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The Generalized Periodic Ultradiscrete KdV Equation

and Its Background Solutions

By Masataka Kanki

Abstract. We investigate the ultradiscrete KdV equation with
periodic boundary conditions where the two parameters (capacity of
the boxes and that of the carrier) are arbitrary integers. We give a
criterion to allow a periodic boundary condition when initial states
take arbitrary integer values. Conserved quantities are constructed
for the periodic systems. Construction of background solutions of the
periodic ultradiscrete KdV equation from the Jacobi theta function is
also presented.

1. Preface

In this paper we investigate the boundary conditions and the background
solutions of a cellular automaton which is called the Box Ball System (BBS).

The content of this paper is as follows. The BBS is derived from the
discrete KdV equation by a limiting procedure called ‘ultradiscretization’,
which we will explain briefly in section 2. In section 3, we give a criterion for
the BBS and the BBS with a Carrier (BBSC) to allow a periodic boundary
condition even when the system allows ‘negative solitons’. We also define
the background solution of the BBSC using the conserved quantities of
the BBSC. In section 4, we introduce a gauge transformed discrete KdV
equation whose solutions converge to the upward-shifted solutions of the
BBSC by ultradiscretization. We then investigate the relation between the
Jacobi theta solutions of the discrete KdV equation and the background
solutions of the BBS in section 5. In section 6, we present an example of
multi-soliton solutions with the boundary condition in which the value in
n → ∞ and that in n → −∞ differs from each other.
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2. Discrete KdV Equation and BBS

2.1. Ultradiscretization
The discrete KdV equation is defined as
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where n and t take only integer values. The discrete KdV equation is
transformed to the bilinear form
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The ultradiscretization is a limiting procedure in which the dependent vari-
ables of the discrete equations become also discretized [1]. The ultradis-
cretization transforms discrete equations into piecewise linear equations.
First we use the following lemma to ultradiscretize (2.1).

Lemma 2.1. Under the boundary condition limn→−∞ wt
n = 1, the dis-

crete KdV equation (2.1) is turned into

wt+1
n+1 =

(
δwt

n+1 + (1 − δ)
n∏

k=−∞

wt+1
k

wt
k

)−1

.(2.3)

Then we put wt
n = exp

(
Ut

n
ε

)
, δ = exp

(
−L

ε

)
(ε > 0) and take the limit

ε → +0 to obtain

U t+1
n+1 = min

(
L − U t

n+1,
n∑

k=−∞
(U t

k − U t+1
k )

)
,(2.4)

under the boundary condition limn→−∞ U t
n = 0.

We define the ultradiscrete KdV equation by the equation (2.4) [2]. It
is also equivalent to the time evolution equation of BBS with box capacity
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L [3, 4]. Next we ultradiscretize (2.2). Putting σt
n = eτ t

n/ε, δ = e−L/ε and
taking the limit ε → +0, we obtain the bilinear form of the ultradiscrete
KdV equation:

τ t+1
n+1 + τ t−1

n = max[τ t−1
n+1 + τ t+1

n − L, τ t
n + τ t

n+1].(2.5)

The ultradiscretization preserves the solitonic nature of the continuous KdV
equation.

Example 2.1. Let L = 1, then equation (2.4) is closed under U t
n ∈

{0, 1}. We give an example of the time evolution below (where a dot indi-
cates a zero).

t=1:111...11...1..............
t=2:...111..11..1.............
t=3:......11..11.11...........
t=4:........11..1..111........
t=5:..........11.1....111.....

2.2. BBS with a carrier
The time evolution of the BBS with a Carrier (BBSC) is expressed as

follows [5]. We prepare the “carrier” which can carry at most l balls. At
each time step in the evolution, the carrier moves from the left to the right.
While the carrier passes the j -th box, the following action occurs. Assume
that the carrier carries c (0 ≤ c ≤ l) balls before it passes the j -th box, and
also assume that there are U (0 ≤ U ≤ L) balls in the j -th box. Then, when
the carrier passes the box, the carrier puts min(c, L−U) balls into the box
and receives min(U, l−c) balls from the box. That is to say, the carrier puts
as many balls into the box as possible and simultaneously obtain as many
balls from the box as possible. This rule can be expressed in the following
formula

U t+1
n = min

(
L − U t

n,

n−1∑
k=−∞

(U t
k − U t+1

k )

)
(2.6)

+ max

(
0,

n∑
k=−∞

U t
k −

n−1∑
k=−∞

U t+1
k − l

)
,
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under the boundary condition

lim
n→−∞

U t
n = 0.

3. Periodic BBSC That Allows Negative Solitons

3.1. Negative solitons
Negative solitons are non-solitonic trains of negative values at a speed

of 1. These arise for example when we put negative initial values to the
BBS(C) equation.

Example 3.1. An example of a negative soliton in a BBS with box
capacity 1 is as follows (where a dot indicates a zero).

t=1: . .-1-1-1 . .-1 . . . . 1 1 . . . . .
t=2: . . .-1-1-1 . .-1 . . . . . 1 1 . . .
t=3: . . . .-1-1-1 . .-1 . . . . . . 1 1 .

While the sequence of 1’s has a speed equal to its length, the sequences of
-1 have speed 1 regardless of their lengths.

