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Gevrey Regularity in Time of Solutions to Nonlinear

Partial Differential Equations

By Hidetoshi Tahara

Abstract. The paper considers nonlinear partial differential
equations

tγ(∂/∂t)mu = G
(
t, x, {(∂/∂t)j(∂/∂x)αu}j<m,|α|≤L

)
(with γ ≥ 0 and 1 ≤ m ≤ L) in Gevrey classes, and gives a sufficient
condition for the following assertion to be valid: if a solution u(t, x)
is in C∞ class with respect to the time variable t and in the Gevrey
class E{σ} in the space variable x, then it is in the Gevrey class E{s}

also with respect to the time variable for a suitable s. The index s of
the time regularity is precisely estimated by the data of the equation.
In a particular case, the necessity of the condition is also discussed.

1. Introduction

We denote by t the time variable in Rt, and by x = (x1, . . . , xn) the space
variable in R

n
x = Rx1 × · · · × Rxn . We use the notations: N = {0, 1, 2, . . . },

N
∗ = {1, 2, . . . }, α = (α1, . . . , αn) ∈ N

n, α! = α1! · · ·αn!, |α| = α1+· · ·+αn,
∂x = (∂x1 , . . . , ∂xn) with ∂xi = ∂/∂xi (i = 1, . . . , n) and ∂α

x = ∂α1
x1

· · · ∂αn
xn

.
For σ ≥ 1 and an open subset V of R

n
x we denote by E{σ}(V ) the set

of all functions f(x) ∈ C∞(V ) satisfying the following: for any compact
subset K of V there are C > 0 and h > 0 such that

max
x∈K

|∂α
x f(x)| ≤ Ch|α||α|!σ, ∀α ∈ N

n.

A function in the class E{σ}(V ) is called a function of the Gevrey class of
order σ.
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If σ = 1, the class E{1}(V ) is nothing but the set of all analytic functions
on V and usually it is denoted by A(V ). For convenience, we set E{∞}(V ) =
C∞(V ). If 1 < σ1 < σ2 < ∞ we have

A(V ) ⊂ E{σ1}(V ) ⊂ E{σ2}(V ) ⊂ C∞(V ).

Thus, functions in the class E{σ1}(V ) are closer to analytic functions than
those in E{σ2}(V ); in this sense, we can say that functions in E{σ1}(V ) are
more regular than those in E{σ2}(V ).

For an interval [0, T ] = {t ∈ R ; 0 ≤ t ≤ T} we denote by C∞([0, T ],
E{σ}(V )) the set of all infinitely differentiable functions u(t, x) in t ∈ [0, T ]
with values in E{σ}(V ) equipped with the usual local convex topology (see
Komatsu [12], [13]).

Similarly, for s ≥ 1 and σ ≥ 1 we denote by E{s,σ}([0, T ] × V ) the set
of all functions u(t, x) ∈ C∞([0, T ] × V ) satisfying the following: for any
compact subset K of V there are C > 0 and h > 0 such that

max
(t,x)∈[0,T ]×K

|∂k
t ∂α

x u(t, x)| ≤ Chk+|α|k!s|α|!σ, ∀(k, α) ∈ N × N
n.

Obviously, we have

E{s,σ}([0, T ] × V ) ⊂ C∞([0, T ], E{σ}(V )).

In the case s = σ we write E{σ}([0, T ] × V ) instead of E{σ,σ}([0, T ] × V ).

In this paper, we will consider the following nonlinear partial differential
equation

(1.1) tγ∂m
t u = G

(
t, x, {∂j

t ∂
α
x u}j<m,|α|≤L

)
where γ ≥ 0 and L ≥ m ≥ 1 are integers, and G(t, x, {zj,α}j<m,|α|≤L) is a
suitable function in a Gevrey class (for the precise assumptions, see section
2). And, we will consider the following problem:

Problem 1.1. Let u(t, x) ∈ C∞([0, T ], E{σ}(V )) be a solution of (1.1);
can we have the result u(t, x) ∈ E{s,σ}([0, T ] × V ) for a suitable s ≥ 1? If
this is true, determine the precise index s of the time regularity.

The motivation comes from the following two examples:
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Example 1.2. Let us consider the initial value problem for the
Korteweg-de Vries equation (briefly, KdV equation):

(1.2) ∂tu + ∂3
xu + 6u∂xu = 0, u(0, x) = ϕ(x)

where ϕ(x) is an analytic function on the torus T. It is known that this
problem is well-posed (Bourgain [1], Kenig-Ponce-Vega [9], Colliander-Keel-
Staffilani-Takaoka-Tao [2]), and its solution u(t, x) is analytic in the space
variable x (Trubowitz [18], Gorsky-Himonas [5]) and belongs to E{3} in the
time variable t (Hannah-Himonas-Petronilho [6]). In [5], the analyticity in
the space variable is stated in the form: there are C > 0 and δ > 0 such
that

(1.3) |∂α
x u(t, x)| ≤ Cα+1α! for α ∈ N, t ∈ (−δ, δ), x ∈ T,

and in [6] the Gevrey regularity in the time variable is stated as follows:

|∂k
t ∂α

x u(t, x)| ≤ Ck+α+1(3k + α)!(C2 + C/2)k(1.4)

for (k, α) ∈ N × N, t ∈ (−δ, δ), x ∈ T.

In the paper [6], the proof of (1.4) is done by only a calculation, using the
relation (1.2), (1.3) and the induction. Note that (1.3) implies u(t, x) ∈
C∞((−δ, δ), E{1}(T)) and (1.4) implies u(t, x) ∈ E{3,1}((−δ, δ) × T).

Example 1.3. Let a > 0, k ∈ N
∗ and let us consider the linear partial

differential equation:

(1.5) (t∂t + a)2u − tk∂2
xu = f(t, x).

It is known that the equation (1.4) is well-posed in C∞([0, T ], E{σ}(R)) for
any σ ≥ 1 (see Tahara [16]). As to the time regularity, under the assumption
f(t, x) ∈ E{σ}([0, T ] × R) we have the following result (Tahara [17]):

(1.6)

{
u(t, x) ∈ E{σ}([0, T ] × R), if k ≥ 2,

u(t, x) ∈ E{2σ−1,σ}([0, T ] × R), if k = 1.

In this case, (1.5) is also proved by a calculation, using the relation (1.4)
and the fact f(t, x) ∈ E{σ}([0, T ] × R).

Similar time regularity problem is discussed also by Kinoshita-
Taglialatela [10] for second order linear hyperbolic equations.
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In both examples, the regularity in the time variable t is proved inde-
pendently from the well-posedness of the problem: the condition depends
only on the order of ∂t, the order of ∂x and the degeneracy of the coefficients
at t = 0 in the equation, and its mechanism is quite similar to the one of
Maillet’s type theorem in Gérard-Tahara [3].

Motivated by this consideration, the author has tried to do a systematic
study of Problem 1.1 for a general nonlinear partial differential equation
(1.1): we note that the KdV equation (1.2) is a particular case with γ = 0,
m = 1 and L = 3, and the equation (1.5) is a particular case with γ = 2,
m = 2 and L = 2.

2. Formulation and Main Theorem

Let γ ∈ N, m ∈ N
∗, L ∈ N

∗, Λ be a subset of {(j, α) ∈ N × N
n ; j <

m, |α| ≤ L} and d = #Λ (the cardinal of Λ). In this paper, we will consider
the following nonlinear partial differential equation

(2.1) tγ∂m
t u = G

(
t, x, {∂j

t ∂
α
x u}(j,α)∈Λ

)
.

For simplicity we will write

Du = {∂j
t ∂

α
x u}(j,α)∈Λ.

We denote by z = {zj,α}(j,α)∈Λ the variable in R
d (which corresponds to

Du = {∂j
t ∂

α
x u}(j,α)∈Λ). Let Ω be an open subset of Rt × R

n
x × R

d
z , and

let G(t, x, z) be a C∞ function on Ω. Let s1 ≥ 1, σ ≥ 1 and s2 ≥ 1, let
I = [0, T ] (with T > 0), and let V be an open subset of R

n. The main
assumptions are as follows.

a1) γ ≥ 0, L ≥ m ≥ 1, s1 ≥ 1 and σ ≥ s2 ≥ 1.

a2) Λ is a subset of {(j, α) ∈ N × N
n ; j < m, |α| ≤ L}.

a3) G(t, x, z) ∈ E{s1,σ,s2}(Ω).

a4) u(t, x) ∈ C∞(I, E{σ}(V )) is a solution of (2.1) on I × V ; this

involves the property: (t, x) ∈ I × V =⇒ (t, x, Du(t, x)) ∈ Ω.

In the condition a2) we denoted by E{s1,σ,s2}(Ω) the set of all functions
f(t, x, z) ∈ C∞(Ω) satisfying the following: for any compact subset H of Ω
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there are C > 0 and h > 0 such that

max
(t,x,z)∈H

|∂p
t ∂α

x ∂ν
z f(t, x, z)| ≤Chp+|α|+|ν|p!s1 |α|!σ|ν|!s2

for ∀(p, α, ν) ∈ N × N
n × N

d.

If σ = s1 = s2 holds we write E{σ}(Ω) instead of E{σ,σ,σ}(Ω).
In order to state our main theorem and the precise formula of the index

s of time regularity, we need to define the order of the zero of a function at
t = 0.

Definition 2.1. Let f(t, x) ∈ C∞(I × V ). We define the order of the
zero of f(t, x) on V at t = 0 (which we denote by ordt(f, V )) by

ordt(f, V ) = min{ k ∈ N ; (∂k
t f)(0, x) �≡ 0 on V }

(if (∂k
t f)(0, x) ≡ 0 on V for all k ∈ N, we set ordt(f, V ) = ∞).

Under the conditions a1) ∼ a4) we set

kj,α = ordt

(
∂G

∂zj,α
(t, x, Du(t, x)), V

)
, (j, α) ∈ Λ,

that is, kj,α denotes the order of the zero of (∂G/∂zj,α)(t, x, Du(t, x)) on V

at t = 0. We suppose

(2.2)

{
kj,α ≥ γ − m + j, if (j, α) ∈ Λ and |α| = 0,

kj,α ≥ γ − m + j + 1, if (j, α) ∈ Λ and |α| > 0

and we set

(2.3) s0 = 1 + max
[

0, max
(j,α)∈Λ,|α|>0

(
j + σ|α| − m

min{kj,α−γ+m−j, m−j}

) ]
.

Then, we have the following result:

Theorem 2.2 (Main Theorem). Suppose the conditions a1) ∼ a4) and
(2.2): then, we have u(t, x) ∈ E{s,σ}([0, T ]×V ) for any s ≥ max{s0, s1, s2}.
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Remark 2.3. (1) In the case γ = 0, we have

(2.4) s0 = 1 + max
[

0, max
(j,α)∈Λ,|α|>0

(
j + σ|α| − m

m − j

) ]
:

therefore, for KdV equation (1.1) we have s0 = 3 under σ = 1. This
coincides with the result in Example 1.2.

(2) In the case γ = m, we have

(2.5) s0 = 1 + max
[

0, max
(j,α)∈Λ,|α|>0

(
j + σ|α| − m

min{kj,α−j, m−j}

) ]
:

therefore, for the equation (1.4) we have

s0 = 1 +
2σ − 2

min{k, 2} =

{
σ, if k ≥ 2,

2σ − 1, if k = 1.

This coincides with the result in Example 1.3.

The paper is organized as follows. In the next section 3 we will reduce
our problem to the one for nonlinear Fuchsian equation

(2.6) (t∂t)mu = F
(
t, x, {(t∂t)j∂α

x u}(j,α)∈Λ

)
,

and in sections 4 ∼ 7 we will solve Problem 1.1 for (2.6). In section 8 we will
discuss the necessity of the condition s ≥ max{s0, s1, s2} in a particular case.
In the last section 9 we will give some applications to KdV type equations,
non-singular Kowalewskian equations, and nonlinear Fuchsian equations.

3. Reduction of the Problem

Let u(t, x) ∈ C∞(I, E{σ}(V )) be a solution of (2.1) given in a4). For any
q ∈ N

∗ with q ≥ m we have the decomposition

u(t, x) = ϕ(t, x) + tqw(t, x) with ϕ(t, x) =
q−1∑
i=0

(∂i
tu)(0, x)

i!
ti;

we have ϕ(t, x) ∈ E{1,σ}(Rt × V ) and w(t, x) ∈ C∞(I, E{σ}(V )). Since

∂m
t u = ∂m

t ϕ + tq−m[t∂t + q]mw,

Du = Dϕ + {tq−j [t∂t + q]j∂α
x w}(j,α)∈Λ
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(where [λ]0 = 1 and [λ]p = λ(λ − 1) · · · (λ − p + 1) for p ≥ 1), and since
u(t, x) is a solution of (2.1), we have

tγ
(
∂m

t ϕ + tq−m[t∂t + q]mw
)

(3.1)

= G
(
t, x, Dϕ + {tq−j [t∂t + q]j∂α

x w}(j,α)∈Λ

)
.

Thus, by setting

(3.2) H(t, x, X) =
1

tγ+q−m

[
G

(
t, x, Dϕ + {tq−jXj,α}(j,α)∈Λ

)
− tγ∂m

t ϕ
]

with X = {Xj,α}(j,α)∈Λ we have the equation

(3.3) [t∂t + q]mw = H
(
t, x, {[t∂t + q]j∂α

x w}(j,α)∈Λ

)
which is regarded as an equation with respect to w(t, x). To prove the
result u(t, x) ∈ E{s,σ}(I × V ), it is enough to show the condition: w(t, x) ∈
E{s,σ}(I × V ). For simplicity we write

�qw = {[t∂t + q]j∂α
x w}(j,α)∈Λ.

3.1. Properties of H(t, x, X)
In order to discuss the equation (3.3) we need informations on the right-

hand side of the equation (3.3).

Proposition 3.1. If q ≥ γ + m holds, we have the following results.
(1) Set Ω1 = {(t, x, X) ∈ Rt × V × R

d
X ; (t, x, Dϕ(t, x) +

{tq−jXj,α}(j,α)∈Λ) ∈ Ω}: then Ω1 is an open subset of Rt ×V ×R
d
X , and we

have H(t, x, X) ∈ C∞(Ω1). As to the shape of Ω1 we have the following:
for any compact subset K of V and any a > 0 there are δ > 0 such that
[−δ, δ] × K × {X ; |X| ≤ a} ⊂ Ω1.

(2) H(t, x, X) ∈ E{s∗,σ,s∗}(Ω1) with s∗ = max{s1, s2}.
(3) w(t, x) ∈ C∞(I, E{σ}(V )) is a solution of (3.3) on I×V ; this involves

the property: (t, x) ∈ I × V =⇒ (t, x, �qw(t, x)) ∈ Ω1.
(4) For any (j, α) ∈ Λ we have

(3.4) ordt

( ∂H

∂Xj,α
(t, x, �qw(t, x)), V

)
= kj,α − γ + m − j,



74 Hidetoshi Tahara

and for any ν ∈ N
d with |ν| ≥ 2 we have

(3.5) ordt

(∂|ν|H

∂Xν
(t, x, �qw(t, x)), V

)
≥ (q − m + 1)(|ν| − 1) − γ + 1.

Before the proof of this proposition, let us present some preparatory
lemmas. First we note:

Lemma 3.2. Set W = {(t, x, Y ) ∈ Rt × V ×R
d
Y ; (t, x, Dϕ(t, x) + Y ) ∈

Ω}: then W is an open subset of Rt×V ×R
d
Y , and we have G(t, x, Dϕ(t, x)+

Y ) ∈ C∞(W ). As to the shape of W we have the following: for any compact
subset K of V there are δ > 0 and ε > 0 such that [−δ, δ] × K × {Y ; |Y | ≤
ε} ⊂ W .

Proof. The former half is clear. Let us show the latter half. Set
f : Rt × V × R

d
Y � (t, x, Y ) −→ (t, x, Dϕ(t, x) + Y ) ∈ Rt × R

n
x × R

d; then
we have W = f−1(Ω) and so W is an open subset of Rt × V × R

d
Y . Take

any compact subset K of V . Then, for any x ∈ K we have f(0, x, 0) =
(0, x, Dϕ(0, x)) = (0, x, (Du)(0, x)) ∈ Ω (by the assumption a4)); this shows
that {0} × K × {0} ⊂ W . Since W is open and {0} × K × {0} is compact,
we can take δ > 0 and ε > 0 such that [−δ, δ] × K × {Y ; |Y | ≤ ε} ⊂ W .
This proves the latter half. �

By Lemma 3.2, for any compact subset K of V there are δ > 0 and
ε > 0 such that [−δ, δ] × K × {Y ; |Y | ≤ ε} ⊂ W . Therefore, we see that
G(t, x, Dϕ(t, x)) is well defined on W0 = W ∩ {Y = 0}, and the following
Taylor expansion of G(t, x, Dϕ(t, x) + Y ) in Y makes sense:

G(t, x, Dϕ(t, x) + Y )(3.6)

= G(t, x, Dϕ(t, x)) +
∑

(j,α)∈Λ

∂G

∂zj,α
(t, x, Dϕ(t, x))Yj,α

+
∑

(j,α),(i,β)∈Λ

R(j,α),(i,β)(t, x, Y )Yj,αYi,β

where

R(j,α),(i,β)(t, x, Y ) =
∫ 1

0
(1 − θ)

∂2G

∂zj,α∂zi,β

(
t, x, Dϕ + θY

)
dθ.
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Similarly, if we replace G by (∂G/∂zj,α) in the above argument we have the
expression

∂G

∂zj,α
(t, x, Dϕ(t, x) + Y )(3.7)

=
∂G

∂zj,α
(t, x, Dϕ(t, x)) +

∑
(i,β)∈Λ

R∗
(j,α),(i,β)(t, x, Y )Yi,β

where

R∗
(j,α),(i,β)(t, x, Y ) =

∫ 1

0

∂2G

∂zj,α∂zi,β

(
t, x, Dϕ + θY

)
dθ.

By using these formulas we have

Lemma 3.3. If q ≥ γ + m holds, we have the following results.
(1) We set

(3.8) kj,α(ϕ) = ordt

( ∂G

∂zj,α
(t, x, Dϕ(t, x)), V

)
, (j, α) ∈ Λ.

Then, if kj,α < q − m + 1 we have kj,α(ϕ) = kj,α, and if kj,α ≥ q − m + 1
we have kj,α(ϕ) ≥ q − m + 1.

(2) We have kj,α(ϕ) ≥ γ −m + j if |α| = 0, and kj,α(ϕ) ≥ γ −m + j + 1
if |α| > 0.

(3) Moreover, G(t, x, Dϕ(t, x))− tγ∂m
t ϕ(t, x) = O(tγ+q−m) uniformly on

any compact subset of V (as t −→ 0).

Proof. Suppose the condition q ≥ γ + m: we note that j ≤ m − 1
holds for any (j, α) ∈ Λ. Take any compact subset K of V ; then we have
[−δ, δ]×K ×{Y ; |Y | ≤ ε} ⊂ W for some δ > 0 and ε > 0. If δ > 0 is small
enough, we have |tq−j [t∂t + q]j∂α

x w| ≤ ε on [0, δ] × K (for (j, α) ∈ Λ), and
so by substituting Y = {tq−j [t∂t + q]j∂α

x w}(j,α)∈Λ into (3.7) we have

∂G

∂zj,α
(t, x, Du(t, x)) =

∂G

∂zj,α
(t, x, Dϕ(t, x)) + O(tq−m+1).

