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Connections and the Second Main Theorem for

Holomorphic Curves∗

By Junjiro Noguchi

Abstract. By means of C∞-connections we will prove a general
second main theorem and some special ones for holomorphic curves.
The method gives a geometric proof of H. Cartan’s second main the-
orem in 1933. By applying the same method, we will prove some
second main theorems in the case of the product space (P1(C))2 of
the Riemann sphere.

1. Main Results

In this paper we are going to prove a general second main theorem and
some special ones for holomorphic curves. We begin with the general one.
One finds an application of this method in Y. Tiba [12].

(a) Let M be a compact complex manifold of dimension n and let T(M)
denote the holomorphic tangent bundle over M . Let ∇ be a C∞ connection
in T(M). Let U be a domain of the complex plane C. For a holomorphic
curve f : U → M we have the derivative (1-jet lift) f ′(z) ∈ T(M)f(z), and
we set inductively

f (1)(z) = f ′(z), f (k)(z) = ∇f ′(z)f
(k−1)(z), k = 2, 3, . . . .

We define the Wronskian of f with respect to ∇ by

W (∇, f) = f (1)(z) ∧ · · · ∧ f (n)(z) ∈ K∗
M ,

where K∗
M denotes the dual of the canonical bundle KM over M . Because

of its local nature it makes sense to say that W (∇, f) is holomorphic or that
log |W (∇, f)| is subharmonic.

We say that f is ∇-(resp. non)degenerate if and only if W (∇, f) ≡ 0
(resp. �≡ 0).
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Cf. §§2&3 for more notation. The first result of this paper is as follows:

Theorem 1.1. Let f : C → M be a ∇-nondegenerate holomorphic
curve and let D =

∑
i Di be an effective reduced divisor with only simple

normal crossings. Assume

(i) log |W (∇, f)| is subharmonic;

(ii) every Di is ∇-totally geodesic.

Then we have

Tf (r, L(D)) + Tf (r, KM ) ≤
∑

i

Nn(r, f∗Di) + Sf (r).(1.2)

Here Nn(r, f∗Di) denotes the n-truncated counting function of f∗Di,
and Sf (r) a small term in the Nevanlinna theory such as

Sf (r) = O(log r + log Tf (r))||,

with the order function Tf (r) of f with respect an hermitian metric or an
ample line bundle over M .

Let ∇ be the Fubini-Study metric connection on the n-dimensional
complex projective space Pn(C). Then ∇-totally geodesic complex sub-
manifolds of Pn(C) are complex linear subspaces. A holomorphic curve
f : C → Pn(C) is linearly nondegenerate if and only if W (∇, f) �≡ 0;
moreover, the Wronskian W (∇, f) is holomorphic (see Theorem 4.1).

Corollary 1.3. Let f : C → Pn(C) be a linearly nondegenerate holo-
morphic curve and let 1 ≤ n ≤ 3. Then for q hyperplanes Hi ⊂ Pn(C),
1 ≤ i ≤ q, in general position we have

qTf (r, O(1)) + Tf (r, KPn(C)) ≤
∑

i

Nn(r, f∗Di) + Sf (r),(1.4)

where O(1) denote the hyperplane bundle over Pn(C).

Note that (1.4) is Cartan’s Second Main Theorem ([1]), for KPn(C) =
O(−n − 1). Thus, this gives a geometric proof of Cartan’s Second Main
Theorem.
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(b) It is our second aim to consider a special case where we deal with
a holomorphic curve f : C → P1(C)2 (§5). We will consider P1(C)2 as an
equivariant compactification of the semi-abelian variety G = C∗2. This is a
quite special case, but interesting, while not much study has been done for
it in the past.

Let E = P1(C)2 \G be the boundary divisor and let (x, y) be the affine
coordinate system of G. Here we denote by ∇ the flat connection with
respect to the invariant vector fields, x ∂

∂x , y ∂
∂y on G.

We will prove two Theorems 5.7 and 5.12 of Nevanlinna’s second main
theorem type for ∇-nondegenerate f with some additional condition and
a divisor D on P1(C)2 whose irreducible components are all ∇-totally
geodesic.

Remark 1.5. For a more general case without additional condition,
see Y. Tiba [12], where he applies the same method as above for a problem
to obtain a new second main theorem.

At the end we will give some examples and problems.

Acknowledgment . The author would like to express his sincere grati-
tude to Professor Jörg Winkelmann for interesting discussions on the present
subject. The author is grateful to the referee for pointing an oversight in
the original proof of Theorem 4.1, which was minor but certainly necessary
to be fixed.

2. Totally Geodesic Divisor and Lemma on Logarithmic Deriva-
tive

Let M be a complex n-dimensional manifold, and let ∇ be a C∞ con-
nection in T(M); i.e., for C∞ vector fields X, Y and a C∞ function α on
M we have

(i) ∇XY is a C∞ vector field in T(M), and is linear in X and Y over C;

(ii) ∇αXY = α∇XY ;

(iii) ∇X(αY ) = X(α) · Y + α∇XY .
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Let N be a locally closed complex submanifold of M . Take C∞ sections
X ′, Y ′ in T(N), and extend them to C∞ sections, X, Y in T(M) over a
neighborhood of N in M . Then the restriction (∇XY )|N is independent
of the extensions X, Y , and so denoted by ∇X′Y ′, which is a section in
T(M)|N , but not in T(N) generally.

Definition 2.1. A locally closed complex submanifold N of M is said
to be ∇-totally geodesic if ∇X′Y ′ is valued in T(N) for all C∞ sections
X ′, Y ′ in T(N).

Let f : C → M be a holomorphic curve. Then W (∇, f)(z) is valued
in the dual K∗

M,f(z) of the canonical bundle KM at f(z). We take a C∞

volume form Ω on M . Then |W (∇, f)(z)|2 · Ω(f(z)) is a non-negative C∞

function in z ∈ C.
Let D =

∑
i Di be a divisor on M with irreducible components Di. Let

σi be a section of the line bundle L(Di) determined by Di such that the
divisor (σi) coincides Di, and introduce a hermitian metric ‖ · ‖ in every
L(Di). We set

ξ(z) =
|W (∇, f)(z)|2 · Ω(f(z))∏

i ‖σi(f(z))‖2
.(2.2)

As usual, we set log+ ξ(z) = log max{1, ξ(z)}.
The following is a version of Nevanlinna’s lemma on logarithmic deriva-

tive (cf. [3], [8]):

Lemma 2.3. Let M be a complex algebraic manifold and let D =
∑

i Di

be a divisor with irreducible components Di. Assume that

(i) D has only simple normal crossings;

(ii) every Di is ∇-totally geodesic.