The pioneering works on negative solitons and background solutions are
due to Hirota [6], and Willox et.al. [7]. In the previous work with Mada
and Tokihiro [8], the author presented a way to construct the conserved
quantities of equation (2.4) which can also be applied to the negative soli-
tons, by using certain gauge transformation to the BBSC. We described
the structure of the conserved quantities for the BBSC, in terms of arclines
connecting balls and vacant boxes.

3.2. Coupled form of BBS(C)
Hereafter we consider the BBSC with box capacity L and carrier capacity

l.

Lemma 3.1. Equation (2.6) is equivalent to the following coupled equa-
tions {

U t+1
i = min(ct

i, L − U t
i ) + max(0, U t

i + ct
i − l),

ct
i+1 = U t

i + ct
i − U t+1

i ,
(3.1)
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Fig. 1. The time evolution of the coupled BBSC equation.

with the boundary condition

lim
i→−∞

ct
i = lim

i→−∞
U t

i = 0.

Proof. If we determine ct
i by ct

i =
∑i−1

k=−∞(U t
k − U t+1

k ) in (2.6), we
have (3.1). �

On the contrary, we have ct
i =

∑i−1
k=−∞(U t

k−U t+1
k ) from the last equation

in (3.1) with the boundary condition. Then the first equation gives (2.6).

Remark 3.1. The equation (3.1) is also called an “ultradiscrete Yang-
Baxter map”.

Corollary 3.1. The coupled equations of the BBS are expressed as{
U t+1

i = min(ct
i, L − U t

i ),

ct
i+1 = U t

i + ct
i − U t+1

i .
(3.2)

Proof. We have only to set l = +∞ in (3.1). �
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3.3. Periodic BBS(C)
We consider the time evolution of the BBS(C) with periodic boundary

condition. For a detailed discussion of the periodic BBS with Ui, ci being
non-negative, see [9] and [10]. We extend the results in [9, 10] to the periodic
BBSC that allows negative solitons.

Definition 3.1. We say that the set of initial values U t
1, U

t
2, · · ·U t

N

evolves as a periodic BBSC of size N, if and only if there exists at least
one ct

1 such that ct
N+1 = ct

1 and such that U t+1
1 , U t+1

2 , · · ·U t+1
N are defined

uniquely, independent of the choice of possible ct
1’s.

Remark 3.2. For some initial values {U t
i }N

i=1, there may exist more
than one ct

1’s such that ct
N+1 = ct

1 and such that {U t+1
i } depend on ct

1

(Example 3.3). The time evolution of the BBSC is not unique in these
cases, and we exclude such cases for simplicity in this paper.

3.3.1 Periodic BBS
First, we deal with the periodic BBS (3.2).

Lemma 3.2.

ct
N+1 = max[ct

1, v
t
c] + Ñ

Here,

vt
c = max

i∈{1,2,··· ,N}
[iL − 2(U t

1 + · · · + U t
i−1) − U t

i ],

Ñ = 2(U t
1 + U t

2 + · · ·U t
N ) − NL.

(See figure 2.)

Proof. First note that Ñ does not change under the time evolution
of the periodic BBSC. We omit the superscript (·)t of ct

i’s and vt
c for con-

venience and consider cN+1 =: f(c1) as a function of c1.
Fix one c1 such that c1 ≥ vc.
Since c1 ≥ vc ≥ L − U1,

U t+1
1 = min(c1, L − U1) = L − U1,

c2 = c1 + 2U1 − L.
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Fig. 2. The graph of cN+1 = f(c1).

The inequality c1 ≥ vc ≥ 2L − 2U1 − U2 gives

U t+1
2 = L − U2,

c3 = c2 + 2(U1 + U2) − 2L.

Using vc ≥ iL − 2(U1 + · · · + Ui−1) − Ui, repeated calculations lead to

U t+1
i = L − Ui,

ci+1 = ci + 2(U1 + U2 + · · · + Ui) − iL.

for i = 1, 2, · · · , N . (This is easily seen by induction.)
Thus we obtain cN+1 = f(c1) = c1 + Ñ if c1 ≥ vc.
If c1 < vc, on the other hand, there exists 1 ≤ J ≤ N such that

U t+1
J = cJ ,

cJ+1 = UJ + cJ − U t+1
J = UJ .

holds. Hence (Ui, ci) does not depend on c1 if i ≥ J+1. In fact (Ui, ci) will be
a constant that only depends on the initial values (U1, · · · , UN ). Therefore,
cN+1 = f(c1) is also a constant if c1 < vc. It is easily seen from (3.2) that
f(c1 + 1)− f(c1) = 0 or 1, and we already know that f(c1 + 1)− f(c1) = 1
is equivalent to c1 ≥ vc. Thus we obtain f(c1) = vc + Ñ if c1 < vc. �

Theorem 3.1. The BBS (3.2) evolves as a periodic system if and only
if

Ñ ≤ 0
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holds for the initial values {U0
i }N

i=1.

Proof. From the lemma 3.2

• If Ñ > 0, no c0
1 ∈ Z satisfies f(c0

1) = c0
1.

• If Ñ = 0, we have f(c0
1) = c0

1 for all c0
1 ≥ vc.

• If Ñ < 0, the only c0
1 that satisfies f(c0

1) = c0
1 is c0

1 = vc + Ñ .

In the second case, U1
i is independent of the choice of c0

1 because we
know from the previous lemma that U1

i = 1 − U0
i (1 ≤ i ≤ N) for any

c0
1 ≥ vc. The evolutions are the same in t = 2, 3, · · · . �

Remark 3.3. Although normally we treat the case where U t
i , ct

i ∈ Z,
this proposition is also valid for arbitrary real values of U t

i , ct
i.

