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Periodic Solutions for a Kind of Third-Order Delay

Differential Equations with a Deviating Argument

By A. M. A. Abou-El-Ela, A. I. Sadek and A. M. Mahmoud

Abstract. In this paper, by using the continuation theorem of
coincidence degree theory and analysis techniques, we establish a new
result on the existence and uniqueness of a T-periodic solution for the
third-order delay differential equation with a deviating argument of
the following form

...
x (t) + f(t, x(t))ẍ(t) + g(x(t))ẋ(t) + h(t, x(t − r(t))) = p(t).

1. Introduction

One of the most attractive areas of the qualitative theory of differential
equations is the existence of periodic solutions.

Existence and uniqueness of periodic solutions of delay differential equa-
tions are of great interest in mathematics and its applications to the mod-
eling of various practical problems.

In recent years, by using Mawhin’s continuation theorem of coincidence
degree theory, the existence and uniqueness of periodic solutions for some
types of first and second-order delay differential equations with deviating
arguments were studied, for example, [7 − 10, 12, 13], etc. Besides it is
worth-mentioning that there are a few results on the same topic for third-
order delay differential equations, for example, [3, 11, 15]. Gui [3] established
criteria for existence of positive periodic solutions to the following third-
order neutral delay differential equation with deviating arguments

...
x (t) + aẍ(t) + g(ẋ(t − τ(t))) + f(x(t − τ(t))) = p(t),

where a is a positive constant; g, f and p are real continuous functions and
are defined on R; τ(t), p(t) are periodic with period ω.
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The main purpose of this paper is to investigate sufficient conditions
ensuring the existence and uniqueness of a T-periodic solution to third-
order delay differential equation with a deviating argument of the form

...
x (t) + f(t, x(t)) ẍ(t) + g(x(t)) ẋ(t) + h(t, x(t − r(t))) = p(t),(1.1)

where g, r, p : R → R and f, h : R × R → R are continuous functions, r and
p are T-periodic, f and h are T-periodic in their first argument and T > 0.

2. Preliminary Results

In this section, we give some technical yet elementary results, that will
serve us well in the section that follows.

For ease of exposition throughout this paper we will adopt the following
notation:

|x|k = (
∫ T

0
|x(t)|kdt)

1
k , k ≥ 1, |x|∞ = max

t∈[0,T ]
|x(t)|

and
|p|∞ = max

t∈[0,T ]
|p(t)|.

Let
X = {x|x ∈ C2(R, R), x(t + T ) = x(t), for all t ∈ R}

and
Y = {y|y ∈ C(R, R), y(t + T ) = y(t), for all t ∈ R},

be two Banach spaces with the norms

‖x‖X = max{|x|∞, |ẋ|∞, |ẍ|∞} and ‖y‖Y = |y|∞.

Define a linear operator L : D(L) ⊂ X → Y by setting

D(L) = {x|x ∈ X,
...
x (t) ∈ C(R, R)},

and for x ∈ D(L),

Lx =
...
x (t).(2.1)
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We also define a nonlinear operator N : X → Y by setting

Nx = −f(t, x(t))ẍ(t) − g(x(t))ẋ(t) − h(t, x(t − r(t))) + p(t).(2.2)

Then we notice that

KerL = R and ImL = {y|y ∈ Y,

∫ T

0
y(s)ds = 0}.

Thus the operator L is a Fredholm operator with index zero.
Define the continuous projector P : X → KerL and the averaging pro-

jector Q : Y → Y by setting

Px(t) =
1
T

∫ T

0
x(s)ds and Qy(t) =

1
T

∫ T

0
y(s)ds.

Hence ImP = KerL and KerQ = ImL. Denoting by L−1
P : ImL →

D(L) ∩ KerP the inverse of L|D(L)∩KerP , we have

L−1
P y(t) = − t

T

∫ T

0
(t − s)y(s)ds +

∫ T

0
(t − s)y(s)ds.

Therefore we can see from (2.2) and the above equation, that N is L-compact
on Ω̄, where Ω is an open bounded subset in X.
In view of (2.1) and (2.2) the operator equation

Lx = λNx,

is equivalent to the following equation

(2.3)
...
x (t) + λ{f(t, x(t))ẍ(t) + g(x(t))ẋ(t) + h(t, x(t − r(t)))} = λp(t),

λ ∈ (0, 1).