Then we have ∫
|z|=r

log+ ξ(z)
dθ

2π
= Sf (r).(2.4)

Proof. Let M = ∪αUα be a finite affine covering with rational func-
tions xi

α, 1 ≤ i ≤ n = dim M over M such that
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(i) xi
α, 1 ≤ i ≤ n, are holomorphic on Uα, and give rise to coordinates in

a neighborhood of every point of Uα;

(ii) Uα ∩ D = {x1
α · · ·xkα

α = 0}.

Let Vα � Uα be relatively compact open subsets such that M = ∪Vα. Let
1Vα be the characteristic function of the set Vα. Set f j

α(z) = xj
α(f(z)), 1 ≤

j ≤ n. Let Γk
αij be the Christofell symbols of ∇ with respect to (xi

α). Since
Di are ∇-totally geodesic, there are C∞ functions Aα and Bα on Uα such
that

Γh
αij(x

1
α, . . . , xh

α, . . . , xn
α) = Ah

αij · xh
α + Bh

αij · x̄h
α, 1 ≤ h ≤ kα.(2.5)

Therefore there is a constant Cα > 0 such that

∣∣∣∣1Vα(f(z))
fh

α(z)
Γh

αij(f(z))
∣∣∣∣ = 1Vα(f(z))

∣∣∣∣Ah
αij(f(z)) + Bh

αij(f(z))
f̄h

α(z)
fh

α(z)

∣∣∣∣(2.6)

≤ 1Vα(f(z))
(
|Ah

αij(f(z))| + |Bh
αij(f(z))|

)
≤ Cα, 1 ≤ h ≤ kα.

Here we understand “0
0 = 0”, when 1Vα(f(z)) = 0 and fh

α(z) = 0, provided
that f(z) ∈ Uα; we extend the above function for all z ∈ C, as zero, when
f(z) �∈ Uα. We set

f (l)(z) = f (l)k
α (z)

(
∂

∂xk
α

)
f(z)

,

where Einstein’s convention is used for summation.
There is a C∞ function aα on Uα such that

ξ(z) =

∣∣∣∣∣∣∣∣∣∣∣∣
det




f
(1)1
α · · · f

(1)kα
α · · · f

(1)n
α

f
(2)1
α · · · f

(2)kα
α · · · f

(2)n
α

f
(3)1
α · · · f

(3)kα
α · · · f

(3)n
α

...
...

...
...

...
f

(n)1
α · · · f

(n)kα
α · · · f

(n)n
α




∣∣∣∣∣∣∣∣∣∣∣∣

2

aα(f(z))
|f1

α|2 · · · |fkα
α |2

(2.7)
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f
(1)1
α

f1
α

· · · f
(1)kα
α

fkα
α

f
(1)kα+1
α · · · f

(1)n
α

f
(2)1
α

f1
α

· · · f
(2)kα
α

fkα
α

f
(2)kα+1
α · · · f

(2)n
α

f
(3)1
α

f1
α

· · · f
(3)kα
α

fkα
α

f
(3)kα+1
α · · · f

(3)n
α

...
...

...
...

...
...

f
(n)1
α

f1
α

· · · f
(n)kα
α

fkα
α

f
(n)kα+1
α · · · f

(n)n
α

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

aα(f(z)).

Note that 1Vα(f(z)) ·f i
α(z), 1 ≤ i ≤ n, and 1Vα(f(z)) ·aα(f(z)) are bounded

functions. Therefore we have by (2.7)

log+ ξ(z) = O


∑

α


 ∑

1≤k≤kα,1≤l≤n

1Vα(f(z)) · log+

∣∣∣∣∣f
(l)k
α (z)
fk

α(z)

∣∣∣∣∣(2.8)

+
∑

1≤k,l≤n

1Vα(f(z)) · log+ |f (l)k
α (z)|





 + O(1),

where the estimate “O(∗)” is uniform in z ∈ C (it is used in the same sense
from now on). We first compute f

(l)k
α : For instance, we have

log+ |f (1)k
α | = log+ |fk

α
′| = log+ |fk(1)

α |.

For 1 ≤ k ≤ kα we have

log+

∣∣∣∣∣f
(1)k
α

fk
α

∣∣∣∣∣ = log+

∣∣∣∣fk
α
′

fk
α

∣∣∣∣ .

For l = 2 we have

f (2)k
α = fk

α
′′ + Γk

αi1i2 ◦ f · f i1
α

′f i2
α

′.

Since 1Vα ◦ f · Γαi1i2 ◦ f is bounded, we have

1Vα ◦ f · |f (2)k
α | = 1Vα ◦ f · O


|fk

α
′′| +

(
n∑

i=1

|f i
α
′|
)2


 ,

1Vα ◦ f · log+ |f (2)k
α | = 1Vα ◦ f · O

(
log+ |fk(2)

α | +
n∑

i=1

log+ |f i(1)
α |

)
+ O(1).
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For 1 ≤ k ≤ kα we have by (2.6)

1Vα ◦ f ·
∣∣∣∣∣f

(2)k
α

fk
α

∣∣∣∣∣ = 1Vα ◦ f · O


∣∣∣∣fk

α
′′

fk
α

∣∣∣∣ +

(
n∑

i=1

|f i
α
′|
)2


 ,

1Vα ◦ f · log+ |f (2)k
α | = 1Vα ◦ f · O

(
log+ |fk(2)

α | +
n∑

i=1

log+ |f i(1)
α |

)
+ O(1).

Up to here it is easy to obtain the estimate. For l = 3, f
(3)k
α starts to

involve the partial derivatives of Γk
αi1i2

:

f (3)k
α = fk

α
′′′ + Γk

αi1i2 ◦ f · f i1
α

′′f i2
α

′ + Γk
αi1i2 ◦ f · f i1

α
′f i2

α
′′

+
∂Γk

αi1i2

∂xi3
α

◦ f · f i1
α

′f i2
α

′f i3
α

′ + Γk
αi1i2 ◦ f · f i1

α
′f (2)i2

α ,

and

Γk
αi1i2 ◦ f · f i1

α
′f (2)i2

α = Γk
αi1i2 ◦ f · f i1

α
′f i2

α
′′ +Γk

αi1i2 ◦ f · f i1
α

′ ·Γi2
αi3i4

◦ f · f i3
α

′f i4
α

′.

