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An Invariant of Embeddings of 3–Manifolds in

6–Manifolds and Milnor’s Triple Linking Number

By Tetsuhiro Moriyama

Abstract. We give a simple axiomatic definition of a rational–
valued invariant σ(W, V, e) of triples (W, V, e), where W ⊃ V are
smooth oriented closed manifolds of dimensions 6 and 3, and e is a
second rational cohomology class of the complement W \ V satisfying
a certain condition. The definition is stated in terms of cobordisms
of such triples and the signature of 4-manifolds. When W = S6 and
V is a smoothly embedded 3–sphere, and when e/2 is the Poincaré
dual of a Seifert surface of V , the invariant coincides with −8 times
Haefliger’s embedding invariant of (S6, V ). Our definition recovers a
more general invariant due to Takase, and contains a new definition
for Milnor’s triple linking number of algebraically split 3–component
links in R3 that is close to the one given by the perturbative series
expansion of the Chern–Simons theory of links in R3.

1. Introduction and Main Results

Milnor [10] proved that the link homotopy classes of algebraically split 3–
component links L = K1∪K2∪K3 in the Euclidean 3–space R3 are classified
by the triple linking number µ(L) ∈ Z. There are several definitions of
µ(L), and one is given by the perturbative series expression of the Chern–
Simons theory of links in R3 (Altschuler–Freidel [2], Bar-Natan–Vassiliev
[3], Lescop [8], Thurston [17], etc.), more precisely, µ(L) is expressed as an
integral over a manifold (T 3×R3)\L, where T 3 = S1×S1×S1 is the 3–torus
and L = T 3

1 ∪ T 3
2 ∪ T 3

3 ⊂ T 3×R3 is the (disjoint) union of embedded 3–tori

T 3
i =

{
(t1, t2, t3, x) ∈ T 3×R3 | x = fi(ti)

}
,

and where fi : S1 → R3 is a smooth embedding representing the knot
Ki. On the other hand, Haefliger [6] [7] proved that the abelian group
Emb(S3, S6) of the smooth isotopy classes of embeddings S3 → S6, with
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the group structure given by the connected sum, is isomorphic to Z. In this
paper, we give an interpretation of µ(L) as an invariant of the embedding
L ↪→ T 3×R3 by generalizing Haefliger’s construction. To this end, we will
need to modify the manifold pair (T 3×R3,L) to make it fit into our set-
tings. It will be replaced by (T 3×S3, ML), ML = L ∪ (−L0), so that the
ambient manifold is closed and the submanifold is null–homologous, where
S3 = R3 ∪ {∞}, and L0 is a 3–submanifold of T 3×R3 constructed from a
3–component unlink in R3 split from L in the same way as we construct L
(so ML is the union of 6 disjoint copies of T 3).

In this paper, we deal with triples β = (Z, X, e), which we will call e-
manifolds1, consisting of (smooth, oriented, and compact) manifolds Z ⊃ X

of codimension 3 such that X is properly embedded in Z (∂X ⊂ ∂Z, and X

is transverse to ∂Z), and a cohomology class e ∈ H2(Z \ X; Q) such that

e|S(νX) = e(FX)

over Q, where e(FX) ∈ H2(S(νX); Z) is the Euler class of the vertical
tangent subbundle FX ⊂ TS(νX) of the total space of the normal sphere
bundle ρX : S(νX) → X of X, and where the normal bundle νX of X is
identified with a tubular neighborhood of X so that we can regard S(νX)
as a submanifold of Z \ X. Such a cohomology class e will be called an
e-class of (Z, X) in this paper. The existence of an e-class implies the
vanishing of the rational fundamental homology class of (X, ∂X) in (Z, ∂Z)
(Proposition 6.1 (1)), but the converse is not true in general (Remark 6.1).

The cohomology class e/2 corresponds to the homology class of a Seifert
surface of X (if it exists and its normal bundle is trivial over X) by the
Poincaré duality (Corollary 7.1). In particular, if (Z, X) admits just one
e-class, then e/2 represents the homomorphism H2(Z \ X; Z) → Q, y �→
lk(y, X), where lk(y, X) is the linking number of y with X.

Precise definitions of e-class, e-manifold, isomorphism (denoted by ∼=)
and cobordism of e-manifolds, etc. will be given in Section 2. We will
also introduce notions of quasi e-class and quasi e-manifold. These are
slight generalizations of e-class and e-manifold, and easier to handle as
we will explain in Remark 1.3. We remark that, for (quasi) e-manifolds
β = (Z, X, e) and β′ (of the same dimension), the disjoint sum β 	 β′,
the boundary ∂β = (∂Z, ∂X, e|∂Z\∂X), and the reversing the orientation

1“e” is the first letter of “Euler class”.
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−β = (−Z,−X, e) are defined in natural ways. By definition, an e-class is a
quasi e-class, and the boundary of a quasi e-manifold is an e-manifold (not
just a quasi e-manifold).

There are two main purposes of the present paper. One is to show
the existence and the uniqueness of a rational–valued invariant σ(α) of
the isomorphism classes of closed 6–dimensional e-manifolds α = (W, V, e)
(∂W = ∂V = ∅, dimW = 6) which is uniquely characterized by the follow-
ing two axioms (Theorem 1.2):

Axiom 1. The invariant σ is additive. Namely, for 6–dimensional
closed e-manifolds α and α′,

σ(−α) = −σ(α),

σ(α 	 α′) = σ(α) + σ(α′).

Axiom 2. If a 6–dimensional closed e-manifold α bounds a 7–dimen-
sional e-manifold (Z, X, e) (∂(Z, X, e) ∼= α), then

σ(α) = SignX.

Here, SignX ∈ Z is the signature of a 4–manifold X. The second
purpose is to show that σ can detect both Haefliger’s invariant (Theorem 1.4)
and Milnor’s triple linking number (Theorem 1.5).

The author’s initial motivition to define the invariant σ is to provide
another application to 3–dimensional topology [12]. If an integral homology
3–sphere M is amphichiral (namely, M admits a self–homeomorphism re-
versing the orientation), then the Rokhlin invariant of M vanishes. This fact
is a natural consequence of fundamental properties of the Casson invariant
[1]. In our future paper [12], we give a new direct proof of this vanishing
property.

Remark 1.1. In [12], the invariant σ is applied to a manifold pair
(M × M, (M × p) ∪ (p × M) ∪ M∆) (where p ∈ M is a fixed point, and
M∆ ⊂ M ×M is the diagonal submanifold) after performing a resolution of
the triple intersection at (p, p) ∈ M ×M of the submanifold. It will appears
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that σ is congluent to the Rokhlin invariant of M (modulo some constant)
and that σ vanishes if M is amphichiral. Our approach is more direct in
the sense that we only consider the signature of 4–dimensional manifolds or
related characteristic classes, and we do not count numbers of irreducible
SU(2)–representations of the fundamental group of M .

The rest of this section describes our main results.

1.1. Existence and uniqueness theorem
Throughout this paper, all manifolds are assumed to be smooth, ori-

ented, and compact unless otherwise stated. The following fundamental
theorem on 6–dimensional e-manifolds is the key to proving the existence
and the uniqueness of the invariant σ, and the proof will be given in Sec-
tion 4.

Theorem 1.1. Any 6–dimensional closed e-manifold is rationally
null–cobordant.

The statement means that, for any 6–dimensional closed e-manifold α,
there exists a positive integer m and a 7–dimensional e-manifold β such that
∂β ∼= 	mα (union of m disjoint copies of α). This is a direct consequence
of the fact that the cobordism group Ωe

6 of 6–dimensional e-manifolds (Sec-
tion 4) is isomorphic to (Q/Z)⊕2 (Theorem 4.1), and m can be chosen to be
the order of the cobordism class [α] ∈ Ωe

6 of α.
The following is the existence and the uniqueness theorem of the invari-

ant σ.

Theorem 1.2. Let α be a 6–dimensional closed e-manifold. Take any
7–dimensional e-manifold β = (Z, X, e) such that ∂β ∼= 	mα for some
positive integer m (such β and m exist by Theorem 1.1). Then, the rational
number

σ(α)
def
=

SignX

m

depends only on the isomorphism class of α. Moreover, the invariant σ has
the following properties:

(1) The invariant σ satisfies Axiom 1 and Axiom 2.
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(2) The invariant σ is unique. That is, if an invariant σ′ of 6–dimensional
closed e-manifolds satisfies Axiom 1 and Axiom 2, then σ′ = σ.

(3) If a 6–dimensional closed e-manifold α bounds a 7–dimensional quasi
e-manifold β = (Z, X, e), then

σ(α) = SignX − 4Λ(β).

Here, Λ(β) ∈ Q is the self–linking number of a 7–dimensional quasi e-
manifold β, and it will be defined in Section 2.3. The proof of Theorem 1.2
will be given in Section 5.3.

Remark 1.2. If β is a 7–dimensional e-manifold, then the formulas in
Axiom 2 and Theorem 1.2 (3) are the same, since Λ(β) = 0 by the definition
of Λ.

Remark 1.3. If we use only the axioms to compute σ(α), we need to
find (or construct) an e-manifold β such that ∂β ∼= 	mα and that the sig-
nature of the submanifold is computable, but that may not always be easy.
However, sometimes finding a simple quasi e-manifold bounded by α may
be much easier. In such cases, the formula in Theorem 1.2 (3) gives us an
alternative and effective way to compute σ(α). In fact, this formula will be
used when we explorer the relationship between our invariant and Haefliger’s
invariant (Section 8), or Milnor’s triple linking number (Section 9).

The essential reason why the rational number σ(α) is independent of the
choices of β is that if a 7–dimensional e-manifold β = (Z, X, e) is closed,
then SignX = 0 (Corollary 5.1), and that the signature is additive with
respect to the decompositions of closed manifolds (Novikov additivity).

More generally, if β is a closed 7–dimensional quasi e-manifold, then the
equality SignX = 4Λ(β) holds (Proposition 5.1), and Λ(β) is also additive
with respect to the decompositions of closed quasi e-manifolds (see the proof
of Proposition 5.2). These are the main reasons why Theorem 1.2 (3) holds.

1.2. An invariant of smooth embeddings
Two manifold pairs (Z, X) and (Z ′, X ′) are isomorphic if there exists

an orientation preserving diffeomorphism f : Z → Z ′ such that f(X) =
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X ′ as oriented submanifolds. The rational number σ(W, V, e) defined in
Theorem 1.2 is not an invariant of the isomorphism class of (W, V ) in general,
since it may depend on the choice of e. However, if we put all e-classes
together, we obtain an invariant of (W, V ) as follows. Let

EW,V =
{

e ∈ H2(W \ V ; Q)
∣∣ e is an e-class of (W, V )

}
be the set of all e-classes of (W, V ). For example, if V is empty, then
EW,∅ = H2(W ; Q) by definition, and if V �= ∅, then EW,V is empty or an
affine subspace of H2(W \ V ; Q) which misses the origin. Let

σW,V : EW,V → Q

be the function defined by σW,V (e) = σ(W, V, e) for e ∈ EW,V . The following
is a corollary of Theorem 1.2.