This yields the results in the part (1).
If kj,α < q − m + 1, by (1) we have kj,α(ϕ) = kj,α and so the result (2)

is clear from (2.2). If kj,α ≥ q −m + 1, by (1) and the condition q ≥ γ + m

we have kj,α(ϕ) ≥ q − m + 1 ≥ γ + 1 and so the result (2) is also clear.
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Let us show (3). By bubstituting Y = {tq−j [t∂t + q]j∂α
x w}(j,α)∈Λ into

(3.6) and by using the equality (3.1) we have

tγ∂m
t ϕ + tγ+q−m[t∂t + q]mw(3.9)

= G
(
t, x, Dϕ + {tq−j [t∂t + q]j∂α

x w}(j,α)∈Λ

)
= G(t, x, Dϕ(t, x)) +

∑
(j,α)∈Λ

O(tkj,α(ϕ))O(tq−j) + O(t2q−2(m−1)).

Since kj,α(ϕ) ≥ γ − m + j (for (j, α) ∈ Λ) are known by (2), we have
kj,α(ϕ)+ q− j ≥ q +γ−m; in addition, by the condition q ≥ γ +m we have
2q−2(m−1) ≥ q+γ−m+2 > q+γ−m. Thus, by aplying these results to
(3.9) we have the conclusion: G(t, x, Dϕ(t, x))−tγ∂m

t ϕ(t, x) = O(tγ+q−m). �

Now, let us give a proof of Proposition 3.1.

Proof of Proposition 3.1. By the same argument as in Lemma
3.2 we can show the conditions on Ω1 and the fact: G (t, x, Dϕ+
{tq−jXj,α}(j,α)∈Λ

)
∈ C∞(Ω1). By substituting Y = {tq−jXj,α}(j,α)∈Λ into

(3.6) and by using Lemma 3.3 we have

G
(
t, x, Dϕ + {tq−jXj,α}(j,α)∈Λ

)
− tγ∂m

t ϕ(t, x)(3.10)

= (G(t, x, Dϕ) − tγ∂m
t ϕ(t, x))

+
∑

(j,α)∈Λ

O(tkj,α(ϕ))O(tq−j) + O(t2q−2(m−1)) = O(tγ+q−m)

(as t −→ 0) uniformly on K × {X ; |X| ≤ a} for any compact subset K

of V and any a > 0. Hence, by the definition (3.2) we have the result:
H(t, x, X) ∈ C∞(Ω1). This proves (1).

Since G(t, x, z) ∈ E{s1,σ,s2}(Ω) is assumed, by Proposition 4.2 (in sec-
tion 4.1) we have G

(
t, x, Dϕ + {tq−jXj,α}(j,α)∈Λ

)
∈ E{s∗,σ,s∗}(Ω1) for s∗ =

max{s1, s2}. Since tγ∂m
t ϕ(t, x) ∈ E{1,σ,1}(Ω1) is clear, by (3.10) we have the

conclusion of (2).
For any (t, x) ∈ I × V we have (t, x, Dϕ + {tq−j [t∂t + q]j∂α

x w}(j,α)∈Λ) =
(t, x, Du(t, x)) ∈ Ω and so we have (t, x, {[t∂t + q]j∂α

x w}(j,α)∈Λ) ∈ Ω1 which
is equivalent to (t, x, �qw(t, x)) ∈ Ω1. This proves (3).

Since
∂H

∂Xj,α
(t, x, �qw(t, x)) =

tq−j

tγ+q−m

∂G

∂zj,α
(t, x, Du(t, x))
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holds, (3.4) is clear. If we write µt(ν) =
∑

(j,α)∈Λ jνj,α for ν =
{νj,α}(j,α)∈Λ ∈ N

d, we have

ordt

(∂|ν|H

∂Xν
(t, x, �qw(t, x)), V

)
≥ q|ν| − µt(ν) − γ − q + m.

Since µt(ν) ≤ (m − 1)|ν|, we have the result (3.5). �

3.2. Further reduction
Let us do a further reduction of the equation (3.3). By the formula

[λ + q]j = (λ + q)(λ + q − 1) · · · (λ + q − j + 1) =
∑

0≤i≤j

C
(q)
j,i λi

we define the constants C
(q)
j,i (0 ≤ i ≤ j < m): we see that C

(q)
j,j = 1 holds.

Set

Λ0 =
⋃

(j,α)∈Λ

{(i, α) ∈ N × N
n ; 0 ≤ i ≤ j},

Z = {Zi,α}(i,α)∈Λ0
∈ R

d0
Z with d0 = #Λ0 (the cardinal of Λ0).

It is clear that Λ ⊂ Λ0 holds. We define a linear change of variables:
R

d0 � Z −→ X(Z) ∈ R
d by

X(Z) = {Xj,α(Z)}(j,α)∈Λ with Xj,α(Z) =
∑

0≤i≤j

C
(q)
j,i Zi,α.

By setting

(3.11) F (t, x, Z) = H(t, x, X(Z)) −
∑

0≤i<m

C
(q)
m,iZi,0

the equation (3.3) is rewritten into the form

(3.12) (t∂t)mw = F
(
t, x, {(t∂t)i∂α

x w}(i,α)∈Λ0

)
.

For simplicity we write

Θw = {(t∂t)i∂α
x w}(i,α)∈Λ0

.

As to the right-hand side of (3.12), by Proposition 3.1 we have
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Proposition 3.4. If q ≥ γ + m holds, we have the following results.
(1) Set Ω0 = {(t, x, Z) ∈ Rt × V × R

d0 ; (t, x, X(Z)) ∈ Ω1}: then Ω0 is
an open subset of Rt×V ×R

d0, and we have F (t, x, Z) ∈ E{s∗,σ,s∗}(Ω0) with
s∗ = max{s1, s2}.

(2) w(t, x) ∈ C∞(I, E{σ}(V )) is a solution of (3.12) on I × V ; this
involves the property: (t, x) ∈ I × V =⇒ (t, x,Θw(t, x)) ∈ Ω0.

(3) We set

(3.13) qi,α = ordt

( ∂F

∂Zi,α
(t, x,Θw(t, x)), V

)
, (i, α) ∈ Λ0 :

if |α| > 0 we have qi,α ≥ 1. Moreover, for any ν ∈ N
d with |ν| ≥ 2 we have

(3.14) ordt

(∂|ν|F

∂Zν
(t, x,Θw(t, x)), V

)
≥ (q − m + 1)(|ν| − 1) − γ + 1.

We set

(3.15) s0(F ) = 1 + max
[

0, max
(i,α)∈Λ0,|α|>0

(
i + σ|α| − m

min{qi,α, m−i}

) ]
.

Lemma 3.5. Let s0 be the one in (2.3), and let s0(F ) be the one above;
then we have s0(F ) = s0.

Proof. For simplicity we write

pj,α = ordt

( ∂H

∂Xj,α
(t, x, �qw(t, x)), V

)
, (j, α) ∈ Λ :

then, by (3.4) we have pj,α = kj,α − γ + m − j and s0 is given by

(3.16) s0 = 1 + max
[

0, max
(j,α)∈Λ,|α|>0

(
j + σ|α| − m

min{pj,α, m−j}

) ]
.

For any (i, α) ∈ Λ0, by (3.11) we have

∂F

∂Zi,α
(t, x,Θw) =

∑
(j,α)∈Λ,j≥i

∂H

∂Xj,α
(t, x, �qw)C(q)

j,i =
∑

(j,α)∈Λ,j≥i

O(tpj,α)

= O(tri,α) for ri,α = min{pj,α ; (j, α) ∈ Λ, j ≥ i} :
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this implies that qi,α ≥ ri,α holds.
Let us show the inequality s0(F ) ≤ s0. To do so, it is enough to prove

the following: for any (i, α) ∈ Λ0 with |α| > 0 we have the inequality

(3.17)
i + σ|α| − m

min{qi,α, m − i} ≤ s0 − 1.

If i + σ|α| − m ≤ 0, by the condition s0 ≥ 1 we have (3.17).
If i + σ|α| − m > 0 and ri,α ≤ m − i, we have

(3.18)
i + σ|α| − m

min{qi,α, m − i} ≤ i + σ|α| − m

min{ri,α, m − i} =
i + σ|α| − m

ri,α
.

By the definition of ri,α we have ri,α = pj,α for some (j, α) ∈ Λ with j ≥ i

and so

(3.19)
i + σ|α| − m

ri,α
≤ j + σ|α| − m

pj,α
≤ j + σ|α| − m

min{pj,α, m − j} .

Hence, by (3.18), (3.19) and (3.16) we have the result (3.17).
If i + σ|α| − m > 0 and ri,α > m − i, we have qi,α > m − i and so

(3.20)
i + σ|α| − m

min{qi,α, m − i} =
i + σ|α| − m

m − i
.

Since (i, α) ∈ Λ0, by the definition of Λ0 we have a (j, α) ∈ Λ with j ≥ i:
then we see

(3.21)
i + σ|α| − m

m − i
≤ j + σ|α| − m

m − j
≤ j + σ|α| − m

min{pj,α, m − j} .

Hence, by (3.20), (3.21) and (3.16) we have the result (3.17).
Thus, we have proved the inequality s0(F ) ≤ s0. The converse inequlity

s0(F ) ≥ s0 can be proved in the same way. �

Thus, to prove Theorem 2.2 it is sufficient to show the following result,
using the fact that w(t, x) is a solution of (3.12).

Theorem 3.6. Suppose the condition

(3.22) q ≥ max
{
γ + m, γ + 2(m − 1)

}
.
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Then, under the above situation, we have w(t, x) ∈ E{s,σ}(I × V ) for any
s ≥ max{s0(F ), s∗} with s∗ = max{s1, s2}.

By (3.14) and (3.22) we see: if |ν| ≥ 2 we have (q−m+1)(|ν|−1)−γ+1 ≥
(q − m + 1) − γ + 1 ≥ m and so

(3.23) ordt

(∂|ν|F

∂Zν
(t, x,Θw(t, x)), V

)
≥ m, if |ν| ≥ 2.

This fact will play an important role in the proof of Theorem 3.6.
The proof of this result (Theorem 3.6) will be given in sections 4 ∼ 7:

in section 4 we will summarize basic tools and results which are needed in
the proof of Theorem 3.6, in section 5 we will give a proof of Theorem 3.6
in the case s = 1, and in sections 6 and 7 we will give a proof of Theorem
3.6 in the case s > 1.

For simplicity, we will write u(t, x), Λ, z = {zj,α}(j,α)∈Λ, d and F (t, x, z)
instead of w(t, x), Λ0, Z = {Zi,α}(i,α)∈Λ0

, d0 and F (t, x, Z); therefore, (3.12)
is written as

(3.24) (t∂t)mu = F
(
t, x, {(t∂t)j∂α

x u}(j,α)∈Λ

)
.

4. Basic Tools and Results

In this section we will summarize basic tools and results which are needed
in the proof of Theorem 3.6. As to general properties of functions of the
Gevrey class, readers can refer to Gevrey [4], Komatsu [12],[13] and Ya-
manaka [20].

4.1. Addition, product and composition
Let σ ≥ 1, V be an open subset of R

n
x, and W be an open subset of R

d
z .

As to addition, product and composition of two functions in the Gevrey
class E{σ} we have

Proposition 4.1. (1) If f(x) and g(x) belong to the class E{σ}(V ),
we have f(x)g(x) ∈ E{σ}(V ) and f(x) + g(x) ∈ E{σ}(V ).

(2) Let f(z) ∈ E{σ}(W ) and g(x) ∈ E{σ}(V )d. If g(V ) ⊂ W holds, we
have f(g(x)) ∈ E{σ}(V ).

The proof of (1) is easy, and the proof of (2) is seen in Gevrey [4],
Yamanaka [20], etc. The following result is also very useful.
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Proposition 4.2. Let s ≥ 1, s1 ≥ 1, s2 ≥ 1, σ ≥ 1, let Ω be an open
subset of R

N
t × R

n
x × R

d
z, and let W be an open subset of R

N
t × R

n
x. If the

conditions

1) F (t, x, z) ∈ E{s1,σ,s2}(Ω),
2) ui(t, x) ∈ E{s,σ}(W ) (i = 1, . . . , d),
3) (t, x) ∈ W =⇒ (t, x, u(t, x)) ∈ Ω, where u = (u1, . . . , ud),
4) σ ≥ s2 and s ≥ max{s1, s2}

hold, we have F (t, x, u(t, x)) ∈ E{s,σ}(W ).

Proof. Take any compact subset K of W ; then the image L of K by
the map (t, x) −→ (t, x, u(t, x)) is also a compact subset of Ω. We set

Ap,q,ν =
1

|p|!s1−1|q|!σ−1|ν|!s2−1
max

(t,x,z)∈L

∣∣∣ 1
p!q!ν!

F (p,q,ν)(t, x, z)
∣∣∣,

Bi,k,β =
1

|k|!s−1(|β| − 1)!σ−1
max

(t,x)∈K

∣∣∣ 1
k!β!

u
(k,β)
i (t, x)

∣∣∣, if |β| ≥ 1,

Bi,k,0 =
1

(|k| − 1)!s−1
max

(t,x)∈K

∣∣∣ 1
k!

u
(k,0)
i (t, x)

∣∣∣, if |k| ≥ 1,

where p = (p1, . . . , pN ) ∈ N
N , q = (q1, . . . , qn) ∈ N

n, ν = (ν1, . . . , νd) ∈
N

d, F (p,q,ν)(t, x, z) = (∂p
t ∂q

x∂ν
z F )(t, x, z), k = (k1, . . . , kN ) ∈ N

N , β =
(β1, . . . , βn) ∈ N

n, and u
(k,β)
i (t, x) = (∂k

t ∂β
xui)(t, x) (i = 1, . . . , d). We

set also

G(t, x, z) =
∑

|p|+|q|+|ν|≥0

Ap,q,νt
pxqzν with z = (z1, . . . , zd),

wi(t, x) =
∑

|k|+|β|≥1

Bi,k,βtkxβ, i = 1, . . . , d.

Then, G(t, x, z) = G(t, x, z1, . . . , zd) and wi(t, x) (i = 1, . . . , d) are conver-
gent in a neighborhoof of (t, x, z) = (0, 0, 0) and (t, x) = (0, 0), respectively,
and so the function

H(t, x) = G(t, x, w1(t, x), . . . , wd(t, x))(4.1)

=
∑

|p|+|q|+|ν|≥0

Ap,q,νt
pxq

d∏
i=1

[ ∑
|ki|+|βi|≥1

Bi,ki,βi
tkixβi

]νi
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is also convergent in a neighborhood of (t, x) = (0, 0). If we set

H(t, x) =
∑

(m,α)∈NN×Nn

Cm,αtmxα

we have C0,0 = A0,0,0 and

(4.2) Cm,α =
∑

1≤|p|+|q|+|ν|≤|m|+|α|
Ap,q,ν

∑
s(k(ν))=m−p
s(β(ν))=α−q

|ki(j)|+|βi(j)|≥1

d∏
i=1

νi∏
j=1

Bi,ki(j),βi(j)

where

s(k(ν)) =
d∑

i=1

νi∑
j=1

ki(j) ∈ N
N , s(β(ν)) =

d∑
i=1

νi∑
j=1

βi(j) ∈ N
n.

Since H(t, x) is a holomorphic function in a neighborhood of (t, x) = (0, 0),
by Cauchy’s inequality we have Cm,α ≤ Mη|m|+|α| (|m| + |α| = 0, 1, 2, . . . )
for some M > 0 and η > 0.

We set ϕ(t, x) = F (t, x, u(t, x)); to prove the condition ϕ(t, x) ∈
E{s,σ}(K) it is sufficient to show the following inequalities:

1
|m|!s−1|α|!σ−1

max
(t,x)∈K

∣∣∣∣ 1
m!α!

ϕ(m,α)(t, x)
∣∣∣∣ ≤ 2(|m|+|α|)(s2−1)Cm,α(4.3)

for any |m| + |α| = 1, 2, . . . .

Here, we recall that by Faà di Bruno’s formula (see Johnson [7]) or by
the same argument we can see:

Lemma 4.3. Let F (t, x, z) ∈ C∞(Ω) with z = (z1, . . . , zd), and let
u(t, x) = (u1(t, x), . . . , ud(t, x)) ∈ C∞(W )d. If u(W ) ⊂ Ω holds, we have
ϕ(t, x) = F (t, x, u(t, x)) ∈ C∞(W ). In this case, for any (m, α) ∈ N

N × N
n

with |m| + |α| ≥ 1 we have

1
m!α!

ϕ(m,α) =
∑

1≤|p|+|q|+|ν|≤|m|+|α|

1
p!q!ν!

F (p,q,ν) ×(4.4)
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×
∑

s(k(ν))=m−p
s(β(ν))=α−q

|ki(j)|+|βi(j)|≥1

d∏
i=1

νi∏
j=1

(
1

ki(j)!βi(j)!
u

(ki(j),βi(j))
i

)
,

where ϕ(m,α) = ϕ(m,α)(t, x), F (p,q,ν) = F (p,q,ν)(t, x, u(t, x)) and u
(k,β)
i =

u
(k,β)
i (t, x) (i = 1, . . . , d).

By using this formula, let us show (4.3) from now. By the estimates
(1/p!q!ν!)|F (p,q,ν)| ≤ |p|!s1−1|q!|σ−1|ν|!s2−1Ap,q,ν on L and (1/k!β!)|u(k,β)

i | ≤
(|k| − ε1)!s−1(|β| − ε2)!σ−1Bi,k,β (where (ε1, ε2) = (1, 0) if |β| = 0, and
(ε1, ε2) = (0, 1) if |β| ≥ 1) on K, we have

1
|m|!s−1|α|!σ−1

∣∣∣ 1
m!α!

ϕ(m,α)
∣∣∣

(4.5)

≤ 1
|m|!s−1|α|!σ−1

∑
1≤|p|+|q|+|ν|≤|m|+|α|

|p|!s1−1|q|!σ−1|ν|!s2−1Ap,q,ν ×

×
∑

s(k(ν))=m−p
s(β(ν))=α−q

|ki(j)|+|βi(j)|≥1

d∏
i=1

νi∏
j=1

(
(|ki(j)| − ε1)!s−1(|βi(j)| − ε2)!σ−1Bi,ki(j),βi(j)

)

≤
∑

1≤|p|+|q|+|ν|≤|m|+|α|

|p|!s1−1|q|!σ−1|ν|!s2−1

|m|!s−1|α|!σ−1
Ap,q,ν ×

×
∑

s(k(ν))=m−p
s(β(ν))=α−q

|ki(j)|+|βi(j)|≥1

(|k(ν)| − n1)!s−1(|β(ν)| − n2)!σ−1
d∏

i=1

νi∏
j=1

(
Bi,ki(j),βi(j)

)
,

where |k(ν)| =
∑d

i=1

∑νi
j=1 |ki(j)|, |β(ν)| =

∑d
i=1

∑νi
j=1 |βi(j)|, n1 =

#{(i, j) ; |βi(j)| = 0}, and n2 = #{(i, j) ; |βi(j)| ≥ 1}. Since n1 + n2 = |ν|,
s ≥ s2 and σ ≥ s2 hold, we have

|ν|!s2−1 ≤ 2|ν|(s2−1)n1!s2−1n2!s2−1 ≤ 2|ν|(s2−1)n1!s−1n2!σ−1,
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and so

|p|!s1−1|q!|σ−1|ν|!s2−1

|m|!s−1|α|!σ−1
(|k(ν)| − n1)!s−1(|β(ν)| − n2)!σ−1

≤ |p|!s−1|q!|σ−12|ν|(s2−1)n1!s−1n2!σ−1

|m|!s−1|α|!σ−1
(|m| − |p| − n1)!s−1(|α| − |q| − n2)!σ−1

= 2|ν|(s2−1) |p|!s−1n1!s−1(|m| − |p| − n1)!s−1

|m|!s−1

|q!|σ−1n2!σ−1(|α| − |q| − n2)!σ−1

|α|!σ−1

≤ 2|ν|(s2−1) ≤ 2(|m|+|α|)(s2−1).