It follows that

1Vα ◦ f · log+ |f (3)k
α | = 1Vα ◦ f · O

(
log+ |fk(3)

α | +
n∑

i=1

log+ |f i(2)
α |

+
n∑

i=1

log+ |f i(1)
α |

)
+ O(1).

For 1 ≤ k ≤ kα we estimate 1Vα ◦ f ·
∣∣∣∣f

(3)k
α

fk
α

∣∣∣∣:

1Vα ◦ f ·
∣∣∣∣∣f

(3)k
α

fk
α

∣∣∣∣∣(2.9)

≤ 1Vα ◦ f ·
(∣∣∣∣fk

α
′′′

fk
α

∣∣∣∣ +

∣∣∣∣∣Γ
k
αi1i2

◦ f

fk
α

f i1
α

′′f i2
α

′
∣∣∣∣∣ +

∣∣∣∣∣Γ
k
αi1i2

◦ f

fk
α

f i1
α

′f i2
α

′′
∣∣∣∣∣

+

∣∣∣∣∣ 1
fk

α

∂Γk
αi1i2

∂xi3
α

◦ f · f i1
α

′f i2
α

′f i3
α

′
∣∣∣∣∣ +

∣∣∣∣∣Γ
k
αi1i2

◦ f

fk
α

f i1
α

′f (2)i2
α

∣∣∣∣∣
)

.



162 Junjiro Noguchi

Note that 1Vα ◦ f ·
∣∣∣∣Γk

αi1i2
◦f

fk
α

∣∣∣∣ is bounded. We compute the fourth term in

the right hand side of (2.9): For i3 �= k we have

1Vα ◦ f ·
∣∣∣∣∣ 1
fk

α

∂Γk
αi1i2

∂xi3
α

◦ f · f i1
α

′f i2
α

′f i3
α

′
∣∣∣∣∣

= 1Vα ◦ f ·
∣∣∣∣∣
(

∂Ak
αi1i2

∂xi3
α

◦ f +
∂Bk

αi1i2

∂xi3
α

◦ f · f̄k
α

fk
α

)
f i1

α
′f i2

α
′f i3

α
′
∣∣∣∣∣

≤ 1Vα ◦ f ·
(∣∣∣∣∣∂Ak

αi1i2

∂xi3
α

◦ f

∣∣∣∣∣ +

∣∣∣∣∣∂Bk
αi1i2

∂xi3
α

◦ f

∣∣∣∣∣
)
|f i1

α
′f i2

α
′f i3

α
′|

= 1Vα ◦ f · O
(

n∑
i=1

|f i
α
′|
)3

.

For i3 = k we obtain

1Vα ◦ f ·
∣∣∣∣∣ 1
fk

α

∂Γk
αi1i2

∂xk
α

◦ f · f i1
α

′f i2
α

′fk
α
′
∣∣∣∣∣

= 1Vα ◦ f ·
∣∣∣∣∣∂Γk

αi1i2

∂xk
α

◦ f · f i1
α

′f i2
α

′ f
k
α
′

fk
α

∣∣∣∣∣
= 1Vα ◦ f · O


(

n∑
i=1

|f i
α
′|
)2 ∣∣∣∣fk

α
′

fk
α

∣∣∣∣

 .

Therefore we get

1Vα ◦ f · log+

∣∣∣∣∣f
(3)k
α

fk
α

∣∣∣∣∣ ≤ 1Vα ◦ f · O
(

log+

∣∣∣∣∣f
k(3)
α

fk
α

∣∣∣∣∣ +
n∑

i=1

log+ |f i(2)
α |

+
n∑

i=1

log+ |f i(1)
α |

)
+ O(1).

In this way we have

1Vα ◦ f · log+ |f (l)k
α | = O


 ∑

1≤i≤n,1≤j≤l

1Vα ◦ f · log+ |f i(j)
α |


(2.10)

(continued)
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+ O(1), 1 ≤ k ≤ n,

1Vα ◦ f · log+

∣∣∣∣∣f
(l)k
α

fk
α

∣∣∣∣∣ = O


 ∑

1≤j≤l

1Vα ◦ f · log+

∣∣∣∣∣f
k(j)
α

fk
α

∣∣∣∣∣
+

∑
1≤i≤n,1≤j≤l

1Vα ◦ f · log+ |f i(j)
α |




+ O(1), 1 ≤ k ≤ kα.

Notice that for j ≥ 1

1Vα ◦ f · log+ |f i(j)
α | ≤ 1Vα ◦ f · log+

∣∣∣∣∣f
i(j)
α

f i
α

· f i
α

∣∣∣∣∣(2.11)

= 1Vα ◦ f · log+

∣∣∣∣∣f
i(j)
α

f i
α

∣∣∣∣∣ + O(1).

Combining (2.8), (2.10) and (2.11) with Nevanlinna’s lemma on loga-
rithmic derivative (cf., e.g., [8]), we deduce that∫

|z|=r
log+ ξ(z)

dθ

2π

= O


 ∑

α,1≤k,l≤n

∫
|z|=r

1Vα(f(z)) · log+

∣∣∣∣∣f
k(l)
α (z)
fk

α(z)

∣∣∣∣∣ dθ

2π


 + O(1)

= O


 ∑

α,1≤k,l≤n

∫
|z|=r

log+

∣∣∣∣∣f
k(l)
α (z)
fk

α(z)

∣∣∣∣∣ dθ

2π


 + O(1)

= Sf (r). �

3. Proof of Theorem 1.1

We first note that the current

ddc log |W (∇, f)|2 =
i

2π
∂∂̄ log |W (∇, f)|2

is well defined and is a positive measure on C. For the sake of notational
simplicity we write c1(D) for the curvature form of the hermitian line bundle
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L(D) defining the Chern class. It follows that

ddc log ξ = f∗c1(D) + f∗c1(KM ) −
∑

i

f∗Di + ddc log |W (∇, f)|2.(3.1)

Let Z =
∑

ν λν · zν be a divisor on C with distinct zν ∈ C. We set the
k-truncated divisor of Z with k ≤ ∞ by

(Z)k =
∑

ν

min{ν, k} · zν .