Corollary 1.1. For a pair (W, V ) of closed manifolds of dimensions
6 and 3, the function σW,V : EW,V → Q is an invariant of the isomorphism
class of (W, V ).

The statement means that if there is an isomorphism f : (W ′, V ′) →
(W, V ) of pair of manifolds, then the pull–back f∗ : H2(W \ V ; Q) →
H2(W ′ \ V ′; Q) restricts to a bijection f∗ : EW,V → EW ′,V ′ , and the identity

σW ′,V ′(f∗e) = σW,V (e)

holds for any e ∈ EW,V .
In a special case, we can obtain a rational–valued invariant of the isomor-

phism class of (W, V ), rather than a function–valued invariant, as follows.

Definition 1.1. A pair (Z, X) of manifolds of codimension 3 is simple
if it admits at least one e-class and the restriction H2(Z; Q) → H2(X; Q)
is injective.

Theorem 1.3. If a pair (W, V ) of closed manifolds of dimensions 6
and 3 is simple, then the rational number

σ(W, V )
def
= σW,V (e) = σ(W, V, e), e ∈ EW,V .
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is an invariant of the isomorphism class of (W, V ).

The proof will be given at the end of Section 6, and is easy. The essential
part is that (W, V ) is simple if, and only if, (W, V ) admits just one e-class
(Proposition 6.1 (4)).

1.3. Haefliger’s invariant
Let H : Emb(S3, S6) → Z be Haefliger’s isomorphism. A short review

of the definition of H will be given in Section 8.1. Let f : S3 → S6 be a
smooth embedding, and write Mf = f(S3).

There is an easy–to–check condition for the simplicity of pairs of mani-
folds as follows.

Proposition 1.1. Let (Z, X) be a pair of manifolds of codimension 3,
and assume that the restriction H2(Z; Q) → H2(X; Q) is an isomorphism.
Then, (Z, X) is simple if, and only if, (X, ∂X) is rationally null–homologous
in (Z, ∂Z).

The proof will be given in Section 6. By Proposition 1.1, the pair
(S6, Mf ) is simple, and the rational number σ(S6, Mf ) is well–defined by
Theorem 1.3. The relationship between Haefliger’s invariant H(f) and our
invariant σ(S6, Mf ) is the following one.

Theorem 1.4. For a smooth embedding f : S3 → S6, we have

σ(S6, Mf ) = −8H(f).

The proof will be given in Section 8.3, and it will turn out that our
invariant σ is a natural generalization of Haefliger’s invariant H.

There are some generalizations of Haefliger’s invariant due to Takase
[16] and Skopenkov [13]. Takase [16] [15] proved that there is a bijection
Ω: Emb(M, S6) → Z for any integral homology 3–sphere M such that if
M = S3 then Ω = H . Our invariant recovers Takase’s invariant too
(Corollary 8.1), and that is a direct consequence of the geometric formula
for σ(W, V, e) (Theorem 8.1):

σ(W, V, e) = SignS −
∫

S
e(νS)2
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Here, S ⊃ W is a Seifert surface of V which Poincaré dual is e/2, and which
rational normal Euler class e(νS) ∈ H2(S; Q) is trivial over ∂S. If W = S6

and V is an integral homology 3–sphere, then the right–hand side is nothing
but (−8 times) the definition of Ω.

Recently, Skopenkov [13] proved a classification theorem of elements
in Emb(M, S6) for any oriented connected closed 3–manifolds M . When
M = S3, his invariant µ : Wh−1(0) → Z (where Wh−1(0) is a subset2 of
Emb(M, S6), and µ is called the Kreck invariant in his paper) coincides with
H. The invariants µ and σ seem to be closely related, and possibly identical
(up to multiplication by a constant) for any M .

We remark that Zhubr [18] [19] had studied on classification of 6–
dimensional manifolds and of 3–dimensional knots in 6–dimensional mani-
folds. Section 3.5 and 3.6 in [18] and Section 5 in [19] are closely related to
our article.

1.4. Milnor’s triple linking number
Let L be an oriented algebraically split 3–component link in R3, and let

(T 3×S3, ML) be the manifold pair defined as before. In Section 9, we will
prove that (T 3×S3, ML) is simple (Proposition 9.1), and consequently, the
rational number σ(T 3×S3, ML) is well–defined by Theorem 1.3.

Remark 1.4. It is easy to see that σ(T 3×S3, ML) is a link homotopy
invariant of L without explicit computations, in fact, we can see that the
isotopy class of the submanifold ML depends only on the link homotopy type
of L as follows. Suppose that two algebraically split 3–component links L

and L′ in R3 have the same link homotopy type, and let {L(t)}t∈ [0,1] be a
smooth link homotopy3 from L to L′. For each t ∈ [0, 1], we can construct
a smoothly embedded 3–submanifold ML(t) ⊂ T 3×S3, in exactly the same
way as we construct ML. The obtained family

{
ML(t)

}
t∈ [0,1]

is a smooth
isotopy from ML to ML′ .

The relationship between Milnor’s triple linking number µ(L) and our
invariant σ(T 3×S3, ML) is the following one.

2The subset Wh−1(0) ⊂ Emb(M, S3) consists of elements which Whitney invariant
Wh: Emb(M, S6) → H1(M ; Z) [13] vanish.

3Each connected component Ki(t) of each intermediate link L(t) = K1(t) ∪ K2(t) ∪
K3(t) may intersects itself, but no other components Kj(t) (i �= j).
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Theorem 1.5. For an oriented algebraically split 3–component link L

in S3, we have

σ(T 3×S3, ML) = −8µ(L).

The proof will be given in Section 9.
Now, here is the plan of the paper. In Section 2, we introduce definitions

and notation which are necessary to understand the main theorems given
in this section. In Section 3, we study some elementary facts on the low–
dimensional oriented cobordism groups Ω∗(K(Q, 2)) and Ω∗(BSO(3)) of
the Eilenberg–MacLane space K(Q, 2) of type (Q, 2) and the classifying
space BSO(3) of the Lie group SO(3), and this is a preliminary to the
next section. In Section 4, we show that there is an isomorphism Ωe

6
∼=

(Q/Z)⊕2 (Theorem 4.1), and we prove Theorem 1.1 as a consequence of this
isomorphism. The isomorphism is given by a short exact sequence

0 → Ω4(BSO(3)) → Ω6(K(Q, 2)) → Ωe
6 → 0,

which is isomorphic to 0 → Z⊕2 → Q⊕2 → (Q/Z)⊕2 → 0 (see the proof
of Theorem 4.1). Section 5 is devoted to the proof of Theorem 1.2, roughly
speaking, which relies on the two properties of e-manifolds as follows:

(1) Theorem 1.1 implies the existence and the uniqueness of the invariant
σ.

(2) The formula SignX = Λ(β) (Proposition 5.1) implies that σ is well–
defined, and that Theorem 1.2 (3) holds.

Section 6 is the study of necessary and sufficient conditions ensuring the exis-
tence and uniqueness of e-classes. In particular, we prove that a pair (W, V )
is simple if, and only if, it is admits just one e-class (Proposition 6.1 (4)).
The proof of Theorem 1.3 is given at the end of the section. In Section 7,
we study the relationship between Seifert surfaces and e-classes. In Sec-
tion 8, we prove Theorem 1.4, and it will turn out that our invariant σ is
a natural generalization of the Haefliger’s invariant H. We also prove the
geometric formula (Theorem 8.1) for σ(W, V, e) when e/2 is represented by
a Seifert surface of V , and as a direct consequence, we prove that our invari-
ant also recovers Takase’s invariant (Corollary 8.1). In Section 9, we prove
Theorem 1.5.
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2. Preliminaries

2.1. Notation
We use the “outward normal first” convention for boundary orientation

of manifolds. For an oriented real vector bundle E of rank 3 over a manifold
X, we denote the associated unit sphere bundle by ρE : S(E) → X, and let
FE ⊂ TS(E) denote the vertical tangent subbundle of S(E) with respect
to ρE . The orientations of FE and S(E) are given by the isomorphisms
ρ∗EE ∼= RE ⊕ FE and TS(E) ∼= ρ∗ETX ⊕ FE , where RE ⊂ ρ∗EE is the
tautological real line bundle of E over S(E). Consequently, the Euler class

e(FE) ∈ H2(S(E); Z)

of FE is defined.
Next, let (Z, X), Z ⊃ X, be a pair of manifolds, and we assume that X is

properly embedded in Z and the codimension is 3. Throughout this paper,
we always impose these assumptions for all pairs of manifolds. In particular,
when we write (W, V ) or (Z, X), we always mean a pair of manifolds of
codimension 3 such that W and V are closed and dimW = 6, and that Z

and X may have boundaries and dimZ can be any (mainly assumed to be
7 or 6). Denote by νX the normal bundle of X, which can be identified with
a tubular neighborhood of X so that X ⊂ νX ⊂ Z. For simplicity, we will
write

X̂ = S(νX), ρX = ρνX : X̂ → X, FX = FνX .

Let us write (W, V ) = ∂(Z, X) for the boundary pair of (Z, X) for a
moment. We can define νV , FV , V̂ , ρV : V̂ → V , etc. in exactly the same
way as above. Let ((0, 1]×W, (0, 1]×V ) be the pair of collar neighborhoods of
the boundary pair ({1}×W, {1}×V ) = (W, V ). Without loss of generality,
we shall always assume νX |(0,1]×V = (0, 1]×νV as tubular neighborhoods of
(0, 1]×V in (0, 1]×W . Consequently, we have

∂X̂ = V̂ , e(FX)|V̂ = e(FV ).
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2.2. e-classes and e-manifolds
Here are the definitions of e-class and quasi e-class.

Definition 2.1. Let (Z, X) be a manifold pair of dimensions n and
n − 3.

(1) A cohomology class e ∈ H2(Z \X; Q) is called an e-class of (Z, X) if

(a) e|X̂ = e(FX) over Q.

We call (Z, X, e) an n–dimensional e-manifold.

(2) A cohomology class e ∈ H2(Z \ X; Q) is called a quasi e-class of
(Z, X) if

(a) e|∂Z\∂X is an e-class of ∂(Z, X), and

(b) 〈[S2
p ], e〉 = 2 for all p ∈ X.

