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Local Existence for Nonlinear Cauchy Problems

with Small Analytic Data

By Hideshi Yamane

Abstract. We study the lifespan of solutions to fully nonlinear
second-order Cauchy problems with small real- or complex-analytic
data. In each case, the nonlinear term is analytic in (the complex
conjugates of) the derivatives of the unknown function. This is an
improvement of our previous result.

1. Introduction

Cauchy problems with small initial data have been studied by many
authors. Most results are about nonlinear wave equations or nonlinear
Schrödinger equations in the C∞-category. On the other hand, some re-
sults about the Kirchhoff equation were derived in [1] and [2] in the real-
analytic category, and m-th order equations have been solved in the Gevrey
class in [2]. In our previous article [10], we studied second-order fully non-
linear Cauchy problems with small data in the real- and complex-analytic
categories without hyperbolicity assumption, namely in the spirit of the
Cauchy-Kowalevsky theorem.

We generalize these results in the present paper: now the nonlinear term
is an analytic function not only in ∇u and ∇2u but also in u, ∂tu and ∇∂tu.
Moreover, we can deal with equations involving the modulus of the unknown
function like (∂2

t − ∂2
x)u = |∂xu|2 = ∂xu ∂xu.

Now we state our result.
Let Ω be an open set of R

n
x, x = (x1, . . . , xn). A C∞-function ϕ(x) on

Ω is said to be uniformly analytic on Ω if it satisfies

∃C > 0,∀α ∈ N
n, sup

x∈Ω
|∂αϕ(x)| ≤ C |α|+1|α|!,

where ∂α = ∂|α|/∂xα1
1 . . . ∂xαn

n . We define the function space A(Ω) to be
the totality of uniformly analytic functions on Ω.
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Let t be a point of R. For T > 0, the open interval ]−T, T [ is denoted
by IT . We set ΩT = IT × Ω ⊂ Rt × R

n
x.

For k ∈ N, a continuous function u(t, x) on ΩT = IT ×Ω is said to belong
to Ck(T ; A(Ω)) if it satisfies the following two conditions:

(i) ∀j ∈ {0, . . . , k},∀α ∈ N
n, ∂j

t ∂
αu ∈ C(ΩT ),

(ii) ∀T ′ ∈]0, T [, ∃C = CT ′ > 0, ∀j ∈ {0, . . . , k}, ∀α ∈ N
n,

sup
|t|≤T ′,x∈Ω

|∂j
t ∂

αu(t, x)| ≤ C |α|+1|α|!.

Let P (∂t, ∂x) =
∑n

j=1 pj∂t∂j +
∑n

k=1

∑k
j=1 pjk∂j∂k be a second-order

linear partial differential operator with constant coefficients, where ∂j =
∂/∂xj and pj , pjk ∈ C. We consider the following Cauchy problem for a
fully nonlinear equation:

(CP1)

{(
∂2

t − P (∂t, ∂x)
)
u = f1(t; u; ∂tu,∇u; ∇∂tu,∇2u),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x),

where ∂t = ∂/∂t,∇u = (∂ju)1≤j≤n and ∇2u = (∂j∂ku)1≤j≤k≤n. Here ϕ(x)
and ψ(x) are uniformly analytic in an open subset Ω of R

n. We assume
that f1(t; X; Y ; Z) is continuous and bounded on Rt × U , where U is an
open neighborhood of (X, Y, Z) = 0 ∈ C × C

n+1 × C
N , N = n(n + 3)/2.

Moreover we assume that it is complex-analytic in U for each fixed t ∈ R

and has an expansion of the form

f1(t; X; Y ; Z) =
∑
L≥4

aαβγ(t)XαY βZγ , L = α + 2|β| + 3|γ|.(1)

We shall study the lifespan of a solution when the data are small in some
sense.

Theorem 1.1. There exist δ > 0 and ε0 > 0 such that the following
holds for all ε with 0 < ε ≤ ε0:

If supx∈Ω |∂αϕ| ≤ ε|α|+1|α|! and supx∈Ω |∂αψ| ≤ ε|α|+2|α|! for all α ∈
N

n, then (CP1) has a solution u(t, x) ∈ C2(T ; A(Ω)) for T = δ/ε.