Calculating the multiplicity at f(z) ∈
∑

Di, we see that

−
∑

i

f∗Di + ddc log |W (∇, f)|2 ≥ −
∑

(f∗Di)n

as currents. It follows from this and (3.1) that

ddc log ξ ≥ f∗c1(D) + f∗c1(KM ) −
∑

i

(f∗Di)n.(3.2)

We denote by Tf (r, L(D)) (resp. Tf (r, KM )) the order function of f with
respect to c1(D) (resp. c1(KM )); e.g.,

Tf (r, L(D)) =
∫ r

1

dt

t

∫
|z|<t

f∗c1(D).

Using the counting function Nn(r, f∗Di) truncated to level n defined by

Nn(r, f∗Di) =
∫ r

1

dt

t

∫
|z|<t

(f∗Di)n,

we have by Jensen’s formula

Tf (r, L(D)) + Tf (r, KM )(3.3)

≤
∑

i

Nn(r, f∗Di) +
1
2

∫
|z|=r

log ξ(z)
dθ

2π
− 1

2

∫
|z|=1

log ξ(z)
dθ

2π
.

By Lemma 2.3 we see that

Tf (r, L(D)) + Tf (r, KM ) ≤
∑

i

Nn(r, f∗Di) + Sf (r).

This finishes the proof.
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4. Geometric Proof of Cartan’s Second Main Theorem

The purpose of this section is to give a geometric proof of H. Cartan’s
second main theorem ([1]), whose key is the following. We let ∇ denote the
connection induced by the Fubini-Study metric form ω on Pn(C) in this
section.

Theorem 4.1. Let f : U → Pn(C) be a holomorphic curve from a
domain U ⊂ C.

(i) The holomorphic curve f is ∇-degenerate if and only if f is linearly
degenerate; i.e., the image f(U) is contained in a hyperplane.

(ii) The Wronskian W (∇, f)(z) is holomorphic in z ∈ U .

Remark. So far by our knowledge, the above (ii) was first proved by
Siu [11] in the case of n = 2. Since there is no reference providing a proof
for general n, we give a proof making use of the potential of the Kähler
form ω. The statement (i) should be known, but since we do not know a
reference and its proof consists a part of the proof of (ii), we here give a
self-contained proof.

Proof. (i) We take a point z0 ∈ U and set w0 = f(z0) ∈ Pn(C).
We may assume that z0 = 0. Let (w1, . . . , wn) be the normalized affine
coordinate of Pn(C) such that w0 = (0, . . . , 0) and

ω = ddc log
(
1 + ‖w‖2

)
, ‖w‖2 =

n∑
j=1

|wj |2.

We set

∂z =
∂

∂z
, ∂̄z =

∂

∂z̄
,

f(z) = (f1(z), . . . , fn(z)).

Setting φ(w) = log
(
1 + ‖w‖2

)
and ω = gij̄

i
2πdwi ∧ dw̄j we have

gij̄ = ∂i∂̄jφ(w),
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where ∂i = ∂/∂wi and ∂̄j = ∂/∂w̄j . Then the Christoffel symbol Γk
ij of the

connection ∇ is given by

Γk
ij = (∂igjl̄) · g l̄k = ∂igjl̄ · g l̄k (= Γk

ji),

∇∂i
∂j = Γk

ij∂k,

where (g l̄k) denotes the inverse matrix of (gjl̄) with gjl̄g
l̄k = δk

j (Kronecker).
For later use we note that

∂hg l̄k = −g l̄i · ∂hgij̄ · gj̄k,(4.2)

∂̄hg l̄k = −g l̄i · ∂̄hgij̄ · gj̄k.

Now the power series expansion of the potential φ(w) about the origin
0 is

φ(w) =
∞∑

µ=1

(−1)µ−1

µ

(∑
i

wiw̄i

)µ

.(4.3)

From this power series expansion we see that

i) the partial differentiation of φ evaluated at 0,

∂i1 · · · ∂ip ∂̄j1 · · · ∂̄jqφ(0)(4.4)

can be non-zero only when the partial differentiations ∂j and ∂̄j appear
exactly in pairs in the partial differentiation;

ii) in particular, the values of odd order differentiations of φ(w) are all
zero at w = 0.

iii) if we rewrite (4.4) as

(∂i1 ∂̄i1)
µ1 · · · (∂ip ∂̄ip)

µpφ(0),(4.5)

where i1, . . . , ip are distinct, then the values of (4.5) are the same
for all choices of indices i1, . . . , ip, because of the symmetry in the
variables w1, . . . , wn;
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We will use only the above properties i) and ii). From these we obtain

∂igjl̄(0) = ∂i∂j ∂̄lφ(0) = 0,

Γk
ij(0) = 0.

We write f (j)(z) = f (j)k(z)∂k, locally about 0. Note that f (j)k(z) are
not holomorphic for j ≥ 2:

f (2)k = ∂2
zfk + ∂zf

i1 · ∂zf
i2 · Γk

i1i2 ◦ f,(4.6)

f (3)k = ∂zf
(2)k + ∂zf

i1 · ∂zf
(2)i2 · Γk

i1i2 ◦ f

= ∂3
zfk + 3∂2

zf i1 · ∂zf
i2 · Γk

i1i2 ◦ f

+ ∂zf
i1 · ∂zf

i3 · ∂zf
i4 · Γi2

i3i4
◦ f · Γk

i1i2 ◦ f

+ ∂zf
i1 · ∂zf

i2 · ∂zf
α · ∂αΓk

i1i2 ◦ f.

Therefore we see that

f (j)k = ∂zf
(j−1)k + ∂zf

i1 · f (j−1)i2 · Γk
i1i2 ◦ f(4.7)

= ∂j
zf

k + P jk(∂zf
h, . . . , ∂j−1

z fh, ∂α1 · · · ∂ανΓh
i1i2 ◦ f),

(1 ≤ h ≤ n, 0 ≤ ν ≤ j − 2),

where P jk is a polynomial such that every term has a factor of the form
∂α1 · · · ∂ανΓh

i1i2
◦ f . It follows from (4.4) and (4.2) that ∂α1 · · · ∂ανΓh

i1i2
(0) =

0. Therefore,

P jk(∂zf
h(0), . . . , ∂j−1

z fh(0), ∂α1 · · · ∂ανΓh
i1i2(0)) = 0,

so that
f (j)k(0) = ∂j

zf
k(0).