We call (Z, X, e) an n–dimensional quasi e-manifold.

Here, S2
p = ρ−1

X (p) ⊂ X̂ is the fiber of ρX at p, and the bracket 〈 , 〉
denotes the pairing of a homology class and a cohomology class. Note that
any e-class is a quasi e-class, since 〈[S2

p ], e(FX)〉 = 2, which is the Euler
characteristic of the 2–sphere. Also note that the boundary of a quasi e-
manifold is an e-manifold by definition.

For (quasi) e-manifolds β = (Z, X, e) and β′ = (Z ′, X ′, e′), if there
exists an isomorphism f : (Z ′, X ′) → (Z, X) of pairs of manifolds such that
f∗e = e′, then we say β and β′ are isomorphic (denoted by β ∼= β′). The
empty e-manifold (∅, ∅, 0), where 0 ∈ H2(∅ \ ∅; Q), will be simply denoted
by ∅. If ∂β ∼= ∅, then we say β is closed. If a closed e-manifold α bounds
an e-manifold β, i.e. ∂β ∼= α, then we say α is null–cobordant. If α 	 (−α′)
is null–cobordant, then we say α and α′ are cobordant.

2.3. Self–linking form and self–linking number
For a quasi e-manifold β = (Z, X, e), we define the self–linking form

γ ∈ H2(X; Q) and the self–linking number Λ(β) ∈ Q as follows. Here,
Λ(β) is defined only when dimβ = 7, i.e. dimX = 4.
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By the Thom–Gysin exact sequence

· · · → 0 → H2(X; Q)
ρ∗X−−→ H2(X̂; Q)

ρX !−−→ H0(X; Q) → · · ·

of νX , the cohomology class e|X̂ − e(FX) ∈ H2(X̂; Q) belongs to the image
of the pull–back ρ∗X which is injective. We define the self–linking form
γ ∈ H2(X; Q) of β to be the unique cohomology class such that

e|X̂ = e(FX) + 2 ρ∗Xγ.

Since ∂β is an e-manifold, we have γ|∂X = 0. There exists
γ̃ ∈ H2(X, ∂X; Q) such that the homomorphism H2(X, ∂X; Q) →
H2(X; Q) maps γ̃ to γ. When dimβ = 7, the self–linking number Λ(β)
of β is defined by

Λ(β) =
∫

X
γ̃2.

It is easy to check that Λ(β) does not depend on the choice of γ̃. Note that
γ = 0 if β is an e–manifold, so Λ(β) = 0 if β is a 7–dimensional e-manifold.

In Proposition 7.1, we will give an interpretation of γ by using a Seifert
surface of X.

3. Oriented Cobordism Groups of BSO(3) and K(Q, 2)

Let K(Q, 2) be the Eilenberg–MacLane space of type (Q, 2), i.e.
π2(K(Q, 2)) ∼= Q and πi(K(Q, 2)) = 0 for i �= 2, and BSO(3) the clas-
sifying space of the Lie group SO(3). We can assume that BSO(3) and
K(Q, 2) have structures of CW–complexes. Let Ω∗(Y ) denote the oriented
cobordism group of a CW–complex Y . As a preparation for the next sec-
tion, in this section we study some relationship between Ω∗(BSO(3)) and
Ω∗(K(Q, 2)).

3.1. Homology groups
We begin by recalling some elementary facts on the homology groups

of K(Q, 2) and BSO(3). The homotopy class of a map CP∞ → K(Q, 2)
from the infinite dimensional complex projective space CP∞ (� K(Z, 2)),
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corresponding to the inclusion Z ↪→ Q on the second homotopy groups,
provides an isomorphism between the reduced homology groups (cf. [5]):

H̃k(K(Q, 2); Z) ∼= H̃k(CP∞; Q)

∼=
{

Q if k is positive even

0 otherwise

(3.1)

Let a1 ∈ H2(K(Q, 2); Q) ∼= Q denote the element dual to 1 ∈ π2(K(Q, 2)) ∼=
H2(K(Q, 2); Q), then the k–th power ak

1 of a1 generates H2k(K(Q, 2); Q)
over Q for k ≥ 1.

It is easy to check that the low–dimensional homology groups of BSO(3)
are given as follows:

k 0 1 2 3 4 5
Hk(BSO(3); Z) Z 0 Z/2 0 Z Z/2

(3.2)

This table, for example, is obtained by use of the Serre spectral sequence of
the universal principal SO(3)-bundle, and by the fact that the cohomology
ring H∗(BSO(3); Z/2) is a free polynomial algebra generated by the sec-
ond and third Stiefel-Whitney classes over Z/2. The group H4(BSO(3); Z)
is generated by the dual element of the first Pontryagin class
p1 ∈ H4(BSO(3); Z).

3.2. Cobordism groups
The next step is the study of the low–dimensional oriented cobordism

groups of K(Q, 2) and BSO(3). In low–dimensions, the cobordism group
Ω∗ = Ω∗(pt) of one point pt is given as follows (cf. [11, Section 17]):

k 0 1 2 3 4 5 6
Ωk Z 0 0 0 Z Z/2 0

(3.3)

Here, the isomorphism Ω4
∼= Z is given by the signature of 4–manifolds.

In general, for any CW–complex Y , the Atiyah–Hirzebruch spectral se-
quence En

p,q(Y ) for Ω∗(Y ) converges (cf. [14, Theorem 15.7]):

E2
p,q(Y ) = Hp(Y ; Ωq) =⇒ Ωp+q(Y )

The following lemma is an easy application of the Atiyah–Hirzebruch spec-
tral sequence.
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Lemma 3.1. The following isomorphisms hold :

Ω6(K(Q, 2)) ∼= Q⊕2, Ω3(BSO(3)) = 0, Ω4(BSO(3)) ∼= Z⊕2.

Proof. We use the isomorphism (3.1) and the tables (3.2) and (3.3)
to prove this lemma. The Atiyah–Hirzebruch spectral sequence En

p,q =
En

p,q(K(Q, 2)) converges on the E2-stage within the range p + q ≤ 6, and so
E∞

p,q
∼= E2

p,q in the same range. Consequently, we have

E∞
p,6−p

∼=
{

Q if p = 6, 2,

0 otherwise,

and therefore, Ω6(K(Q, 2)) ∼= Q⊕2.
Similarly, the spectral sequence Fn

p,q = En
p,q(BSO(3)) converges on the

F 2-stage in the range p + q ≤ 4, and

F∞
p,4−p

∼=
{

Z if p = 4, 0,

0 otherwise.

Thus, Ω4(BSO(3)) ∼= Z⊕2. The vanishing of Ω3(BSO(3)) follows from
F 2

p,3−p = 0 for all p. �

A pair (W, e) of a closed 6–manifold W and a cohomology class
e ∈ H2(W ; Q) represents a cobordism class [W, e] ∈ Ω6(K(Q, 2)). Here,
we identify e with the homotopy class of a map f : W → K(Q, 2) such that
f∗a1 = e. Define a homomorphism χ : Ω6(K(Q, 2)) → Q⊕2 by

χ([W, e]) = (χ1(W, e), χ2(W, e)) ,

χ1(W, e) =
1
6

∫
W

p1(TW ) e − e3 ∈ Q,

χ2(W, e) =
1
2

∫
W

e3 ∈ Q.

Similarly, a pair (X, E) of a closed 4–manifold X and an oriented vector bun-
dle E of rank 3 over X represents a cobordism class [X, E] ∈ Ω4(BSO(3)).
Here, we identify the isomorphism class of E with the homotopy class
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of the classifying map X → BSO(3) of E. Define a homomorphism
ξ : Ω4(BSO(3)) → Z⊕2 by

ξ([X, E]) =
(

SignX,

∫
X

p1(E))
)

.

We will see soon that the homomorphisms χ and ξ are isomorphic
(Lemma 3.3).

3.3. Homomorphism Ω4(BSO(3)) → Ω6(K(Q, 2))
Let us consider the homomorphism

υ : Ω4(BSO(3)) → Ω6(K(Q, 2))

defined by υ([X, E]) = [S(E), e(FE)] for [X, E] ∈ Ω4(BSO(3)). For a pair
(X, E) representing an element in Ω4(BSO(3)), the characteristic classes of
the vector bundles E, FE , TX, and TS(E) satisfy the following relations:

e(FE)2 = p1(FE) = ρ∗Ep1(E)(3.4)

≡ p1(TS(E)) − ρ∗Ep1(TX) (mod. 2–torsion elements),(3.5)

ρE !e(FE) = 2(3.6)

Here, ρE ! : H2(S(E); Z) → H0(X; Z) is the Gysin homomorphism of ρE ,
and 2 ∈ H0(X; Z) denotes the element given by the constant function on X

with the value 2. The Hirzebruch signature theorem states that

SignX =
1
3

∫
X

p1(TX).(3.7)

The next two lemmas are easy to prove.

Lemma 3.2. χυ = ξ. Namely, for any pair (X, E) of closed 4–manifold
X and an oriented vector bundle E of rank 3 over X, we have

χ([S(E), e(FE)]) =
(

SignX,

∫
X

p1(E)
)

.

Proof. This follows from the formulas (3.4), (3.5), (3.6), and (3.7).
In fact, these imply

p1(TS(E))e(FE) − e(FE)3 = ρ∗Ep1(TX) e(FE)
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over Q, and

χ1(S(E), e(FE)) =
1
6

∫
S(E)

ρ∗Ep1(TX) e(FE) =
1
3

∫
X

p1(TX) = SignX.

The equality χ2(S(E), e(FE)) =
∫
X p1(E) can be obtained in a similar

way. �

Lemma 3.3. The homomorphisms χ : Ω6(K(Q, 2)) → Q⊕2 and
ξ : Ω4(BSO(3)) → Z⊕2 are isomorphisms.

Proof. For k = 0, 1, let Fk be an oriented vector bundle of rank
2 over CP 2 such that 〈[CP 1], e(Fk)〉 = k, and we set uk = [CP 2, Fk ⊕
R] ∈ Ω4(BSO(3)). Then, two elements ξ(u0) = (1, 0) and ξ(u1) = (1, 1)
form a basis of the abelian group Z⊕2. Therefore, ξ is a surjective homo-
morphism from Ω4(BSO(3)) ∼= Z⊕2 (Lemma 3.1) to Z⊕2. This means that
ξ is an isomorphism.