We formulate (CP1c), the complex version of (CP1), in the following
way. Let ϕ(x) and ψ(x) be complex-analytic functions on an open set U of
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C
n
x. We assume1 that f1 is independent of t . For T > 0, set BT = {t ∈

C; |t| < T}.

Theorem 1.2. There exist δ > 0 and ε0 > 0 such that the following
holds for all ε with 0 < ε ≤ ε0:

If supx∈U |∂αϕ| ≤ ε|α|+1|α|! and supx∈U |∂αψ| ≤ ε|α|+2|α|! for all α ∈
N

n, then (CP1c) has a unique solution u(t, x) which is complex-analytic on
BT × U for T = δ/ε and satisfies the following estimate: for all T ′ with
0 < T ′ < T = δ/ε, there exists C = CT ′ > 0 such that

sup
|t|≤T ′,x∈U

|∂αu(t, x)| ≤ C |α|+1|α|!

holds for any α ∈ N
n.

Remark 1.3. The functions ϕ and ψ in Theorem 1.1 extends to the
1/(4ε)-neighborhood of Ω in C

n and satisfies |ϕ(α)(x)| ≤ 2nε|α|+1|α|!,
|ψ(α)(x)| ≤ 2nε|α|+2|α|! there. If f1 in (CP1) is independent of t, we can
apply Theorem 1.2 for a larger value of ε (hence a more modest estimate of
lifespan). We get a unique real-analytic solution u to (CP1) for |t| < δ/(2nε),
x ∈ Ω and it is uniformly analytic in x. The same can be said about the
other theorems.

We can relax the condition on ψ when the nonlinear term belongs to
a smaller class and P = P (∂x) =

∑n
k=1

∑k
j=1 pjk∂j∂k is free from ∂t. The

second Cauchy problem is:

(CP2)

{(
∂2

t − P (∂x)
)
u = f2(t, u, ∂tu,∇u,∇∂tu,∇2u),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x),

where f2(t, X, Y, Z,Θ, Ξ) is continuous and bounded on Rt × V, where V is
an open neighborhood of (X, Y, Z,Θ, Ξ) = 0 ∈ C×C×C

n×C
n×C

n(n+1)/2.
Moreover we assume that it is complex-analytic in V for each fixed t ∈ R

and has an expansion of the form

f2(t, X, Y, Z,Θ, Ξ) =
∑

L1≥2,L2≥2

aαβγλµ(t)XαY βZγΘλΞµ,(2)

L1 = α + |γ| + |µ|, L2 = β + |γ| + 2|λ| + 2|µ|.
1We assume that f1 is a bounded entire function in t. It is equivalent to saying that

f1 is independent of t in view of Liouville’s theorem.
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Theorem 1.4. There exist δ > 0 and ε0 > 0 such that the following
holds for all ε with 0 < ε ≤ ε0:

If supx∈Ω |∂αϕ| ≤ ε|α|+1|α|! and supx∈Ω |∂αψ| ≤ ε|α|+1|α|! for all α ∈
N

n, then (CP2) has a solution u(t, x) ∈ C2(T ; A(Ω)) for T = δ/ε.
(This is a generalization of Theorem 1.1 of [10].)

Remark 1.5. In the definitions of L, L1 and L2, the unknown function
u and its derivatives have weights as in the following table:

u ∂tu ∇u ∇∂tu ∇2u

L (≥ 4) 1 2 2 3 3
L1(≥ 2) 1 0 1 0 1
L2(≥ 2) 0 1 1 2 2

For example, (∂1u)2 satisfies L ≥ 4, L1 ≥ 2, L2 ≥ 2. On the other hand,
(∂tu)2 does not satisfy L1 ≥ 2, although it satisfies L ≥ 4, L2 ≥ 2.

Remark 1.6. The complex-analytic version of Theorem 1.4 can be
formulated in an obvious way.