3.3.2 Periodic BBSC
Next we deal with the periodic BBSC (3.1). As we are investigating

whether the system evolves from the time t to t+1, we can omit the super-
script (·)t of the variables below.

Theorem 3.2. Let,

M = 2(U1 + · · · + UN ) − NL,

cL = max
i∈{0,1,···N−1}

[L − 2(U1 + · · · + Ui) − Ui+1 + iL],

cR = min
i∈{0,1,···N−1}

[l − 2(U1 + · · · + Ui) − Ui+1 + iL],

Nodd = {i| 1 ≤ i ≤ N, i : odd},
Neven = {i| 1 ≤ i ≤ N, i : even},

dL = max
[

max
i∈Nodd

(l − Ui), max
i∈Neven

(Ui − L + l + 1)
]

,

dR = min
[

min
i∈Nodd

(L − Ui − 1), min
i∈Neven

(Ui)
]

+ 1.

When we put cN+1 = f(c1), the following cases occur.

• If ∞ > l > L:
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– If M �= 0, there exists a unique c1 ∈ Z such that f(c1) = c1

holds.

– If M = 0 and cL < cR, we have f(c1) = c1 for all c1 with
cL ≤ c1 ≤ cR.

– If M = 0 and cL ≥ cR, there exists a unique c1 such that f(c1) =
c1 holds.

• If l < L:

– If N is an odd number:
There exists a unique c1 ∈ 1

2Z such that f(c1) = c1 holds.
(For c1 ∈ 1

2Z\Z, we do not have a normal box ball interpretation.
However, ∀i U t

i ∈ Z → ∀i U t+1
i ∈ Z holds, which means the

number of balls in the box is an integer all the same.) · · · (∗∗)
– If N is an even number,

∗ For dL ≥ dR, there is a unique c1 ∈ Z that satisfy f(c1) = c1.
∗ For dL < dR, we have f(c1) = c1 for all c1 such that dL ≤

c1 ≤ dR, but {U t+1
i } depends on c1.

(This is the only case where we cannot determine the time
evolution uniquely.) · · · (∗ ∗ ∗)

• If l = L, there is a unique c1 that satisfies f(c1) = c1.

Proof.

If l > L :
We regard ci+1 as a function of ci to find

ci+1(ci + 1) − ci+1(ci) =

{
1 (L − Ui ≤ ci < l − Ui),

0 (otherwise),

which leads to

f(c1 + 1) − f(c1) =

{
1 (∀i, L − Ui ≤ ci < l − Ui),

0 (otherwise).

If L − Ui ≤ ci < l − Ui for all i ’s then, by induction we have

ci+1 = c1 + 2(U1 + · · ·Ui) − iL (i = 1, · · · , N).
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Thus the condition (∀i, L−Ui ≤ ci < l−Ui) is equivalent to the following:

(∀i) L − 2(U1 + · · · + Ui) − Ui+1 + iL(3.3)

≤ c1 < l − 2(U1 + · · · + Ui) − Ui+1 + iL.

The inequality (3.3) can be expressed as

cL ≤ c1 and c1 < cR,

and we have

cN+1 = f(c1) =




f(cL) (c1 ≤ cL),

c1 + M (cL ≤ c1 and c1 ≤ cR),

f(cR) (cR ≤ c1).

(Note that cL may be larger than cR.)
By examining the intersection of y = f(c1) and y = c1 , we obtain the

desired result. (When M = 0 and cL < cR, possible c1’s are not unique, but
we have U t+1

i = L−U t
i regardless of the choice of c1 which makes the time

evolution of U t
i unique.)

We conclude from the above argument that the system uniquely evolves
in time if l > L.
If l < L :

We have

ci+1(ci + 1) − ci+1(ci) =

{
−1 (l − Ui ≤ ci < L − Ui),

0 (otherwise).

Hence,

f(c1 + 1) − f(c1) =




1 (∀i, l − Ui ≤ ci < L − Ui) and (N : even),

−1 (∀i, l − Ui ≤ ci < L − Ui) and (N : odd),

0 (otherwise).

If l − Ui ≤ ci < L − Ui for all i, we have

U t+1
i = 2ci + U t

i − l,

ci+1 = l − ci,
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N:odd

c

c N+1

1
dL Rd d dRL

c1

N+1c

N:even

Fig. 3. Graph of cN+1 = f(c1) of BBSC under the condition l < L.

for each i. Thus we have

ci =

{
c1 (i ∈ Nodd),

l − c1 (i ∈ Neven).

Therefore, the condition (∀i, l − Ui ≤ ci < L − Ui) is equivalent to the
following set of inequalities:

(∀i)

{
l − Ui ≤ c1 < L − Ui (i ∈ Nodd),

Ui − L + l < c1 ≤ Ui (i ∈ Neven).

Thus if N is an odd number we obtain

f(c1) =




f(dL) (c1 < dL),

l − c1 (dL ≤ c1 and c1 ≤ dR),

f(dR) (dR < c1).

