
J. Math. Sci. Univ. Tokyo
18 (2011), 181–191.

Semistability Criterion for Parabolic Vector Bundles

on Curves

By Indranil Biswas and Ajneet Dhillon

Abstract. We give a cohomological criterion for a parabolic vec-
tor bundle on a curve to be semistable. It says that a parabolic vector
bundle E∗ with rational parabolic weights is semistable if and only if
there is another parabolic vector bundle F∗ with rational parabolic
weights such that the cohomologies of the vector bundle underlying
the parabolic tensor product E∗ ⊗ F∗ vanish. This criterion general-
izes the known semistability criterion of Faltings for vector bundles on
curves and significantly improves the result in [Bis07].

1. Introduction

We will work over an algebraically closed ground field of characteristic
zero.

Let X be an irreducible smooth projective curve. A theorem due to
Faltings says that a vector bundle E over X is semistable if and only if there
is a vector bundle F over X such that H0(X, E ⊗F ) = 0 = H1(X, E ⊗F )
(see [Fal93, p. 514, Theorem 1.2] and [Fal93, p. 516, Remark]). Let D be
a reduced effective divisor on X. For a parabolic vector bundle W∗ on X

with parabolic divisor D, the underlying vector bundle will be denoted by
W0; see [MS80], [MY92] for parabolic vector bundles. Let r be a positive
integer. Denote by Vect(X, D, r) the category of parabolic vector bundles
on X with parabolic structure along D and parabolic weights being integral
multiples of 1/r. In [Bis07] the following theorem was proved:

Theorem 1.1. There is a parabolic vector bundle V∗ ∈ Vect(X, D, r)
with the following property: A parabolic vector bundle E∗ is semistable if and
only if there is a parabolic vector bundle F∗ ∈ Vect(X, D, r) with H0(X, (E∗⊗
V∗ ⊗ F∗)0) = 0 = H1(X, (E∗ ⊗ V∗ ⊗ F∗)0), where (E∗ ⊗ V∗ ⊗ F∗)∗ is the
parabolic tensor product.
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Theorem 1.1 was also proved in [Par10]. It should be mentioned that the
vector bundle V∗ in Theorem 1.1 is not canonical; it depends upon the choice
of a suitable ramified Galois covering Y −→ X that transforms parabolic
bundles in Vect(X, D, r) into G-linearized vector bundles on Y , where G is
the Galois group for the covering. However, many different covers do this.

We prove that V∗ in Theorem 1.1 can be chosen to be the trivial line
bundle OX equipped with the trivial parabolic structure. More precisely,
we prove the following theorem (see Theorem 6.1):

Theorem 1.2. A parabolic vector bundle E∗ ∈ Vect(X, D, r) is semi-
stable if and only if there is a parabolic vector bundle F∗ ∈ Vect(X, D, r)
such that

H0(X, (E∗ ⊗F∗)0) = 0 = H1(X, (E∗ ⊗F∗)0) .

Theorem 1.2 is proved by systematically working with stacks. Compare
this method with the earlier attempts (cf. [Bis07], [Par10]) that landed in
the weaker version given in Theorem 1.1. Note that from Theorem 1.1 it
follows immediately that a semistable parabolic vector bundle satisfies the
criterion in Theorem 1.2. The nontrivial part is that if a parabolic vector
bundle satisfies the criterion in Theorem 1.2, then it is semistable.

2. Parabolic Bundles and Root Stacks

Recall that to give a morphism X −→ [A1/Gm] is the same as giving a
line bundle L with section s on X (see [Cad07]). Given a positive integer
r, there is a natural morphism

θr : [A1/Gm] −→ [A1/Gm]

defined by t �−→ tr, with t ∈ A1. We define the root stack X(L,s,r) to be
the fibered product

X ×[A1/Gm],θr
[A1/Gm] .

When the section is non-zero, this root stack is an orbifold curve; see [Cad07,
Example 2.4.6].

The data (L, s) corresponds to an effective divisor D on X. We will
henceforth assume that this divisor is reduced. Sometime we write XD,r

instead of XL,s,r.



Semistability Criterion for Parabolic Bundles 183

We think of the ordered set 1
r Z of rational numbers with denominator

r as a category. Let j be an integer multiple of 1/r. Given a functor from
the opposite category

F∗ : (
1
r

Z)op −→ Vect(X) ,

we denote by F∗[j] its shift by j, so

Fi[j] = Fi+j .