Our method extends to nonlinearities involving the complex conjugates
of the derivatives of the unknown function. We can deal with

(CP3)


(
∂2

t − P (∂x)
)
u

= f3(t; u, ū; ∂tu, ∂tū; ∇u,∇ū; ∇∂tu,∇∂tū; ∇2u,∇2ū),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x),

where f3(t; X̃; Ỹ ; Z̃; Θ̃; Ξ̃) is continuous and bounded on Rt × Ṽ, where Ṽ is
an open neighborhood of (X̃, Ỹ , Z̃, Θ̃, Ξ̃) = 0 ∈ C

2×C
2×C

2n×C
2n×C

n(n+1).
Moreover we assume that it is complex-analytic in Ṽ for each fixed t ∈ R

and has an expansion of the form

f3(t; X̃; Ỹ ; Z̃; Θ̃; Ξ̃) =
∑

L̃1≥2,L̃2≥2

aα̃β̃γ̃λ̃µ̃(t)X̃ α̃Ỹ β̃Z̃ γ̃Θ̃λ̃Ξ̃µ̃,

L̃1 = |α̃| + |γ̃| + |µ̃|, L̃2 = |β̃| + |γ̃| + 2|λ̃| + 2|µ̃|.
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Theorem 1.7. There exist δ > 0 and ε0 > 0 such that the following
holds for all ε with 0 < ε ≤ ε0:

If supx∈Ω |∂αϕ| ≤ ε|α|+1|α|! and supx∈Ω |∂αψ| ≤ ε|α|+1|α|! for all α ∈
N

n, then (CP3) has a solution u(t, x) ∈ C2(T ; A(Ω)) for T = δ/ε.
(This is a variant of Theorem 1.4. There is a variant of Theorem 1.1,

too. )

Example 1.8. The theorem above can be applied to a nonlinear wave
equation

(∂2
t − ∆)u = |∇u|2 =

n∑
j=1

∂ju ∂j ū.

We can deal with operators with first-order terms. Let P ′(∂x) =∑n
j=1 p′j∂j (p′j ∈ C) be a vector field. We consider, with P involving

∂t,

(CP4)

{(
∂2

t − P (∂t, ∂x) − P ′(∂x)
)
u = f4(t, u, ∂tu,∇u,∇∂tu,∇2u),

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x),

where f4(t, X, Y, Z,Θ, Ξ) is continuous and bounded on Rt × V, where V is
as in (CP2). Moreover we assume that it is complex-analytic in V for each
fixed t ∈ R and has an expansion of the form

f4(t, X, Y, Z,Θ, Ξ) =
∑

�≥5/2

aαβγλµ(t)XαY βZγΘλΞµ,


 = α +
3
2
β + 2|γ| + 5

2
|λ| + 5

2
|µ|.

Theorem 1.9. There exist δ > 0 and ε0 > 0 such that the following
holds for all ε with 0 < ε ≤ ε0:

If supx∈Ω |∂αϕ| ≤ ε|α|+1|α|! and supx∈Ω |∂αψ| ≤ ε|α|+3/2|α|! for all α ∈
N

n, then (CP4) has a solution u(t, x) ∈ C2(T ; A(Ω)) for T = δ/
√

ε.

Remark 1.10. One can easily formulate and prove variants of The-
orem 1.9 like Theorems 1.2 (in the complex domain) and 1.7 (involving
complex conjugates).
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Remark 1.11. The Nagumo type argument (using scales of Banach
spaces consisting of bounded holomorphic functions) as in [8], [9] etc. can
be useful for the study of small initial data in the complex domain. The
key would be to choose several constants independently of ε. If one wants
to get results in the real domain by using this method, one has to escape to
the complex domain as in Remark 1.3 with some loss of lifespan.

2. The Banach Algebra GT,ζ(Ω)

We recall some results about a Banach algebra which will be useful in
the proofs of the theorems. Set θ(X) = K−1

∑∞
k=0 Xk/(k + 1)2, K = 4π2/3

and let Djθ(X) be its j-th derivative. If ζ > 0, then a continuous function
u(t, x) on ΩT is said to be an element of GT,ζ(Ω) if it is infinitely differentiable
in x and there exists an constant C > 0 such that

∀α ∈ N
n,∀t ∈ IT , sup

x∈Ω
|∂αu(t, x)| ≤ Cζ |α|D|α|θ(|t|/T ).(3)

We define the norm ‖u‖ to be the infimum of such C’s. Then GT,ζ(Ω)
becomes a Banach algebra. Moreover it is a subspace of C0(T ; A(Ω)) for
any T, ζ > 0. See [2] or [10] for proof.