(See the left graph of figure 3.)
Therefore, there is a unique c1 such that f(c1) = c1 (c1 ∈ 1

2Z). Even
though c1 may not be an integer, as long as {U t

i } are all integers, {U t+1
i }

are closed in Z. In particular if dL ≥ dR, f(c1) is constant in c1.
If N is an even number, we obtain:

f(c1) =




f(dL) (d1 < dL),

c1 (dL ≤ c1 and c1 ≤ dR),

f(dR) (dR < c1).
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(See the right graph of figure 3.)
Therefore if dL ≥ dR, f(c1) is constant in c1, which renders the time

evolution unique.
If dL < dR, by fixing c1 such that dL ≤ c1 ≤ dR we obtain

U t+1
i = U t

i + (−1)i(l − 2c1).

This indicates that the time evolution is dependent on c1. We do not have
a unique periodic BBSC in this case. �

Corollary 3.2. The time evolution of the BBSC (3.1) with the peri-
odic boundary condition is not well-defined if and only if the three conditions


l < L,

the system size N is an even number,

dL < dR,

hold simultaneously.

Example 3.2. We show an example of the periodic BBSC. We express
the time evolution{

V = min(c, L − U) + max(0, U + c − l),

d = U + c − V,

as follows:

U
c-|-d.

V

Let N = 8, L = 1 and l 	 1.

0 3 0 0 0 0 0 0
0-|-0-|-5-|-4-|-3-|-2-|-1-|-0-|-0

0 a 1 1 1 1 1 0
4-|-3-|-a-|-1-|-2-|-3-|-4-|-5-|-4

1 3 a 0 0 0 0 1
1-|-2-|-7-|-2-|-1-|-0-|-0-|-0-|-1
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0 a 3 1 1 0 0 0
2-|-1-|-a-|-3-|-4-|-5-|-4-|-3-|-2

1 1 a 0 0 1 1 1
3-|-4-|-5-|-0-|-0-|-0-|-1-|-2-|-3

0 0 3 0 0 0 0 0

Here a = −2.

Example 3.3. We present two irregular cases in defining periodic
BBSC. Here is an example of the case (∗∗) in proposition 3.2. Let N = 7,
L = 5, l = 1 and b = 1

2 .

1 4 1 4 1 4 1
b-|-b-|-b-|-b-|-b-|-b-|-b-|-b

1 4 1 4 1 4 1

Next we show an example when the periodic BBSC is not well-defined. Let
N = 4, L = 5 and l = 2.

2 3 2 3 2 3 2 3
1-|-1-|-1-|-1-|-1 , 2-|-0-|-2-|-0-|-2

2 3 2 3 4 1 4 1

We have more than one types of time evolutions depending on the choice of
c1.

Remark 3.4. The BBSC is an invertible system, which is true even
when some of the variables {U t

i , c
t
i} take negative values.

3.4. Periodic BBS with K kinds of balls
We consider the extended BBS where we have K kinds of balls distin-

guished by integers 1 ≤ k ≤ K. We call this system BBSK . Here we
consider the case where the capacity of the box is 1 in each box. Let U t

i,k

be the number of balls k in the i-th box and ct
i,k the number of balls k in

the carrier when the carrier is located between the (i − 1)-th box and the
i-th one. The time evolution rule of the BBSK is

U t
i,k = min


1 −

k−1∑
j=1

U t+1
i,j −

K∑
j=k

U t
i,j , ct

i,k


 ,

ct
i+1,k = U t

i,k + ct
i,k − U t+1

i,k ,



282 Masataka Kanki

Fig. 4. Time evolution of BBSK .

where k = 1, 2, · · · , K (See figure 4).

Definition 3.2. The BBSK can be defined as a periodic system if
there exists at least one set of

(ct
1,1, c

t
1,2, · · · , ct

1,K) ∈ R
K

such that ct
N+1,j = ct

1,j hold for all j ∈ {1, · · · , K} and the U t+1
i,k ’s are

determined uniquely independent of the choice of possible ct
1,k’s.

Theorem 3.3. The periodic BBSK is well-defined if and only if

N∑
j=1

U0
j,l ≤

1
2


N −

N∑
j=1

K∑
k=1
k �=l

U0
j,k




holds for all l ∈ {1, 2, · · · , N}.

Proof. First note that we only have to consider the case where t = 0
because

∑N
j=1 U t

j,l is independent of t. We know from the time evolution
rule that c0

N+1,k depends only on c0
1,1, c

0
1,2, · · · , c0

1,k and does not depend
on c0

1,k+1, c
0
1,k+2, · · · , c0

1,K . We omit the superscript (·)0 for convenience
hereafter.

For l = 1, 2, · · · , N let

Nl =
N∑

j=1

K∑
k=1

Uj,k +
N∑

j=1

Uj,l − N.

The condition in the proposition is rewritten as Nl ≤ 0 for all l.
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We first determine the cases that allow for a c1,1 such that satisfies
cN+1,1 = c1,1. We calculate in the same way as in lemma 3.2 to obtain

cN+1,1 = max[c1,1, γ1] + N1,

γ1 = max
i∈{1,··· ,N}


i −

i−1∑
j=1

Uj,1 −
i∑

j=1

K∑
k=1

Uj,k


 .