It follows that W (∇, f)(0) = det(∂j
zfk(0)). Therefore W (∇, f) ≡ 0 if and

only if the standard Wronskian of f , det(∂j
zfk) ≡ 0, and hence if and only

if f is linearly degenerate.
(ii) By a unitary transformation of (wi) we may assume that the matrix(

∂j
zfk(0)

)
1≤j,k,≤n

is of lower triangle:

∂j
zf

k(0) = 0, j < k, ∂k
z fk(0) = ck (ck ∈ C).(4.8)
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We prove

∂̄zf
(j)k(0) = 0, j ≤ k ≤ n.(4.9)

Let k ≥ j. Then it follows from (4.7) that

∂̄zf
(j)k = P̃ jk(∂zf

h, . . . , ∂j−1
z fh, ∂α1 · · · ∂ανΓh

i1i2 ◦ f,

∂̄z∂α1 · · · ∂ανΓh
i1i2 ◦ f)

= P̃ jk(∂zf
h, . . . , ∂j−1

z fh, ∂α1 · · · ∂ανΓh
i1i2 ◦ f,

∂zfβ · ∂̄β∂α1 · · · ∂ανΓh
i1i2 ◦ f),

where P̃ jk is a polynomial naturally derived from P jk by differentiations.
Therefore we see that

∂̄zf
(j)k(0) = P̃ jk(∂zf

h(0), . . . , ∂j−1
z fh(0), ∂α1 · · · ∂ανΓh

i1i2(0),(4.10)

∂zfβ(0) · ∂̄β∂α1 · · · ∂ανΓh
i1i2(0)).

One infers from this, (4.2), (4.4), and (4.8) that the remaining terms in
(4.10) are only those involving

∂l
zf

i2(0) · ∂zf1(0) · ∂̄1Γk
1i2(0), i2 ≤ l ≤ j − 1 (< k). (Cf. (4.6).)

Since ∂̄1Γk
1i2

(0) = ∂̄1∂1∂i2 ∂̄kφ(0) = 0 for i2 �= k, we have proved (4.9).
We finally see that

∂̄zW (∇, f)(0) =
n∑

j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1 0 · · · 0

∗ . . . . . .
cj−1 0

... 0 0
...

cj+1
. . .
. . . 0

∗ · · · ∗ cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. �

Remark. Let B = {‖x‖ < 1} be the unit ball of Cn with the Bergman
metric (hij̄) on B. Then we have

ψ = log(1 − ‖x‖2) =
∞∑

ν=1

1
ν
‖x‖2ν ,(4.11)
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hij̄ = ∂i∂̄jψ.

Let ∇B be the connection induced from the Bergman metric on B. Because
of the type of the power expansions (4.3) and (4.11), we have

Corollary 4.12. The Wronskian W (∇B, f) is holomorphic for a
holomorphic curve f : U → B.

5. Holomorphic Curves into P1(C)2

In this section we set
G = C∗2,

which is a two-dimensional semi-abelian variety. We consider P1(C)2 as
an equivariant compactification of G. We fix an affine coordinate system
(x, y) ∈ G ⊂ P1(C)2. Then there are invariant vector fields on G,

X = x
∂

∂x
, Y = y

∂

∂y
,

which form a frame of the holomorphic tangent bundle T(G). In this section,
we denote by ∇ the flat connection with respect to the frame {X, Y } of
T(G); i.e.,

∇XY = ∇Y X = 0.

Then ∇ is a meromorphic connection with logarithmic poles along the
boundary divisor ∂G = E, which has only simple normal crossings.

We set locally
u = log x, v = log y.

A locally closed complex submanifold N of G is ∇-totally geodesic if and
only if N is an open subset of an affine linear subspace {(u, v) ∈ C2; λu +
µv = c} with constants λ, µ, and c; in particular, N is an open subset of a
translate of an analytic 1-parameter subgroup of G.

Let D ⊂ G be an algebraic reduced divisor, and denote by the same D

the closure in P1(C)2. We are going to deal with the Nevanlinna theory for
an algebraically nondegenerate holomorphic curve f : C → P1(C)2 and for
D+E; in particular, we are interested in the problem of the possible second
main theorem.
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If f(C) ∩ E = ∅, then we have f : C → G. In this case we know the
following theorem by [9] and [10].

Theorem 5.1. Assume that f : C → G is algebraically nondegenerate,
and let D be an algebraic reduced divisor on G. Then there an equivariant
compactification Ĝ of G such that

Tf̂ (r, L(D̂)) ≤ N1(r, f∗D) + εTf̂ (r, L(D̂))||ε, ∀ε > 0,

where f̂ = f : C → Ĝ and D̂ is the closure of D ∩ G in Ĝ.

As the second main theorem for f : C → G, Theorem 5.1 is the best
possible result. Therefore in the sequel we will be mainly interested in the
case where f(C) ∩ E �= ∅. We set

f(z) = (F (z), G(z))

with respect to the coordinate system (x, y), where F (z) and G(z) are mero-
morphic functions in C. It follows that

W (∇, f) =

∣∣∣∣∣
F ′
F

G′
G(

F ′
F

)′ (
G′
G

)′

∣∣∣∣∣ · F · G ·
(

∂

∂x
∧ ∂

∂y

)
f(z)

.(5.2)

Proposition 5.3. If f is ∇-degenerate and f(C)∩E �= ∅, then f(C) is
contained in the closure of a translate of a 1-dimensional algebraic subgroup
of G.