There is a natural transformation F∗[j] −→ F∗ when j ≥ 0.
A vector bundle with parabolic structure over D such that the parabolic

weights are integral multiples of 1/r is a functor

F∗ : (
1
r

Z)op −→ Vect(X)

together with a natural isomorphism

j : F∗ ⊗OX(−D) ∼−→ F [1]

such that the following diagram commutes

F∗ ⊗OX(−D) ��

��������������
F [1]

��
F∗

(see [MY92], [MS80]). The underlying vector bundle of a parabolic vector
bundle is the value of this functor at 0. We have previously denoted this by
F0. For a functor F∗ defining a parabolic vector bundle, the value of F∗ at
t ∈ 1

r Z will be denoted by Ft.
Denote by Vect(X, D, r) the category of vector bundles on X with

parabolic structure along D and parabolic weights integral multiples of 1/r.
It is a tensor category.

Theorem 2.1. There is an equivalence of tensor categories

F : Vect(X(L,s,r))
∼−→ Vect(X, D, r).
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The equivalence preserves parabolic degree and semistability (see § 4 below).

The functor F has the following explicit description. There is a natural
root line bundle N on X(L,s,r). Given a vector bundle F on the root stack,
the corresponding parabolic bundle is the functor defined by

l/r �−→ π∗(F ⊗N l) .

Proof of Theorem 2.1. See [Bor07, Section 3] and [Bis97]. �

3. Root Stacks as Quotient Stacks

For the map z �−→ zn defined around 0 ∈ C, the ramification index at
0 will be n − 1.

We will need the following theorem :

Theorem 3.1. Suppose k = C. There is a finite Galois covering Y −→
X ramified over D with ramification index r − 1 at each point in D if and
only if either X �= P1 or X = P1 with |D| �= 1.

Proof. See [Nam87, p. 29, Theorem 1.2.15]. �

Corollary 3.2. Theorem 3.1 holds over any algebraically closed
ground field of characteristic zero.

Proof. This follows from [SGA1, Expose IX, Theorem 4.10]. See also
Proposition 7.2.2 in [Mur67, p. 146]. �

Proposition 3.3. Suppose that either X �= P1 or |D| �= 1. Then
X(D,r) is a quotient stack.

Proof. Fix a covering Y −→ X as in Corollary 3.2. Let G be the
Galois group for this covering. Our goal is to show that X(D,r) = [Y/G].

Let R be the ramification divisor in Y . Then the reduced divisor Rred

produces a morphism

Y −→ X(D,r)(1)
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via the universal property of root stacks. As Rred is G-invariant so is the
morphism in (1). Hence we obtain a morphism

[Y/G] −→ X(D,r) .

To show that this morphism is an isomorphism is a local condition for the
flat topology and follows from [Cad07, Example 2.4.6]. �

4. Semistability

Recall that the parabolic degree of a parabolic vector bundle E∗ over X

is defined to be

degpar(E∗) := rk(E0)(deg D − χ(OX)) +
1
r
(

r∑
i=1

χ(Ei/r))

= rk(E0) deg D +
1
r

r∑
i=1

deg(Ei/r)

(see [MS80], [Bis97], [Bor07, § 4]). The slope is defined as usual :

µ(E∗) :=
degpar(E)

rk(E)
.

A parabolic vector bundle E∗ is said to be semistable if

µ(E∗) ≥ µ(F∗)

for all parabolic subbundles F∗.

Example 4.1. Let us describe all the parabolic semistable bundles on
P1 with one parabolic point, meaning D = x, where x is some point on P1.
Let E∗ be a semistable parabolic vector bundle. Then we may write

E0 =
m⊕

k=1

O(nk)sk

[Gro57]. We may assume that the integers ni are strictly decreasing. A
subbundle F∗ is defined by taking

Fi/r = O(n1)s1 ∩ Ei/r
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for 0 ≤ i < r. This extends to a parabolic subbundle of E∗. We see
immediately that

µ(F∗) > µ(E∗)

when m > 1. Consequently, a parabolic vector bundle E∗ of rank n over P1

with one parabolic point is semistable if and only if

E∗ = (L∗)⊕n ,

where L∗ is a parabolic line bundle.

5. Grothendieck-Riemann-Roch Theorem for Deligne-Mumford
Stacks

In this section we recall the pertinent results from [Tö99]. An excellent
summary of this paper of Töen can be found in the appendix to [Bor07].
We denote by X a smooth Deligne-Mumford stack that is proper over our
ground field k. We equip it with the étale topology. The category of vector
bundles (respectively, coherent sheaves) on X is an exact category so we
may form the groups

Ki(X) (respectively, Gi(X)) .

Let Ki denote the sheaf in the étale topology on X associated to the
presheaf

(X −→ X) �−→ Ki(X) .

Set
Hi(X, Q) = Hi(X, Ki ⊗ Q) .

By [Gil81] we have Chern classes and hence Chern characters and Todd
classes

cet
i , chet, tdet : K0(X) −→ H∗(X) .