Thus there exists c1,1 such that cN+1,1 = c1,1 if and only if N1 ≤ 0.
Next we determine cN+1,2 from c1,1 and c1,2. We obtain

cN+1,2 = max[c1,2, γ2] + N ′
2,

N ′
2 =

N∑
j=1

(
Ũj,1 +

K∑
k=2

Uj,k

)
+

N∑
j=1

Uj,2 − N,

and γ2 is a constant determined by the Ui,k’s only. Therefore we have c1,2

such that cN+1,2 = c1,2 if and only if N ′
2 ≤ 0. We know from

∑N
i=1 Ũi,1 =∑N

i=1 Ui,1 that N ′
2 = N2. By repeating the same calculations for cN+1,k

(k ≥ 3) we obtain the proposition. If Nj = 0 for some j there exist more
than one c1,j such that cN+1,j = c1,j . The time evolution of Ui,k is still
unique in this case. �

3.5. Some elaborations on conserved quantities

Proposition 3.1. The invertible transformation{
Ũ t

i = U t
i + m,

c̃t
i = ct

i + m,

deforms BBSC (3.1) to{
Ũ t+1

i = min(c̃t
i, (L + 2m) − Ũ t

i ) + max(0, Ũ t
i + c̃t

i − (l + 2m)),

c̃t
i+1 = Ũ t

i + c̃t
i − Ũ t+1

i .
(3.4)

Here m is an arbitrary real number.

Proof. We immediately obtain (3.4) by direct calculation [11]. �
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When m > 0, in particular, we call this transformation an “upward-
shift translation”. If some of the variables take negative values in the initial
conditions, by putting m > 0 large enough, all U t

i ’s and ct
i’s are transformed

to be positive. Note that the capacity of the boxes and that of the carrier
increase by 2m, and that the boundary conditions will change: U t

i is not 0 at
i → ±∞ anymore, but it becomes some nonzero constant at i → ±∞. Also
note that the value [2(U0

1 + U0
2 + · · ·U0

N ) − NL] does not change through
this shift. Hence, treating the negative solitons is equivalent to treating
the non-negative BBS’s with the boundary conditions that the solutions U t

n

have some positive constant value at n → ±∞.

Remark 3.5. In this transformation, the values U t
i at i → +∞ and

those at i → −∞ have to be the same. In section 5, we present a way to
deal with the boundary condition such that limi→−∞ U t

i �= limi→+∞ U t
i .

The construction of conserved quantities found in [8] can also be per-
formed for a periodic BBSC with general L and l. We depict by arclines the
movement of the balls from the box to the other box according to the time
evolution of BBSC. The operation of drawing arclines when the capacity of
the carrier is l is denoted by (OP)l.

(OP)l

• We take out balls from the boxes from the left to the right according
to the evolution of BBSC. We distinguish each ball and when two or
more balls are taken out from the same box at each step, the one at a
lower position is taken out first. The carrier can hold at most l balls.

• When two or more balls are passed from the carrier to a box at the
same step, the one taken by the carrier last will be the first to go back
to a box.

• We depict by arclines the movement of the balls from the box to the
carrier to the other box.

We can see some structures in the set of arclines connecting the balls and
the empty boxes.

Theorem 3.4 (Kanki-Mada-Tokihiro [8]). On the periodic BBSC
upward-shifted by m, let

C̃l := #{arclines drawn at (OP)l} − #{arclines drawn at (OP)l−1},
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for the given initial condition. Then (C̃1, C̃2, · · · ) is a set of constants inde-
pendent of the time evolution of the system. We also denote by (C0

1 , C0
2 , · · · )

the set of these constants for the “vacuum state” where every box has ex-
actly m balls. The difference of these two (C̃1 − C0

1 , C̃2 − C0
2 , · · · ) is also a

set conserved quantities of the BBSC. We rewrite it (C1, C2, · · · ) and call it
“the set of conserved quantities of the BBSC”.

We extend this theorem to the general periodic BBSC.

Proposition 3.2. For the periodic BBSC with parameters L and l and
initial conditions {U0

i } that satisfy the following

For both the initial conditions {U0
i } and the vacuum solution {m}

we can define the periodic system for l ∈ [L,+∞],

and also for all l, there exists c1 ∈ Z such that f(c1) = c1,(3.5)

we can apply theorem 3.4 to construct the conserved quantities.

In other words, we consider the cases other than (∗∗) in proposition 3.2.
Note that for l with l < L we allow the case (∗ ∗ ∗) in proposition 3.2.

Example 3.4. See figure 5 for an example. We consider the periodic
BBSC with a box capacity 1 and system size N = 12 and set the initial
value to be 001101101000. By an upward-shift with m = 1, initial values
are transformed into 112012212111. We have (C̃1, C̃2, C̃3, C̃4) = (6, 5, 3, 1),
(C0

1 , C0
2 , C0

3 , C0
4 ) = (6, 6, 0, 0) and (C1, C2, C3, C4) = (0,−1, 3, 1).

3.6. Defining Background Solutions
We propose the following way to distinguish the background solutions

from the positive solitons. Note that the balls connected in (OP)l are in-
cluded in those connected in (OP)l′ where l′ > l.

Definition 3.3. For the BBS upward-shifted by m, the balls con-
nected in the process (OP)2m constitute negative soliton solutions. Re-
maining balls constitute positive solitons.

Definition 3.4. The solution {U t
i } is a “background solution” if Ck =

0 for ∀k ≥ 2m + 1.
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Fig. 5. Drawing arclines to the periodic system of size N = 12.

Example 3.5. For the BBS with the box capacity one, · · · 01110 · · · and
· · · 01210 · · · are both stationary solitary waves moving at speed one. We
can distinguish these two waves by constructing conserved quantities. The
former is a background solution without positive solitons, and the latter
can be interpreted as a background solution with a soliton of length one
superimposed. We shift both systems upward by m = 1, and find that the
former has the conserved quantity (C1, C2) = (0,−1), Ck = 0(k ≥ 3). On
the other hand the latter has (C1, C2, C3) = (0,−1, 1). (See figure 6)

4. Relation to the Discrete System

We consider the following transformation

σ̃t
n = δ−(t−n)2/2Lσt

n(4.1)
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Fig. 6. (Example 3.5):Distinguishing between -11-1 and -12-1.

for the solution σt
n of the bilinear discrete KdV equation.