Thus, by applying this to (4.5) we have

1
m!s−1|α|!σ−1

∣∣∣ 1
m!α!

ϕ(m,α)
∣∣∣

≤ 2(|m|+|α|)(s2−1)
∑

1≤|p|+|q|+|ν|≤|m|+|α|
Ap,q,ν

∑
s(k(ν))=m−p
s(β(ν))=α−q

|ki(j)|+|βi(j)|≥1

d∏
i=1

νi∏
j=1

(
Bi,ki(j),βi(j)

)

= 2(|m|+|α|)(s2−1)Cm,α

on K. This proves (4.3). �

4.2. On the formal norm |||f |||K,ρ

For a function f(x) ∈ C∞(V ) and a compact subset K of V we define
the formal norm |||f |||K,ρ of f(x) on K by

(4.6) |||f |||K,ρ =
∑
|α|≥0

‖∂α
x f‖K

|α|!σ ρ|α| with ‖∂α
x f‖K = max

x∈K
|∂α

x f(x)|

which is a formal power series in ρ. In the case K is fixed, we often write
|||f |||ρ instead of |||f |||K,ρ. We write

∑∞
k=0 akρ

k �
∑∞

k=0 bkρ
k if ak ≥ |bk| holds

for all k ∈ N. It is easy to see:

Proposition 4.4. (1) |||fg|||K,ρ � |||f |||K,ρ|||g|||K,ρ.
(2) If ‖∂α

x f‖K ≤ Ch|α||α|!σ holds for any |α| = 0, 1, 2, . . . , we have

(4.7) |||f |||K,ρ � C

(1 − ρ/R)n
with R = 1/h.
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Conversely, if (4.7) holds, we have ‖∂α
x f‖K ≤ (2n−1C)(2h)|α||α|!σ for any

|α| = 0, 1, 2, . . . .
(3) f(x) ∈ E{σ}(V ) holds if and only if for any compact subset K of V

the formal norm |||f |||K,ρ is convergent in a neighborhood of ρ = 0.

The following lemma is a variant of Nagumo’s lemma:

Proposition 4.5 (Nagumo’s type lemma). Let σ ≥ 1. If

(4.8) |||f |||K,ρ � C

(1 − ρ/R)a

holds for some C > 0, a ≥ 1 and R > 0, we have

(4.9) |||∂xif |||K,ρ � Ceσ(a + σ)σ/R

(1 − ρ/R)a+σ
for i = 1, . . . , n.

Proof. By the assumption (4.8) we have

∑
k≥0

1
k!σ

( ∑
|α|=k

‖∂α
x f‖K

)
ρk � C

∑
k≥0

a(a + 1) · · · (a + k − 1)
k!

(ρ/R)k

and so∑
|α|=k

‖∂α
x f‖K ≤ Ck!σ

a(a + 1) · · · (a + k − 1)
k!

(1/R)k, k = 0, 1, 2, . . . .

Therefore, we see:

|||∂xif |||K,ρ =
∑
k≥0

1
k!σ

( ∑
|α|=k

‖∂α
x ∂xif‖K

)
ρk(4.10)

�
∑
k≥0

1
k!σ

(
C(k + 1)!σ

a(a + 1) · · · (a + k)
(k + 1)!

(1/R)k+1

)
ρk

= C(1/R)
∑
k≥0

(k + 1)σ−1 a(a + 1) · · · (a + k)
k!

(ρ/R)k.

Hence, if we prove the inequality

(k + 1)σ−1a(a + 1) · · · (a + k)(4.11)

≤ eσ(a + σ)σ(a + σ) · · · (a + σ + k − 1), k ≥ 1,
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by applying this to (4.10) we have the result (4.9).
The proof of (4.11) is as follows. Since a sharp form of the Stirling’s

formula (see Whittaker-Watson [19]) for the Γ-function guarantees

(4.12) 1 <
Γ(x)√

2π xx−1/2e−x
< exp

(
1

12x

)
<

√
e for x ≥ 1,

we obtain

(k + 1)σ−1 a(a + 1) · · · (a + k)
(a + σ) · · · (a + σ + k − 1)

= (k + 1)σ−1 Γ(a + k + 1)Γ(a + σ)
Γ(a)Γ(a + σ + k)

≤ (k + 1)σ−1

√
2π(a + k + 1)a+k+1/2e−a−k−1

√
e
√

2π(a + σ)a+σ−1/2e−a−σ
√

e√
2π(a)a−1/2e−a

√
2π(a + σ + k)a+σ+k−1/2e−a−σ−k

= (k + 1)σ−1 (a + k + 1)a+k+1/2(a + σ)a+σ−1/2

(a)a−1/2(a + σ + k)a+σ+k−1/2

≤ (a + σ)a+σ−1/2

(a)a−1/2
= (a + σ)σ

( a

a + σ

)1/2(
1 +

σ

a

)a

≤ (a + σ)σeσ. �

If f(t, x) is a C∞ function on I ×K we define the formal norm |||f |||I×K,ρ

of f(t, x) on I × K by

|||f |||I×K,ρ =
∑
|α|≥0

‖∂α
x f‖I×K

|α|!σ ρ|α| with ‖∂α
x f‖I×K = max

(t,x)∈I×K
|∂α

x f(t, x)|

which is a formal power series in ρ. It is clear that Propositions 4.5 and 4.6
with |||f |||K,ρ replaced by |||f |||I×K,ρ are also valid.

The following lemma is also very useful.

Proposition 4.6. If 0 < R < R0 and a ≥ 1 we have

(4.13)
1

(1 − ρ/R0)
1

(1 − ρ/R)a
� 1

(1 − R/R0)
1

(1 − ρ/R)a
.

4.3. Estimate of F (x, u1(x), . . . , ud(x))
Let σ ≥ 1, let F (x, z1, . . . , zd) ∈ E{σ}(Ω) for some open subset Ω of

R
n
x × R

d
z , and let ui(x) ∈ E{σ}(V ) (i = 1, . . . , d) for some open subset

V of R
n
x which satisfy the following: x ∈ V =⇒ (x, u1(x), . . . , ud(x)) ∈
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Ω. Then, by Proposition 4.1 we have F (x, u1(x), . . . , ud(x)) ∈ E{σ}(V ).
Let K be a compact subset of V ; then the image L of K by the map
x −→ (x, u1(x), . . . , ud(x)) is also a compact subset of Ω. We write z =
(z1, . . . , zd). By the assumption we have the estimtes

1)
1

q!ν!
max

(x,z)∈L
|F (q,ν)(x, z)| ≤ Ah|q|+|ν|(|q| + |ν|)!σ−1, |q| ≥ 0, |ν| ≥ 0,

2)
1
β!

max
x∈K

|u(β)
i (x)| ≤ Bh|β|(|β| − 1)!σ−1, i = 1, . . . , d and |β| ≥ 1

for some A > 0, B > 0 and h > 0.

Proposition 4.7. Suppose the above conditions, and we set ϕ(x) =
F (x, u1(x), . . . , ud(x)). If 0 < R0 < 1/h and

(4.14) hB

[
1

(1 − hR0)n
− 1

]
≤ 1

2

hold, we have the estimate

(4.15) |||ϕ|||K, ρ � 2dA

(1 − ρ/R0)n
.

Proof. We set

G(x, z) =
∑

|q|+|ν|≥0

Ah|q|+|ν|xqzν , w(x) =
∑
|β|≥1

Bh|β|xβ :

then under the relation xi = ρ (i = 1, . . . , d) we have

G(x, z) � A

(1 − hρ)n

∑
|ν|≥0

(hz)ν , w(x) � B
[ 1
(1 − hρ)n

− 1
]
.

By the same argument as in the proof of Proposition 4.2 we have

∑
|α|≥0

‖ϕ(α)‖K

|α|!σ xα �
∑
|α|≥0

‖ϕ(α)‖K

|α|!σ−1α!
xα � G(x, w(x), . . . , w(x))
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as formal power series in x. Thus, if we set xi = ρ (i = 1, . . . , d) we have

|||ϕ|||K,ρ � G(ρ, w(ρ), . . . , w(ρ)) � A

(1 − hρ)n

∑
|ν|≥0

(hw(ρ))|ν|

� A

(1 − ρ/R0)n

∑
|ν|≥0

[
hB

(
1

(1 − hρ)n
− 1

)]|ν|

� A

(1 − ρ/R0)n

∑
|ν|≥0

[
hB

(
1

(1 − hR0)n
− 1

)]|ν|

� A

(1 − ρ/R0)n

∑
|ν|≥0

(1
2

)|ν|
=

2dA

(1 − ρ/R0)n
.

In the above, we have used Proposition 4.6. �

5. Proof of Theorem 3.6 in the Case s = 1

In the case s = 1, by the condition s ≥ max{s0(F ), s∗} with s∗ =
max{s1, s2} we have s0(F ) = s1 = s2 = 1, and so we have i + σ|α| −m ≤ 0
for any (i, α) ∈ Λ0. Therefore, our equation (3.12) (or (3.24)) is written in
the form

(5.0.1) (t∂t)mu = F
(
t, x,Θu

)
with Θu = {(t∂t)j∂α

x u}j+σ|α|≤m,j<m.

In this case, Theorem 3.6 is nothing but the following result:

Theorem 5.0.1. Suppose: m ∈ N
∗ and F (t, x, z) ∈ E{1,σ,1}(Ω). If

u(t, x) is a solution of (5.0.1) on I×V belonging to the class C∞(I, E{σ}(V ))
and if

(5.0.2)
∂F

∂zj,α
(t, x,Θu)

∣∣∣
t=0

≡ 0 on V , if |α| > 0,

then we have u(t, x) ∈ E{1,σ}(I × V ).

We note that the local version of this result can be verified by the results
of Koike [11] (uniqueness of the solution) and Pongerard [15] (existence of a
solution in the class E{1,σ}). We will give here a direct proof by estimating
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the term |||∂k
t u|||I×K,ρ inductively on k. The discussion here gives also a

preliminary part of the proof of Theorem 3.6 in the case s > 1.
We set

cj(x) =
∂F

∂zj,0
(0, x,Θu(0, x)), 0 ≤ j < m,

C(λ, x) = λm − cm−1(x)λm−1 − · · · − c1(x)λ − c0(x),

F0(t, x, z) = F (t, x, z) −
∑
j<m

cj(x)zj,0.

Then, our equation (5.0.1) is written in the form

(5.0.3) C(t∂t, x)u = F0

(
t, x,Θu

)
and we have the condition

(5.0.4)
∂F0

∂zj,α
(t, x,Θu)

∣∣∣
t=0

≡ 0 on V for any (j, α) ∈ Λ.

In the proof of Theorem 5.0.1, we will treat this equation (5.0.3) instead of
(5.0.1). We denote by C{t, ρ} (resp. by C{t}) the ring of convergent power
series in (t, ρ) (resp. in t).

5.1. On the recurrent formulas on ∂k
t u/k!

In order to prove Theorem 5.0.1 we must show the following result: for
any compact subset K of V we have the condition

(5.1.1)
∑
k≥0

1
k!
|||∂k

t u|||I×K,ρt
k ∈ C{t, ρ}.

To do so, let us find recurrent formulas on wk = ∂k
t u/k! (k = 1, 2, . . . ).

First we note:

Lemma 5.1.1. For any p = 1, 2, . . . and k = 1, 2, . . . we have
∂k

t (t∂t)pu = (t∂t + k)p∂k
t u and so ∂k

t (t∂t)pu = ∂t(t∂t + k − 1)p∂k−1
t u.

Now, we set Λ = {(j, α) ∈ N × N
n ; j + σ|α| ≤ m, j < m} and

(5.1.2) wk(t, x) =
1
k!

∂k
t u(t, x), k = 1, 2, . . . ,
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and we apply ∂k
t to the both sides of the equation (5.0.3): by Lemmas 4.3

and 5.1.1, for k ≥ 1 we have

C(t∂t + k, x)wk(5.1.3)

=
1
k!

F
(k,0,0)
0 (t, x,Θu)

+
∑

(j,α)∈Λ

∂F0

∂zj,α
(t, x,Θu) × 1

k
∂t(t∂t + k − 1)j∂α

x wk−1

+
∑

2≤p+|ν|≤k
|ν|≥1

1
p!ν!

F
(p,0,ν)
0 (t, x,Θu) ×

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

[
(t∂t + kj,α(1))j∂α

x wkj,α(1) ×

× · · · × (t∂t + kj,α(νj,α))j∂α
x wkj,α(νj,α)

]
,

where

ν = {νj,α}(j,α)∈Λ ∈ N
d, |ν| =

∑
(j,α)∈Λ

νj,α,

|k∗| =
∑

(j,α)∈Λ

(
kj,α(1) + · · · + kj,α(νj,α)

)

and F
(p,0,ν)
0 = ∂p

t ∂ν
z F0 (p + |ν| ≥ 2 and |ν| ≥ 1).

By the condition (5.0.4) we have the expression

∂F

∂zj,α
(t, x,Θu) = taj,α(t, x), (j, α) ∈ Λ

for some aj,α(t, x) ∈ C∞(I, E{σ}(V )). Therefore, by setting

fk(t, x) =
1
k!

F (k,0,0)(t, x,Θu(t, x)), k = 1, 2, . . . ;

gp,ν(t, x) =
1

p!ν!
F (p,0,ν)(t, x,Θu), p + |ν| ≥ 2, |ν| ≥ 1,
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and by using the relation

taj,α(t, x) × 1
k
∂t(t∂t + k − 1)j∂α

x wk−1

= aj,α(t, x)
(1

k
(t∂t + k − 1)j+1∂α

x wk−1 −
k − 1

k
(t∂t + k − 1)j∂α

x wk−1

)
we have the equation

C(t∂t + k, x)wk(5.1.4)

= fk(t, x) +
∑

(j,α)∈Λ

aj,α(t, x) × 1
k
(t∂t + k − 1)j+1∂α

x wk−1

−
∑

(j,α)∈Λ

aj,α(t, x) × k − 1
k

(t∂t + k − 1)j∂α
x wk−1

+
∑

2≤p+|ν|≤k,|ν|≥1

gp,ν(t, x) ×

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

[
(t∂t + kj,α(1))j∂α

x wkj,α(1) ×

× · · · × (t∂t + kj,α(νj,α))j∂α
x wkj,α(νj,α)

]
.

In the second term of the right-hand side we have the factor (t∂t +k−1)j+1:
concerning this, we note that j + 1 ≤ m holds (by the condition j < m).
This fact guarantees that we can apply the induction argument.

By the assumption we have:

Lemma 5.1.2. For any compact subset K of V there are constants Fk ≥
0 (k ≥ 1), R0 > 0, Aj,α ≥ 0 ((j, α) ∈ Λ), C ≥ 0, and Bp,ν ≥ 0 (p + |ν| ≥ 2
and |ν| ≥ 1) which satisfy the following properties:

1) |||fk|||I×K,ρ � Fk

(1 − ρ/R0)n
and

∑
k≥1

Fkt
k ∈ C{t};

2) |||aj,α|||I×K,ρ � Aj,α

(1 − ρ/R0)n
, (j, α) ∈ Λ;

3) |||ci|||K,ρ � C

(1 − ρ/R0)n
, i = 0, . . . , m − 1;
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4) |||gp,ν |||I×K,ρ � Bp,ν

(1 − ρ/R0)n
and

∑
p+|ν|≥2,|ν|≥1

Bp,νt
pzν ∈ C{t, z}.

Proof. Since F0(t, x, z) ∈ E{1,σ,1}(Ω) is supposed, by (2) of Proposi-
tion 4.1 we have F0(t, x,Θu(t, x)) ∈ C∞(I, E{σ}(V )) and (∂F0/∂zj,α)(t, x,

Θu(t, x)) ∈ C∞(I, E{σ}(V )). Hence, by Proposition 4.4 we have the prop-
erties 2) and 3).

We write uj,α = (t∂t)j∂α
x u; we have Θu = {uj,α}(j,α)∈Λ. Since u(t, x) ∈

C∞(I, E{σ}(K)) is supposed, we have uj,α(t, x) ∈ C∞(I, E{σ}(K)).
Let K be a compact subset of V ; then the image L of K by the map

(t, x) −→ (t, x,Θu(t, x)) is also a compact subset of Ω. By the assumption
we have the estimates

1
p!α!ν!

max
(t,x,z)∈L

|∂p
t ∂α

x ∂ν
z F0(t, x, z)| ≤ Ahp+|α|+|ν||α|!σ−1(5.1.5)

for any (p, α, ν) ∈ N × N
n × N

d,

1
β!

max
(t,x)∈I×K

|∂β
xuj,α| ≤ Bh|β|(|β| − 1)!σ−1 for any |β| > 0(5.1.6)

for some A > 0, B > 0 and h > 0. By using these conditions, let us show
1) and 4).

By (5.1.5) we have

1
α!ν!

max
(t,x,z)∈L

∣∣∂α
x ∂ν

z

(
(1/k!)F (k,0,0)

0

)
(t, x, z)

∣∣ ≤ Ahk+|α|+|ν||α|!σ−1

for any (α, ν) ∈ N
n × N

d;

therefore, by Proposition 4.7 we have the result: if R0 > 0 is sufficiently
small so that 0 < R0 < 1/h and

(5.1.7) hB

[
1

(1 − hR0)n
− 1

]
≤ 1

2

hold, we have the estimate

(5.1.8) |||fk|||I×K,ρ � 2dAhk

(1 − ρ/R0)n
.
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This proves 1). Similarly, by (5.1.5) we have

1
α!ν!

max
(t,x,z)∈L

∣∣∂α
x ∂ν

z

(
(1/(p!µ!))F (p,0,µ)

0

)
(t, x, z)

∣∣
=

(ν + µ)!
ν!µ!