To prove the main result, we introduce the continuation theorem of coinci-
dence degree theory formulated in [2].

Lemma 2.1. let X and Y be two Banach spaces. Suppose that L :
D(L) ⊂ X → Y is a Fredholm operator with index zero and N : X → Y

is L-compact on Ω̄, where Ω is an open bounded subset in X. Moreover
assume that all the following conditions are satisfied:
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(a) Lx �= λNx, for all x ∈ ∂Ω ∩ D(L) and λ ∈ (0, 1);

(b) QNx �= 0, for all x ∈ ∂Ω ∩ KerL;

(c) The Brower degree

deg{QN,Ω ∩ KerL, 0} �= 0.

Then equation Lx = Nx has at least one solution on Ω̄.

Lemma 2.2. It is convenient to introduce the following assumptions:

(i) Assume that there exist non-negative constants c1, c2 and c3 such that

|f(t, x)| ≤ c1, for all t, x ∈ R

and

|g(x)| ≤ c2, |g(x1) − g(x2)| ≤ c3|x1 − x2|, for all x, x1, x2 ∈ R.

(ii) Suppose that there exists a constant d > 0 such that

x{h(t, x) − p(t)} < 0, for all t ∈ R and |x| ≥ d.

If x(t) is a T-periodic solution of (2.3), then

|x|∞ ≤ d +
1
2

√
T |ẋ|2.(2.4)

(iii) Suppose that (i) and (ii) hold and there exists a non-negative constant
b such that

|h(t, x1) − h(t, x2)| ≤ b|x1 − x2|, for all t, x1, x2 ∈ R(2.5)

and

c1
T

2
+ c2

T 2

4
+ b

T 3

8
< 1.

If x(t) is a T-periodic solution of (1.1), then

|ẋ|∞ ≤ 1
4

[bd + max{|h(t, 0)| : 0 ≤ t ≤ T} + |p|∞]T 2

1 − (c1
T
2 + c2

T 2

4 + bT 3

8 )
:= k.(2.6)
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(iv) Suppose that (i), (ii), (2.5) and (2.6) hold, f(t, x) ≡ f(t) for all t, x ∈
R and h(t, x) is a strictly monotone decreasing function in x such that

c1
T

2
+ c2

T 2

4
+ (c3k + b)

T 3

8
< 1.

Then (1.1) has at most one T-periodic solution.

Proof (ii). Let x(t) ∈ X be a T-periodic solution of (2.3) for a certain
λ ∈ (0, 1). Then by integrating (2.3) over [0, T ] together with condition (i)
implies that ∫ T

0
{h(t, x(t − r(t))) − p(t)}dt = 0.

This implies that there exists ξ ∈ [0, T ] such that

h(ξ, x(ξ − r(ξ))) − p(ξ) = 0.

Taking this together with (ii) as appropriate we have

|x(ξ − r(ξ))| < d.

let ξ− r(ξ) = mT + t0, where t0 ∈ [0, T ] and m is an integer then we obtain

|x(t)| = |x(t0) +
∫ t

t0

ẋ(s)ds|

≤ |x(ξ − r(ξ))| + |
∫ t

t0

ẋ(s)ds|

< d +
∫ t

t0

|ẋ(s)|ds, t ∈ [t0, t0 + T ].

Since x(t) is the T-periodic solution, for t ∈ [t0, t0 + T ] we get

|x(t)| = |x(t0 + T ) +
∫ t

t0+T
ẋ(s)ds|

≤ |x(t0 + T )| + |
∫ t0+T

t
ẋ(s)ds|

≤ d +
∫ t0+T

t
|ẋ(s)|ds, t ∈ [t0, t0 + T ].
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Combining the above two inequalities we find

|x(t)| ≤ d +
1
2

∫ T

0
|ẋ(s)|ds.

Using the Schwarz inequality yields

|x(t)| ≤ d +
1
2

√
T (

∫ T

0
|ẋ(s)|2ds)

1
2 = d +

1
2

√
T |ẋ|2.

Therefore we have

|x|∞ = max
t∈[0,T ]

|x(t)| ≤ d +
1
2

√
T |ẋ|2.