Proposition 4.1. The transformed function σ̃t
n satisfies the following

gauge transformed discrete KdV equation

(1 + δ)σ̃t+1
n+1σ̃

t−1
n = δ(1+2/L)σ̃t−1

n+1σ̃
t+1
n + σ̃t

nσ̃t
n+1.(4.2)

This statement is proved by a direct calculation. We consider the ul-
tradiscrete limit of the equation (4.2). We let δ = e−L/ε, σt

n = eτ t
n/ε and

σ̃t
n = eτ̃ t

n/ε, and the following proposition holds.

Proposition 4.2. For U t
n and Ũ t

n defined as U t
n = τ t

n + τ t+1
n−1 − τ t+1

n −
τ t
n−1 and Ũ t

n = τ̃ t
n + τ̃ t+1

n−1 − τ̃ t+1
n − τ̃ t

n−1, the relation (4.1) is transformed
into

Ũ t
n = U t

n + 1.

in the limit ε → +0.

Proof. We take the limit ε → +0 to obtain τ̃ t
n = τ t

n + 1
2(t − n)2.

Therefore we have Ũ t
n = U t

n + 1. �

Remark 4.1. The transformation (4.1) of the discrete KdV equation
corresponds to the ‘1 ’ upward-shift to the BBSC in the ultradiscrete limit.
Thus the solution of the equation (4.2) goes to a ‘1 ’ upward-shifted solution
of the BBSC in the ultradiscrete limit.
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5. Background Solutions from Jacobi Theta Functions

We define Jacobi theta function by

ϑ3(v) = ϑ3(v, η) =
∞∑

n=−∞
qn2

z2n,

where q = eiπη, z = eiπv and i =
√
−1. We suppose Im(η) > 0. The Jacobi

theta functions are quasi-doubly periodic functions, that is, we have

{ϑ3(v + 1)}2 = {ϑ3(v)}2,

{ϑ3(v + η)}2 = e−2πi(2v+η){ϑ3(v)}2.

Proposition 5.1. Let v = η(n1 − n2 − n3) + η0. Then the function
τ(n1, n2, n3) := ϑ3(v) is a solution of the following equation, which is a
gauge-transformed discrete KP equation

(sα)τ1τ23 − τ2τ13 + (1 − s)τ3τ12 = 0.(5.1)

Here, α = e4iπη(= q4) and s is an arbitrary complex number. The
lower script ‘i’ of the function τ denotes a ‘+1’ shift in the variable ni, i.e.,
τ1 = τ(n1 + 1, n2, n3), τ23 = τ(n1, n2 + 1, n3 + 1), etc · · · .

Proof. From the quasi-doubly periodicity we have

τ1 = ϑ3(v + η) = e−iπ(2v+η)ϑ3(v),

τ23 = ϑ3(v − 2η) = eiπ(4v−4η)ϑ3(v),

which lead to

τ1τ23 = eiπ(2v−5η)(ϑ3(v))2.(5.2)

We also obtain

τ2τ13 = eiπ(2v−η)(ϑ3(v))2,(5.3)

τ3τ12 = eiπ(2v−η)(ϑ3(v))2.(5.4)

Thus we have the result. �

Remark 5.1. If a function α(n1, n2, n3) satisfies the relation ατ1τ23 =
τ2τ13 = τ3τ12, then τ(n1, n2, n3) satisfies the same equation (5.1). The
discussions in this section are therefore equally valid for such functions α.
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5.1. Reduction
Since the parameter s is arbitrary, we can put s to be s = eiπη·ξ (ξ > 0).

The parameter ξ is related to the box capacity of the BBS. From the way
v is chosen, we have τ = τ12, which is the reduction condition from the KP
equation to the KdV equation. If we rewrite τ t

n := τ(t, 0, n) the following
lemma holds.

Lemma 5.1. The gauge-transformed discrete KP equation (5.1) is re-
duced to the following gauge-transformed discrete KdV equation

sατ t+1
n τ t−1

n+1 + (1 − s)τ t
n+1τ

t
n = τ t−1

n τ t+1
n+1.(5.5)

Remark 5.2. We have the following relation with the upward shifted
discrete KdV equation (4.2):

s =
δ

1 + δ
,

α = δ2/L.

Although the coefficients in equation (5.5) are different from the bilin-
ear form of the normal discrete KdV equation, we find from the following
proposition that this does not lead to the loss of generality.

Proposition 5.2 (Tsujimoto-Hirota [2]). By change of variable

wt
n =

τ t
nτ t−1

n+1

τ t
n+1τ

t−1
n

,

the equation (5.5) is transformed into the discrete KdV equation

1
wt+1

n+1

− 1
wt

n

= δ′(wt
n+1 − wt+1

n ).

where δ′ = sα.

Proof. From the following identity

(LHS of (5.5))n→n+1 × τ t
n − (LHS of (5.5)) × τ t

n+2

= (RHS of (5.5))n→n+1 × τ t
n − (RHS of (5.5)) × τ t

n+2,
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we have

τ t+1
n+2τ

t
nτ t−1

n+1 − τ t+1
n+1τ

t
n+2τ

t−1
n = δ′τ t

nτ t+1
n+1τ

t−1
n+2 − δ′τ t

n+2τ
t−1
n+1τ

t+1
n .

