2,0}, x_{2,1}\right\}$. By Corollary 2, there exist no non-constant holomorphic maps from \mathbb{C} to W^{*}.

Let $i: W^{*} \rightarrow W$ be the inclusion map, and let $d_{W^{*}}, d_{W}$ be the Kobayashi pseudo distance of W^{*}, W (see Noguchi-Ochiai [4]). By Proposition 1.3.14. of [4], we have $i^{*} d_{W}=d_{W *}$. Therefore W^{*} is Brody hyperbolic but not Kobayashi hyperbolic.

References

[1] Demailly, J.-P., Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Algebraic geometry Santa Cruz 1995, pp. 285-360, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI, 1997.
[2] Lazarsfeld, R., Positivity in algebraic geometry I, Springer Verlag, 2004.
[3] Noguchi, J., Connections and the Second Main Theorem for Holomorphic Curves, to appear in J. Math. Sci. Univ. Tokyo.
[4] Noguchi, J. and T. Ochiai, Geometric function theory in several complex variables. Translated from the Japanese by Noguchi. Translations of Mathematical Monographs, 80. American Mathematical Society, Providence, RI, 1990.
[5] Noguchi, J., Winkelmann, J. and K. Yamanoi, The second main theorem for holomorphic curves into semi-Abelian varieties, Acta Math. 188 no. 1 (2002), 129-161.
[6] Noguchi, J., Winkelmann, J. and K. Yamanoi, The second main theorem for holomorphic curves into semi-Abelian varieties II, Forum Math. 20 (2008), 469-503.
[7] Siu, Y.-T., Defect relations for holomorphic maps between spaces of different dimensions, Duke Math. J. 55 (1987), 213-251.
(Received June 15, 2011)
(Revised October 13, 2011)
Graduate School of Mathematical Sciences University of Tokyo 3-8-1 Komaba, Meguro-ku Tokyo 153-8914, Japan
E-mail: chiba@ms.u-tokyo.ac.jp