For a positive integer m, we equip the direct sum
m
⊕GT,ζ(Ω) with the

norm ‖ · ‖m defined by

‖τ(t, x)‖m =

[ ∑
j=1,... ,m

‖τj(t, x)‖2

]1/2

,

τ(t, x) =
(
τ1(t, x), . . . , τm(t, x)

)
∈

m
⊕GT,ζ(Ω).

Set ∂−1
t u(t, x) =

∫ t
0 u(s, x)ds.

Proposition 2.1. For all (k, α) ∈ (−N) × N
n with k + |α| ≤ 0, there

exists a constant Ck,|α| > 0 such that ∂k
t ∂α is an endomorphism of the

Banach space GT,ζ(Ω) and its norm is not larger than Ck,|α|T
−kζ |α|.

3. Proof of Theorems 1.1 and 1.2

First we shall show Theorem 1.1. Notice that ψ is “smaller” than ϕ.
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Proposition 3.1. For any T > 0 and any ζ ≥ 2e2ε, we have ϕ, ψ ∈
GT,ζ(Ω) and ‖ϕ‖ ≤ Kε, ‖ψ‖ ≤ Kε2, ‖∂jϕ‖ ≤ Kε2, ‖∂jψ‖ ≤ Kε3,
‖∂j∂kϕ‖ ≤ 3Kε3, ‖∂j∂kψ‖ ≤ 3Kε4 for j, k ∈ {1, 2, . . . , n}.

Proof. See [2] or Propositions 3.3 and 3.4 in [10]. �

Proposition 3.2. Set ζ = 2e2ε, T = δ/ε for ε > 0, 0 < δ < 1. Then
there exist positive constants C1 and C2 independent of ε and δ such that

‖P∂−2
t w‖ ≤ C1δ‖w‖, ‖P (ϕ + tψ)‖ ≤ C2ε

3,

‖∂−2
t w + ϕ + tψ‖ ≤ C−2,0ε

−2‖w‖ + 2Kε,

‖∂t(∂−2
t w + ϕ + tψ)‖ ≤ C−1,0ε

−1‖w‖ + Kε2,

‖∂j(∂−2
t w + ϕ + tψ)‖ ≤ 2e2C−2,1ε

−1‖w‖ + 2Kε2,

‖∂t∂j(∂−2
t w + ϕ + tψ)‖ ≤ 2e2C−1,1‖w‖ + Kε3,

‖∂j∂k(∂−2
t w + ϕ + tψ)‖ ≤ (2e2)2C−2,2‖w‖ + 6Kε3

hold for any w ∈ GT,ζ(Ω).

Proof. Apply Propositions 2.1 and 3.1. We neglect δ(< 1) in most
places with the only exception of the first estimate, in which we use δ2 < δ.
For example, we have

‖∂j∂k(tψ)‖ = ‖t∂j∂kψ‖ ≤ T · 3Kε4 = 3Kδε3 < 3Kε3,

‖∂−2
t w‖ ≤ C−2,0T

2‖w‖ = C−2,0δ
2ε−2‖w‖ ≤ C−2,0ε

−2‖w‖.

The inequality ‖P (ϕ + tψ)‖ ≤ C2ε
3 follows from the estimates on ∂j∂kϕ,

∂j∂k(tψ) and ∂jψ. �

Set w(t, x) = ∂2
t u(t, x), then u = ∂−2

t w+ϕ+tψ. We define the mappings
Q and L1 by

Qu = (u; ∂tu,∇u;∇∂tu,∇2u),

L1(w) = P (∂−2
t w + ϕ + tψ) + f1

(
t; Q(∂−2

t w + ϕ + tψ)
)
.