Let IX := X×X×XX be the inertia stack of X. Let µ∞ denote the group
of roots of unity in Q, and set Λ := Q(µ∞). If G is a locally free sheaf on
IX, the inertial action induces an eigenspace decomposition

G =
⊕

ζ∈µ∞

G(ζ) .
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Let
ρX : K0(IX) ⊗Z Λ −→ K0(IX) ⊗Z Λ

be the morphism defined by

G �−→
∑

ζ[G(ζ)] .

We have a morphism, called the Frobenius character,

φX : K0(X)⊗Z Λ
π∗

X−→ K0(IX)⊗Z Λ
ρX−→ K0(IX)⊗Z Λ −→ K0,et(IX)⊗Z Λ .

The ring K0 is a lambda ring and we write λ−1(x) =
∑

(−1)iλi(x).
Define

αX := ρX(λ−1([Ω1
IX/X])) ∈ K0,et(IX) ⊗Z Λ .

Finally define the characteristic classes

chrep(x) := chet(φX(x))

and
tdrep(X) := chet(α−1

X
)tdet(TIX

) .

Theorem 5.1. Denote by
∫ rep
X

the push-forward p∗ for p : IX −→
Spec(k). The following holds:

χ(X,F) =
∫ rep

X

tdrep(X)chrep(F) .

Proof. See [Tö99, Corollary 4.13]. �

Corollary 5.2. Suppose that X is a proper orbifold curve. Then

µ(F) = χ(F) −
∫ rep

X

tdrep(X) .



188 Indranil Biswas and Ajneet Dhillon

Proof. We have that π∗
X(F) is an eigensheaf with eigenvector 1 as the

stack X is generically a variety. There is a diagram

IX

pI

�����������

πX

��
X

p �� Spec(k).

By the projection formula,

pI,∗(cet
1 (π∗

XF)) = p∗(cet
1 (F)) .

In view of Theorem 5.1, the result follows from the fact that deg(F)) =
p∗(cet

1 (F)) ([Bor07, Theorem 4.3]) and the usual expression for the Chern
character. �

Corollary 5.3. Suppose that there is a vector bundle E so that
Hi(X, E ⊗ F) = 0 for i = 0 , 1. Then F is semistable.

Proof. Suppose there is a subsheaf F ′ of F with

µ(F ′) > µ(F) .

Then it follows from Corollary 5.2 that

χ(E ⊗ F ′)
rank(E ⊗ F ′)

− χ(E ⊗ F)
rank(E ⊗ F)

> 0 .

Since χ(E ⊗ F) = 0, this implies that H0(X, E ⊗ F ′) �= 0. But E ⊗ F ′ ⊂
E ⊗ F . Hence H0(X, E ⊗ F) �= 0 which is a contradiction. �

6. Semistability Criterion

Theorem 6.1. A vector bundle with parabolic structure E∗ ∈
Vect(X, D, r) is semistable if and only if there is a parabolic vector bun-
dle F∗ ∈ Vect(X, D, r) with

Hi(X, (E∗ ⊗F∗)0) = 0

for all i, where (E∗ ⊗F∗)∗ is the parabolic tensor product.
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Proof. We have a morphism π : XD,r −→ X, and π∗ is exact as
char(k) = 0. Hence by the Leray spectral sequence,

Hi(X, π∗(F)) = Hi(XD,r, F)

for all i.
Suppose that there is a parabolic vector bundle F∗ ∈ Vect(X, D, r) with

H0(X, (E∗ ⊗F∗)0) = 0 = H1(X, (E∗ ⊗F∗)0) .

Applying Theorem 2.1, we deduce from Corollary 5.3 that E∗ is semistable.
To prove the converse, assume that E∗ is semistable. We break up into

two cases.
The case of P1 with exactly one parabolic point: Applying Example 4.1,

we see that
E0 =

⊕
O(n)m .

So tensoring with O(−n − 1) does the job.
All other cases: In view of Proposition 3.3 we may assume that we have a

quotient stack, so XD,r = [Y/G]. Then given a semistable parabolic bundle
on X, we obtain a corresponding semistable G-linearized vector bundle E
on Y . We note that this implies that the vector bundle E is semistable
[Bis97, p. 308, Lemma 2.7]. By [Fal93, p. 514, Theorem 1.2], there is a
vector bundle F on Y such that all the cohomology groups of F ⊗E vanish.
Consider

F̃ =
⊕
g∈G

g∗F .

The vector bundle F̃ has a natural G-action and

Hi(Y, F̃ ⊗ E) = 0

for all i. The vector bundle F̃ produces a vector bundle on [Y/G], which
will also be denoted by F̃ . Finally

Hi([Y/G], F̃ ⊗ E) = Hi(Y, F̃ ⊗ E)G = 0 .

The theorem now follows. �
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