1
p!α!(ν + µ)!

max
(t,x,z)∈L

|∂p
t ∂α

x ∂ν+µ
z F0(t, x, z)|

≤ 2|ν|+|µ|Ahp+|α|+|ν|+|µ||α|!σ−1 ≤ Ahp(2h)|µ|(2h)|α|+|ν||α|!σ−1

for any (α, ν) ∈ N
n × N

d;

therefore, by Proposition 4.7 we have the result: if R0 > 0 is sufficiently
small so that 0 < R0 < 1/(2h) and

(5.1.9) 2hB

[
1

(1 − 2hR0)n
− 1

]
≤ 1

2

hold, we have the estimate

(5.1.10) |||gp,µ|||I×K,ρ � 2d(Ahp(2h)|µ|)
(1 − ρ/R0)n

.

This proves 4). �

5.2. On the equation C(t∂t + k, x)w = g

Let K be a compact subset of V , and let us consider the equation

(5.2.1)k C(t∂t + k, x)w = g(t, x) on I × K,

where k is a positive integer. We note:

Lemma 5.2.1. There are constants k0 ∈ N
∗ and M0 > 0 which satisfy

the following property: if w(t, x) ∈ C∞(I × K) and g(t, x) ∈ C∞(I × K)
satisfy the equation (5.2.1)k for some k ≥ k0, and if |g(t, x)| ≤ A holds on
I × K, we have

(5.2.2)
m∑

i=0

‖(t∂t + k)iw‖I×K ≤ M0A.

Proof. Let λi(x) (i = 1, . . . , m) be the roots of C(λ, x) = 0, and take
k0 ∈ N

∗ so that

k0 − Reλi(x) ≥ 1 on K, i = 1, . . . , m.
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In the case m = 1, our equation (5.2.1)k is written in the form (t∂t +
k − λ(x))w = g, and so we have

w(t, x) =
∫ t

0

(τ

t

)k−λ(x)
g(τ, x)

dτ

τ

and

|w(t, x)| ≤
∫ t

0

(τ

t

)k−Reλ(x)
A

dτ

τ
=

A

k − Reλ(x)
≤ A :

moreover, if we take B > 0 so that B ≥ |λ(x)| on K, we have |(t∂t +k)w| ≤
|λ(x)w|+|g| ≤ BA+A = A(1+B) on I×K. Thus, by taking M0 = 1+(1+B)
we have the result (5.2.2).

In the case m = 2, the proof is as follows. Since our equation (5.2.1)k

is written in the form (t∂t + k − λ1(x))(t∂t + k − λ2(x))w = g, by setting
w1 = (t∂t + k − λ2(x))w we have

(t∂t + k − λ1(x))w1 = g, (t∂t + k − λ2(x))w = w1.

If we take B > 0 so that B ≥ |λi(x)| on K for i = 1, 2, by the equation
(t∂t + k − λ1(x))w1 = g we have |w1| ≤ A and |(t∂t + k)w1| ≤ A(1 + B) on
I × K. Hence, by the equation (t∂t + k − λ1(x))w = w1 we have |w| ≤ A

and |(t∂t + k)w| ≤ A(1 + B) on I × K. Then,

|(t∂t + k)2w| ≤ 2B|(t∂t + k)w| + B2|w| + |g| ≤ 2BA(1 + B) + B2A + A.

Thus, by setting M0 = 1 + (1 + B) + (2B(1 + B) + B2 + 1) we have the
result.

The general case m ≥ 3 can be proved in the same way. �

Lemma 5.2.2. Let k0 ∈ N
∗ and M0 > 0 be the constants in Lemma

5.2.1. If w(t, x) ∈ C∞(I ×K) and g(t, x) ∈ C∞(I ×K) satisfy the equation
(5.2.1)k for some k ≥ k0, and if the conditions

i) |||ci|||K,ρ � C

(1 − ρ/R0)n
, i = 0, 1, . . . , m − 1,

ii) |||g|||I×K,ρ � A

(1 − ρ/R)a
for some A > 0 and a ≥ 1,

iii) R > 0 satisfies M0C

[
1

(1 − R/R0)n
− 1

]
≤ 1

2
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hold, we have

(5.2.3) |||(t∂t + k)iw|||I×K,ρ � 2M0

km−i

A

(1 − ρ/R)a
, i = 0, 1, . . . , m.

Proof. First, we note:

(5.2.4)
m∑

i=0

|||(t∂t + k)iw|||I×K,ρ � 2M0A

(1 − ρ/R)a
.

The proof is as follows. Since C(t∂t + k, x)w = g holds on I × K, for any
α ∈ N

n we have

∂α
x g = C(t∂t + k, x)∂α

x w −
m−1∑
i=0

∑
α1+α2=α
|α1|≥1

α!
α1!α2!

∂α1
x ci(x) × (t∂t + k)i∂α2

x w :

therefore, by Lemma 5.2.1 we have

m∑
i=0

‖(t∂t + k)i∂α
x w‖I×K ≤ M0‖C(t∂t + k)∂α

x w‖I×K

≤ M0‖∂α
x g‖I×K

+ M0

m−1∑
i=0

∑
α1+α2=α
|α1|≥1

|α|!
|α1|!|α2|!

‖∂α1
x ci‖K‖∂α2

x (t∂t + k)iw‖I×K .

Hence, we have the inequality

m∑
i=0

|||(t∂t + k)iw|||I×,Kρ

≤ M0|||g|||I×K,ρ + M0

m−1∑
i=0

[ ∑
|α1|≥1

‖∂α1
x ci‖K

|α1|!σ
ρ|α1|

]
|||(t∂t + k)iw|||I×K,ρ

≤ M0A

(1 − ρ/R)a
+ M0C

(
1

(1 − ρ/R0)
− 1

) m−1∑
i=0

|||(t∂t + k)iw|||I×K,ρ.
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Thus, by Proposition 4.6 and the assumption iii) we obtain

m∑
i=0

|||(t∂t + k)iw|||I×,Kρ � 1

1 − M0C
( 1

(1 − ρ/R0)
− 1

) × M0A

(1 − ρ/R)a

� 1
1 − 1/2

× M0A

(1 − ρ/R)a
=

2M0A

(1 − ρ/R)a
.

This proves (5.2.4).
By using (5.2.4) let us show (5.2.3). We note that if (t∂t + k)u = f

holds, we have (t∂t + k)∂α
x u = ∂α

x f for any α ∈ N
n, and so by using the

integral expression

∂α
x u(t, x) =

∫ t

0

(τ

t

)k
∂α

x f(τ, x)
dτ

τ

we have the estimate ‖∂α
x u‖I×K ≤ (1/k)‖∂α

x f‖I×K ; this proves the a-priori
estimate |||u|||I×,Kρ ≤ (1/k)|||f |||I×,Kρ. Thus, we have

(5.2.5) |||u|||I×,Kρ ≤ 1
k
|||(t∂t + k)u|||I×,Kρ.

Since (5.2.4) implies

|||(t∂t + k)mu|||I×,Kρ � 2M0A

(1 − ρ/R)a
,

by using (5.2.5) (m − i)-times we have the result (5.2.3). �

5.3. Proof of Theorem 5.0.1
Now, let us give a proof of Theorem 5.0.1. As in subsection 5.1 we set

(5.3.1) wk(t, x) =
1
k!

∂k
t u(t, x), k = 1, 2, . . . .

Let K be a compact subset of V . Our aim is to show the condition:

(5.3.2)
∑
k≥1

|||wk|||I×K,ρt
k ∈ C{t, ρ}.

We know that wk(t, x) ∈ C∞(I, E{σ}(K)) (k = 1, 2, . . . ) satisfy the
formula (5.1.4); moreover we may suppose that the coefficients of (5.1.4)
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satisfy the properties in Lemma 5.1.2. We take a µ ≥ max{n, m}; let
k0 ∈ N

∗ and M0 > 0 be the constants in Lemma 5.2.1 (we may suppose
that k0 ≥ 2 holds), and set � = {(j, α) ∈ N×N

n ; j = 0, 1, . . . , m and |α| ≤
m/σ}. Take R > 0 and Ak > 0 (k = 1, 2, . . . , k0 − 1) so that

|||(t∂t + k)j∂α
x wk|||I×K,ρ � 1

km−j−σ|α|
Ak

(1 − ρ/R)µ(2k−1)
(5.3.3)

for any (j, α) ∈ �, k = 1, 2, . . . , k0 − 1.

Since R > 0 can be taken as small as possible, we may suppose that

M0C

[
1

(1 − R/R0)n
− 1

]
≤ 1

2

(where C is the constant in 3) of Lemma 5.1.2); so we can use the result in
Lemma 5.2.2. We may assume also 0 < R < 1.

Let us consider the functional equation with respect to (t, Y ):

Y =
k0−1∑
k=1

Akt
k

(1 − ρ/R)µ(2k−1)
+(5.3.4)

+
2M0

(1 − ρ/R)µ

[ ∑
k≥k0

Fkt
k

(1 − ρ/R)µ(2k−2)
+ 2

∑
(j,α)∈Λ

Aj,αt

(1 − ρ/R)µ
βY

+
∑

p+|ν|≥2,|ν|≥1

Bp,νt
p

(1 − R/R0)n

1
(1 − ρ/R)µ(2p+|ν|−2)

(βY )|ν|
]
,

where ρ is a parameter, and β = (2µe/R)m. Since this is an analytic
functional equation, the implicit function theorem tells us that for any 0 <

ρ < R this equation (5.3.4) has a unique holomorphic solution Y = Y (t)
with Y (0) = 0 in a neighborhood of t = 0; if we expand this into Taylor
series

Y =
∑
k≥1

Ykt
k,

we can easily see that

(5.3.5) Yk � Ak

(1 − ρ/R)µ(2k−1)
, k = 1, 2, . . . , k0 − 1
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and that Yk (for k ≥ k0) is determined by the following recurrent formulas:

Yk =
2M0

(1 − ρ/R)µ

[
Fk

(1 − ρ/R)µ(2k−2)
+ 2

∑
(j,α)∈Λ

Aj,α

(1 − ρ/R)µ
βYk−1(5.3.6)

+
∑

2≤p+|ν|≤k,|ν|≥1

Bp,ν

(1 − R/R0)n

1
(1 − ρ/R)µ(2p+|ν|−2)

×

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

(βYkj,α(1)) × · · · × (βYkj,α(νj,α))

]

(where we used the same notations as in (5.1.4)). Moreover, we can see by
induction on k that Yk has the form

(5.3.7) Yk =
Ck

(1 − ρ/R)µ(2k−1)
, k = 1, 2, . . .

where Ck (k ≥ 1) are constants which are independent of the parameter ρ.
We write Yk = Yk(ρ) when we hope to emphasize that Yk depends on ρ.

Lemma 5.3.1. For k = 1, 2, . . . we have

(5.3.8)k |||(t∂t + k)j∂α
x wk|||I×K,ρ � 1

km−j−σ|α|βYk(ρ) for any (j, α) ∈ �.

Proof. The cases k = 1, . . . , k0 − 1 are clear from (5.3.3), (5.3.5) and
the condition β > 1. Let us show the general case by induction on k.

Let k ≥ k0; suppose that (5.3.8)p is already proved for p = 1, 2, . . . , k−1.
Then, by (5.1.4), the induction hypothesis and the condition j + σ|α| ≤ m

(for (j, α) ∈ Λ) we have

|||C(t∂t + k)wk|||I×K,ρ(5.3.9)

≤ Fk

(1 − ρ/R0)n
+

∑
(j,α)∈Λ

Aj,α

(1 − ρ/R0)n
βYk−1

+
∑

(j,α)∈Λ

Aj,α

(1 − ρ/R0)n
βYk−1

+
∑

2≤p+|ν|≤k,|ν|≥1

Bp,ν

(1 − ρ/R0)n

∑
|k∗|=k−p

∏
(j,α)∈Λ

νj,α∏
i=1

βYkj,α(i).
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Since µ(2|k∗| − |ν|) = µ(2k − 2p − |ν|) = 2µ(k − p − |ν|) + µ|ν| ≥ µ|ν| ≥ µ

and

1
(1 − ρ/R0)n

� 1
(1 − ρ/R)µ

� 1
(1 − ρ/R)µ(2k−2)

,

1
(1 − ρ/R0)n

∏
(j,α)∈Λ

νj,α∏
i=1

βYkj,α(i) �
1

(1 − R/R0)n

∏
(j,α)∈Λ

νj,α∏
i=1

βYkj,α(i)

hold, by comparing (5.3.9) with (5.3.6) we have the estimate

|||C(t∂t + k)wk|||I×K,ρ � (1 − ρ/R)µ

2M0
Yk =

1
2M0

Ck

(1 − ρ/R)µ(2k−2)
,

and by applying Lemma 5.2.2 to this estimate we have

(5.3.10) |||(t∂t + k)jwk|||I×K,ρ � 1
km−j

Ck

(1 − ρ/R)µ(2k−2)
, j = 0, 1, . . . , m.

Then, (5.3.8)k is verified by the following: by applying Proposition 4.5
to (5.3.10) and by using |α| ≤ σ|α| ≤ m ≤ µ we have

|||(t∂t + k)j∂α
x wk|||I×K,ρ(5.3.11)

� 1
km−j

Cke
σ|α|/R|α|

(1 − ρ/R)µ(2k−2)+σ|α|

× (µ(2k − 2) + σ)σ · · · (µ(2k − 2) + σ|α|)σ

� 1
km−j

Cke
σ|α|(2kµ)σ|α|/R|α|

(1 − ρ/R)µ(2k−2)+σ|α| =
kσ|α|

km−j

Ck(2µe)σ|α|/R|α|

(1 − ρ/R)µ(2k−2)+σ|α|

� kσ|α|

km−j

Ck(2µe/R)m

(1 − ρ/R)µ(2k−2)+µ
=

1
km−j−σ|α|βYk. �

Completion of the Proof of Theorem 5.0.1. By Lemma 5.3.1
we have ∑

k≥1

|||wk|||I×K,ρt
k �

∑
k≥1

1
km

βYkt
k � β

∑
k≥1

Ykt
k ∈ C{t}

for any 0 < ρ < R. This proves (5.3.2). �
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6. Proof of Theorem 3.6 in the Case s > 1

In this section we will give a proof of Theorem 3.6 in the case s > 1:
the proof consists of two results stated below (Theorem 6.1 and Proposition
6.3).

Let us state the first result (Theorem 6.1). Let m ∈ N
∗, L ∈ N

∗, Λ be
a subset of {(j, α) ∈ N × N

n ; j < m, |α| ≤ L}, d = #Λ (the cardinal of Λ),
and let us consider the following nonlinear partial differential equation

(6.1) C(t∂t, x)u = F
(
t, x,Θu

)
with Θu = {(t∂t)j∂α

x u}(j,α)∈Λ

where
C(λ, x) = λm − cm−1(x)λm−1 − · · · − c1(x)λ − c0(x).

We denote by z = {zj,α}(j,α)∈Λ the variable in R
d (which corresponds to

Θu = {(t∂t)j∂α
x u}(j,α)∈Λ). Let Ω be an open subset of Rt × R

n
x × R

d
z , and

let F (t, x, z) be a C∞ function on Ω. Let s1 ≥ 1, σ ≥ 1 and s2 ≥ 1, let
I = [0, T ] (with T > 0), and let V be an open subset of R

n. The main
assumptions in this section are as follows.

b1) L ≥ m ≥ 1, s1 ≥ 1 and σ ≥ s2 ≥ 1.

b2) Λ is a subset of {(j, α) ∈ N × N
n ; j < m, |α| ≤ L}.

b3) cj(x) ∈ E{σ}(V ) j = 0, 1, . . . , m − 1.

b4) F (t, x, z) ∈ E{s1,σ,s2}(Ω).

b5) u(t, x) ∈ C∞(I, E{σ}(V )) is a solution of (6.1) on I × V ; this

involves the property: (t, x) ∈ I × V =⇒ (t, x,Θu(t, x)) ∈ Ω.

We set

(6.2) qp,ν = ordt

(∂p+|ν|F

∂tp∂zν
(t, x,Θu(t, x)), V

)
, p + |ν| ≥ 1

and set
(6.3)

s0 = 1 + max

[
0, sup

p+|ν|≥1,|ν|≥1

(
max

(j,α)∈Λν

(
j + σ|α| − m

p + |ν| + min{qp,ν , m − j} − 1

))]
,

where Λν = {(j, α) ∈ Λ ; νj,α > 0} for ν = {νj,α}(j,α)∈Λ ∈ N
d. Then the first

result is stated as follows.
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Theorem 6.1. Suppose the conditions b1) ∼ b5) and

(6.4)
∂F

∂zj,α
(t, x,Θu)

∣∣∣
t=0

≡ 0 on V for any (j, α) ∈ Λ;

then we have u(t, x) ∈ E{s,σ}(I × V ) for any s ≥ max{s0, s1, s2}.

By (6.4) we see that if p = 0 and |ν| = 1 we have qp,ν ≥ 1: therefore, in
the formula (6.3) we have p + |ν| + min{qp,ν , m − j} − 1 ≥ 1. The proof of
this result (Theorem 6.1) will be given later (in section 7); let us admit this
for a while.

Next, let us state the second result (Proposition 6.3). We set

(6.5) q∗j,α = ordt

( ∂F

∂zj,α
(t, x,Θu(t, x)), V

)
, (j, α) ∈ Λ

(here we used the notation q∗j,α instead of qj,α for avoiding a confusion with
qp,ν) and set

(6.6) s0(F ) = 1 + max

[
0, max

(j,α)∈Λ,|α|>0

(
j + σ|α| − m

min{q∗j,α, m−j}

) ]
.

Then we have

Proposition 6.2. If the condition

(6.7) qp,ν ≥ max{m − p, 0} for p + |ν| ≥ 2, |ν| ≥ 1

holds, we have s0(F ) = s0.

Proof. We note that if |ν| = 1 we have Λν = {(j0, α0)} for some
(j0, α0) ∈ Λ and q0,ν = q∗j0,α0

: this implies that

s0(F ) = 1 + max
[
0, max

|ν|=1

(
max

(j,α)∈Λν

j + σ|α| − m

min{q0,ν , m − j}

)]
.

Therefore, to show s0(F ) = s0 it is sufficient to prove the following result:

j + σ|α| − m

p + |ν| + min{qp,ν , m − j} − 1
≤ s0(F ) − 1(6.8)

for any p + |ν| ≥ 2, |ν| ≥ 1 and (j, α) ∈ Λν .
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Let us show this now. Take any (p, ν) with p+ |ν| ≥ 2 and |ν| ≥ 1; then
take any (j, α) ∈ Λν . By (6.7) we have qp,ν ≥ max{m − p, 0}.

If p ≥ m holds, we have p+ |ν|+min{qp,ν , m− j}−1 ≥ p+ |ν|+0−1 ≥
p ≥ m ≥ m − j and so

(6.9)
j + σ|α| − m

p + |ν| + min{qp,ν , m − j} − 1
≤ j + σ|α| − m

m − j
≤ s0(F ) − 1.

If j ≤ p < m we have qp,ν ≥ max{m− p, 0} = m− p and min{qp,ν , m− j} ≥
min{m−p, m−j} = m−p: therefore we have p+|ν|+min{qp,ν , m−j}−1 ≥
p + |ν| + (m − p) − 1 ≥ m ≥ m − j and so we have (6.8) from (6.9). In the
case p < j we can show (6.8) in the same way. �

Proof of Theorem 3.6. In the situation of Theorem 3.6 we have the
condition (3.23) which yields the property (6.7). Therefore, by Theorem 6.1
and Proposition 6.2 we have the result: u(t, x) ∈ E{s,σ}(I × V ) for any
s ≥ max{s0(F ), s1, s2}. �

Thus, to complete the proof of Theorem 3.6 it is sufficient to show The-
orem 6.1.