Then (CP1) is reduced to w = L1(w). We shall find a fixed point w of L1

by showing that L1 is a contraction from a closed ball of GT,ζ(Ω) to itself,
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where

T = δ/ε, ζ = 2e2ε (ε > 0, 0 < δ < 1).(4)

Set r = 2C2ε
3/(1−2C1δ), where C1 and C2 are as in Proposition 3.2. If δ

is sufficiently small, then there exists a positive constant C3 independent of δ

and ε such that 2C2ε
3 ≤ r ≤ C3ε

3 holds. Let B(r, T, ζ) = B(r, δ/ε, 2e2ε) ⊂
GT,ζ(Ω) be the closed ball of radius r centered at 0. For w ∈ B(r, T, ζ), set
u = ∂−2

t w + ϕ + tψ. A combination of Proposition 3.2 and (4) implies that
there exists a positive constant C4 for which we have

‖u‖ ≤ C4ε, ‖∂tu‖ ≤ C2
4ε2, ‖∂ju‖ ≤ C2

4ε2,(5)

‖∂t∂ju‖ ≤ C3
4ε3, ‖∂j∂ku‖ ≤ C3

4ε3(6)

for j, k ∈ {1, 2, . . . , n}. Therefore there exists a positive constant C5 inde-
pendent of ε and δ such that

‖f1(t; Qu)‖ ≤
∑
L≥4

|aαβγ(t)|(C4ε)L ≤ C5ε
4

holds if ε > 0 is sufficiently small. The estimate r ≥ 2C2ε
3 implies

‖f1(t; Qu)‖ ≤ r/2 for a sufficiently small ε. Thus we find that

‖L1(w)‖ ≤ (C1δ‖w‖ + C2ε
3) + ‖f1(t; Qu)‖

≤ (C1δr + C2ε
3) + ‖f1(t; Qu)‖ ≤ r/2 + r/2 = r

holds for w ∈ B(r, T, ζ). It means that L1 is a mapping from B(r, T, ζ) to
itself if ε and δ are sufficiently small.

Next we shall show that L1 is a contraction mapping. We have

f1(t; X ′; Y ′; Z ′) − f1(t; X; Y ; Z)(7)

= (X ′−X, Y ′−Y, Z ′−Z) · g1

= (X ′−X) · gX
1 + (Y ′−Y ) · gY

1 + (Z ′−Z) · gZ
1 ,

where

g1 = (gX
1 , gY

1 , gZ
1 ) =

∫ 1

0
∇X,Y,Zf1

(
t; (1 − s)(X, Y, Z) + s(X ′, Y ′, Z ′)

)
ds.
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For w, w′ ∈ B(r, T, ζ), set u = ∂−2
t w + ϕ + tψ, u′ = ∂−2

t w′ + ϕ + tψ.

Then for (X, Y, Z) = Qu and (X ′, Y ′, Z ′) = Qu′, we have

‖X ′ − X‖ = ‖u′ − u‖ = ‖∂−2
t (w′ − w)‖ ≤ C6ε

−2‖w′ − w‖
‖Y ′ − Y ‖n+1 ≤ ‖∂t∂

−2
t (w′ − w)‖ + ‖∇∂−2

t (w′ − w)‖n

≤ C6ε
−1‖w′ − w‖,

‖Z ′ − Z‖N ≤ ‖∇∂t∂
−2
t (w′ − w)‖n + ‖∇2∂−2

t (w′ − w)‖n(n+1)
2

≤ C6‖w′ − w‖,

where C6 is a positive constant independent of ε and δ.
On the other hand, ∇Xf1,∇Y f1 and ∇Zf1 consist of terms of the form

“(a function in t)XαY βZγ” with L = α + 2|β| + 3|γ| ≥ 3, 2, 1 respectively.
This fact, together with (5) and (6), implies that there exists a positive
constant C7 independent of ε and δ such that

‖gX
1 (t, Qu, Qu′)‖ ≤ C7ε

3, ‖gY
1 (t, Qu, Qu′)‖n+1 ≤ C7ε

2,

‖gZ
1 (t, Qu, Qu′)‖N ≤ C7ε.

A combination of (7) and the inequalities above yields

‖f1(t; Qu′) − f1(t; Qu)‖ ≤ C6C7(ε−2 · ε3 + ε−1 · ε2 + 1 · ε)‖w′ − w‖
= 3C6C7ε‖w′ − w‖.