Proof. Suppose that W (∇, f) ≡ 0. Then there is a non-trivial linear
relation with λ, µ ∈ C:

λ
F ′(z)
F (z)

+ µ
G′(z)
G(z)

= 0, z ∈ C.(5.4)

If one of λ and µ is zero, the conclusion is immediate. Thus we assume
that λµ �= 0. Since f(C) ∩ E �= ∅, there is a point a ∈ C with f(a) ∈ E.
Then F (a) = 0, or ∞, or G(a) = 0, or ∞. Assume that F (a) = 0; the
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other cases are dealt similarly. Then there are an integer m and a non-
vanishing holomorphic function F̃ in a neighborhood of a such that F (z) =
(z − a)mF̃ (z), locally. It follows from (5.4) that

λm

z − a
+ µ

G′(z)
G(z)

(5.5)

is holomorphic about a. Therefore G′(z)
G(z) must have a pole at a. Hence there

are a non-zero integer n and a non-vanishing holomorphic function G̃ in a
neighborhood of a with G(z) = (z − a)nG̃(z). We infer from (5.5) that

λm

z − a
+

µn

z − a

is holomorphic about a, so that

λm + µn = 0.

Combining this with (5.4), we have

F (z)mG(z)n = c, z ∈ C,

where c ∈ C∗ is a constant. Thus f(C) is contained in the closure of a
translate of the algebraic subgroup {xmyn = 1} of G. �

Let D =
∑

Di be a divisor on G with only simple normal crossings,
where Di are the irreducible components. We assume that every Di is ∇-
totally geodesic. We deal with the value distribution of f for D + E in two
ways.

(1) Here we use an equivariant blow-up of the compactification P1(C)2

of G. By [10] (or directly in this case) we have the following:

Lemma 5.6. Let the notation be as above. Then there is an equivariant
blow-up π : Ĝ → P1(C)2 such that D̂+ Ê has only simple normal crossings,
where D̂ is the closure of D in Ĝ and Ê = Ĝ\G. Moreover, if the stabilizer
{a ∈ G; a + D = D} of D is finite, then D̂ is ample on Ĝ.

Let f : C → P1(C)2 be a holomorphic curve such that f(C) �⊂ E. Then
there is a lifting f̂ : C → Ĝ with Ĝ in Lemma 5.6 such that f = π ◦ f̂ . Let
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Ê =
∑

j Êj be the irreducible decomposition, and denote by {P̂k} all the
crossing points of the Êi’s.

Lemma 5.7. Let f̂ : C → Ĝ, D̂, Ê and {P̂k} be as above. Assume that
f is ∇-nondegenerate. Then we have

Tf̂ (r, L(D̂)) ≤
∑

i

N2(r, f̂∗D̂i) + 2
∑

j

N1(r, f̂∗Êj)

−
∑

k

N1(r, f̂∗P̂k) + Sf (r).

Since KĜ = −Ê and

Tf̂ (r, KĜ) ≤ −
∑

j

N1(r, f̂∗Êj),

we have the following, formulated closer to the fundamental conjecture for
holomorphic curves ([6], §2 and [7]).

Corollary 5.8. Let the notation be as in Theorem 5.7. Then

Tf̂ (r, L(D̂)) + 2Tf̂ (r, KĜ) ≤
∑

i

N2(r, f̂∗D̂i) + Sf (r).(5.9)

Remark. (i) The coefficient “2” in (5.9) should be “1” by the funda-
mental conjecture.

(ii) By Proposition 5.3 for f to be ∇-nondegenerate it suffices to assume
that f is algebraically nondegenerate and f(C) ∩ E �= ∅.

For the proof of Theorem 5.7 we take a holomorphic section σ̂ ∈
H0(Ĝ, L(D̂)) and τ̂ ∈ H0(Ĝ, Ê) such that the divisors (σ̂) = D̂ and (τ̂) = Ê.
We introduce a hermitian metric ‖σ̂‖ (resp. ‖τ̂‖) in L(D̂) (resp. L(Ê)). We
take a C∞ volume form Ω on Ĝ. Then we set

ξ̂(z) =
|W (∇, f̂)(z)|2 · Ω(f(z))
‖σ̂(f(z))‖2 · ‖τ̂(f(z))‖2

.(5.10)
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Lemma 5.11. Let ξ̂ be as above (5.10). Then∫
|z|=r

log+ ξ̂(z)
dθ

2π
= Sf̂ (r).

Proof. Note that the singularities of ξ̂(z) are those coming from the
intersections of f̂ and D̂ + Ê. Locally on Ĝ with local coordinate x̂, ŷ such
that Ê is written by x̂ = 0, by ŷ = 0 or by x̂ŷ = 0, those singularities are
given by∣∣∣∣∣∣∣

d
dz

x̂(f(z))

x̂(f(z))

d
dz

ŷ(f(z))

ŷ(f(z))

d
dz

(
d
dz

x̂(f(z))

x̂(f(z))

)
d
dz

(
d
dz

ŷ(f(z))

ŷ(f(z))

)
∣∣∣∣∣∣∣ ,

∣∣∣∣∣∣∣
d
dz

˜̂σ(f(z))
˜̂σ(f(z))

d
dz

ŷ(f(z))

ŷ(f(z))
d2

dz2
˜̂σ(f(z))

˜̂σ(f(z))
d
dz

(
d
dz

ŷ(f(z))

ŷ(f(z))

)
∣∣∣∣∣∣∣ ,

or by ∣∣∣∣∣∣∣
d
dz

˜̂σ(f(z))
˜̂σ(f(z))

d
dz

x̂(f(z))

ŷ(f(z))
d2

dz2
˜̂σ(f(z))

˜̂σ(f(z))
d
dz

(
d
dz

x̂(f(z))

x̂(f(z))

)
∣∣∣∣∣∣∣ ,

where ˜̂σ is the local expression of σ̂. Therefore, from Nevanlinna’s Lemma
on logarithmic derivative we deduce the required estimate (cf. the proof of
Lemma 2.3). �

Proof of Theorem 5.7. By a careful computation of pole orders in
ξ̂ we have the following current inequality on C:

ddc log ξ̂ ≥ f̂∗c1(D̂) −
∑

i

(f̂∗Di)2 − 2
∑

j

(f̂∗Ej)1 +
∑

k

(f̂∗P̂k)1.

By making use of Jensen’s formula and Lemma 5.10 we complete the proof
of the present theorem. �

(2) The advantage of Theorem 5.7 is that it is applicable for an arbitrary
algebraically non-degenerate f : C → P1(C)2 with f(C) ∩ E �= ∅ (cf.
Proposition 5.3). On the other hand it is not so easy to compute the order
function Tf̂ (r, L(D̂)). The blow-up Ĝ was used to get a kind of the general

position condition with respect D̂ and f̂ . In the present subsection we are
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going to deal with the problem imposing such a condition for f : C →
P1(C)2 relative to D, without using a blow-up.