This completes the proof of condition (ii) in Lemma 2.2. �

Proof (iii). Let x(t) be a T-periodic solution of (1.1) for a certain
λ ∈ (0, 1).
Multiplying (1.1) by

...
x (t) and then integrating it over [0, T ] implies

∫ T

0
|...x (t)|2dt = −

∫ T

0
f(t, x(t))ẍ(t)

...
x (t)dt −

∫ T

0
g(x(t))ẋ(t)

...
x (t)dt

−
∫ T

0
h(t, x(t − r(t)))

...
x (t)dt +

∫ T

0
p(t)

...
x (t)dt.

By using condition (i) we find

|...x (t)|22 ≤ c1

∫ T

0
|ẍ(t)||...x (t)|dt + c2

∫ T

0
|ẋ(t)||...x (t)|dt +

∫ T

0
|p(t)||...x (t)|dt

+
∫ T

0
{|h(t, x(t − r(t))) − h(t, 0)| + |h(t, 0)|}|...x (t)|dt.

From (2.5) we get

|...x (t)|22 ≤ c1

∫ T

0
|ẍ(t)||...x (t)|dt + c2

∫ T

0
|ẋ(t)||...x (t)|dt

+ b

∫ T

0
|x(t − r(t))||...x (t)|dt

+
∫ T

0
|h(t, 0)||...x (t)|dt +

∫ T

0
|p(t)||...x (t)|dt
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≤ c1

∫ T

0
|ẍ(t)||...x (t)|dt + c2

∫ T

0
|ẋ(t)||...x (t)|dt + b|x|∞

∫ T

0
|...x (t)|dt

+ max{|h(t, 0)| : 0 ≤ t ≤ T}
∫ T

0
|...x (t)|dt + |p|∞

∫ T

0
|...x (t)|dt.

Thus from (2.4) we obtain

|...x (t)|22 ≤ c1

∫ T

0
|ẍ(t)||...x (t)|dt + c2

∫ T

0
|ẋ(t)||...x (t)|dt

+
1
2
b
√

T |ẋ|2
∫ T

0
|...x (t)|dt

+ [bd + max{|h(t, 0)| : 0 ≤ t ≤ T} + |p|∞]
∫ T

0
|...x (t)|dt.

By using the Cauchy-Schwarz inequality we find

|...x (t)|22 ≤ c1|ẍ|2|
...
x |2 + c2|ẋ|2|

...
x |2 +

1
2
bT |ẋ|2|

...
x |2

+ [bd + max{|h(t, 0)| : 0 ≤ t ≤ T} + |p|∞]
√

T |...x |2.
(2.7)

Since x(0) = x(T ) there exists a constant ξ ∈ [0, T ] such that ẋ(ξ) = 0 and

|ẋ(t)| = |ẋ(ξ) +
∫ t

ξ
ẍ(s)ds|

≤
∫ t

ξ
|ẍ(s)|ds, t ∈ [ξ, T + ξ].

(2.8)

Again

|ẋ(t)| = |ẋ(ξ + T ) +
∫ t

ξ+T
ẍ(s)ds|

≤ |ẋ(ξ + T )| +
∫ ξ+T

t
|ẍ(s)|ds =

∫ ξ+T

t
|ẍ(s)|ds, t ∈ [0, T ].

(2.9)

The inequalities (2.8) and (2.9) imply that

2|ẋ(t)| ≤
∫ t

ξ
|ẍ(s)|ds +

∫ ξ+T

t
|ẍ(s)|ds
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=
∫ T

0
|ẍ(s)|ds, t ∈ [0, T ].

Therefore by using Schwarz inequality we have

|ẋ(t)| ≤ 1
2

√
T (

∫ T

0
|ẍ(s)|2ds)

1
2 , for all t ∈ [0, T ],(2.10)

so

|ẋ|∞ ≤ 1
2

√
T |ẍ|2,(2.11)

|ẋ|2 ≤
√

T max
t∈[0,T ]

|ẋ(s)| ≤ 1
2
T (

∫ T

0
|ẍ(s)|2ds)

1
2 =

1
2
T |ẍ|2.(2.12)

Since x(t) is periodic function for t ∈ [0, T ] and by using the above similar
technique we find

|ẍ(t)| ≤ 1
2

∫ T

0
|...x (t)|dt.