Hence

‖L1(w′) − L1(w)‖ ≤ (C1δ + 3C6C7ε)‖w′ − w‖,

which implies that L1 : B(r, T, ζ) → B(r, T, ζ) is a contraction mapping if δ

and ε are sufficiently small. Its fixed point w ∈ GT,ζ(Ω) ⊂ C0(T ; A(Ω)) gives
us a solution u = ∂−2

t w + ϕ + tψ ∈ C2(T ; A(Ω)).

Proof of Theorem 1.2. Uniqueness follows from the Cauchy-
Kowalevsky theorem. We sketch the proof of existence. A complex-analytic
function on BT × U is said to be an element of GC

T,ζ(U) if there exists an
constant C > 0 such that

∀α ∈ N
n,∀t ∈ BT , sup

x∈U
|∂αu(t, x)| ≤ Cζ |α|D|α|θ(|t|/T ).(8)
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The theorem can be proved in the same way as in the real case, because
GC

T,ζ(U) is a Banach algebra.

4. Proof of Theorem 1.4

Proposition 3.1 must be revised in an obvious way: now ψ has the same
bound as ϕ and P (∂x) is free from ∂t. The estimates in Proposition 3.2
must be replaced by the following:

‖P∂−2
t w‖ ≤ C1δ‖w‖ (unchanged), ‖P (ϕ + tψ)‖ ≤ C2ε

2(ε + δ),

‖∂−2
t w + ϕ + tψ‖ ≤ C−2,0ε

−2‖w‖ + K(ε + δ),

‖∂t(∂−2
t w + ϕ + tψ)‖ ≤ C−1,0ε

−1‖w‖ + Kε (much worse),

‖∂j(∂−2
t w + ϕ + tψ)‖ ≤ 2e2C−2,1ε

−1‖w‖ + Kε(ε + δ),

‖∂t∂j(∂−2
t w + ϕ + tψ)‖ ≤ 2e2C−1,1‖w‖ + Kε2 (much worse),

‖∂j∂k(∂−2
t w + ϕ + tψ)‖ ≤ (2e2)2C−2,2‖w‖ + 3Kε2(ε + δ).

Only one remains unchanged and all the others have worsened more or less.
Especially, two have become much worse because smaller powers of ε have
appeared. Set r = 2C2ε

2(ε + δ)/(1 − 2C1δ). Then 2C2ε
2(ε + δ) ≤ r ≤

C3ε
2(ε + δ) for some constant C3 if δ is sufficiently small. If ‖w‖ ≤ r, the

estimates (5) and (6) for u = ∂−2
t w + ϕ + tψ should be replaced by

‖u‖ ≤ C4(ε + δ), ‖∂tu‖ ≤ C4ε, ‖∂ju‖ ≤ C2
4ε(ε + δ),

‖∂t∂ju‖ ≤ C2
4ε2, ‖∂j∂ku‖ ≤ C3

4ε2(ε + δ).

We have, for some positive constant C5 independent of ε and δ,

‖f2(t, u, ∂tu,∇u,∇∂tu,∇2u)‖

≤
∑

L1≥2,L2≥2

|aαβγλµ(t)|CL1+L2
4 (ε + δ)L1εL2 ≤ C5(ε + δ)2ε2,

and it is smaller than r/2 if ε and δ are sufficiently small. It follows that
the mapping L2, the counterpart of L1, is a mapping from B(r, T, ζ) if δ

and ε are sufficiently small.
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Next, we have

f2(t, X ′, Y ′, Z ′, Θ′, Ξ′) − f2(t, X, Y, Z,Θ, Ξ)(9)

=(X ′ − X, . . . ,Ξ′ − Ξ) · g2(t, X, . . . ,Ξ, X ′, . . . ,Ξ′)

=(X ′ − X)gX
2 + · · · + (Ξ′ − Ξ) · gΞ

2 ,

where g2 = (gX
2 , gY

2 , gZ
2 , gΘ

2 , gΞ
2 ) is the counterpart of g1.