7. Proof of Theorem 6.1

In this section we will give a proof of Theorem 6.1. Since the case s = 1
is already proved in Theorem 5.0.1, we may confine ourselves to the case

(7.0.1) s > 1.

The idea of the proof in this section comes from the proof of Maillet’s type
theorem in Gérard-Tahara [3].

7.1. Preliminaries
Let u(t, x) be a solution of (6.1) given in b5) and set

(7.1.1) wk(t, x) =
1
k!

∂k
t u(t, x), k = 1, 2, . . . .

Take any s > 1 satisfying s ≥ max{s0, s1, s2}, and fix it. To prove Theorem
6.1 we must show the following assertion: for any compact subset K of V
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we have the condition:

(7.1.2)
∑
k≥1

1
(k − 1)!s−1

|||wk|||I×K,ρ tk ∈ C{t, ρ}.

Before the proof of this asserion, let us present some preparatory dis-
cussions which are needed in the proof of (7.1.2).

First, we note: by the calculation in subsection 5.1 we see that wk(t, x)
(for k ≥ 1) satisfies the equation

C(t∂t + k, x)wk(7.1.3)

= fk(t, x) +
∑

1≤p+|ν|≤k,|ν|≥1

ap,ν(t, x) ×

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

[
1

kj,α(1)!
∂

kj,α(1)
t (t∂t)j∂α

x u ×

× · · · × 1
kj,α(νj,α)!

∂
kj,α(νj,α)
t (t∂t)j∂α

x u

]
,

where

fk(t, x) =
1
k!

F (k,0,0)(t, x,Θu(t, x)) (k ≥ 1),

ap,ν(t, x) =
1

p!ν!
F (p,0,ν)(t, x,Θu(t, x)) (p + |ν| ≥ 1, |ν| ≥ 1).

By the definition, we have qk,0 = ordt(fk(t, x), V ) (k ≥ 1) and qp,ν =
ordt(ap,ν(t, x), V ) (p + |ν| ≥ 1 and |ν| ≥ 1). Moreover, by the same ar-
gument as in Lemma 5.1.2 we have

Lemma 7.1.1. For any compact subset K of V , there are constants
Fk ≥ 0 (k ≥ 1), R0 > 0, C ≥ 0 and Ap,ν ≥ 0 (p + |ν| ≥ 1, |ν| ≥ 1) which
satisfy the following properties:

1) |||fk|||I×K,ρ � Fk

(1 − ρ/R0)n
and

∑
k≥1

Fk

k!s−1
tk ∈ C{t};

2) |||ci|||K,ρ � C

(1 − ρ/R0)n
, i = 0, . . . , m − 1;

3) |||ap,ν |||I×K,ρ � Ap,ν

(1 − ρ/R0)n
and

∑
p+|ν|≥1,|ν|≥1

Ap,ν

(p + |ν|)!s−1
tpzν ∈ C{t, z}.
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For simplicity we write

gk(p, ν) = ap,ν(t, x)
∑

|k∗|=k−p

∏
(j,α)∈Λ

[
1

kj,α(1)!
∂

kj,α(1)
t (t∂t)j∂α

x u ×(7.1.4)

× · · · × 1
kj,α(νj,α)!

∂
kj,α(νj,α)
t (t∂t)j∂α

x u

]
:

then our equation (7.1.3) is written as

(7.1.5) C(t∂t + k, x)wk = fk(t, x) +
∑

1≤p+|ν|≤k,|ν|≥1

gk(p, ν).

In the forthcoming subsections, we will give estimates of gk(p, ν): the
following lemma (Lemma 7.1.2 given below) will play a very important role
in the estimation of gk(p, ν).

For integers 0 ≤ r < k we define the constants C
(0)
k,h (1 ≤ h ≤ k) and

C
(+)
k,r,h (0 ≤ h ≤ r < k) by the coefficients of

x(x − 1) · · · (x − k + 1) =
k∑

h=1

C
(0)
k,hxh,

(x − k + 1)(x − k + 2) · · · (x − k + r) =
r∑

h=0

C
(+)
k,r,hxh.

Lemma 7.1.2. For 0 ≤ r < k we have

(7.1.6) tk∂k
t =

k∑
h=1

C
(0)
k,h(t∂t)h and tr∂r

t =
r∑

h=0

C
(+)
k,r,h(t∂t + k − r)h.

Moreover, we have the following estimates:

(7.1.7)
1
k!

k∑
h=1

|C(0)
k,h| = 1 and

(k − r)!
k!

r∑
h=0

|C(+)
k,r,h|(k − r)h ≤ 2r.

Proof. (7.1.6) follows from

tk∂k
t = t∂t(t∂t − 1) · · · (t∂t − k + 1), and

tr∂r
t = t∂t(t∂t − 1) · · · (t∂t − r + 1)

= (ϑ − k + r)(ϑ − k + r − 1) · · · (ϑ − k + 1)
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with ϑ = (t∂t + k − r). Let us show (7.1.7). By the definition of C
(0)
k,h we

have
k∑

h=1

|C(0)
k,h|xh = x(x + 1) · · · (x + k − 1);

therefore by setting x = 1 we have the former half of (7.1.7). By the
definition of C

(+)
k,r,h we see:

C
(+)
k,r,h = (−1)r−h

∑
k−r≤p1<···<pr−h≤k−1

p1p2 · · · pr−h

and so

|C(+)
k,r,h| ≤

∑
k−r≤p1<···<pr−h≤k−1

(k − 1)!
(k − r + h − 1)!

≤
(

r

r − h

)
k!

(k − r + h)!
.

Thus we obtain

(k − r)!
k!

r∑
h=0

|C(+)
k,r,h|(k − r)h

≤ (k − r)!
k!

r∑
h=0

(
r

r − h

)
k!

(k − r + h)!
(k − r)h

=
r∑

h=0

(
r

r − h

)
(k − r)h

(k − r + h) · · · (k − r + 1)
≤

r∑
h=0

(
r

r − h

)
= 2r. �

Now, let us take a sufficiently large µ ∈ N such that µ > m and j+σ|α| ≤
µ for all (j, α) ∈ Λ: take also a sufficiently large N ∈ N so that

(7.1.8) s − 1 ≥ µ − m

N − 1
and N ≥ 2.

7.2. Estimate of gk(p, ν) in the case p + |ν| ≥ N

In this subsection, we will give an estimate of gk(p, ν) in the case p+|ν| ≥
N . Let k ≥ N and suppose the following estimates;

|||(t∂t + h)j∂α
x wh|||I×K,ρ � (h − 1)!s−1

hµ−j−σ|α| βYh(ρ)(7.2.1)

for j = 0, 1, . . . , m, |α| ≤ L and h = 1, 2, . . . , k − 1,
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where β > 0 and

(7.2.2) Yh(ρ) =
Ch

(1 − ρ/R)µ(2h−1)
, h = 1, 2, . . . , k − 1

for some Ch ≥ 0 (h = 1, 2, . . . , k − 1). Then we have

Proposition 7.2.1. Suppose the conditions (7.1.8), k ≥ N , (7.2.1)
and (7.2,2). If p + |ν| ≥ N , we have the estimate

|||gk(p, ν)|||I×K,ρ(7.2.3)

� (k − 1)!s−1

k µ−m

Ap,νe
N(s−1)

(p + |ν| − N)!s−1

(p + |ν|)µ−µν

(1 − ρ/R0)n
×

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

[
βYkj,α(1) × · · · × βYkj,α(νj,α)

]
,

where µν = max{j + σ|α| ; νj,α > 0} (for ν = {νj,α}(j,α)∈Λ with |ν| ≥ 1).

Proof. By (7.1.4), Lemma 7.1.1, (7.2.1) and the definition of µν we
have

|||gk(p, ν)|||I×K,ρ(7.2.4)

� Ap,ν

(1 − ρ/R0)n

∑
|k∗|=k−p

∏
(j,α)∈Λ

[
(kj,α(1) − 1)!s−1

kj,α(1)µ−µν
βYkj,α(1) ×

× · · · × (kj,α(νj,α) − 1)!s−1

kj,α(νj,α)µ−µν
βYkj,α(νj,α)

]
.

Let us note:

Lemma 7.2.2. In the situation in (7.2.4) we have

∏
(j,α)∈Λ

νj,α∏
i=1

(kj,α(i) − 1)!s−1 ≤ (k − p − |ν|)!s−1,(7.2.5)

∏
(j,α)∈Λ

νj,α∏
i=1

1
kj,α(i)µ−µν

≤ (p + |ν|)µ−µν

kµ−µν
.(7.2.6)



Gevrey Regularity in Time of Solutions to Nonlinear PDEs 107

Proof of Lemma 7.2.2. (7.2.5) is clear from the condition |k∗| = k−p

(the definition of |k∗| is given under the formula (5.1.3)). Let us show (7.2.6).
Since kj,α(i) ≥ 1 we have

ki,β(p) ≤
∏

(j,α)∈Λ

νj,α∏
i=1

kj,α(i) (for (i, β) ∈ Λ and p = 1, . . . , νi,β);

therefore

k = p + |k∗| ≤ p + |ν| ×
∏

(j,α)∈Λ

νj,α∏
i=1

kj,α(i) ≤ (p + |ν|) ×
∏

(j,α)∈Λ

νj,α∏
i=1

kj,α(i)

which yields (7.2.6). �

Hence, by applying this to (7.2.4) we have

|||gk(p, ν)|||I×K,ρ(7.2.7)

� Ap,ν

(1 − ρ/R0)n

(k − p − |ν|)!s−1(p + |ν|)µ−µν

kµ−µν
×

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

[
βYkj,α(1) × · · · × βYkj,α(νj,α)

]
.

Since the Stirling’s formula (4.12) gives

(k − N)!
(k − 1)!

≤
√

2π(k − N + 1)k−N+1/2e−(k−N+1)+1/2

√
2πkk−1/2e−k

(7.2.8)

=
(k − N + 1

k

)k−N+1/2 eN−1/2

kN−1
≤ eN

kN−1
,

by using this and the condition (7.1.8), that is, (N − 1)(s − 1) ≥ µ − m ≥
µν − m we have

(k − p − |ν|)!s−1

kµ−µν
≤ 1

(p + |ν| − N)!s−1

(k − N)!s−1

kµ−µν

=
(k − 1)!s−1

kµ−m

1
(p + |ν| − N)!s−1

× (k − N)!s−1

(k − 1)!s−1km−µν

≤ (k − 1)!s−1

kµ−m

1
(p + |ν| − N)!s−1

× eN(s−1)

k(N−1)(s−1)km−µν

≤ (k − 1)!s−1

kµ−m

1
(p + |ν| − N)!s−1

× eN(s−1).
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Thus, by applying this to (7.2.7) we can obtain (7.2.3). �

7.3. In the case p + |ν| < N

Next, we must give an estimate of gk(p, ν) in the case p + |ν| < N : we
note that gk(p, ν) is expressed in the form

gk(p, ν) =
ap,ν(t, x)

t|r∗|
×(7.3.1)

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

[
trj,α(1) 1

kj,α(1)!
∂

kj,α(1)
t (t∂t)j∂α

x u ×

× · · · × trj,α(νj,α) 1
kj,α(νj,α)!

∂
kj,α(νj,α)
t (t∂t)j∂α

x u

]

for any rj,α(i) ∈ N ((j, α) ∈ Λ and 1 ≤ i ≤ νj,α), where

|r∗| =
∑

(j,α)∈Λ

(
rj,α(1) + · · · + rj,α(νj,α)

)
.

In this context, we write k∗ = {kj,α(i) ; (j, α) ∈ Λ, 1 ≤ i ≤ νj,α} ∈ (N∗)|ν|

and r∗ = {rj,α(i) ; (j, α) ∈ Λ, 1 ≤ i ≤ νj,α} ∈ N
|ν|.

Let k be sufficiently large. In order to estimate the term gk(p, ν) by
induction on k, we suppose the conditions (7.2.1) and (7.2.2): since u(t, x) ∈
C∞(I, E{σ}(K)) is assumed, we may suppose also that

(7.3.2) |||(t∂t)j∂α
x u|||I×K,ρ � A∗

(1 − ρ/R0)n
, j = 0, 1, . . . , m and |α| ≤ L

for some A∗ ≥ 0, where R0 > 0 can be the same as in Lemma 7.1.1.

Lemma 7.3.1. Let r ∈ N be such that 0 ≤ r ≤ min{kj,α(i), m− j} (this
means that we have three cases: 0 ≤ r < kj,α(i) ≤ m−j, r = kj,α(i) ≤ m−j

and 0 ≤ r ≤ m − j < kj,α(i)). Suppose that kj,α(i) − r ≤ k − 1 holds. Then
we have the following results.

(1) If 0 ≤ r < kj,α(i) ≤ m− j or 0 ≤ r ≤ m− j < kj,α(i) holds, we have∣∣∣∣∣∣∣∣∣tr 1
kj,α(i)!

∂
kj,α(i)
t (t∂t)j∂α

x u
∣∣∣∣∣∣∣∣∣

I×K,ρ
(7.3.3)

� (kj,α(i) − r − 1)!s−1

(kj,α(i) − r)µ−j−σ|α| × 2rβYkj,α(i)−r.
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(2) If r = kj,α(i) ≤ m − j, we have

(7.3.4)
∣∣∣∣∣∣∣∣∣tr 1

kj,α(i)!
∂

kj,α(i)
t (t∂t)j∂α

x u
∣∣∣∣∣∣∣∣∣

I×K,ρ
� A∗

(1 − ρ/R0)n
.

Proof. Let us show (1). In this case, we have 0 ≤ r < kj,α(i) and so
by (7.1.6) we have

tr
1

kj,α(i)!
∂

kj,α(i)
t (t∂t)j∂α

x u =
1

kj,α(i)!
tr∂r

t × ∂
kj,α(i)−r
t (t∂t)j∂α

x u

=
(kj,α(i) − r)!

kj,α(i)!
tr∂r

t × (t∂t + kj,α(i) − r)j∂α
x wkj,α(i)−r

=
(kj,α(i) − r)!

kj,α(i)!

r∑
h=0

C
(+)
kj,α(i),r,h(t∂t + kj,α(i) − r)j+h∂α

x wkj,α(i)−r.

Since kj,α(i) − r ≤ k − 1 and j + h ≤ m (for h = 0, 1, . . . , r) are assumed,
we can apply (7.2.1) to the term (t∂t + kj,α(i) − r)j+h∂α

x wkj,α(i)−r and we
have ∣∣∣∣∣∣∣∣∣tr 1

kj,α(i)!
∂

kj,α(i)
t (t∂t)j∂α

x u
∣∣∣∣∣∣∣∣∣

I×K,ρ

� (kj,α(i) − r)!
kj,α(i)!

r∑
h=0

|C(+)
kj,α(i),r,h|

(kj,α(i) − r − 1)!s−1

(kj,α(i) − r)µ−j−h−σ|α|βYkj,α(i)−r

� 2r × (kj,α(i) − r − 1)!s−1

(kj,α(i) − r)µ−j−σ|α|βYkj,α(i)−r;

in the last inequality we have used (7.1.7). This proves (7.3.3).
Next, let us show (2). In this case, by (7.1.6) and r = kj,α(i) we have

tr
1

kj,α(i)!
∂

kj,α(i)
t (t∂t)j∂α

x u =
1

kj,α(i)!

kj,α(i)∑
h=0

C
(0)
kj,α(i),h(t∂t)j+h∂α

x u.

Since j + h ≤ m (for h = 0, 1, . . . , kj,α(i)) is assumed, we can apply (7.3.2)
to the term (t∂t)j+h∂α

x u and we have∣∣∣∣∣∣∣∣∣tr 1
kj,α(i)!

∂
kj,α(i)
t (t∂t)j∂α

x u
∣∣∣∣∣∣∣∣∣

I×K,ρ

� 1
kj,α(i)!

kj,α(i)∑
h=0

|C(0)
kj,α(i),h|

A∗

(1 − ρ/R0)n
� A∗

(1 − ρ/R0)n
;
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in the last inequality we have used (7.1.7). This proves (7.3.4). �

By using Lemma 7.3.1 |ν|-times we have

Lemma 7.3.2. In the notation in (7.3.1), we let 1 ≤ p + |ν| < N with
|ν| ≥ 1, and let 0 ≤ rj,α(i) ≤ min{kj,α(i), m − j} ((j, α) ∈ Λ and 1 ≤ i ≤
νj,α). Suppose that k ≥ (m + 1)N and k = |k∗| + p hold. Suppose also that
kj,α(i) − rj,α(i) ≤ k − 1 holds for all (j, α, i). Then we have the estimate

∣∣∣∣∣∣∣∣∣t|r∗| ∏
(j,α)∈Λ

νj,α∏
i=1

1
kj,α(i)!

∂
kj,α(i)
t (t∂t)j∂α

x u
∣∣∣∣∣∣∣∣∣

I×K,ρ
(7.3.5)

� (k − |r∗| − p − |ν|+)!s−1(p + (m + 1)|ν|)µ−µ∗

(k − |r∗|)µ−µ∗ ×

×
∏

(j,α,i)∈J0

A∗

(1 − ρ/R0)n
×

∏
(j,α,i)∈J+

2rj,α(i)βYkj,α(i)−rj,α(i),

where

J0 = {(j, α, i) ; rj,α(i) = kj,α(i)}, J+ = {(j, α, i) ; rj,α(i) < kj,α(i)},
|ν|0 = the cardinal of J0, |ν|+ = the cardinal of J+,

µ∗ = max
(j,α,i)∈J∗

(
j + σ|α|

)
with J∗ = {(j, α, i) ; m − j < kj,α(i)}.

(As is seen below, we have |ν|0 + |ν|+ = |ν|, J+ ⊃ J∗ �= ∅, k − |r∗| −
p − |ν|+ ≥ 1 and k − |r∗| ≥ 1; we note also that µ∗ is independent of
r∗ = {rj,α(i) ; (j, α) ∈ Λ, 1 ≤ i ≤ νj,α}).

Remark 7.3.3. In the above lemma we have supposed that kj,α(i) −
rj,α(i) ≤ k − 1 holds for all (j, α, i): but, in the following cases (i) and (ii)
this condition is trivially satisfied:

case (i): p + |ν| ≥ 2,
case (ii): p = 0, |ν| = 1 and |r∗| ≥ 1.

The reason is as follows. (i) If p + |ν| ≥ 2, by the condition |k∗| + p = k

and kj,α(i) ≥ 1 ((j, α) ∈ Λ and 1 ≤ i ≤ νj,α), we have the condition:
kj,α(i) ≤ k − 1 holds for all (j, α, i). (ii) If p = 0, |ν| = 1 and |r∗| ≥ 1,
then we have k∗ = k ∈ N \ {0} and r∗ = r ∈ N; and so by the condition
|r∗| = r ≥ 1 we have k − r ≤ k − 1.
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Proof of Lemma 7.3.2. First, let us see the conditions written in the
last part of the lemma. Since rj,α(i) ≤ kj,α(i) is assumed for all (j, α, i),
the condition |ν|0 + |ν|+ = |ν| is clear. If (j, α, i) ∈ J∗ holds, we have
rj,α(i) ≤ m − j < kj,α(i) and so we have (j, α, i) ∈ J+; this shows the
condition J∗ ⊂ J+.