Similarly, we have χ(υ(u0)) = (1, 0) and χ(υ(u1)) = (1, 1) by Lemma 3.2,
and these two elements form a basis of the vector space Q⊕2. Therefore, χ

is a linear homomorphism from Ω6(K(Q), 2) ∼= Q⊕2 (Lemma 3.1) to Q⊕2 of
rank 2. This means that χ is an isomorphism. �

The following proposition is the goal of this section.

Proposition 3.1. The sequence of abelian groups

0 → Ω4(BSO(3)) υ−→ Ω6(K(Q, 2))
χ′
−→ (Q/Z)⊕2 → 0

is exact, where χ′ = χ mod Z⊕2.

Proof. This follows from that, the diagram

Ω4(BSO(3)) υ−−−→ Ω4(K(Q, 2))

ξ


∼= χ


∼=

Z⊕2 inclusion−−−−−→ Q⊕2

commutes (Lemma 3.2) and the vertical arrows are isomorphic
(Lemma 3.3). �
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4. Cobordism Group of 6–Dimensional e-Manifolds

We define Ωe
6 to be the cobordism group of 6–dimensional e-manifolds,

namely, it is an abelian group consisting of the cobordism classes [α] of
6–dimensional closed e-manifolds α, with the group structure given by the
disjoint sum. Note that [α] + [α′] = [α 	 α′], −[α] = [−α], and 0 = [∅]. In
this section, we prove that Ωe

6 is isomorphic to (Q/Z)⊕2 (Theorem 4.1), and
then we prove Theorem 1.1.

We begin by preparing some notation as follows. For a pair (Z, X), we
will write

ZX = Z \ UX ,(4.1)

where UX is the total space of the open unit disk bundle of νX . If (W, V ) =
∂(Z, X) denotes the boundary pair, then the manifold WV = W \UV can be
defined in the same way as above. In line with our orientation conventions,
the boundaries of ZX and WV are given as follows:

∂ZX = WV ∪ (∓X̂), ∂WV = ±V̂(4.2)

Here, the symbols ∓ = (−1)dim Z and ± = (−1)dim W are the signs of
orientations. Note that ZX have the corner V̂ which is empty when X is
closed.

4.1. Extension of the cobordism group of 6–dimensional e-man-
ifolds

In this subsection, we show that any element in Ωe
6 can be represented by

a 6–dimensional closed e-manifold with empty submanifold. More precisely,
let

π : Ω6(K(Q, 2)) → Ωe
6

be the homomorphism defined by π([W, e]) = [W, ∅, e] for [W, e] ∈
Ω6(K(Q, 2)), and we prove that π is surjective (Proposition 4.1).

For a 6–dimensional closed e-manifold α = (W, V, e), we construct
a cobordism class [W ′, e′] ∈ Ω6(K(Q, 2)) such that π([W ′, e′]) = [α]
as follows. Since the oriented cobordism group Ω3(BSO(3)) vanishes by
Lemma 3.1, there exists a pair (X, E) of a 4–manifold X and an oriented vec-
tor bundle E of rank 3 over X equipped with fixed identifications ∂X = V



210 Tetsuhiro Moriyama

and E|V = νV . Two pairs (S(E), e(FE)) and (WV , e|WV
) have the common

boundary

∂(S(E), e(FE)) = (V̂ , e(FV )) = ∂(WV , e|WV
).

Let us consider the closed 6–manifold

W ′ = WV ∪V̂ (−S(E))

obtained from WV and −S(E) by gluing along the common boundaries
(namely, W ′ is constructed by performing a kind of surgery along V ,
replacing the tubular neighborhood of V with −S(E)). There exists
e′ ∈ H2(W ′; Q) such that e′|WV

= e|WV
and e′|S(E) = e(FE), and we

have a cobordism class

[W ′, e′] ∈ Ω6(K(Q, 2)).

Proposition 4.1. We have π([W ′, e′]) = [α] in Ωe
6. Consequently, the

homomorphism π : Ω6(K(Q, 2)) → Ωe
6 is surjective.

Proof. We only need to show the existence of a 7–dimensional e-
manifold β bounded by α 	 (−α′), where α′ = (W ′, ∅, e′). Let I = [0, 1] be
the interval. In this proof, for a subset A ⊂ W , we write At = {t}×A ⊂
I×W for t = 0, 1. The boundaries of the 7–manifold I×W and the closed
unit disk bundle D(E) of E are given as follows:

∂(I×W ) = (−W0) 	 W1

∂D(E) = S(E) ∪ D(νV )

Gluing the manifolds I×W and D(E) along D(νV )0 ⊂ W0 and D(νV ) ⊂
∂D(E) by the identity map, we obtain a 7–manifold

Z = D(E) ∪D(νV )0 (I×W )

with the boundary

∂Z = W1 	
(
S(E) ∪V̂0

(−(WV )0)
)

∼= W 	 (−W ′),
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V

W−W ′W1−W0

I × V

V1

I × W Z

gluing

D(νV )

D(E)

XX

Fig. 1. Gluing D(E) and I×W , and the obtained manifold pair (Z, X).

and we shall assume that ∂Z is smooth after the corner V̂0 is rounded, see
Figure 1.

The 4–submanifold

X ∪V0 (I×V ) ⊂ Z

(where X is identified with the image of the zero–section of E so that
X ⊂ D(E)) is properly embedded in Z, and is bounded by V1. We will
rewrite X ∪V0 (I×V ) as X and identify ∂Z with W 	 (−W ′), so that

∂(Z, X) = (W, V ) 	 (−W ′, ∅).

Now, all that is left to do is to show the existence of an e-class of (Z, X)
restricting to e and e′ on the boundary components. Since the inclusion
W ′ ↪→ Z \ X is homotopy equivalence, there exists a cohomology class
ẽ ∈ H2(Z \ X; Q) of (Z, X) such that ẽ|W ′ = e′. By construction, ẽ is
an e-class of (Z, X) and ẽ|W\V = e. Hence, we obtain a 7–dimensional
e-manifold β = (Z, X, ẽ) bounded by

∂β = (W, V, ẽ|W\V ) 	 (−W ′, ∅, ẽ|W ′) = α 	 (−α′). �
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4.2. Proof of Theorem 1.1
We define a homomorphism

Φ: Ωe
6 → (Q/Z)⊕2

as follows. By Proposition 4.1, any element in Ωe
6 is represented by an

e-manifold of the form (W, ∅, e), where W is a closed 6–manifold and
e ∈ H2(W ; Q). We then define

Φ([W, ∅, e]) = χ′([W, e])

≡
(

1
6

∫
W

p1(TW ) e − e3,
1
2

∫
W

e3

)
mod Z⊕2.

The rest of this section is devoted to proving that Φ is an isomorphism. The
first thing we have to do is to show that Φ([W, ∅, e]) is independent of the
representative (W, ∅, e) of [W, ∅, e].

Lemma 4.1. The homomorphism Φ: Ωe
6 → (Q/Z)⊕2 is well–defined.

Proof. Let α = (W, ∅, e) and α′ = (W ′, ∅, e′) be any 6–dimensional
closed e-manifolds representing the same cobordism class in Ωe

6, and we
prove that the difference χ([W, ∅, e]) − χ([W ′, ∅, e′]) belongs to Z⊕2, which
implies χ′([W, ∅, e]) = χ′([W ′, ∅, e′]).

There exists a 7–dimensional e-manifold β = (Z, X, ẽ) such that ∂β ∼=
α 	 (−α′), in particular, X is closed and embedded in the interior of Z.
Thus, the manifold ZX (see (4.1)) has the smooth boundary

∂ZX = ∂Z 	 (−X̂) ∼= W 	 (−W ′) 	 (−X̂).

Since ẽ|X̂ = e(FX), we can write

∂(ZX , ẽ|ZX
) ∼= (W, e) 	 (−W ′, e′) 	 (−X̂, e(FX)),

and this implies [W, e] − [W ′, e′] = [X̂, e(FX)] in Ω6(K(Q, 2)). We have

χ([W, e]) − χ([W ′, e′]) =
(

SignX,

∫
X

p1(νX)
)

by Lemma 3.2, and the right–hand side belongs to Z⊕2. �
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The following theorem is the goal of this section.

Theorem 4.1. The homomorphism Φ: Ωe
6 → (Q/Z)⊕2 is an isomor-

phism.

Proof. Consider the following commutative diagram:

0 −−−→ Ω4(BSO(3)) υ−−−→ Ω6(K(Q, 2)) π−−−→ Ωe
6 −−−→ 0∥∥∥ ∥∥∥ Φ



0 −−−→ Ω4(BSO(3)) υ−−−→ Ω6(K(Q, 2))

χ′
−−−→ (Q/Z)⊕2 −−−→ 0

The lower horizontal sequence is exact by Proposition 3.1, and the homo-
morphism π is surjective by Proposition 4.1. To complete the proof, we only
have to show that the upper horizontal sequence is exact, more specifically,
Im υ = Ker π. We prove this in two steps as follows.

Claim 1. Im υ ⊂ Kerπ. Let [X, E] ∈ Ω4(BSO(3)) be any element,
then π(υ([X, E])) = [S(E), ∅, e(FE)]. Regard X as the image of the zero–
section of E so that X ⊂ IntD(E). The cohomology class e(FE) is an
e-class of (S(E), ∅) = ∂(D(E), X), and it uniquely extends to an e-class
eE of (D(E), X). The obtained e-manifold (D(E), X, eE) is bounded by
(S(E), ∅, e(FE)), and hence, we have π(υ([X, E])) = 0.

Claim 2. Im υ ⊃ Kerπ. Next, we prove the opposite inclusion. Let
[W, e] ∈ Kerπ be any element, then α = (W, ∅, e) bounds a 7–dimensional e-
manifold β = (Z, X, ẽ), namely ∂β ∼= α. In particular, we have ẽ|X̂ = e(FX).
Since

∂(ZX , ẽ|ZX
) ∼= (W, e) 	 (−X̂, e(FX)),

we have

[W, e] = [X̂, e(FX)] = υ([X, νX ])

in Ω6(K(Q, 2)), where νX is the normal bundle of X. Therefore, [W, e]
belongs to Im υ. This completes the proof. �
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Theorem 1.1 can be proved very easily from Theorem 4.1 as follows.

Proof of Theorem 1.1. For a 6–dimensional closed e-manifold α, its
cobordism class [α] ∈ Ωe

6
∼= (Q/Z)⊕2 (Theorem 4.1) has a finite order, say

m. The meaning of m[α] = 0 is that there exists a 7–dimensional e-manifold
β such that ∂β ∼= 	mα. �

5. Proof of Theorem1.2

In this section, we give a proof of Theorem 1.2.