For w, w′ ∈ B(r, T, ζ), set u = ∂−2
t w + ϕ + tψ, u′ = ∂−2

t w′ + ϕ + tψ.

Then for (X, Y, Z,Θ, Ξ) = Qu, (X ′, Y ′, Z ′, Θ′, Ξ′) = Qu′, we have

‖X ′ − X‖ = ‖u′ − u‖ = ‖∂−2
t (w′ − w)‖ ≤ C6ε

−2‖w′ − w‖,
‖Y ′ − Y ‖ ≤ ‖∂t∂

−2
t (w′ − w)‖ ≤ C6ε

−1‖w′ − w‖,
‖Z ′ − Z‖n = ‖∇∂−2

t (w′ − w)‖n ≤ C6ε
−1‖w′ − w‖,

‖Θ′ − Θ‖n = ‖∇∂t∂
−2
t (w′ − w)‖n ≤ C6‖w′ − w‖,

‖Ξ′ − Ξ‖n(n+1)/2 = ‖∇2∂−2
t (w′ − w)‖n(n+1)/2 ≤ C6‖w′ − w‖,

where C6 is a positive constant independent of ε and δ.
On the other hand, the gradients ∇Xf2, . . . ,∇Ξf2 are sums of terms like

“(a function in t)XαY βZγΘλΞµ” with L1 and L2 as in the following table:

∇Xf2 ∇Y f2 ∇Zf2 ∇Θf2 ∇Ξf2

L1 = α + |γ| + |µ| ≥ 1 ≥ 2 ≥ 1 ≥ 2 ≥ 1
L2 = β + |γ| + 2|λ| + 2|µ| ≥ 2 ≥ 1 ≥ 1 ≥ 0 ≥ 0

There exists a positive constant C7 independent of ε and δ such that

‖gX
2 (t, Qu, Qu′)‖ ≤ C7(ε + δ)ε2, ‖gY

2 (t, Qu, Qu′)‖n+1 ≤ C7(ε + δ)2ε,

‖gZ
2 (t, Qu, Qu′)‖N ≤ C7(ε + δ)ε, ‖gΘ

2 (t, Qu, Qu′)‖n+1 ≤ C7(ε + δ)2,

‖gΞ
2 (t, Qu, Qu′)‖n+1 ≤ C7(ε + δ).

A combination of (9) and the inequalities above yields, if ε + δ < 1,

‖f2(t, Qu) − f2(t, Qu′)‖ ≤ 5C6C7(ε + δ)‖w′ − w‖.

Hence we have

‖L2(w′) − L2(w)‖ ≤
[
C1δ + 5C6C7(ε + δ)

]
‖w′ − w‖,
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which implies that L1 : B(r, T, ζ) → B(r, T, ζ) is a contraction mapping if δ

and ε are sufficiently small.

5. Proof of Theorem 1.7

We shall solve

(∂2
t − P (∂x))u1 = f3(t, Qu1, Qu2),(10)

(∂2
t − P (∂x))u2 = f3(t, Qu2, Qu1),(11)

u1(0, x) = ϕ(x), ∂tu1(0, x) = ψ(x),(12)

u2(0, x) = ϕ(x), ∂tu2(0, x) = ψ(x),(13)

where f3(t, Qu1, Qu2) = f3(t; u1, u2; ∂tu1, ∂tu2;∇u1,∇u2; . . . ) by abuse of
notation: the order of the arguments should be changed. Moreover P and
f3 are defined by

P (∂x) =
n∑

k=1

k∑
j=1

pjk∂j∂k,

f3(t; X̃; Ỹ ; Z̃; Θ̃; Ξ̃) =
∑

L̃1≥2,L̃2≥2

aα̃β̃γ̃λ̃µ̃(t)X̃ α̃Ỹ β̃Z̃ γ̃Θ̃λ̃Ξ̃µ̃.

Set −→u = t(u1, u2), −→ϕ = t(ϕ, ϕ̄), −→ψ = t(ψ, ψ̄), −→w = ∂2
t
−→u − −→ϕ − t

−→
ψ .