Let E = P1(C)2 \ G be the boundary divisor of G, which has four
components Ej (1 ≤ j ≤ 4) with only simple normal crossings at four
points,

P1 = (0, 0), P2 = (0,∞), P3 = (∞, 0), P4 = (∞,∞).

Let O(m, n) denote the line bundle of degree m in the first factor of
P1(C)2 and of degree n in the second factor of P1(C)2. Then every Ej has
bidegree (1, 0) or (0, 1). Let σ ∈ H0(P1(C)2, O(m, n)) such that the divisor
D = (σ) is reduced and has no common component with E. We introduce
the natural metric ‖σ‖. Let D =

∑
i Di be the irreducible decomposition of

D.

Theorem 5.12. Let D =
∑

i Di be as above, and let f = (F, G) : C →
P1(C)2 be a ∇-nondegenerate holomorphic curve. We assume the following
conditions for D and f :

(i) D ∩ G has only simple normal crossings.

(ii) Every Di (strictly speaking, Di ∩ G) is ∇-totally geodesic.

(iii) There is a neighborhood V of {Pk}4
k=1 such that f(C) ∩ V = ∅.

Then

Tf (r, O(m, n)) ≤
∑

i

N2(r, f∗Di) + 2
∑

j

N1(r, f∗Ej) + Sf (r).(5.13)

Corollary 5.14. Under the same conditions as in Theorem 5.12 we
have, in particular,

Tf (r, O(m − 4, n − 4)) ≤
∑

i

N2(r, f∗Di) + Sf (r).

Let Ω be the volume form associated with the product of the Fubini-
Study Kähler form on P1(C):

Ω =

(
i

2π

)2
dx ∧ dx̄ ∧ dy ∧ dȳ

(1 + |x|2)2 (1 + |y|2)2
.
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Let τ ∈ H0(P1(C)2, O(2, 2)) such that (τ) = E, and set

ξ(z) =
|W (∇, f)(z)|2 · Ω(f(z))
‖σ(f(z))‖2 · ‖τ(f(z))‖2

.(5.15)

As in (1), Theorem 5.12 follows from the following lemma.

Lemma 5.16. Let ξ(z) be as above in (5.15). Then we have∫
|z|=r

log+ ξ(z)
dθ

2π
= Sf (r).

Proof. Notice that D∩E = {Pj}4
j=1. Let F be the set of intersection

points of the irreducible components of D ∩ G. Setting

V1 = {δ < |x| < δ−1} × {δ < |x| < δ−1}

with 0 < δ < 1, we take and fix a small δ so that

F ⊂ V1, f(C) ∩ D ⊂ V1.(5.17)

In a neighborhood U(⊂ V1) of every point of F , D ∩ U is defined by

xmiyni = ci, i = 1, 2, |A| �= 0,

where mi, ni ∈ Z, ci ∈ C∗ and A =
(

m1 m2

n1 n2

)
.

We first estimate ξ(z), provided f(z) ∈ U . It follows from (5.15) that
with a positive C∞ function b on U

ξ(z) =

∣∣∣∣∣
∣∣∣∣∣

F ′
F

G′
G(

F ′
F

)′ (
G′
G

)′

∣∣∣∣∣
∣∣∣∣∣
2

· b(f(z))
|Fm1Gn1 − c1|2 · |Fm2Gn2 − c2|2

(5.18)

= ||A||−2

∣∣∣∣∣
∣∣∣∣∣

m1
F ′
F + n1

G′
G m2

F ′
F + n2

G′
G(

m1
F ′
F + n1

G′
G

)′ (
m2

F ′
F + n2

G′
G

)′

∣∣∣∣∣
∣∣∣∣∣
2

× b(f(z))
|Fm1Gn1 − c1|2 · |Fm2Gn2 − c2|2
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= ||A||−2

∣∣∣∣∣
∣∣∣∣∣

(F m1Gn1 )′

F m1Gn1
(F m2Gn2 )′

F m2Gn2

(F m1Gn1 )
′′

F m1Gn1 −
(

(F m1Gn1 )′

F m1Gn1

)2
(F m2Gn2 )

′′

F m2Gn2 −
(

(F m2Gn2 )′

F m2Gn2

)2

∣∣∣∣∣
∣∣∣∣∣
2

× b(f(z))
|Fm1Gn1 − c1|2 · |Fm2Gn2 − c2|2

= ||A||−2

∣∣∣∣∣
∣∣∣∣∣

(F m1Gn1−c1)′

F m1Gn1−c1
(F m1Gn1−c1)

′′

F m1Gn1−c1
− (F m1Gn1 )′

F m1Gn1 · (F m1Gn1−c1)′

F m1Gn1−c1

(F m2Gn2−c2)′

F m2Gn2−c2
(F m2Gn2−c2)

′′

F m2Gn2−c2
− (F m2Gn2 )′

F m2Gn2 · (F m2Gn2−c2)′

F m2Gn2−c2

∣∣∣∣∣
∣∣∣∣∣
2

× |F |−m1−m2 |G|−n1−n2b(f(z)).

Since |F (z)|±1 and |G(z)|±1 are uniformly bounded from above by δ−1,
provided f(z) ∈ V1, we have by (5.18)

ξ(z) ≤ P1

(∣∣∣∣(Fm1Gn1 − c1)′

Fm1Gn1 − c1

∣∣∣∣ ,

∣∣∣∣(Fm2Gn2 − c2)′

Fm2Gn2 − c2

∣∣∣∣ ,(5.19) ∣∣∣∣∣(F
m1Gn1 − c1)

′′

Fm1Gn1 − c1

∣∣∣∣∣ ,

∣∣∣∣∣(F
m2Gn2 − c2)

′′

Fm2Gn2 − c2

∣∣∣∣∣
)

,

provided f(z) ∈ U , where P1(· · · ) is a polynomial with positive coefficients.
Hence, we may assume that (5.19) holds, provided f(z) ∈ V .

In a neighborhood U ′ of a point of D ∩ (V1 \ V ), there is only one
irreducible component of D ∩ U ′, to say, given by

xm1yn1 = c1, m1 �= 0.