Multiplying

τ t
n+1

τ t+1
n+1τ

t
n+2τ

t
nτ t−1

n+1

on both sides, we have the result. �

5.2. Coexistence of Solitons and Jacobi theta backgrounds
If we ultradiscretize the solutions of the equation (5.5), we will obtain the

solutions of the BBS. We will ultradiscretize the equation and the solutions.
To do this we first assume that η and η0 are both purely imaginary and
then replace iπη with −L/ε. (This choice of ε is empirical.) Then we take
logarithms on both sides and take the limit ε → +0.

Note that our paper is not the first to ultradiscretize the theta functions.
For example in [12], Iwao and Tokihiro ultradiscretized the theta function
solution of the periodic Toda equation. Our method is unique in that we
connected the ultradiscrete theta function to the background solution of the
BBS.

Lemma 5.2. The ultradiscretization of the solution τ t
n = ϑ3(v) is the

tau function Θt
n of the constant solution which takes U t

n = 2L for n ∈
(−∞,∞). Here we have the following relation between U t

n and Θt
n.

U t
n = Θt

n + Θt+1
n−1 − Θt+1

n − Θt
n−1.

Proof.

ϑ3(v) =
∞∑

k=−∞
eiπηk2

e2iπk·v

=
∞∑

k=−∞
exp [−iπηk{2(t − n) − k + 2η0/η}] .
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From the first line to the second line we replaced k with −k. We then
transform iπη into −L

ε , and affect on both sides limε→+0 ε log(·). If we
write the left hand side Θt

n after the ultradiscretization, we have

Θt
n = max

k∈Z
[Lk(2(t − n) − k + η′)].

Here we put η′ = 2η0/η. The solution U t
n constructed from Θt

n takes
constant value 2L on n ∈ (−∞,∞). �

We now have the background state ϑ3(v). We can add N -soliton solu-
tions onto the background state ϑ3(v). If we suppose that τ t

n := ϑ3(v)φt
n is

also a solution of (5.5), then φt
n satisfies the ordinary discrete KdV equation

sφt+1
n φt−1

n+1 + (1 − s)φt
n+1φ

t
n = φt−1

n φt+1
n+1.

We can take φt
n to be the N -soliton solution of the discrete KdV equa-

tion. We denote the ultradiscrete limit of φt
n by Φt

n and define V t
n by

V t
n = Φt

n + Φt+1
n−1 − Φt+1

n − Φt
n−1. Since s = eiπηξ = e−Lξ/ε, the solution

V t
n corresponds to the solution of BBS with box capacity Lξ.

Proposition 5.3. We have the BBS with box capacity (4 + ξ)L from
the equation (5.5) through ultradiscretization.

Proof. The proof is based on Takahashi and Hirota [13]. If we put
δ′ = se4iπη, then (5.5) is transformed into

1
wt+1

n+1

− 1
wt

n

= δ′(wt
n+1 − wt+1

n )

from the proposition 5.2. Thus we have

wt+1
n+1

wt
n

=
1 − δ′wt

n+1w
t+1
n+1

1 − δ′wt
nwt+1

n
.(5.6)

From (5.6) we obtain for any M < 0

n∏
k=−M

wt+1
k+1

wt
k

=
1 − δ′wt

n+1w
t+1
n+1

1 − δ′wt
−Mwt+1

−M

.
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Here we have

wt
n =

τ t
nτ t+1

n+1

τ t
n+1τ

t−1
n

=
ϑt

nϑt+1
n+1

ϑt
n+1ϑ

t−1
n

φt
nφt+1

n+1

φt
n+1φ

t−1
n

,

where

ϑt
nϑt+1

n+1

ϑt
n+1ϑ

t−1
n

=
ϑ3(v)ϑ3(v − 2η)

(ϑ3(v − η))2
= e−2iπη.

and the positive solitons satisfy limn→−∞ φt
n = 1.

Thus we obtain limn→−∞ wt
n = e−2iπη. Therefore in the limit M → +∞

we have
n∏

k=−∞

wt+1
k+1

wt
k

=
1

1 − s
(1 − δ′wt

n+1w
t+1
n+1),

which is equivalent to

wt+1
n+1 =

(
δ′wt

n+1 + (1 − s)
n∏

k=−∞

wt+1
k

wt
k

)−1

.

After replacing iπη with −L
ε , and wt

n with eUt
n/ε, we take the limit ε → 0

to obtain

U t+1
n+1 = −max[U t

n+1 − (4 + ξ)L,
n∑

k=−∞
(U t+1

k − U t
k)].

From −max(a, b) = min(−a,−b), the equation is the BBS with the box
capacity (4 + ξ)L. �

These results can be summed up to the following theorem.

Theorem 5.1. As solutions of the gauge-transformed discrete KdV
equation (5.5), we have the following type of solutions τ t

n constructed from
the Jacobi theta functions.

τ t
n = ϑ3(v)︸ ︷︷ ︸

(Background solution)

× φt
n︸︷︷︸

(N-soliton solution)

.
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Fig. 7. Example of background and 1 -soliton solution constructed from Jacobi theta
function.

The ultradiscretization of this solution is a solution of the BBS with box
capacity (4 + ξ)L and is 2L + V t

n .