Here ∂2
t acts componentwise on a column vector. It is also the case with

P (∂t, ∂x), P (∂t, ∂x) and Q below. We have only to solve −→w = L3(−→w ), where

L3(−→w ) = P (∂−2
t

−→w + −→ϕ + t
−→
ψ ) + F

(
Q(∂−2

t
−→w + −→ϕ + t

−→
ψ )

)
,

F (V1, V2) = t(f3(t, V1, V2), f3(t, V2, V1)).

By using almost the same estimates as in the proof of Theorem 1.4, we
can show that it has a unique fixed point in the closed ball B2(r, T, ζ) ⊂
⊕2GT,ζ(Ω) for some r if ε and δ are sufficiently small. It gives a unique solu-
tion (u1, u2) to (10), . . . , (13) in B2(r, T, ζ). By taking complex conjugates
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and rearranging the order, we obtain

(∂2
t − P )u2 = f3(t, Qu2, Qu1),(14)

(∂2
t − P )u1 = f3(t, Qu1, Qu2),(15)

u2(0, x) = ϕ(x), ∂tu2(0, x) = ψ(x),(16)

u1(0, x) = ϕ(x), ∂tu1(0, x) = ψ(x).(17)

The pair (u2, u1) satisfies the same condition as (u1, u2). The uniqueness of
the fixed point implies that these pairs are identical. In particular, we have
u2 = u1. The solution (u1, u2) of (10), . . . , (13) gives a solution u = u1 to
(CP3).

6. Proof of Theorem 1.9

For ζ = 2e2ε, T = δ/
√

ε (0 < δ < 1, 0 < ε < 1), there exist positive
constants C1, C

′
1, C2, C

′
2 such that

‖P∂−2
t w‖ ≤ C1(δε1/2 + δ2ε)‖w‖, ‖P ′∂−2

t w‖ ≤ C ′
1δ

2‖w‖,

‖P (ϕ + tψ)‖ ≤ C2ε
5/2, ‖P ′(ϕ + tψ)‖ ≤ C ′

2ε
2.

Set r = 2(C2ε
5/2 + C ′

2ε
2)/{1 − 2[C1(δε1/2 + δ2ε) + C ′

1δ
2]}. There exists a

positive constant C3 such that C3ε
2 ≤ r ≤ 2C3ε

2 for sufficiently small δ and
ε. For w ∈ B(r, T, ζ), set u = ∂−2

t w + ϕ + tψ as usual. Then there exists a
positive constant C4 for which we have

‖u‖ ≤ C4ε, ‖∂tu‖ ≤ C
3/2
4 ε3/2, ‖∂ju‖ ≤ C2

4ε2,

‖∂t∂ju‖ ≤ C
5/2
4 ε5/2, ‖∂j∂ku‖ ≤ C3

4ε3 < C3
4ε5/2.

The remaining part of the proof is now routine.

7. Systems of Nonlinear Wave Equations

Some authors (e.g. [6] and [7]) have studied systems of nonlinear wave
equations with different speeds of propagation in the C∞-category. They
obtained some results about existence or blow-up of solutions. We can con-
sider similar systems in the real-analytic category. Let the space dimension
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n be 1 for simplicity (Ω is an open interval) and assume 0 < c1 < c2. We
study the following simple example of a system of nonlinear wave equations:

(CP4)


(∂2

t − c2
1∂

2
x)u1 = ∂xu1∂xu2,

(∂2
t − c2

2∂
2
x)u2 = ∂xu2∂xu1,

uj(0, x) = ϕj(x) (j = 1, 2),

∂tuj(0, x) = ψj(x) (j = 1, 2).

There exist δ > 0 and ε0 > 0, dependent on c2 but independent of c1,
such that the following holds for all ε with 0 < ε ≤ ε0:

If supx∈Ω |∂�ϕj(x)| ≤ ε�+1
! and supx∈Ω |∂�ψj(x)| ≤ ε�+1
! for j = 1, 2
and 
 ∈ N, then (CP4) has a solution u(t, x) ∈ C2(T ; A(Ω)) for T = δ/ε.

This fact can be proved by introducing a mapping on a closed ball of
⊕2GT,ζ(Ω) as in §5.
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