Then we have

ξ(z) =
1

m2
1

∣∣∣∣∣∣
∣∣∣∣∣∣

(F m1Gn1−c1)′

F m1Gn1−c1
G′
G

(F m1Gn1−c1)
′′

F m1Gn1−c1
− (F m1Gn1 )′

F m1Gn1 · (F m1Gn1−c1)′

F m1Gn1−c1

(
G′
G

)′

∣∣∣∣∣∣
∣∣∣∣∣∣
2

· |F |−2m1b(f(z)),

provided f(z) ∈ U ′. Therefore we see that (5.19) holds for f(z) ∈ V1.
Set

V2 = {0 ≤ |x| ≤ δ} × {δ ≤ |y| ≤ δ−1} ∪ {δ ≤ |x| ≤ δ−1} × {0 ≤ |y| ≤ δ}
(continued)
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∪ {δ−1 ≤ |x| ≤ ∞} × {δ ≤ |y| ≤ δ−1}
∪ {δ ≤ |x| ≤ δ−1} × {δ−1 ≤ |y| ≤ ∞}.

It follows from the condition that

f(C) ⊂ V1 ∪ V2.

Note that there exists a positive constant c3 such that

‖σ‖ ≥ c3 on V2.

Suppose that f(z) ∈ V2. Then we obtain

ξ(z) =

∣∣∣∣∣
∣∣∣∣∣

F ′
F

G′
G(

F ′
F

)′ (
G′
G

)′

∣∣∣∣∣
∣∣∣∣∣
2

· 1
‖σ(f(z))‖2

≤ 1
c2
3

∣∣∣∣∣
∣∣∣∣∣

F ′
F

G′
G(

F ′
F

)′ (
G′
G

)′

∣∣∣∣∣
∣∣∣∣∣
2

.

We see by this that there is a polynomial P2(· · · ) with positive coefficients
satisfying

ξ(z) ≤ P2

(∣∣∣∣F ′

F

∣∣∣∣ ,

∣∣∣∣G′

G

∣∣∣∣ ,

∣∣∣∣∣F
′′

F

∣∣∣∣∣ ,

∣∣∣∣∣G
′′

G

∣∣∣∣∣
)

.(5.20)

Set P = P1 + P2. We see by (5.19) and (5.20) that

ξ(z) ≤ P

(∣∣∣∣(Fm1Gn1 − c1)′

Fm1Gn1 − c1

∣∣∣∣ ,

∣∣∣∣(Fm2Gn2 − c2)′

Fm2Gn2 − c2

∣∣∣∣ ,

∣∣∣∣F ′

F

∣∣∣∣ ,

∣∣∣∣G′

G

∣∣∣∣ ,(5.21) ∣∣∣∣∣(F
m1Gn1 − c1)

′′

Fm1Gn1 − c1

∣∣∣∣∣ ,

∣∣∣∣∣(F
m2Gn2 − c2)

′′

Fm2Gn2 − c2

∣∣∣∣∣ ,

∣∣∣∣∣F
′′

F

∣∣∣∣∣ ,

∣∣∣∣∣G
′′

G

∣∣∣∣∣
)

for all z ∈ C. Applying Nevanlinna’s lemma on logarithmic derivatives, we
infer that∫

|z|=r
log+ ξ(z)

dθ

2π

= O

(
m

(
r,

(Fm1Gn1 − c1)′

Fm1Gn1 − c1

)
+ m

(
r,

(Fm2Gn2 − c2)′

Fm2Gn2 − c2

)
(continued)
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+ m

(
r,

F ′

F

)
+ m

(
r,

G′

G

)

+ m

(
r,

(Fm1Gn1 − c1)
′′

Fm1Gn1 − c1

)
+ m

(
r,

(Fm2Gn2 − c2)
′′

Fm2Gn2 − c2

)

+m

(
r,

F
′′

F

)
+ m

(
r,

G
′′

G

))

= Sf (r). �

Example 1. Let f(z) = (F (z), G(z)) be defined by

F (z) = ez, G(z) =
ez + 1
ez − 1

.

It is easy to check that f is ∇-nondegenerate, and to see that the image
f(C) is contained by a curve C ⊂ P1(C)2 defined by

(x − 1)(y − 1) = 2.

Since C ∩{Pj}4
j=1 = ∅, f satisfies the conditions of Theorem 5.12, although

f is algebraically degenerate.

Example 2. Here we give an example of an algebraically nondegenerate
f : C → P1(C)2 for Theorem 5.12. By Fatou’s example ([2]) there is an
injective holomorphic map Φ : C2 → C2 with non-empty exterior open
subset U (⊂ C2) of the image Φ(C2). By making use of Picard’s theorem (or
Casorati-Weierstrass’ theorem) we take four points, (ai, bj) ∈ U (i, j = 1, 2)
such that

a1 �= a2, b1 �= b2,

Φ−1({ai} × C) �= ∅ (i = 1, 2),

Φ−1(C × {bj}) �= ∅ (j = 1, 2).

Let αi ∈ Φ−1({ai} × C) (i = 1, 2) and βj ∈ Φ−1(C × {bj} (j = 1, 2). By
making use of the affine coordinate (x, y) of C2 ⊂ P1(C)2 we consider the
following biholomorphic transform of P1(C)2:

ψ(x, y) =
(

x − a1

x − a2
,
y − b1

y − b2

)
.
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Set Ψ = ψ ◦ Φ : C2 → P1(C)2. Then points Pj (1 ≤ j ≤ 4) are exterior
points of the image Ψ(C2). Let g : C → C2 be a holomorphic curve such
that the image g(C) is contained by no analytic proper subset of C2, and
that g passes through all four points αi, βj (i, j = 1, 2). Set f = Ψ ◦ g :
C → P1(C)2. Then f is algebraically nondegenerate and f(C)∩E �= ∅. By
Proposition 5.3 f is ∇-nondegenerate, too.

Problems. (i) It is an interesting problem to find more examples for
Theorem 1.1.

(ii) It is naturally interesting to extend the results of §5 to the higher
dimensional case and the case of general semi-abelian varieties.

(iii) Is it possible to decrease “2” to “1” in the inequalities obtained by
Theorems 5.7 and 5.12.
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