If J∗ = ∅, we have kj,α(i) ≤ m − j ≤ m for all (j, α, i); then by the
condition p + |ν| < N we have k = p + |k∗| ≤ p + m|ν| ≤ m(p + |ν|) < mN .
This contradicts the condition k ≥ (m + 1)N . Thus, we have proved the
condition J∗ �= ∅.

Similarly, by the condition rj,α(i) ≤ m − j ≤ m we have |r∗| ≤ m|ν| <

mN and so |r∗| + p + |ν|+ ≤ |r∗| + (p + |ν|) < mN + N = (m + 1)N ≤ k;
this proves the condition k − |r∗| − p− |ν|+ ≥ 1. The condition k − |r∗| ≥ 1
is also verified.

Now, let us show (7.3.5). By Lemma 7.3.1 we have

∣∣∣∣∣∣∣∣∣t|r∗| ∏
(j,α)∈Λ

νj,α∏
i=1

1
kj,α(i)!

∂
kj,α(i)
t (t∂t)j∂α

x u
∣∣∣∣∣∣∣∣∣

I×K,ρ
(7.3.6)

�
∏

(j,α,i)∈J0

A∗

(1 − ρ/R0)n
×

×
∏

(j,α,i)∈J+

(kj,α(i) − rj,α(i) − 1)!s−1

(kj,α(i) − rj,α(i))µ−j−σ|α| 2
rj,α(i)βYkj,α(i)−rj,α(i).

Hence, if we know the inequalities∏
(j,α,i)∈J+

(kj,α(i) − rj,α(i) − 1)! ≤ (k − |r∗| − p − |ν|+)!,(7.3.7)

∏
(j,α,i)∈J+

1
(kj,α(i) − rj,α(i))µ−j−σ|α| ≤

(p + (m + 1)|ν|)µ−µ∗

(k − |r∗|)µ−µ∗ ,(7.3.8)

by applying these to (7.3.6) we have the result (7.3.5).
Let us show (7.3.7) and (7.3.8). Since kj,α(i) = rj,α(i) holds for all

(j, α, i) ∈ J0, we have

∏
(j,α,i)∈J+

(kj,α(i) − rj,α(i) − 1)!
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=
∏

(j,α,i)∈J0

(kj,α(i) − rj,α(i))! ×
∏

(j,α,i)∈J+

(kj,α(i) − rj,α(i) − 1)!

≤ (|k∗| − |r∗| − |ν|+)! = (k − p − |r∗| − |ν|+)! :

this proves (7.3.7). In order to rpove (7.3.8) we note that by the condition
J+ ⊃ J∗ and the definition of µ∗ we have

∏
(j,α,i)∈J+

1
(kj,α(i)−rj,α(i))µ−j−σ|α|(7.3.9)

≤
∏

(j,α,i)∈J∗

1
(kj,α(i) − rj,α(i))µ−µ∗ .

Set
|k∗|+ =

∑
(j,α,i)∈J+

kj,α(i) and |r∗|+ =
∑

(j,α,i)∈J+

rj,α(i);

then we have |k∗| − |r∗| = |k∗|+ − |r∗|+. By the definition we see that
0 ≤ rj,α(i) < kj,α(i) ≤ m − j holds for all (j, α, i) ∈ J+ \ J∗. We have

k − |r∗| = p + (|k∗| − |r∗|) = p + (|k∗|+ − |r∗|+)

= p +
∑

(j,α,i)∈J+\J∗

(kj,α(i) − rj,α(i)) +
∑

(j,α,i)∈J∗

(kj,α(i) − rj,α(i))

≤ p + #(J+ \ J∗) × m + #J∗ ×
∏

(j,α,i)∈J∗

(kj,α(i) − rj,α(i))

≤ p + |ν| × m + |ν| ×
∏

(j,α,i)∈J∗

(kj,α(i) − rj,α(i))

≤ (p + (m + 1)|ν|) ×
∏

(j,α,i)∈J∗

(kj,α(i) − rj,α(i))

(where #A denotes the cardinal of the set A) and so we have

∏
(j,α,i)∈J∗

1
(kj,α(i) − rj,α(i))

≤ (p + (m + 1)|ν|)
(k − |r∗|) .

By applying this to (7.3.9) we have the result (7.3.8). �
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In Lemma 7.3.2 we see that

|r∗| =
∑

(j,α)∈Λ

νj,α∑
i=1

rj,α(i) ≤
∑

(j,α)∈Λ

νj,α∑
i=1

min{m − j, kj,α(i)} (≤ m|ν| < mN).

Recall that qp,ν = ordt(aj,α(t, x), V ) and so we see: if |r∗| ≤ qp,ν holds we
have the expression ap,ν(t, x) = t|r

∗|b∗p,ν(t, x) for some b∗p,ν(t, x) ∈
C∞(I, E{σ}(V )) and by Lemma 7.3.2 we have∣∣∣∣∣∣g(p, ν)

∣∣∣∣∣∣
I×K,ρ

(7.3.10)

� |||b∗p,ν |||I×K,ρ ×
(k − |r∗| − p − |ν|+)!s−1(p + (m + 1)|ν|)µ−µ∗

(k − |r∗|)µ−µ∗ ×

×
∏

(j,α,i)∈J0

A∗

(1 − ρ/R0)n
×

∏
(j,α,i)∈J+

2rj,α(i)βYkj,α(i)−rj,α(i).

7.4. Estimate of gk(p, ν) in the case p + |ν| < N

Since qp,ν = ordt(aj,α(t, x), V ), we have ap,ν(t, x) = O(tqp,ν ) (as t −→ 0):
therefore, we can take constants A∗

p,ν ≥ 0 (1 ≤ p+ |ν| < N and |ν| ≥ 1) and
R0 > 0 (as in Lemma 7.1.1) so that

(7.4.1) |||t−qap,ν |||I×K,ρ �
A∗

p,ν

(1 − ρ/R0)n
for any 0 ≤ q ≤ min{qp,ν , mN}.

We take k ≥ (m+1)N and fix it: we suppose the conditions (7.2.1), (7.2.2),
β ≥ 1 and

(7.4.2)
A∗

(1 − ρ/R0)n
� Y1(ρ) � 1

2
Y2(ρ) � · · · � 1

2k−1
Yk−1(ρ).

Take any (p, ν) with 1 ≤ p + |ν| < N and |ν| ≥ 1, and fix it. For these
fixed p, ν = {νj,α}(j,α)∈Λ and k we denote by �p,ν,k the set of all |ν|-vectors
k∗ = {kj,α(i) ; (j, α) ∈ Λ, 1 ≤ i ≤ νj,α} ∈ (N∗)|ν| such that |k∗| = k−p. For
k∗ ∈ �p,ν,k we set

L(k∗) =
∑

(j,α)∈Λ

νj,α∑
i=1

min{kj,α(i), m − j} (≤ m|ν| < mN),

qp,ν(k∗) = min{qp,ν , L(k∗)} (< mN),
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and we denote by �(p, ν, k∗) the set of all |ν|-vectors r∗ = {rj,α(i) ; (j, α)
∈ Λ, 1 ≤ i ≤ νj,α} ∈ N

|ν| such that

1) |r∗| = qp,ν(k∗) (< mN), and

2) 0 ≤ rj,α(i) ≤ min{kj,α(i), m − j} (for all (j, α, i)).

We denote by ej,α ∈ N
d the d-vector ej,α = {νi,δ}(i,δ)∈Λ such that νi,δ = 1

if (i, δ) = (j, α) and νi,δ = 0 if (i, δ) �= (j, α).

Proposition 7.4.1. Let 1 ≤ p + |ν| < N with |ν| ≥ 1, and k ≥
(m + 1)N . Suppose the conditions (6.4) and

(7.4.3) s − 1 ≥ max
[
0, max

k∗∈�p,ν,k

(
min

r∗∈�(p,ν,k∗)

(
µ∗ − m

p + |ν|+ + |r∗| − 1

))]

(under the same notations as in Lemma 7.3.2: as is seen below we have
p + |ν|+ + |r∗| − 1 ≥ 1 for all r∗ ∈ �(p, ν, k∗), and so the right-hand side of
(7.4.3) is well-defined). Suppose also the conditions (7.2.1), (7.2.2), β ≥ 1,
(7.4.1), and (7.4.2). Then we have the following estimates.

(1) In the case p = 0 and ν = ej,α (where (j, α) ∈ Λ):

|||gk(0, ej,α)|||I×K,ρ � (k − 1)!s−1

kµ−m
× e(s−1)(m+1)N (m + 1)µ ×(7.4.4)

×
A∗

0,ej,α
(m + 1)µ

(1 − ρ/R0)n
2βYk−1.

(2) In the case p + |ν| ≥ 2:

|||gk(p, ν)|||I×K,ρ(7.4.5)

� (k − 1)!s−1

kµ−m
× e(s−1)(m+1)N (m + 1)µ ×

×
A∗

p,ν(p + (m + 1)|ν|)µ

(1 − ρ/R0)n

∑
|k∗|=k−p

∏
(j,α)∈Λ

νj,α∏
i=1

βYkj,α(i).

Proof. First let us show that p + |ν|+ + |r∗| − 1 ≥ 1 holds for all
r∗ ∈ �(p, ν, k∗) (under k∗ ∈ �p,ν,k). Take any r∗ ∈ �(p, ν, k∗); then as is
seen in the proof of Lemma 7.3.2 we have J+ ⊃ J∗ �= ∅ and so |ν|+ ≥ 1.
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Since L(k∗) ≥ 1 holds (for |ν| ≥ 1), by the condition (6.4) we see: if p = 0
and |ν| = 1, we have |r∗| = qp,ν(k∗) = min{qp,ν , L(k∗)} ≥ 1.

By using these facts, the inequality p+|ν|++|r∗|−1 ≥ 1 is verified in the
following way: if p ≥ 1, by the condition |ν|+ ≥ 1 we have p+|ν|++|r∗|−1 ≥
1; if p = 0 and |ν| = 1, by the conditions |ν|+ ≥ 1 and |r∗| ≥ 1 we have
p + |ν|+ + |r∗| − 1 ≥ 1; if p = 0, |ν| ≥ 2 and |r∗| ≥ 1, by the condition
|ν|+ ≥ 1 we have p+ |ν|+ + |r∗|−1 ≥ 1; if p = 0, |ν| ≥ 2 and |r∗| = 0, by the
definition of J+ we have |ν|+ = |ν| ≥ 2 and so we have p+ |ν|++ |r∗|−1 ≥ 1.

Now, let us show (7.4.4) and (7.4.5). Take any k∗ ∈ �p,ν,k and fix it.
By the assumption (7.4.3) we have an r∗ = {rj,α(i) ; (j, α) ∈ Λ and 1 ≤ i ≤
νj,α} ∈ �(p, ν, k∗) such that

(7.4.6) s − 1 ≥ µ∗ − m

p + |ν|+ + |r∗| − 1

holds. By Remark 7.3.3 we see that kj,α(i) − rj,α(i) ≤ k − 1 holds for all
(j, α, i); therefore, we can apply Lemma 7.3.2 to this case. Since |r∗| =
qp,ν(k∗) ≤ qp,ν and |r∗| < mN hold, by (7.3.10) and (7.4.1) we have

∣∣∣∣∣∣g(p, ν)
∣∣∣∣∣∣

I×K,ρ
(7.4.7)

�
A∗

p,ν

(1 − ρ/R0)n
× (k − |r∗| − p − |ν|+)!s−1(p + (m + 1)|ν|)µ−µ∗

(k − |r∗|)µ−µ∗ ×

×
∏

(j,α,i)∈J0

A∗

(1 − ρ/R0)n
×

∏
(j,α,i)∈J+

2rj,α(i)βYkj,α(i)−rj,α(i).

Here, we note that

k

k − |r∗| ≤
(m + 1)N

(m + 1)N − mN
= (m + 1);

moreover, by (7.2.8) with N replaced by |r∗| + p + |ν|+ (≤ mN + N) we
have

(k − |r∗| − p − |ν|+)!
(k − 1)!

≤ e|r
∗|+p+|ν|+

k|r∗|+p+|ν|+−1
≤ e(m+1)N

k|r∗|+p+|ν|+−1
.



116 Hidetoshi Tahara

Therefore, we have

(k − |r∗| − p − |ν|+)!s−1

(k − |r∗|)µ−µ∗(7.4.8)

=
(k − 1)!s−1

kµ−µ∗ × (k − |r∗| − p − |ν|+)!s−1

(k − 1)!s−1
× kµ−µ∗

(k − |r∗|)µ−µ∗

≤ (k − 1)!s−1

kµ−µ∗ × e(s−1)(m+1)N

k(s−1)(|r∗|+p+|ν|+−1)
× (m + 1)µ−µ∗

=
(k − 1)!s−1

kµ−m
× e(s−1)(m+1)N

k(s−1)(|r∗|+p+|ν|+−1)+m−µ∗ × (m + 1)µ−µ∗

Since (7.4.6) is assumed, we have (s − 1)(|r∗| + p + |ν|+ − 1) ≥ µ∗ − m and
so

1
k(s−1)(|r∗|+p+|ν|+−1)+m−µ∗ ≤ 1;

this leads us to

(7.4.9)
(k − |r∗| − p − |ν|+)!s−1

(k − |r∗|)µ−µ∗ ≤ (k − 1)!s−1

kµ−m
× e(s−1)(m+1)N (m+1)µ−µ∗

.

By (7.4.7) and (7.4.9) we obtain the estimate∣∣∣∣∣∣g(p, ν)
∣∣∣∣∣∣

I×K,ρ
(7.4.10)

� (k − 1)!s−1

kµ−m
×

A∗
p,ν

(1 − ρ/R0)n
×

× e(s−1)(m+1)N (m + 1)µ−µ∗
(p + (m + 1)|ν|)µ−µ∗ ×

×
∏

(j,α,i)∈J0

A∗

(1 − ρ/R0)n
×

∏
(j,α,i)∈J+

2rj,α(i)βYkj,α(i)−rj,α(i).

Thus, by applying the conditions (m + 1)µ−µ∗ ≤ (m + 1)µ, (p + (m +
1)|ν|)µ−µ∗ ≤ (p + (m + 1)|ν|)µ,

• A∗

(1 − ρ/R0)n
� Ykj,α(i)

� βYkj,α(i)
, and

• 2rj,α(i)βYkj,α(i)−rj,α(i) � βYkj,α(i)

to (7.4.10), we have the estimate (7.4.5) in the case p + |ν| ≥ 2. In the
above, we have used the fact: if p + |ν| ≥ 2 we have kj,α(i) ≤ k − 1 for all
(j, α, i).
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If p = 0 and |ν| = 1, we have J0 = ∅, #J+ = 1: for the unique
(j, α, 1) ∈ J+ we have kj,α(1) = k and rj,α(1) = min{qp,ν , m − j} ≥ 1.
Therefore we have∏

(j,α,i)∈J0

A∗

(1 − ρ/R0)n
×

∏
(j,α,i)∈J+

2rj,α(i)βYkj,α(i)−rj,α(i)

= 2rj,α(1)βYk−rj,α(1) � 2βYk−1 :

this proves (7.4.4) in the case p = 0 and |ν| = 1. �

7.5. On the condition (7.4.3)
In this subsection, we will compare the condition

(7.5.1) s − 1 ≥ max
k∗∈�p,ν,k

[
min

r∗∈�(p,ν,k∗)

(
µ∗ − m

p + |ν|+ + |r∗| − 1

)]

with the other condition

(7.5.2) s − 1 ≥ max
(j,α)∈Λν

(
j + σ|α| − m

p + |ν| + min{qp,ν , m − j} − 1

)

(where Λν = {(j, α) ∈ Λ ; νj,α > 0}). We have

Lemma 7.5.1. Let 1 ≤ p + |ν| < N with |ν| ≥ 1, k ≥ (m + 1)N and
s ≥ 1. Then, the two conditions (7.5.1) and (7.5.2) are equivalent.

Proof in the Case |ν| = 1. Suppose the condition |ν| = 1; we
have ν = ej0,α0 for some (j0, α0) ∈ Λ. In this case, we have k∗ = k − p,
L(k∗) = min{k − p, m − j0} = m − j0, |r∗| = qp,ν(k∗) = min{qp,ν , L(k∗)} =
min{qp,ν , m−j0}, |ν|+ = 1, µ∗ = j0+σ|α0|, and Λν = {(j0, α0)}. Therefore,
two conditions (7.5.1) and (7.5.2) are written in the same form

(7.5.3) s − 1 ≥ j0 + σ|α0| − m

p + 1 + min{qp,ν , m − j0} − 1
=

j0 + σ|α0| − m

p + min{qp,ν , m − j0}
.

This proves the result. �

Proof in the Case |ν| ≥ 2. Suppose the condition |ν| ≥ 2. First,
let us show that (7.5.1) implies (7.5.2). To do so, we suppose the condition
(7.5.1); then, to show (7.5.2) it is sufficient to prove the following:

(7.5.4) s − 1 ≥ j0 + σ|α0| − m

p + |ν| + min{qp,ν , m − j0} − 1
for any (j0, α0) ∈ Λν .
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Take any (j0, α0) ∈ Λν , and fix it. If j0 + σ|α0| ≤ m, by the condition
s ≥ 1 we have (7.5.4). Therefore, from now we may assume: j0+σ|α0| > m.
Since νj0,α0 ≥ 1 holds, we can write the |ν|-vector k∗ as

k∗ = (kj0,α0(1), . . . ) = (k1, k2, . . . , k|ν|) :

the important condition is that k1 corresponds to the component kj0,α0(1).
We set

k∗ = (k1, k2, . . . , k|ν|) with
{

k1 = k − p − |ν| + 1,

ki = 1 for i = 2, . . . , |ν|.

Then we have k∗ ∈ �p,ν,k, and so by (7.5.1) we have

(7.5.5) s − 1 ≥ µ∗ − m

p + |ν|+ + |r∗| − 1

for some r∗ = (rj0,α0(1), . . . ) = (r1, r2, . . . , r|ν|) ∈ �(p, ν, k∗): by the defini-
tion of �(p, ν, k∗) we see: r1 ≤ min{k1, m − j0} = m − j0, 0 ≤ ri ≤ 1 (for
i = 2, . . . , |ν|), and |r∗| = r1 + r2 + · · · + r|ν| = min{qp,ν , L(k∗)}. In this
case we have J∗ = {(j0, α0, 1)} and so µ∗ = j0 + σ|α0|. If we set

a = #{i ∈ {2, . . . , |ν|} ; ri = 0},
b = #{i ∈ {2, . . . , |ν|} ; ri = 1},

we have a+ b = |ν|−1, |ν|+ = 1+a, and |r∗| = r1 + b. Therefore, by (7.5.5)
we have

(7.5.6) s − 1 ≥ j0 + σ|α0| − m

p + (1 + a) + (r1 + b) − 1
=

j0 + σ|α0| − m

p + |ν| + r1 − 1
.