5.1. Signature of 4–manifolds in 7–manifolds
For a pair (Z, X), let us consider the Mayer–Vietoris exact sequence of

(Z;Z \ X, UX):

(5.1) · · · → H2(Z; Q)
(j∗X ,i∗X)−−−−→ H2(Z \ X; Q) ⊕ H2(X; Q)

ι∗X−ρ∗X−−−−→ H2(X̂; Q) δ∗−→ H3(Z; Q) → · · ·

Here, we identified H2(UX ; Q) with H2(X; Q), and H2(UX \ X; Q) with
H2(X̂; Q) via the isomorphisms given by the homotopy equivalences UX �
X and UX \ X � X̂, and here, the maps

iX : X ↪→ Z, ιX : X̂ ↪→ Z \ X, jX : Z \ X ↪→ Z

denote the inclusions. Denote by

tX ∈ H3(Z; Q)

the fundamental cohomology class of X (the Poincaré dual of the funda-
mental homology class [X, ∂X] ∈ Hdim X(Z, ∂Z; Q)). Since ρX !e(FX) = 2
(see (3.6)), we have

δ∗e(FX) = 2tX .(5.2)

The following lemma states that the existence of a quasi e-class of (Z, X)
is almost equivalent to [X, ∂X] = 0 (exactly equivalent if the second betti–
number of ∂X vanishes).
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Lemma 5.1. Let (Z, X) be a pair of manifolds of codimension 3. Then,
[X, ∂X] = 0 if, and only if, there exist cohomology classes e ∈ H2(Z \X; Q)
and γ ∈ H2(X; Q) such that

e|X̂ = e(FX) + 2ρ∗Xγ.

Moreover, if such e and γ exist and γ|∂X = 0, then e is a quasi e-class of
(Z, X), and γ is the self–linking form of the quasi e-manifold (Z, X, e).

Proof. The vanishing of [X, ∂X] implies e(FX) ∈ Ker δ∗ by (5.2),
and thus, e(FX) = e|X̂ − 2ρ∗Xγ holds for some elements e ∈ H2(Z \ X; Q)
and γ ∈ H2(X; Q) by the exactness of the sequence (5.1). The converse also
holds. The second half of the statement is obvious from Definition 2.1 (2). �

Lemma 5.2. Let (Z, X) be a pair of closed manifolds of dimensions 7
and 4. If X is rationally null–homologous in Z, then

χ([X̂, e(FX)]) = (SignX,−3SignX).

Proof. By Lemma 3.2, we have

χ([X̂, e(FX)]) =
(

SignX,

∫
X

p1(νX)
)

.

The Hirzebruch signature theorem (3.7) and the vanishing of the homology
class of X imply

∫
X

p1(νX) =
∫

X
p1(TZ) −

∫
X

p1(TX) = −
∫

X
p1(TX) = −3SignX. �

Proposition 5.1. Let (Z, X) be a pair of closed manifolds of dimen-
sions 7 and 4. If e is a quasi e-class of (Z, X), then we have

SignX = 4 Λ(Z, X, e).
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Proof. Let γ ∈ H2(X; Q) be the self–linking form of β = (Z, X, e),
namely e|X̂ = e(FX) + 2 ρ∗Xγ. Then, we can write

e3|X̂ = e(FX)3 + 6e(FX)2ρ∗Xγ + 12e(FX)ρ∗Xγ2 + 8ρ∗Xγ3

= e(FX)3 + 6ρ∗X (p1(νX)γ) + 12e(FX)ρ∗Xγ2 + 8ρ∗Xγ3.

Here, we used the relation (3.4) (where E = νX) on the second term of the
right–hand side. Since dimX < 6, the second and the last terms of the
right–hand side vanish. Integrating the both sides over X̂, we obtain∫

X̂
e3 = 2χ2(X̂, e(FX)) + 24Λ(β).

The left–hand side vanishes by Stokes’ theorem, since ∂(ZX , e3|ZX
) =

(−X̂, e3|X̂). Thus, we obtain χ2(X̂, e(FX)) = −12Λ(β).
On the other hand, the existence of a quasi e-class of (Z, X) implies that

X is rationally null–homologous in Z by Lemma 5.1, and so (Z, X) satisfies
the assumption of Lemma 5.2. Hence, we obtain

SignX = −1
3
χ2(X̂, e(FX)) = 4Λ(β). �

As a corollary, we obtain the following vanishing property of the signa-
ture.

Corollary 5.1. If a pair (Z, X) of closed manifolds of dimensions 7
and 4 admits an e-class, then SignX = 0.

Proof. Let e be an e-class of (Z, X), then Λ(Z, X, e) = 0 by the
definition of Λ. This implies SignX = 0 by Proposition 5.1. �

5.2. Definition of the invariant σ(α)
Let α be a 6–dimensional closed e-manifold. We first review and gener-

alize the definition of the invariant σ(α) as follows. By Theorem 1.1, there
exists a 7–dimensional e-manifold β = (Z, X, ẽ) such that ∂β ∼= 	mα for
some positive integer m. More generally, we shall assume that β is a quasi
e-manifold. We then define

σ(α) =
SignX − 4Λ(β)

m
∈ Q.(5.3)
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In this section, we use this definition instead of the one given in Theorem 1.2,
because (5.3) includes the formula in Theorem 1.2 (3).

Proposition 5.2. For a 6–dimensional closed e-manifold α, the ra-
tional number σ(α), defined as in (5.3), depends only on the isomorphism
class of α.

Proof. Let N be the set of the isomorphism classes of 6–dimensional
null–cobordant closed e-manifolds. Note that if α ∈ N , then 	mα ∈ N for
any positive integer m. We prove the statement in three steps as follows.
The first step is the most important, and the rests are proved in a formal
way.

Claim 1. If α ∈ N , then σ(α) is well–defined. Assume α ∈ N ,
and take any 7–dimensional quasi e-manifolds β0 = (Z0, X0, e0) and β1 =
(Z1, X1, e1) equipped with fixed identifications ∂β0 = α = ∂β1. We need to
show the equality

SignX0 − 4Λ(β0) = SignX1 − 4Λ(β1).(5.4)

For that, we consider the pair of closed manifolds

(Z, X) = (Z0 ∪ (−Z1), X0 ∪ (−X1))

obtained from (Z0, X0) and (−Z1,−X1) by gluing along the identified
boundaries, and write (W, V ) = (∂Z0, ∂X0) ⊂ (Z, X). Since the quasi
e-classes e0 and e1 restrict to the same e-class of (W, V ), there exists a
quasi e-class e of (Z, X) such that e|Zi\Xi

= ei for i = 0, 1. Thus, we obtain
a 7–dimensional closed quasi e-manifold β = (Z, X, e).

The self–linking form γ ∈ H2(X; Q) of β is trivial on V , and thus, there
exists an element

γ̃ = (γ̃0, γ̃1) ∈ H2(X, V ; Q) = H2(X0, ∂X0; Q) ⊕ H2(X1, ∂X1; Q)

such that the homomorphism H2(X, V ; Q) → H2(X; Q) maps γ̃ to γ. Sim-
ilarly, the homomorphism H2(Xi, ∂Xi; Q) → H2(Xi; Q) maps γ̃i to the
self–linking form of βi, and thus

Λ(βi) =
∫

Xi

γ̃2
i .
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Hence, we have

Λ(β) =
∫

X
γ2 =

∫
X0

γ̃2
0 −

∫
X1

γ̃2
1 = Λ(β0) − Λ(β1).

(Namely, the self–linking number Λ is additive with respect to the decom-
positions of closed quasi e-manifolds.) By the additive properties of Λ
and the signature, and by Proposition 5.1, we have SignX0 − SignX1 =
4Λ(β0) − 4Λ(β1), and so (5.4) holds.

Claim 2. If α ∈ N , then σ(	mα) = mσ(α) for any positive integer
m. Let β = (Z, X, e) be a 7–dimensional e-manifold such that ∂β ∼= α,
then 	mα bounds 	mβ. The rational number σ(	mα) is well–defined by
Claim 1, and we have

σ(	mα) = Sign (	mX) = m SignX = m σ(α).

Claim 3. σ(α) is well–defined for any 6–dimensional closed e-manifold
α. Let α be a closed e-manifold, and m a positive integer such that
	mα ∈ N (such m exists by Theorem 1.1). The rational number σ(	mα) is
well–defined by Claim 1. We can show that the rational number σ(	mα)/m

does not depend on the choice of m as follows.
If 	mα ∈ N and 	m′

α ∈ N for some positive integers m and m′, then
	mm′

α ∈ N . Thus, the rational numbers σ(	mα), σ(	m′
α), and σ(	mm′

α)
are well–defined by Claim 1. Since 	m′

(	mα) = 	mm′
α = 	m(	m′

α), we
have

σ(	mα)
m

=
σ(	mm′

α)
mm′ =

σ(	m′
α)

m′

by Claim 2. This implies that σ(	mα)/m does not depend on the choice of
m. �

5.3. Proof of Theorem 1.2
By using the results we have obtained so far, we prove Theorem 1.2.

Proof of Theorem 1.2. By Proposition 5.2, the rational number
σ(α) is well–defined for any 6–dimensional closed e-manifold α. Axiom 2
and Theorem 1.2 (3) are obvious from the definition (5.3).
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We prove that σ satisfies Axiom 1 as follows. Let α be a 6–dimensional
closed e-manifold, and β = (Z, X, e) a 7–dimensional e-manifold such that
∂β ∼= 	mα for some positive integer m. Then, ∂(−β) ∼= 	m(−α), and the
definition of σ implies

σ(−α) =
Sign (−X)

m
= −σ(α).

Next, let α′ be another 6–dimensional closed e-manifold, and β′ =
(Z ′, X ′, e′) a 7–dimensional e-manifold such that ∂β′ ∼= 	m′

α for some pos-
itive integer m′. Then (	m′

β)	 (	mβ′) bounds 	mm′
(α	α′), and we have

σ(α 	 α′) =
m′SignX + mSignX ′

mm′

=
SignX

m
+

SignX ′

m′

= σ(α) + σ(α′).

Hence, Axiom 1 holds.
We prove Theorem 1.2 (2) (uniqueness of σ) as follows. Let σ′ be an

invariant of the isomorphism classes of 6–dimensional closed e-manifolds
satisfying the axioms. Let us consider the difference

f(α) = σ′(α) − σ(α) ∈ Q.