Example 5.1. For example when L = 1/2, ξ = 2, we have a solution of
the BBS with box capacity 3 as shown in figure 7.

We successfully obtained the positive solitons V t
n superimposed over the

background solutions U t
n. However, to obtain negative solitons we have to

consider solutions with holes in the background solutions, which needs a
more detailed discussion [8].

6. BBS with Irregular Boundary Conditions

Finally we present the BBS with a boundary condition where

lim
n→+∞

U t
n �= lim

n→−∞
U t

n.
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Lemma 6.1. The τ -function of the N-soliton solution of the BBS is as
follows

τ t
n = max

J⊂[N ]

[(∑
i∈J

Pi

)
t −

(∑
i∈J

min(L, Pi)

)
n(6.1)

+

(∑
i∈J

θi

)
−

∑
i>j i,j∈J

2 min(Pi, Pj)


 ,

where ∀i Pi > 0 and Li ∈ R.

We take L = 3 and consider the soliton solution made up of solitons
(Pi, θi) = (2, 1) (i = 1, 2, · · · , N0). It has the expression

τ(x) = max
0≤|J |≤N0

[2|J |x + |J | − 2|J |(|J | − 1)] . (x = t − n)

In the limit N0 → ∞, the N0-soliton solution converges to the following
background solution:

τbg(x) = max
k≥0

[
2k

(
x +

1
2

)
− 2k(k − 1)

]
.(6.2)

Values of U t
n = τbg(x)+ τbg(x+2)− 2τbg(x+1) at integer points at time

t = 0 are as follows.

n · · · 0 1 2 3 4 5 · · ·
U t

n 1 1 1 1 0 0 0 0

The background solution (6.2) has the new boundary condition where
the solution tends to 1 in n → −∞ and to 0 in n → ∞. We can add positive
solitons to (6.2).

Example 6.1. We construct the following 2-soliton solution travelling
in the background state (6.2). Let the width and the phases of the two
solitons to be added be

P̂1 = 4, θ̂1 = −8; P̂2 = 5, θ̂2 = −12,
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and we denote these solitons by soliton A and B respectively. The general
form of the solution τ(x) is given as

τ(x) = max[τbg(x), 4t − 3n − 8 + τbg(x − 2),

5t − 3n − 12 + τbg(x − 2), 9t − 6n − 28 + τbg(x − 4)].

Construction of the coexisting state of solitons and negative solitons is based
on [8]. What happens during the time evolution of this system is as follows.
(See also the time evolution pattern of the system at the end of this section.)

• 0 ≤ t ≤ 5

We observe that the soliton A travels at speed 2 and the soliton B

travels at speed 3 on the background 1. The soliton B takes over the
soliton A in the same way as in BBS with box capacity 1.

• t ∼ 6

The soliton B climbs down the discontinuity of the background state
from 1 to 0. The phase of the background is shifted 2 to the left. The
soliton B travels at speed 5/3 from now on.

• t ∼ 12

The same incident happens to the soliton A and it travels at speed
4/3 hereafter. The phase shift of the background is also −2.

Remark 6.1. The BBS may take different boundary values at n → ∞
and n → −∞ like in this example, which is not treated as a periodic BBS.
Other irregular boundary conditions can also be considered and general
solutions are calculated in the same way. In this section we have only
dealt with the case where L = 3. We can consider general L to obtain the
boundary condition in which the left side and the right side take arbitrary
integer values.

t= 0 ::222:::::22:::::::::..................
t= 1 ::::222::::22::::::::..................
t= 2 ::::::222:::22:::::::..................
t= 3 ::::::::222::22::::::..................
t= 4 ::::::::::22::222::::..................
t= 5 :::::::::::22:::222::..................
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t= 6 ::::::::::::22::::222..................
t= 7 :::::::::::::22::::131.................
t= 8 ::::::::::::::22:::.23.................
t= 9 :::::::::::::::22::..32................
t=10 ::::::::::::::::22:..131...............
t=11 :::::::::::::::::22...23...............
t=12 ::::::::::::::::::3....32..............
t=13 :::::::::::::::::.31...131.............
t=14 :::::::::::::::::.22....23.............
t=15 :::::::::::::::::.13.....32............
t=16 :::::::::::::::::..31....131...........
t=17 :::::::::::::::::..22.....23...........
t=18 :::::::::::::::::..13......32..........
t=19 :::::::::::::::::...31.....131.........
t=20 :::::::::::::::::...22......23.........

The time evolution of 2-solitons on an irregular background is shown above.
Here the frame itself moves along with the background state so that the
discontinuity in the background solution seems fixed. Note that the back-
ground state itself is moving to the right at speed 1. The symbol ‘:’ indicates
a background ‘1 ’ and ‘.’ a zero respectively. We see that the phase shift of
the background after colliding each soliton is −2.

7. Concluding Remarks

We first discussed the conditions under which the periodic BBSC with
general box and carrier capacities is well-defined. We extended the construc-
tion of the conserved quantities to general BBSC. Conserved quantities are
useful in distinguishing background solutions from positive soliton solutions.
We then showed that the Jacobi theta function is a solution of the gauge
transformed discrete KdV equation, and that the ultradiscretization of this
solution corresponds to the background solution of the BBS. The author
wishes to extend this method to more general functions in order to deal
with negative solitons. Finally, the BBS with irregular boundary conditions
has been constructed. To obtain the solution of the system with general L

is a future problem.
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