Since r1 ≤ m − j0 and r1 ≤ |r∗| = min{qp,ν , L(k∗)} ≤ qp,ν hold, we have
r1 ≤ min{qp,ν , m − j0}. Thus, by (7.5.6) we obtain

s − 1 ≥ j0 + σ|α0| − m

p + |ν| + r1 − 1
≥ j0 + σ|α0| − m

p + |ν| + min{qp,ν , m − j0} − 1
.

This proves (7.5.4). Thus, we have proved that (7.5.1) implies (7.5.2).
Next, let us show that (7.5.2) implies (7.5.1). To do so, we suppose the

condition (7.5.2); then, to show (7.5.1) it is sufficient to prove the following:
for any k∗ ∈ �p,ν,k we can find an r∗ ∈ �(p, ν, k∗) such that

(7.5.7) s − 1 ≥ µ∗ − m

p + |ν|+ + |r∗| − 1
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holds. Let us show this now.
Take any k∗ = {kj,α(i) ; (j, α) ∈ Λ, 1 ≤ i ≤ νj,α} ∈ �p,ν,k, and fix it.

Since J∗ �= ∅ is known (in Lemma 7.3.2), we have J∗ = {(j1, α1, i1), . . . , (jh,

αh, ih)} for some h ≥ 1; by the definition of J∗ we have{
m − j < kj,α(i), if (j, α, i) ∈ J∗,
m − j ≥ kj,α(i), if (j, α, i) �∈ J∗.

Without loss of generality we may suppose that µ∗(= max{j1 + σ|α1|, . . . ,

jh + σ|αh|}) = j1 + σ|α1|: then νj1,α1 > 0 is obvious. Since

L(k∗) = (m − j1) + · · · + (m − jh) +
∑

(j,α,i) �∈J∗

kj,α(i),

we have qp,ν(k∗) = min{qp,ν , L(k∗)} ≥ min{qp,ν , m − j1}.
If µ∗ ≤ m, the condition (7.5.7) is clear for any r∗ ∈ �(p, ν, k∗). There-

fore we may suppose that µ∗ > m (that is, j1 + σ|α1| > m) holds. In this
case, in order to show (7.5.7), we divide our situation into the following
three cases:

1) 0 ≤ qp,ν(k∗) ≤ (m − j1) + · · · + (m − jh),
2) (m−j1)+· · ·+(m−jh) < qp,ν(k∗) ≤ (m−j1)+· · ·+(m−jh)+(|ν|−h),
3) (m − j1) + · · · + (m − jh) + (|ν| − h) < qp,ν(k∗).

In the case 1) we take an r∗ = {rj,α(i) ; (j, α) ∈ Λ, 1 ≤ i ≤ νj,α} ∈
�(p, ν, k∗) so that |r∗| = qp,ν(k∗) and{

0 ≤ rj,α(i) ≤ m − j, if (j, α, i) ∈ J∗,
rj,α(i) = 0, if (j, α, i) �∈ J∗ :

then we have |ν|+ = |ν| and so by (7.5.2)

µ∗ − m

p + |ν|+ + |r∗| − 1
=

j1 + σ|α1| − m

p + |ν| + qp,ν(k∗) − 1

≤ j1 + σ|α1| − m

p + |ν| + min{qp,ν , m − j1} − 1
≤ s − 1.

This proves (7.5.7).
In the case 2) we take an r∗ = {rj,α(i) ; (j, α) ∈ Λ, 1 ≤ i ≤ νj,α} ∈

�(p, ν, k∗) so that |r∗| = qp,ν(k∗) and{
0 ≤ rj,α(i) = m − j, if (j, α, i) ∈ J∗,
0 ≤ rj,α(i) ≤ kj,α(i), if (j, α, i) �∈ J∗.
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In this case, since

#{(j, α, i) �∈ J∗ ; rj,α(i) = kj,α(i)}
≤ #{(j, α, i) �∈ J∗ ; rj,α(i) ≥ 1}
≤ qp,ν(k∗) − ((m − j1) + · · · + (m − jh)) ≤ |ν| − h

holds, we have

|ν|+ = |ν| − #{(j, α, i) �∈ J∗ ; rj,α(i) = kj,α(i)}
≥ |ν| − qp,ν(k∗) + (m − j1) + · · · + (m − jh) ≥ |ν| − |ν| + h = h ≥ 1

and

p + |ν|+ + |r∗| − 1 = p + |ν|+ + qp,ν(k∗) − 1

≥ p + (|ν| − qp,ν(k∗) + (m − j1) + · · · + (m − jh)) + qp,ν(k∗) − 1

= p + |ν| + (m − j1) + · · · + (m − jh)) − 1

≥ p + |ν| + (m − j1) − 1

≥ p + |ν| + min{qp,ν , m − j1} − 1.

Therefore, (7.5.7) is verifies by the following:

µ∗ − m

p + |ν|+ + |r∗| − 1
=

j1 + σ|α1| − m

p + |ν|+ + qp,ν(k∗) − 1

≤ j1 + σ|α1| − m

p + |ν| + min{qp,ν , m − j1} − 1
≤ s − 1.

In the case 3) we take the same r∗ = {rj,α(i) ; (j, α) ∈ Λ, 1 ≤ i ≤ νj,α} ∈
�(p, ν, k∗) as in the case 2). Then we have |ν|+ ≥ #J∗ = h and so

p + |ν|+ + |r∗| − 1 = p + |ν|+ + qp,ν(k∗) − 1

≥ p + h + ((m − j1) + · · · + (m − jh) + |ν| − h) − 1

= p + |ν| + (m − j1) + · · · + (m − jh) − 1

≥ p + |ν| + (m − j1) − 1

≥ p + |ν| + min{qp,ν , m − j1} − 1.

Therefore, (7.5.7) is verifies in the same way as in the case 2).
Thus, we have proved that (7.5.2) implies (7.5.1). �



Gevrey Regularity in Time of Solutions to Nonlinear PDEs 121

By the proof we see:

Lemma 7.5.2. Let 1 ≤ p + |ν| < N with |ν| ≥ 1, and k ≥ (m + 1)N .
We have the equality

max
[
0, max

k∗∈�p,ν,k

(
min

r∗∈�(p,ν,k∗)

(
µ∗ − m

p + |ν|+ + |r∗| − 1

))]
(7.5.8)

= max
[
0, max

(j,α)∈Λν

(
j + σ|α| − m

p + |ν| + min{qp,ν , m − j} − 1

)]
.

Thus, the condition (7.4.3) in Proposition 7.4.1 is trivial under the as-
sumption s ≥ max{s0, s1, s2} in Theorem 6.1.

7.6. Completion of the proof of Theorem 6.1
Let us recall our situation again: u(t, x) is a solution of (6.1) given in

b5), wk(t, x) (k = 1, 2, . . . ) are

(7.6.1) wk(t, x) =
1
k!

∂k
t u(t, x), k = 1, 2, . . . ,

s > 1 is a real number satisfying s ≥ max{s0, s1, s2}, and K is a compact
subset of V . Our aim is to prove the following condition:

(7.6.2)
∑
k≥1

1
(k − 1)!s−1

|||wk|||I×K,ρ tk ∈ C{t, ρ}.

In the proof, we may suppose that Lemmas 7.1.1 and 5.2.1 hold. Let
k0 and M0 be the constants in Lemma 5.2.1. We take a sufficiently large
µ ∈ N such that µ > m, µ ≥ n, µ ≥ σL and that j + σ|α| ≤ µ holds for all
(j, α) ∈ Λ: take also a sufficiently large N ∈ N so that

(7.6.3) s − 1 ≥ µ − m

N − 1
, (m + 1)N ≥ k0 and N ≥ 2.

As is seen in (7.1.5), we know that wk(t, x) (for k ≥ 1) satisfies

(7.6.4) C(t∂t + k, x)wk = fk(t, x) +
∑

1≤p+|ν|≤k,|ν|≥1

gk(p, ν).
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Since wk(t, x) ∈ C∞(I, E{σ}(K)) holds for all k = 1, 2, . . . , we can choose
C∗

k ≥ 0 (k = 1, 2, . . . , (m + 1)N) so that

|||(t∂t + k)j∂α
x wk|||I×K,ρ � (k − 1)!s−1

kµ−j−σ|α|
C∗

k

(1 − ρ/R0)n
(7.6.5)

for j = 0, 1, . . . , m, |α| ≤ L and k = 1, 2, . . . , (m + 1)N.

We let A∗ be the one in (7.3.2), and let A∗
p,ν ≥ 0 (1 ≤ p + |ν| < N and

|ν| ≥ 1) be the ones in (7.4.1). Set

• F ∗
k =

kµ−mFk

(k − 1)!s−1
(k ≥ 1),

• A∗
p,ν =

Ap,ν

(p + |ν| − N)!s−1
(p + |ν| ≥ N, |ν| ≥ 1),

where Fk ≥ 0 (k ≥ 1) and Ap,ν ≥ 0 (p + |ν| ≥ N , |ν| ≥ 1) are the ones in
Lemma 7.1.1. We see:

(7.6.6)
∑
k≥1

F ∗
k tk ∈ C{t} and

∑
p+|ν|≥1,|ν|≥1

A∗
p,νt

pzν ∈ C{t, z}.

Now, let R > 0 be sufficiently small so that 0 < R < min{1, R0} and
Lemma 5.2.2 hold, and let us consider the functional equation with respect
to (Y, t):

Y =
A∗

(1 − ρ/R)µ
t +

2
(1 − ρ/R)2µ

tY(7.6.7)

+
∑

1≤k≤(m+1)N

C∗
k

(1 − ρ/R)µ(2k−1)
tk

+
2M0

(1 − ρ/R)µ

[ ∑
k>(m+1)N

F ∗
k

(1 − ρ/R)µ(2k−2)
tk

+ H
∑

(j,α)∈Λ

A∗
0,ej,α

(m + 1)µ

(1 − ρ/R)µ
t × 2βY

+ H
∑

p+|ν|≥2,|ν|≥1

A∗
p,ν(p + (m + 1)|ν|)µ

(1 − R/R0)n(1 − ρ/R)µ(2p+|ν|−2)
tp(βY )|ν|

]
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where H = e(s−1)(m+1)N (m + 1)µ, β = (2µe/R)µ and ρ is regarded as a
parameter. Since this is an analytic functional equation (as is quaranteed
by the condition (7.6.6)), the implicit function theorem tells us that for any
0 < ρ < R this equation (7.6.7) has a unique holomorphic solution Y (t)
with Y (0) = 0 in a neighborhood of t = 0. If we expand this into Taylor
series

Y =
∑
k≥1

Ykt
k,

we can easily see that

Y1 � A∗

(1 − ρ/R)µ
� A∗

(1 − ρ/R0)µ
� A∗

(1 − ρ/R0)n
,(7.6.8)

Yk+1 � 2
(1 − ρ/R)2µ

Yk � 2Yk, k = 1, 2, . . . ,(7.6.9)

Yk � C∗
k

(1 − ρ/R)µ(2k−1)
(7.6.10)

� C∗
k

(1 − ρ/R0)n
, k = 1, 2, . . . , (m + 1)N

(by the conditions 0 < R < R0 and µ ≥ n) and that Yk (for k > (m + 1)N)
is determined by the following recurrent formulas:

Yk =
2M0

(1 − ρ/R)µ

[
1/M0

(1 − ρ/R)µ
Yk−1 +

F ∗
k

(1 − ρ/R)µ(2k−2)
(7.6.11)

+ H
∑

(j,α)∈Λ

A∗
0,ej,α

(m + 1)µ

(1 − ρ/R)µ
× 2βYk−1

+ H
∑

2≤p+|ν|≤k,|ν|≥1

A∗
p,ν(p + (m + 1)|ν|)µ

(1 − R/R0)n(1 − ρ/R)µ(2p+|ν|−2)
×

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

(βYkj,α(1)) × · · · × (βYkj,α(νj,α))

]
.

We note that the condition (7.4.2) follows from (7.6.8) and (7.6.9). In
addition, we can see by induction on k that Yk has the form

(7.6.12) Yk =
Ck

(1 − ρ/R)µ(2k−1)
, k = 1, 2, . . .
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where Ck (k ≥ 1) are constants which are independent of the parameter ρ.

Lemma 7.6.1. For k = 1, 2, . . . we have

|||(t∂t + k)j∂α
x wk|||I×K,ρ � (k − 1)!s−1

kµ−j−σ|α| βYk(ρ)(7.6.13)k

for j = 0, 1, . . . , m and |α| ≤ L.

Proof. The cases k = 1, 2, . . . , (m+1)N are clear from the conditions
(7.6.5), (7.6.10), and β > 1. Let us show the general case by induction on
k.

Let k > (m + 1)N ; suppose that (7.6.13)p is already proved for p =
1, 2, . . . , k − 1. Then, by (7.6.4), Lemma 7.1.1, Propositions 7.2.1 and 7.4.1
(with Lemma 7.5.1) we have

|||C(t∂t + k)wk|||I×K,ρ

� Fk

(1 − ρ/R0)n

+
∑

N≤p+|ν|≤k,|ν|≥1

(k − 1)!s−1

kµ−m

Ap,νe
N(s−1)

(p + |ν| − N)!s−1

(p + |ν|)µ−µν

(1 − ρ/R0)n

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

νj,α∏
i=1

βYkj,α(i)

+
∑

(j,α)∈Λ

(k − 1)!s−1

kµ−m
× e(s−1)(m+1)N (m + 1)µ ×

A∗
0,ej,α

(m + 1)µ

(1 − ρ/R0)n
2βYk−1

+
∑

2≤p+|ν|<N,|ν|≥1

(k − 1)!s−1

kµ−m
× e(s−1)(m+1)N (m + 1)µ ×

×
A∗

p,ν(p + (m + 1)|ν|)µ

(1 − ρ/R0)n

∑
|k∗|=k−p

∏
(j,α)∈Λ

νj,α∏
i=1

βYkj,α(i) :

hence we have

|||C(t∂t + k)wk|||I×K,ρ(7.6.14)

� (k − 1)!s−1

kµ−m

[
F ∗

k

(1 − ρ/R0)n
+ H

∑
(j,α)∈Λ

A∗
0,ej,α

(m + 1)µ

(1 − ρ/R0)n
2βYk−1
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+ H
∑

2≤p+|ν|≤k,|ν|≥1

A∗
p,ν(p + (m + 1)|ν|)µ

(1 − ρ/R0)n
×

×
∑

|k∗|=k−p

∏
(j,α)∈Λ

νj,α∏
i=1

βYkj,α(i)

]
.

Since µ(2|k∗| − |ν|) = µ(2k − 2p − |ν|) = 2µ(k − p − |ν|) + µ|ν| ≥ µ|ν| ≥ µ,

1
(1 − ρ/R0)n

� 1
(1 − ρ/R)µ

� 1
(1 − ρ/R)µ(2k−2)

,

1
(1 − ρ/R0)n

∏
(j,α)∈Λ

νj,α∏
i=1

βYkj,α(i) �
1

(1 − R/R0)n

∏
(j,α)∈Λ

νj,α∏
i=1

βYkj,α(i)

hold, by comparing (7.6.14) with (7.6.11) we have the estimate

|||C(t∂t + k)wk|||I×K,ρ

� (k − 1)!s−1

kµ−m

(1 − ρ/R)µ

2M0
Yk =

(k − 1)!s−1

2M0kµ−m

Ck

(1 − ρ/R)µ(2k−2)
.

Thus, by applying Lemma 5.2.2 we have

|||(t∂t + k)jw|||I×K,ρ(7.6.15)

� (k − 1)!s−1

kµ−j

Ck

(1 − ρ/R)µ(2k−2)
, j = 0, 1, . . . , m.

This result corresponds to (5.3.10) in section 5, and so by the same
argument as in (5.3.11) we have

|||(t∂t + k)j∂α
x wk|||I×K,ρ � (k − 1)!s−1

kµ−j−σ|α| βYk.

This proves (7.6.13)k. �

Completion of the Proof of (7.6.2). By Lemma 7.6.1 we have

∑
k≥1

1
(k − 1)!s−1

|||wk|||I×K,ρt
k �

∑
k≥1

1
kµ

βYkt
k � β

∑
k≥1

Ykt
k ∈ C{t}

for any 0 < ρ < R. This proves (7.6.2). �
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7.7. A remark on (6.1)
In Theorem 6.1 we have obtained the result u(t, x) ∈ E{s,σ}(I × V ) for

any s ≥ max{s0, s1, s2} with s0 defined by (6.3): but, by applying Theorem
2.2 (or, by the same reduction as in section 3) we have the following result
which is an improvement of Theorem 6.1.

Theorem 7.7.1. Suppose the conditions b1) ∼ b5) and (6.4): then we
have u(t, x) ∈ E{s,σ}(I × V ) for any s ≥ max{s0(F ), s1, s2} where

(7.7.1) s0(F ) = 1 + max

[
0, max

(j,α)∈Λ,|α|>0

(
j + σ|α| − m

min{q∗j,α, m−j}

) ]
.

Proof. Our equation is just (2.1) with γ = m and Du(t, x) replaced
by Θu(t, x). Therefore, when we apply Theorem 2,2 to this case, kj,α must
be replaced by q∗j,α + j: then we have the result. �

8. On the Necessary Condition

In this section, we will derive a necessary condition for a solution u(t, x)
to belong to the class E{s,σ}(I × V ).

Let I = [0, T ] (with T > 0), let V be an open neighborhood of x = 0 ∈
R

n, and let Ω be an open neighborhood of (t, x, z) = (0, 0, 0) ∈ R×R
n×R

d.
First, we will consider the same equation as (6.1)

(8.1) C(t∂t, x)u = F
(
t, x,Θu

)
with Θu = {(t∂t)j∂α

x u}(j,α)∈Λ

on I × V , where

C(λ, x) = λm − cm−1(x)λm−1 − · · · − c1(x)λ − c0(x),

and we suppose the same conditions b1) ∼ b5) as in section 6. In addition
we assume:

c1) C(k, 0) > 0 for any k = 1, 2, . . . ;

c2) C(k, 0) − C(k, x) � 0 (at x = 0) for any k = 1, 2, . . . ;

c3) F (t, x, z) � 0 (at (t, x, z) = (0, 0, 0)), and

lim inf
|β|→∞

(
F (1,β,0)(0, 0, 0)

|β|!σ
)1/|β|

> 0;(8.2)
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c4) u(0, x) = 0 on V , and
∂F

∂zj,α
(t, x,Θu)

∣∣∣
t=0

≡ 0 on V for any (j, α) ∈ Λ.(8.3)

In c2) and c3) we used the following notations: for φ(x) ∈ C∞(V ) we write
φ(x) � 0 (at x = 0) if φ(β)(0) ≥ 0 holds for all β ∈ N

n, and for F (t, x, z) ∈
C∞(Ω) we write F (t, x, z) � 0 (at (t, x, z) = (0, 0, 0)) if F (k,β,ν)(0, 0, 0) ≥ 0
holds for all (k, β, ν) ∈ N × N

n × N
d.

We note that by c4) we have (Θu)(0, x) = 0 and so by setting t = 0
in (8.1) we have F (0, x, 0) = 0 on V . If we set a(x) = F (1,0,0)(0, x, 0), the
condition (8.2) implies that there is an h > 0 such that a(β)(0) ≥ h|β||β|!σ
holds for any sufficiently large |β|.