If two 6–dimensional closed e-manifolds α0 and α1 are cobordant, that is,
if there exists a 7–dimensional e-manifold β = (Z, X, e) such that ∂β ∼=
α0 	 (−α1), then

f(α0) − f(α1) = σ′(∂β) − σ(∂β) = SignX − SignX = 0

by the axioms. Thus, we can regard f as a function on Ωe
6:

f : Ωe
6 → Q

Moreover, Axiom 1 implies that f is a homomorphism.
On the other hand, any homomorphism Ωe

6 → Q is trivial by Theo-
rem 1.1, in particular, f must be trivial. Namely, σ′ = σ. �

This completes the proof of Theorem 1.2.
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6. Existence and Uniqueness of e-Classes

As in Section 1.2, we denote by EZ,X ⊂ H2(Z \ X; Q) the set of all e-
classes of a manifold pair (Z, X) of codimension 3. In this short section,
we study some elementary properties of EZ,X , and then we give a proof of
Theorem 1.3.

For elements e ∈ EZ,X and a ∈ Ker i∗X , where

i∗X : H2(Z; Q) → H2(X; Q)

is the restriction, the cohomology class

ge(a)
def
= e + a|Z\X ∈ H2(Z \ X; Q)

belongs to EZ,X , because a|X̂ = 0. Thus, we obtain an affine homomorphism

ge : Ker i∗X → EZ,X .

Note that ge is defined only when EZ,X �= ∅. Let #A ∈ N ∪ {∞} denote
the number of elements in a set A, and let [X, ∂X] ∈ Hdim X(Z, ∂Z; Q) be
the fundamental homology class of (X, ∂X).

Proposition 6.1. The following statements hold :

(1) If [X, ∂X] �= 0, then EZ,X = ∅.

(2) For any e ∈ EZ,X , the map ge : Ker i∗X → EZ,X is an affine isomor-
phism.

(3) Assume that i∗X is surjective. Then, EZ,X �= ∅ if, and only if,
[X, ∂X] = 0.

(4) #EZ,X = 1 if, and only if, (Z, X) is simple.

(5) Proposition 1.1 holds. Namely, when i∗X is an isomorphism, (Z, X) is
simple if, and only if, [X, ∂X] = 0.

Proof. (1) is a direct consequence of Lemma 5.1. In fact, if [X, ∂X] �=
0, then (Z, X) does not even admit a quasi e-class.

(2) Since two elements in EZ,X differ by an element in the kernel Ker ι∗X
of the homomorphism ι∗X : H2(Z\X; Q) → H2(X̂; Q), we only need to show
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that the homomorphism j∗X : H2(Z; Q) → H2(Z \X; Q) restricts a bijection
Ker i∗X → Ker ι∗X , and this is immediate from the following commutative
diagram:

H2(Z \ X, X̂; Q) �� H2(Z \ X; Q)
ι∗X �� H2(X̂; Q)

H2(Z, X; Q)

f ∼=
��

�� H2(Z; Q)
��

j∗X

��

i∗X �� H2(X; Q)

Here, the horizontal sequences are the long exact sequences of (Z \ X, X̂)
and (Z, X), and f is the excision isomorphism. Note that the vanishing of
H2(Z, Z \ X; Q) follows the injectivity of j∗X .

(3) We only give a proof of that the vanishing of [X, ∂X] implies EZ,X �=
∅, since the converse is given by (1). Assume that i∗X is surjective
and [X, ∂X] = 0. By Lemma 5.1, there exist e ∈ H2(Z \ X; Q) and
γ ∈ H2(X; Q) such that e|X̂ = e(FX) + 2ρ∗Xγ. By the assumption,
there exists ε ∈ H2(Z; Q) such that ε|X = γ. The homotopy equiva-
lence jXιX � iXρX : X̂ → Z implies ε|X̂ = ρ∗Xγ, and the cohomology class
e′ = e − 2ε|Z\X ∈ H2(Z \ X; Q) satisfies

e′|X̂ = (e(FX) + 2ρ∗Xγ) − 2ρ∗Xγ = e(FX).

This means e′ ∈ EZ,X �= ∅.
(4) By (2), #EZ,X = 1 implies Ker i∗X = {0} which means that i∗X is

injective, and thus, (Z, X) is simple. Conversely, let us assume that (Z, X)
is simple, that is, i∗X is injective and EZ,X �= ∅. Fix any element e ∈ EZ,X ,
then the map ge : Ker i∗X = {0} → EZ,X is a bijection by (2), and thus,
#EZ,X = # {e} = 1.

(5) This is a combination of (3) and (4). �

If we drop the surjectivity assumption of i∗X in Proposition 6.1 (3), then
the statement does not hold anymore, and a counterexample is given in the
following.

Remark 6.1. It is known that any oriented closed smooth 4–manifold
X can be smoothly embedded in S7 (c.f. [4, 9.1.23, 9.1.24]). Let us assume
SignX �= 0 (for example, Sign CP 2 = 1). Obviously, X is null–homologous
in S7, but (S7, X) does not admit any e-class by Corollary 5.1.
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Now, Theorem 1.3 is proved as follows.

Proof of Theorem 1.3. Let us assume that (W, V ) is simple. By
Corollary 1.1, the image ImσW,V ⊂ Q of the function σW,V : EW,V → Q de-
pends only on the isomorphism class of (W, V ). The simplicity of (W, V ) im-
plies that EW,V consists of just one element, say EW,V = {e}, and therefore,
Im σW,V = {σ(W, V, e)}. Thus, σ(W, V, e) is an invariant of the isomorphism
class of (W, V ). �

7. Seifert Surfaces

In this section, we establish the relationship between Seifert surfaces and
quasi e–classes. When we consider the intersection of submanifolds, we will
always assume that the submanifolds are in general positions (by deform-
ing them slightly if necessary) so that the intersections becomes smooth
manifolds.

Let (X, E) be a pair of a manifold X and an oriented vector bundle E

of rank 3 over X. We denote by

τ : E → E, v �→ −v

the involution given by the multiplication by a scalar −1. There is a direct
sum decomposition

H2(S(E); Q) = H+1 ⊕ H−1,(7.1)

where H±1 is the eigenspace of the involution τ∗ : H2(S(E); Q) →
H2(S(E); Q) with the eigenvalue ±1. The subspace H+1 is the image of
the pull–back ρ∗E : H2(X; Q) → H2(S(E); Q), and H−1 is the subspace
spanned by the Euler class class e(FE) of FE . These facts are proved by
using the Thom–Gysin exact sequence of E.

The Euler class e(FE) of FE is algebraically characterized as follows.

Lemma 7.1. Let (X, E) be as above. If a cohomology class
a ∈ H2(S(E); Q) satisfies two conditions

(1) τ∗a = −a,

(2) ρE !a = 2,
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then a = e(FE) over Q. Here, ρE ! : H2(S(E); Q) → H0(X; Q) is the Gysin
homomorphism of the associated sphere bundle ρE : S(E) → X.

Proof. The property (1) implies a ∈ H−, and (2) implies a =
e(FE). �

For a manifold pair (Z, X) of codimension 3, a Seifert surface of X is
a proper (oriented) submanifold Y of ZX (see (4.1)) such that Y ∩ X̂ =
s(X) for some section s : X → X̂, and such that the natural isomorphism
νY |s(X)

∼= FX |s(X) preserves the orientation. Note that Y may have the
corner s(∂X) (see also (7.4) below). More generally, if Y \Us(X) is immersed
in ZX \ UX̂ for some open neighborhoods Us(X) of s(X) and UX̂ of X̂ (and
so Y has no multiple points on Us(X)), then we say Y is an immersed Seifert
surface.

Let Y be such an immersed Seifert surface of X in Z. Define

F (s)
def
= s∗FX

∼= s∗(νY |s(X)),(7.2)

which is an oriented vector bundle of rank 2 over X, and so its Euler class

e(F (s)) ∈ H2(X; Z)

is defined. Unless otherwise stated, we do not assume that F (s) is trivial in
this paper. Let

tY ∈ H2(Z \ X; Q) ∼= H2(ZX ; Q)

be the fundamental cohomology class of Y , then we have

s∗(tY |X̂) = e(F (s)), s∗τ∗(tY |X̂) = 0.(7.3)

Now, let us write

(W, V ) = ∂(Z, X), S = Y ∩ WV

for a moment. Then, S is an immersed Seifert surface of V in W with
respect to the section s|V : V → V̂ (namely S ∩ V̂ = s(V )). Note that

tS = tY |W\V , F (s|V ) = F (s)|V , νS = νY |S
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by definition. In line with our orientation conventions, the (oriented) bound-
aries of Y and S are given as follows:

∂Y = (±S) ∪ (∓s(X)), ∂S = ±s(V )(7.4)

Here, ± = (−1)dim W and ∓ = (−1)dim Z .

Remark 7.1. Let Y ′ ⊂ Z be an (immersed) submanifold with the
boundary ∂Y ′ = (±(∂Y ′ ∩W ))∪ (∓X) and with the corner ∠Y = ∂X such
that Y ′ intersects W transversely, and we assume that a neighborhood of
X ⊂ Y has no multiple points. Then, Y = Y ′∩ZX is an (immersed) Seifert
surface of X in the sense described above. In order to avoid introducing
too much notation, we will also call Y ′ an (immersed) Seifert surface of X.
The corresponding section s : X → X̂ is defined such that Y ′ ∩ X̂ = s(X),
and so F (s) ∼= νY ′ |X . The cohomology class tY ∈ H2(Z \ X; Q) is nothing
but the fundamental cohomology class of Y ′ \ X (the Poincaré dual of the
locally finite fundamental homology class [Y ′ \ X] ∈ H lf

dim Y ′(Z \ X; Q) of
Y ′ \ X).

The following proposition states that an immersed Seifert surface implies
a quasi e-class.

Proposition 7.1. Let (Z, X) be a pair of manifolds of codimension 3,
and Y an immersed Seifert surface of X with respect to a section s : X → X̂

such that e(F (s))|∂X = 0 over Q. Then, 2tY is a quasi e-class of (Z, X),
and e(F (s))/2 is the self–linking form of the quasi e-manifold (Z, X, 2tY ).

Proof. We write b = tY |X̂ ∈ H2(X̂; Q) in this proof. By Lemma 7.1,
we have

b − τ∗b = e(FX).(7.5)

Since b+τ∗b belongs to H+ = Im ρ∗X (see (7.1), where E = νX), there exists
c ∈ H2(X; Q) such that b + τ∗b = ρ∗Xc. The pull–back s∗ : H2(X̂; Q) →
H2(X; Q) is a left–inverse of ρ∗X , and so

c = s∗(ρ∗Xc) = s∗b + s∗τ∗b = e(F (s))
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by (7.3), and thus

b + τ∗b = ρ∗Xe(F (s)).(7.6)

By (7.5) and (7.6), we have

2tY |X̂ = e(FX) + 2 (ρ∗Xe(F (s))/2) .

Since e(F (s))|∂X = 0, 2tY is a quasi e-class of (Z, X), and e(F (s))/2 is the
self–linking form of (Z, X, 2tY ). �

The following is a direct consequence of Proposition 7.1.

Corollary 7.1. Let (Z, X) and Y be as in Proposition 7.1. If
e(F (s)) = 0 over Q, then 2tY is an e-class of (Z, X).

Proof. By Proposition 7.1, the self–linking form of (Z, X, 2tY ) van-
ishes, in other words, 2tY is an e-class by definition. �

8. Haefliger’s Invariant

In this section, we prove Theorem 1.4. We also prove the geometric for-
mula for σ, and as a corollary, we obtain more general results (Corollary 8.1)
establishing the relationship between Takase’s invariant Ω and our invariant
σ.

8.1. Review of Haefliger’s invariant
We begin by reviewing Haefliger’s results [6] [7] on the classification of

smooth 3–knots in S6. He first showed that the set Emb(S3, S6) of the
isotopy classes of smooth embeddings f : S3 → S6 is an abelian group
with the group structure given by the connected sum. Write Mf = f(S3).
He showed the existence of an oriented proper framed 4–submanifold X ⊂
D7 such that ∂X = Mf and SignX = 0. Here, a framing of X is the
homotopy class of a triple (s1, s2, s3), si : X → νX , of linearly independent
sections of the normal bundle νX of X. We shall assume si(X) ⊂ X̂. The
homomorphism

H2(X, ∂X; Q)
∼=−→ H2(X; Q)
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is an isomorphism, and we will identify these two groups. For a 2–cycle c

of X, the linking number lk(s1(c), X) ∈ Q of s1(c) with X is well–defined,
and it depends only on the homology class [c] ∈ H2(X; Z) of c. Thus, we
obtain a homomorphism

λ : H2(X; Z) → Q, λ([c]) = lk(s1(c), X),

which gives a cohomology class λ ∈ H2(X, ∂X; Q). He proved that the
integral

H(f) =
1
2

∫
X

λ2(8.1)

is an integer and depends only on the isotopy class of f , and that the induced
map H : Emb(S3, S6) → Z is an isomorphism of abelian group.

8.2. Invariant σ(S6, Mf )
Let Mf and X be as before. The pair (S6, Mf ) is simple by Proposi-

tion 1.1, and we can define the invariant σ(S6, Mf ) ∈ Q by Theorem 1.3.
By Lemma 5.1, there exist e ∈ H2(D7 \X; Q) and γ ∈ H2(X; Q) such that

e|X̂ = e(FX) + 2ρ∗Xγ.

Since γ|Mf
= 0 ∈ H2(Mf ; Q) = 0, e is a quasi e-class of (D7, X), and γ

is the self–linking form of the quasi e-manifold (D7, X, e). In particular,
ef = e|S6\Mf

∈ H2(S6 \ Mf ; Q) is the unique e-class of (S6, Mf ), and

∂(D7, X, e) = (S6, Mf , ef )

as e-manifolds. By Theorem 1.2 (3), we obtain a formula

σ(S6, Mf ) = −4
∫

X
γ2.(8.2)

8.3. Proof of Theorem 1.4
The essential part of the proof of Theorem 1.4 is that the cohomology

classes λ and γ, we defined in this section, are actually the same.

Proposition 8.1. We have λ = γ in H2(X, ∂X; Q).
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Proof. Fix a 2-cycle c of X, and let ω ∈ H2(X, ∂X; Q) be the
Poincaré dual of the homology class [c] ∈ H2(X; Q) of c. Let us write
c̃ = s1(c) and X̃ = s1(X) which are cycles of X. Note that the Poincaré
dual of [X̃, ∂X̃] ∈ H4(X̂; Q) is e(FX)/2.

Since c̃ = X̃ ∩ ρ−1
X (c), its Poincaré dual is

1
2
e(FX) ρ∗Xω ∈ H4(X̂, ∂X̂; Q).

The homomorphism

H2(D7 \ X; Q) → H3(D7, D7 \ X; Q)

given by the pair (D7, D7 \X) maps e/2 to the Thom class of νX , and thus,
we have

lk(c̃, X) = 〈[c̃], e/2〉 =
1
4

∫
X̂

e(FX) e ρ∗Xω.

Therefore, we have

λ([c]) =
1
4

∫
X̂

e(FX) e ρ∗Xω =
1
2

∫
X̂

e(FX) ρ∗X (γ ω) =
∫

X
γ ω = 〈[c], γ〉,

where we used the relation e|X̂ = e(FX) + 2ρ∗Xγ and the vanishing∫
X̂

e(FX)2ρ∗Xω =
∫

X̂
ρ∗X (p1(νX)ω) = 0

following from (3.4) and dimX < 6. Hence, λ([c]) = 〈[c], γ〉 for any 2–cycle
c of X, and thus, λ = γ ∈ H2(X, ∂X; Q). �

Theorem 1.4 is now quite easy to proof.

Proof of Theorem 1.4. By (8.1), (8.2), and Proposition 8.1, we
have

σ(S6, Mf ) = −4
∫

X
γ2 = −4

∫
X

λ2 = −8H(f). �

We shall say that σ is a natural generalization of Haefliger’s invariant
H.
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8.4. Geometric formula
Let (W, V ) be a pair of closed manifolds of dimensions 6 and 3, and

S ⊂ WV a Seifert surface of V with respect to a section s : V → V̂ (namely
∂S = s(V )) such that e(F (s)) = 0 in H2(V ; Q). By Corollary 7.1, 2tS is
an e-class of (W, V ). In this subsection, we prove the geometric formula for
σ(W, V, 2tS).

The vanishing e(F (s)) = 0 implies e(νS)|∂S = 0 by (7.2), and the integral∫
S

e(νS)2 ∈ Q(8.3)

is well–defined. (More precisely, (8.3) means the integral
∫
S a2, where a ∈

H2(S, ∂S; Q) is an element such that the homomorphism H2(S, ∂S; Q) →
H2(S; Q) maps a to e(νS).)

The following is the geometric formula for σ(W, V, 2tS).

Theorem 8.1. Let (W, V ) be a pair of closed manifolds of dimensions
6 and 3, and S a Seifert surface of V with respect to a section s : V → V̂

such that e(F (s)) = 0 over Q. Then, we have

σ(W, V, 2tS) = SignS −
∫

S
e(νS)2.(8.4)

Remark 8.1. The formula holds only for embedded Seifert surfaces,
and not for immersed Seifert surfaces.

Proof. Set Z = [−1, 1]×W which is a 7–manifold, and let us consider
the submanifolds X, Y ⊂ Z of dimensions 4, 5 defined by

X = ([0, 1]×V ) ∪{0}×V ({0}×S)

Y = [0, 1]×S ⊂ Z.

Here, we shall assume that X is a smooth proper 4–submanifold such that
∂X = {1}×V , after “non–smooth part” {0}×V is rounded in a standard
fashion, and that Y has the smooth boundary ∂Y = S ∪ (−X) and the
corner {1}×V . Thus, Y is a Seifert surface of X in Z with respect to
the section s̃ : X → X̂ such that s̃(X) = X̂ ∩ Y . By Proposition 7.1,
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2tY ∈ H2(Z \ X; Q) is a quasi e-class of (Z, X), and e(F (s̃))/2 is the self–
linking form of the quasi e-manifold (Z, X, 2tY ). By the construction, the
boundary of (Z, X, 2tY ) is

∂(Z, X, 2tY ) ∼= (W, V, 2tS) 	 (−(W, ∅, 0)).

The oriented cobordism group Ω6 vanishes (see (3.3)), and so (W, ∅, 0)
bounds an e-manifold of the form (Z ′, ∅, 0). That implies σ(W, ∅, 0) = 0 by
Axiom 2. Since X ∼= S, we have SignX = SignS. By Theorem 1.2 (3) and
by the definition of Λ, we have

σ(W, V, 2tS) = SignX − 4
∫

X

e(F (s̃))2

4
= SignS −

∫
X

e(F (s̃))2.

By the Stokes’ theorem,∫
X

e(F (s̃))2 =
∫

S
e(νS)2 −

∫
∂Y

e(νY )2 =
∫

S
e(νS)2,

where note that νY |S = νS and νY |X = F (s̃). Hence, the formula (8.4)
holds. �

8.5. Takase’s invariant
Let M be an integral homology 3–sphere, and f : M → S6 a smooth

embedding. We write Mf = f(M) as before. Since (S6, Mf ) is simple
by Proposition 1.1, the invariant σ(S6, Mf ) ∈ Q is well–defined by Theo-
rem 1.3. It is not difficult to show that there is a Seifert surface S of Mf

with respect to some section s : Mf → M̂f (cf. [16, Proposition 2.5]). Since
e(F (s)) = 0 ∈ H2(Mf ; Q) = 0, the cohomology class 2tS is the unique
e-class of (S6, Mf ) by Corollary 7.1, and so σ(S6, Mf ) = σ(S6, Mf , 2tS). By
Theorem 8.1, the geometric formula

σ(S6, Mf ) = SignS −
∫

S
e(νS)2

holds. The right–hand side is nothing but (−8 times) the definition of
Takase’s invariant Ω(f) [16, Proposition 4.1], and thus, we obtain the fol-
lowing immediate corollary.
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Corollary 8.1. For a smooth embedding f : M → S6 of an integral
homology 3–sphere M , we have

σ(S6, Mf ) = −8Ω(f).

Since Ω(f) = H(f) when M = S3 [15, Corollary 6.5], and so again we
obtain Theorem 1.4 as a direct consequence of Corollary 8.1.

9. Milnor’s Triple Linking Number

In this section, we prove Theorem 1.5. We begin by reviewing the defi-
nition of the triple linking number µ(L) ∈ Z of oriented algebraically split
3–component links L = K1 ∪ K2 ∪ K3 in R3 by using Seifert surfaces.

9.1. Review of the triple linking number
The letters i and j will denote elements in {1, 2, 3}. Since the linking

number lk(Ki, Kj) vanishes (i �= j), Ki has a Seifert surface Σ′
i ⊂ R3,

∂Σ′
i = Ki, such that Σ′

i ∩Kj = ∅ (i �= j). The triple linking number µ(L) is
defined to be the algebraic intersection number µ(L) = # (Σ′

1 ∩ Σ′
2 ∩ Σ′

3).
In other words, regarding the intersection C ′

i,j = Σ′
i ∩ Σ′

j (i < j) as an
oriented 1–dimensional closed submanifold of Σ′

i, we can write

µ(L) = #(C ′
1,2 ∩ C ′

1,3).