As before, we set qj,α = ordt((∂F/∂zj,α)(t, x,Θu(t, x)), V ) ((j, α) ∈ Λ);
then we have the expression

∂F

∂zj,α
(t, x,Θu(t, x)) = aj,α(x)tqj,α + O(tqj,α+1) (as t −→ +0)

for some aj,α(x) ∈ E{σ}(V ) with aj,α(x) � 0 (at x = 0). We set

(8.4) Λ(+) = {(j, α) ∈ Λ ; aj,α(0) > 0, |α| > 0}.

Then we have the following result.

Theorem 8.1. Suppose the conditions b1) ∼ b5) and c1) ∼ c4). Then,
if u(t, x) ∈ E{s,σ}(I × V ) holds for some s ≥ 1, we have

(8.5) s ≥ 1 + max
[
0, max

(j,α)∈Λ(+)

(
j + σ|α| − m

qj,α

)]
.

Remark 8.2. Compare this with Theorem 7.7.1; there is a gap be-
tween s ≥ s0(F ) and (8.5). But, at present, the author don’t know how to
fill this gap.

To prove this theorem, we note:

Lemma 8.3. We have u(t, x) � 0 (at (t, x) = (0, 0)).
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Proof. We set

(8.6) Wk(x) =
1
k!

(∂k
t u)(0, x), k = 0, 1, 2, . . . .

By the assumption we have W0(x) = u(0, x) = 0 � 0 (at x = 0). By
applying ∂t to (8.1) we have

C(t∂t + 1, x)∂tu = F (1,0,0)(t, x,Θu)(8.7)

+
∑

(i,β)∈Λ

∂F

∂zi,β
(t, x,Θu)∂t(t∂t)i∂β

xu.

Since (8.3) is assumed, by setting t = 0 we have C(1, x)W1(x) = F (1,0,0)(0,

x, 0) � 0 (at x = 0) and so

W1(x) =
F (1,0,0)(0, x, 0)

C(1, x)
=

F (1,0,0)(0, x, 0)
C(1, 0)

∞∑
p=0

(C(1, 0) − C(1, x)
C(1, 0)

)p
(8.8)

� F (1,0,0)(0, x, 0)
C(1, 0)

� 0 (at x = 0),

where a(x) � b(x) (at x = 0) means that a(β)(0) ≥ |b(β)(0)| holds for all
β ∈ N

n.
In the general case, if we use the relation (5.1.3) (or (7.1.3)) we can show

by induction on k that Wk(x) � 0 (at x = 0) holds for all k = 0, 1, 2, . . . .
This proves u(t, x) � 0 (at (t, x) = (0, 0)). �

Proof of Theorem 8.1. Take any (j, α) ∈ Λ(+); then we have qj,α ≥
1 and aj,α(0) > 0. Our aim is to show the condition

(8.9) s − 1 ≥ j + σ|α| − m

qj,α
.

Let us show this now. We set a(x) = F (1,0,0)(0, x, 0); by (8.7) we have

C(t∂t + 1, x)∂tu

= (a(x) + O(t)) +
∑

(i,β)∈Λ

(ai,β(x)tqi,β + O(tqi,β+1))∂t(t∂t)i∂β
xu

= a(x) + tqj,αaj,α(x)∂t(t∂t)j∂α
x u + · · ·

= a(x) + tqj,αaj,α(0)∂t(t∂t)j∂α
x u + · · · .
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By setting q = qj,α ≥ 1 and A = aj,α(0) > 0 for simplicity and by using the
fact tq∂t(t∂t)j = tq−1(t∂t)j+1 we have

(8.10) C(t∂t + 1, x)∂tu = a(x) + Atq−1(t∂t)j+1∂α
x u + · · · .

Since u(t, x) � 0 (at (t, x) = (0, 0)) is known, in the formula (8.10) the part
“ · · · ” satisfies “ · · · � 0 (at (t, x) = (0, 0)) ”.

Now, let us apply ∂q−1+

t (for � ≥ 1) to (8.10); we have

C(t∂t + q + �, x)
1

(q + �)!
∂q+


t u

=
A

(q + �)!
∂q−1+


t

[
tq−1(t∂t)j+1∂α

x u
]

+ · · ·

=
A�!

(q + �)!

[
(t∂t + 1 + �) · · · (t∂t + q − 1 + �)(t∂t + �)j+1∂α

x

1
�!

∂

tu

]
+ · · · .

Therefore, by setting t = 0 we have

C(q + �, x)Wq+
 �
A�!

(q + �)!
(1 + �) · · · (q − 1 + �)�j+1∂α

x W
 =
A�j+1

(q + �)
∂α

x W


and by using the conditions C(q + �, 0)−C(q + �, x) � 0 and Wq+
(x) � 0
we have

(8.11) C(q + �, 0)Wq+
 �
A�j+1

(q + �)
∂α

x W
.

Thus, by (8.8), (8.11) and a(x) = F (1,0,0)(0, x, 0) we can easily see the
following estimates:

Wkq+1(x) � Ak(q + 1)j+1 · · · ((k − 1)q + 1)j+1

C(1, 0)C(q + 1, 0) · · ·C(kq + 1, 0)
×(8.12)

× 1
(q + 1) · · · (kq + 1)

∂kα
x (a(x))

for k = 1, 2, . . . .

Here, we recall: by the assumption u(t, x) ∈ E{s,σ}(I × V ) we have
|Wp(0)| ≤ BHpp!s−1 (p = 0, 1, 2, . . . ) for some B > 0 and H > 0, and by
the condition (8.2) we have an h > 0 such that a(β)(0) ≥ h|β||β|!σ for any
sufficiently large |β|. We note also that C(k, 0) ≤ ckm(for k = 1, 2, . . . ) holds



130 Hidetoshi Tahara

for some c > 0. By applying these conditions to (8.12), for any sufficiently
large k we have

BHkq+1(kq + 1)!s−1 ≥ |Wkq+1(0)| = Wkq+1(0)

≥ Ak(q + 1)j+1 · · · ((k − 1)q + 1)j+1

ck+1(q + 1)m+1 · · · (kq + 1)m+1
hk|α|(k|α|)!σ

≥ B1H
k
1 k!j+σ|α|−m

for some B1 > 0 and H1 > 0. Thus, we have the estimates

k!j+σ|α|−m

(kq + 1)!s−1
≤ B2H

k
2 for any sufficiently large k

for some B2 > 0 and H2 > 0: this shows that j +σ|α|−m ≤ q(s− 1) holds.
Thus, we have proved (8.9). �

Next, let us apply Theorem 8.1 to the initial value problem for (2.1)
with γ = 0

(8.13)

{
∂m

t u = G (t, x, Du) with Du = {∂j
t ∂

α
x u}(j,α)∈Λ,

∂i
tu

∣∣
t=0

= ϕi(x), i = 0, 1, . . . , m − 1

under the same assumptions a1) ∼ a4) as in section 2: in addition, we
suppose that Ω is an open neighborhood of a point (t, x, z) = (0, 0, z0) ∈
R × R

n × R
d, and ϕi(x) (i = 0, 1, . . . , m − 1) are functions in the class

E{σ}(V ) satisfying {ϕ(α)
j (0)}(j,α)∈Λ = z0 ∈ R

d. We note that Du(0, x) =

{ϕ(α)
j (x)}(j,α)∈Λ holds. We set ϕm(x) = G(0, x, {ϕ(α)

j (x)}(j,α)∈Λ) and

a(x) =
∂G

∂t

(
0, x, {ϕ(α)

j (x)}(j,α)∈Λ

)
+

∑
(j,α)∈Λ

∂G

∂zj,α

(
0, x, {ϕ(α)

j (x)}(j,α)∈Λ

)
× ϕ

(α)
j+1(x).

Instead of c1) ∼ c4), we assume:

c1)∗ G(t, x, z) � 0 (at (t, x, z) = (0, 0, z0)),

c2)∗ ϕi(x) � 0 (at x = 0) for i = 0, 1, . . . , m − 1, and
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c3)∗ lim inf
|β|→∞

(
a(β)(0)
|β|!σ

)1/|β|
> 0.

As before, we set kj,α = ordt((∂G/∂zj,α)(t, x, Du(t, x)), V ) ((j, α) ∈ Λ);
then we have the expression

∂G

∂zj,α
(t, x, Du(t, x)) = aj,α(x)tkj,α + O(tkj,α+1) (as t −→ +0)

for some aj,α(x) ∈ E{σ}(V ) with aj,α(x) � 0 (at x = 0). We set

(8.14) Λ(+) = {(j, α) ∈ Λ ; aj,α(0) > 0, |α| > 0}.

Then we have the following result.

Theorem 8.4. Suppose the conditions b1) ∼ b5), and c1)∗ ∼ c3)∗.
Then, if u(t, x) ∈ E{s,σ}(I × V ) holds for some s ≥ 1, we have

(8.15) s ≥ 1 + max
[
0, max

(j,α)∈Λ(+)

(
j + σ|α| − m

kj,α + m − j

)]
.

Proof. By c1)∗ and c2)∗ we have ϕm(x) � 0. We set

u(t, x) =
m∑

i=0

ϕi(x)
ti

i!
+ tmw(t, x) :

then, by the same argument as in section 3 we can reduce our equation
(8.13) to an equation of type (8.1) with respect to w(t, x), and we can apply
Theorem 8.1. We note that the condition (8.2) is verified by c3)∗. �

There is also a gap between (2.4) and (8.15).

9. Some Particular Cases

In this section, we will give some applications to generalized KdV equa-
tions, non-singular Kowalwskian equations, and nonlinear Fuchsian equa-
tions.



132 Hidetoshi Tahara

9.1. Generalized KdV type equations
Let k, � ∈ {1, 2, 3, 4, 5, . . . } and m ∈ {3, 4, 5, 6, . . . }, and let us consider

the Cauchy problem for the generalized mk�-KdV equation

(9.1) ∂tu = ∂m
x u + uk∂


xu, u(0, x) = ϕ(x),

where t ∈ R is the time variable, x ∈ R or x ∈ T is the space variable, and
ϕ(x) is an appropriate function in the Gevrey class E{σ} for some σ ≥ 1.
This equation is discussed in Hannah-Himonas-Petronilho [6].

In [6], it is shown that for a suitable ϕ(x) ∈ E{σ} the solution of (9.1)
does not belongs to E{σ} in the time variable: also, for the KdV equation
(that is, (9.1) with (m, k, �) = (3, 1, 1)) in the periodic case, it is shown that
the solution to the Cauchy problem with analytic data belongs to E{3} in
time.

The construction of a solution for (9.1) is a very difficult problem;
but, once we have a solution u(t, x) ∈ C∞(I, E{σ}(R)) (or u(t, x) ∈
C∞(I, E{σ}(T)) with I = (−δ, δ)), the time regularity is obtained by The-
orem 2.2, and the non-analyticity of the solution in time is obtained by
Theorem 8.4.

Theorem 9.1. (1) Let I = (−δ, δ), and V be an open subset of R. If
u(t, x) ∈ C∞(I, E{σ}(V )) is a solution of (9.1), we have u(t, x) ∈ E{s,σ}(I ×
V ) for any s ≥ max{mσ, �σ}.

(2) In a particular case where the initial data ϕ(x) satisfies ϕ(0) > 0,
ϕ(x) � 0 (at x = 0) and

(9.2) lim inf
α→∞

(ϕ(α)(0)
α!σ

)1/α
> 0,

we have the necessity of the condition s ≥ max{mσ, �σ} in the following
sense: the solution u(t, x) of (9.1) does not belong to the Gevrey class E{s}

in time for 1 ≤ s < max{mσ, �σ}.

Since the author is not familiar with regularity results on the KdV equa-
tion, it is not clear whether the assumption u(t, x) ∈ C∞(I, E{σ}(V )) in the
part (1) is reasonable or not. In the case σ = 1 for periodic KdV equation,
this assumption is verified by Gorsky-Himonas [5]. In the case σ = 3, see
Kato-Ogawa [8].
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As to the result (2) we note the following: in the case σ > 1 there
are many functions ϕ(x) ∈ E{σ}(R) with compact support satisfying the
condition (9.2). In the case σ = 1, the necessity of the condition s ≥
max{m, �} can be verified under the initial data

ϕ(x) =
i(m−
)/keix

M − eix
(M > 1)

or
ϕ(x) =

1
(i − x)(4p+m−
)/k

(p ∈ N
∗, k < 2m − 2� + 8p)

by a small modification of the argument in [6] (see also Lysik [14]).

9.2. Non-singular Kowalewskian equations
Let m ∈ N

∗, and let us consider the equation

(9.3) ∂m
t u = G

(
t, x, {∂j

t ∂
α
x u}j+|α|≤m,j<m

)
which is a particular case of (2.1) with γ = 0 and L = m (the “non-singular”
means γ = 0, and the “Kowalewskian” means L = m).

We let Ω be an open subset of Rt × R
n
x × R

d
z , I = [0, T ] (with T > 0),

and V be an open subset of R
n. Then, by Theorem 2.2 we have

Theorem 9.2. (1) If G(t, x, z) ∈ E{s1,σ,s2}(Ω) holds for some s1 ≥ 1
and σ ≥ s2 ≥ 1, and if u(t, x) ∈ C∞(I, E{σ}(V )) is a solution of (9.3) on
I × V , then we have u(t, x) ∈ E{s,σ}(I × V ) for any s ≥ max{σ, s1}.

(2) In particular, if G(t, x, z) ∈ E{σ}(Ω) holds for some σ ≥ 1, and
if u(t, x) ∈ C∞(I, E{σ}(V )) is a solution of (9.3) on I × V , then we have
u(t, x) ∈ E{σ}(I × V ).

Proof. In this case, by (2.4) and the fact that j + |α| ≤ m we have
s0 ≤ σ, and so by Theorem 2.2 we have the result. �

Usually, to show the existence of a solution u(t, x) ∈ C∞(I, E{σ}(V )) we
need some hyperbolicity condition; though, if we have a solution u(t, x) ∈
C∞(I, E{σ}(V )), time regularity of this solution is obtained by our result
without any hyperbolicity condition.

Kinoshita-Taglialatela [10] considered the time regularity of the solution
of the Cauchy problem: ∂2

t u − a(t)∂2
xu = b(t)∂t + c(t)∂t, u(0, x) = u0(x)
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and ∂tu(0, x) = u1(x), and under suitable conditions they proved that the
problem is well-posed in E{s,σ}([0, T ] × R) with 0 ≤ σ − 1 ≤ (s − 1)/s. By
Theorem 9.2 this condition is improved to 1 ≤ σ ≤ s (that is, 0 ≤ σ − 1 ≤
s − 1).

9.3. Nonlinear Fuchsian equations
Let m ∈ N

∗, and let us consider

(9.3) (t∂t)mu = G
(
t, x, {(t∂t)j∂α

x u}j+|α|≤m,j<m

)
Let Ω be an open subset of Rt×R

n
x×R

d
z , and let G(t, x, z) be a C∞ function

on Ω. Let I = [0, T ] (with T > 0), and V be an open subset of R
n. We

suppose:

d1) m ≥ 1, s1 ≥ 1, σ ≥ s2 ≥ 1;

d2) G(t, x, z) ∈ E{s1,σ,s2}(Ω);

d3) u(t, x) ∈ C∞(I, E{σ}(V )) is a solution of (9.3) on I × V .

Under the notation Θu = {(t∂t)j∂α
x u}j+|α|≤m,j<m we set

kj,α = ordt

( ∂G

∂zj,α
(t, x,Θu(t, x)), V

)
(j + |α| ≤ m, j < m),

s0 = 1 + max
[

0, max
j+|α|≤m,|α|>0

(
j + σ|α| − m

min{kj,α, m−j}

) ]
.

By Theorem 2.2 (or Theorem 7.7.1) we have

Theorem 9.3. (1) Suppose the conditions d1) ∼ d3) and the following
condition: if |α| > 0 we have kj,α > 0. Then, we have u(t, x) ∈ E{s,σ}(I×V )
for any s ≥ max{s0, s1, s2}.

(2) In addittion, if G(t, x, z) ∈ E{σ}(Ω) and if σ satisfies

1 ≤ σ ≤ 1 + min
[
∞, min

(j,α)∈∆

(
m − j − |α|
|α| − kj,α

)]
(9.5)

with ∆ = {(j, α) ; kj,α < |α|},

we have u(t, x) ∈ E{σ}(I × V ).
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Proof. The result (1) follows from Theorem 7.7.1. Let us show (2).
By Theorem 7.7.1 with s1 = s2 = σ we have the result u(t, x) ∈ E{σ}(I×V )
if the condition σ ≥ s0 holds, that is, if the following condition holds:

(9.6) σ ≥ 1 + max
[

0, max
j+|α|≤m,|α|>0

(
j + σ|α| − m

min{kj,α, m − j}

) ]

which is equivalent to

m − j − min{kj,α, m − j} ≥ σ(|α| − min{kj,α, m − j})(9.7)

for any j + |α| ≤ m with |α| > 0.

If |α| ≤ kj,α, by the condition |α| ≤ m − j we have |α| ≤ min{kj,α, m − j}
and so the condition (9.7) is clear from the fact that the right-hand side
is nonpositive, and the left-hand side is nonnegative. If |α| > kj,α, by the
condition |α| ≤ m−j we have min{kj,α, m−j} = kj,α and the the inequality
(9.7) is equivalent to

σ ≤ m − j − min{kj,α, m − j}
|α| − min{kj,α, m − j} =

m − j − kj,α

|α| − kj,α
= 1 +

m − j − |α|
|α| − kj,α

.

Thus, if we set ∆ = {(j, α) ; kj,α < |α|}, our condition (9.6) is equivalent to

(9.8) 1 ≤ σ ≤ 1 + min
[
∞, min

(j,α)∈∆

(
m − j − |α|
|α| − kj,α)

)]
.

This proves the result (2). �

Let us recall the following example in Tahara [17]:

Example 9.4. Let (t, x) ∈ [0, T ] × R, a > 0, k ∈ N
∗(= {1, 2, . . . }) and

let us consider

(9.9) (t∂t + a)2u − tk∂2
xu = f(t, x).

The following results are known:
(1) (9.9) is uniquely solvable in C∞([0, T ], E{σ}(R)) for any σ ≥ 1.
(2) If k ≥ 2, (9.9) is also uniquely solvable in E{σ}([0, T ] × R) for any

σ ≥ 1.
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(3) But, in the case k = 1, the equation (9.9) is not uniquely solvable in
E{σ}([0, T ] × R) for any σ > 1.

By (1), for any σ ≥ 1 and any f(t, x) ∈ E{σ}([0, T ]×R) we have a unique
solution u(t, x) ∈ C∞([0, T ], E{σ}(R)) of (9.9); therefore the well-posedness
problem in E{σ}([0, T ] × R) is reduced to the following problem:

Problem 9.5. If u(t, x) ∈ C∞([0, T ], E{σ}(R)) is a solution of (9.9), can
we have the result u(t, x) ∈ E{σ}([0, T ] × R) ?

About this problem, in the linear case the author has given in [17] a
sufficient condition for the problem to be affirmative. The result (2) of
Theorem 9.3 is a generalization to the nonlinear case.
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