For the proof of Theorem 1.5, we introduce a slightly different (but es-
sentially the same) definition of µ(L) as the following. Let L0 = K1,0 ∪
K2,0 ∪ K3,0 be a 3–component unlink in R3 split from L. Then the link
Li = Ki ∪ (−Ki,0) has a connected Seifert surface Σi ⊂ R3, ∂Σi = Li, such
that Σi ∩ Lj = ∅ (i �= j), and µ(L) is defined to be

µ(L) = #(C1,2 ∩ C1,3),(9.1)

where Ci,j = Σi∩Σj ⊂ Σi (i < j) which is an oriented 1–dimensional closed
submanifold of Σi.

From now on, we regard L and L0 as links in S3 = R3 ∪ {∞}.
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9.2. Seifert surface of ML

We construct an immersed Seifert surface S of ML as follows. First of
all, let us recall the definition of 3–submanifold ML of T 3×S3:

T 3
i =

{
(t1, t2, t3, x) ∈ T 3×S3 | fi(ti) = x

}
, L = T 3

1 ∪ T 3
2 ∪ T 3

3 ,

T 3
i,0 =

{
(t1, t2, t3, x) ∈ T 3×S3 | fi,0(ti) = x

}
, L0 = T 3

1,0 ∪ T 3
2,0 ∪ T 3

3,0,

ML = L ∪ (−L0).

Here, fi : S1 → S3 and fi,0 : S1 → S3 are smooth embeddings representing
Ki and Ki,0 respectively, and T 3 is the 3–torus with coordinates (t1, t2, t3)
such that ti ∈ S1 = R/Z. For convenience, we also write

Li = T 3
i ∪ (−T 3

i,0)

so that ML = L1 ∪ L2 ∪ L3.
Since Σi is connected, there exists a map

pi : Σi → S1,

such that pi fi = pi fi,0 = identity : S1 → S1. Let us consider the following
smooth embeddings:

F1 : Σ1×S1×S1 → T 3×S3,

F2 : S1×Σ2×S1 → T 3×S3,

F3 : S1×S1×Σ3 → T 3×S3,

(x, t2, t3) �→ (p1(x), t2, t3, x)

(t1, x, t3) �→ (t1, p2(x), t3, x)

(t1, t2, x) �→ (t1, t2, p3(x), x)

The image Si ⊂ T 3×S3 of Fi is a Seifert surface of Li, such that

Si ∩ Lj = ∅ (i �= j),(9.2)

and the union

S = S1 ∪ S3 ∪ S3(9.3)

is an immersed Seifert surface of ML (Si may intersects the other compo-
nents Sj (i �= j)).

The intersection

Σi,j = Si ∩ Sj ⊂ Si (i �= j),
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is a Σi,j as a 2–dimensional closed submanifold of Si, and the intersection
number #(Σ1,2 ∩Σ1,3) ∈ Z is defined. The following lemma will be used to
prove Theorem 1.5 in Section 9.4

Lemma 9.1. #(Σ1,2 ∩ Σ1,3) = µ(L).

Proof. Let h : S1 → Σ1×S1×S1 be the diffeomorphism defined by

h(p1(x), t2, t3, x) = (x, t2 − p2(x), t3 − p3(x))

for (p1(x), t1, t3, x) ∈ S1, then we have

h(Σ1,2) = C1,2×{0}×S1,

h(Σ1,3) = C1,3×S1×{0} ,

and therefore,

#(Σ1,2 ∩ Σ1,3) = #((C1,2×{0}×S1) ∩ (C1,3×S1×{0}))
= #(C1,2 ∩ C1,3)

= µ(L)

by the definition (9.1). �

9.3. (T 3×S3, ML) is simple
By using the immersed Seifert surface S of ML constructed in the pre-

vious subsection, we prove that (T 3×S3, ML) is simple.

Lemma 9.2. The normal bundle νSi of Si ⊂ T 3×S3 is trivial.

Proof. The vector field ∂/∂ti on T 3×S3 is transverse to the subman-
ifold Si, and this gives a non–vanishing section of νSi . Since the rank of νSi

is 2, νSi is trivial. �

Let tS ∈ H2((T 3×S3) \ ML; Q) be the fundamental cohomology class
of S, and we define

eL = 2tS .



Invariant of Embeddings of 3–Manifolds in 6–Dim and Triple Linking Number 233

Proposition 9.1. The manifold pair (T 3×S3, ML) has an e-class eL,
and is simple.

Proof. Since the normal bundle νSi is trivial by Lemma 9.2, the Euler
class e(F (s)) ∈ H2(ML; Q) vanishes, where s : ML → M̂L is the section
such that s(ML) = M̂L ∩ S. Thus, eL is an e-class of (T 3×S3, ML) by
Corollary 7.1. Since the restriction H2(T 3×S3; Q) → H2(ML; Q) is injec-
tive, (T 3×S3, ML) is simple. �

By Theorem 1.3 and Proposition 9.1, we can define the invariant

σ(T 3×S3, ML) = σ(T 3×S3, ML, eL) ∈ Q

of (T 3×S3, ML). As we explained in Remark 1.4, this is a link homotopy
invariant of L.

9.4. Proof of Theorem 1.5
In this subsection, we prove Theorem 1.5 by using the formula in Theo-

rem 1.2 (3).
We begin by constructing a proper 4–submanifold X ⊂ T 3×D6 such that

∂X = ML and X ∼= S1 	 S2 	 S3. Pushing IntSi into the inside of T 3×D4

(∂Si is fixed on the boundary T 3×S3), we obtain a proper 4–submanifold
Xi ⊂ T 3×D4 such that Xi

∼= Si and ∂Xi = Li, and we assume that the
depth of Xi is shallower than Xi+1 so that Xi∩Xj = ∅ if i �= j, see Figure 2.
We then define

X = X1 ∪ X2 ∪ X3.

The natural isotopy of sinking Si down onto Xi gives a 5–submanifold

Yi ⊂ T 3×D4

with the boundary ∂Yi = Si ∪ (−Xi) and the corner Li, and it is a Seifert
surface of Xi in T 3×D4 with respect to the section

si : Xi → X̂i

such that si(Xi) = Yi∩X̂i. Let tYi ∈ H2((T 3×D4)\Xi; Q) be the fundamen-
tal cohomology class of Yi. We define a cohomology class ẽ ∈ H2((T 3×D4)\
X; Q) by

ẽ = 2(tY1 + tY2 + tY3).
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T 3 × D4

T 3 × S3

X2

X1

X3

L2
L3L1

Fig. 2. Submanifold X = X1 ∪ X2 ∪ X3.

Note that

ẽ|(T 3×S3)\ML
= eL(9.4)

by definition. We will see soon that ẽ is a quasi e-class of (T 3×D4, X)
(Proposition 9.2).

Remark 9.1. The union Y = Y1 ∪ Y2 ∪ Y3 may not be an immersed
Seifert surface of X ⊂ T 3×D4 in our sense, because Xi ∩ Yj may not be
empty if i < j. Thus, we cannot apply Proposition 7.1 to Y to prove that ẽ

is a quasi e-class.

Let us consider the intersection

Σ′
i,j = Xi ∩ Yj ⊂ Xi (i < j)

which is an oriented 2–submanifold of Xi such that

Σ′
i,j ⊂ IntXi,(9.5)

Σ′
1,2 ∩ Σ′

2,3 = Σ′
1,3 ∩ Σ′

2,3 = ∅.(9.6)

Let νYi and νΣ′
i,j

be the normal bundles of Yi ⊂ T 3×D4 and Σ′
i,j ⊂ Xi

respectively.
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Lemma 9.3. The normal bundles νYi and νΣ′
i,j

are trivial.

Proof. The triviality of νYi follows from the definition of Yi and
Lemma 9.2. Since νΣ′

i,j
is isomorphic to νYj |Σ′

i,j
(where we regard Σ′

i,j ⊂ Yj),
this is trivial too. �

Lemma 9.4. The cohomology class 2tYi is an e–class of (T 3×D4, Xi).

Proof. Since νYi is trivial by Lemma 9.3, the cohomology class
e(F (si)) ∈ H2(Xi; Q) vanishes. Thus, 2tYi is an e-class by Corollary 7.1. �

Let γi,j ∈ H2(Xi; Q) be the Poincaré dual of Σi,j , and we write

γ = γ1,2 + γ1,3 + γ2,3 ∈ H2(X; Q).

By the definitions of Xi and Yj , we have X̂i ∩ Yj = ρ−1
Xi

(Σ′
i,j) (i < j), and

this implies

tYj |X̂i
= ρ∗Xi

γi,j (i < j)(9.7)

in H2(X̂i; Q) by the Poincaré duality.
We obtain the following proposition.

Proposition 9.2. The triple (T 3×D4, X, ẽ) is a quasi e-manifold with
the boundary (T 3×S3, ML, eL) and with the self–linking form γ.

Proof. By Lemma 9.4 and (9.7), we have

ẽ|X̂ =
3∑

i=1

e(FXi) + 2(ρ∗X1
γ1,2 + ρ∗X1

γ1,3 + ρ∗X2
γ2,3)

= e(FX) + 2ρ∗Xγ

in H2(X̂; Q). It follows from (9.5) that γ|∂X = 0. Thus, ẽ is a quasi
e-class of (T 3×D4, X) with the self–linking form γ. By (9.4), we have
∂(T 3×D4, X, ẽ) = (T 3×S3, ML, eL). �

This is the proof of Theorem 1.5.
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Proof of Theorem 1.5. By Theorem 1.2 (3) and Proposition 9.2, we
have given as follows.

σ(T 3×S3, ML) = SignX − 4
∫

X
γ2.

Since Xi
∼= Si

∼= ±Σ×S1×S1, we have SignX = 0. We have γ2
i,j = 0 (i �= j)

by Lemma 9.3, and γ1,jγ2,3 = 0 (j = 2, 3) by (9.6). Thus,∫
X

γ2 = 2
∫

X
γ1,2γ1,3 = 2#(Σ′

1,2 ∩ Σ′
1,3).

Since the intersection C1,2,3 = Y1 ∩ Y2 ∩ Y3 is a 1–dimensional oriented
cobordism from Σ1,2 ∩ Σ1,3 to Σ′

1,2 ∩ Σ′
1,3, namely

∂C1,2,3 = (Σ1,2 ∩ Σ1,3) 	 (−(Σ′
1,2 ∩ Σ′

1,3)),

we have

#(Σ′
1,2 ∩ Σ′

1,3) = #(Σ1,2 ∩ Σ1,3).

The right–hand side equals µ(L) by Lemma 9.1, and hence, we have

σ(T 3×S3, ML) = −8µ(M). �
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