Which together with Cauchy-Schwarz inequality implies

|ẍ|∞ ≤ 1
2

√
T (

∫ T

0
|...x (s)|2ds)

1
2 =

1
2

√
T |...x |2,(2.13)

|ẍ|2 ≤
√

T max
t∈[0,T ]

|ẍ(s)| ≤ 1
2

√
T

∫ T

0
|...x (s)|ds ≤ 1

2
T |...x |2.(2.14)

By substituting from (2.14) in (2.12) we get

|ẋ|2 ≤ 1
4
T 2|...x |2.(2.15)

By substituting from (2.14) in (2.11) we have

|ẋ|∞ ≤ 1
4
T

3
2 |...x |2.(2.16)

From (2.4) and (2.15) we obtain

|x|∞ ≤ d +
1
8
T

5
2 |...x |2.(2.17)
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Then by substituting from (2.14) and (2.15) in (2.7) we find

|...x |22 ≤ c1
T

2
|...x |22 + c2

T 2

4
|...x |22 + b

T 3

8
|...x |22

+ [bd + max{|h(t, 0)| : 0 ≤ t ≤ T} + |p|∞] .

(2.18)

Thus we get

(1−c1
T

2
−c2

T 2

4
−b

T 3

8
)|...x |22 ≤ [bd+max{|h(t, 0)| : 0 ≤ t ≤ T}+|p|∞]

√
T |...x |2.

Therefore we obtain

|...x |2 ≤ [bd + max{|h(t, 0)| : 0 ≤ t ≤ T} + |p|∞]
√

T

1 − c1
T
2 − c2

T 2

4 − bT 3

8

.(2.19)

By substituting from (2.19) in (2.16) we find

|ẋ|∞ ≤ [bd + max{|h(t, 0)| : 0 ≤ t ≤ T} + |p|∞]T 2

4(1 − c1
T
2 − c2

T 2

4 − bT 3

8 )
:= k.

This completes the proof of condition (iii) in Lemma 2.2. �

Proof (iv). Suppose that x1(t) and x2(t) are two T-periodic solutions
of (1.1), then we have

...
x 1(t) −

...
x 2(t) + f(t)ẍ1(t) − f(t)ẍ2(t) + g(x1(t))ẋ1(t) − g(x2(t))ẋ2(t)

+ h(t, x1(t − r(t))) − h(t, x2(t − r(t))) = 0.

Set
z(t) = x1(t) − x2(t).

Then we find
...
z (t) + f(t)ẍ1(t) − f(t)ẍ2(t) + g(x1(t))ẋ1(t) − g(x2(t))ẋ2(t)

+ h(t, x1(t − r(t))) − h(t, x2(t − r(t))) = 0.
(2.20)

Since x1(t) and x2(t) are two T-periodic solutions, by integrating (2.20) over
[0, T ] together condition (i), we obtain

∫ T

0
{h(t, x1(t − r(t))) − h(t, x2(t − r(t)))}dt = 0.
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Using the integral mean-value theorem, it follows that there exists a constant
γ ∈ [0, T ] such that

h(γ, x1(γ − r(γ))) − h(γ, x2(γ − r(γ))) = 0.(2.21)

Let γ − r(γ) = nT + γ̄, where γ̄ ∈ [0, T ] and n is an integer. Then (2.21)
together with condition (iii) implies that there exists a constant γ̄ ∈ [0, T ]
such that

z(γ̄) = x1(γ̄) − x2(γ̄) = x1(γ − r(γ)) − x2(γ − r(γ)) = 0.(2.22)

Thus

|z(t)| = |z(γ̄) +
∫ t

γ̄
ż(s)ds| ≤

∫ t

γ̄
|ż(s)|ds.

Again

|z(t)| = |z(γ̄ + T ) +
∫ t

γ̄+T
ż(s)ds| ≤

∫ γ̄+T

t
|ż(s)|ds.

Hence by using Schwarz inequality we have

2|z(t)| ≤
∫ γ̄+T

γ̄
|ż(s)|ds =

∫ T

0
|ż(s)|ds

≤
√

T (
∫ T

0
|ż(s)|2ds)

1
2 =

√
T |ż|2.

Therefore

|z|∞ ≤ 1
2

√
T |ż|2.(2.23)

Multiplying (2.20) by
...
z (t) and then integrating it over [0, T ] it follows

|...z (t)|22 = −
∫ T

0
f(t){ẍ1(t) − ẍ2(t)}

...
z (t)dt

−
∫ T

0
{g(x1(t))ẋ1(t) − g(x2(t))ẋ2(t)}

...
z (t)dt

−
∫ T

0
{h(t, x1(t − r(t))) − h(t, x2(t − r(t)))}...z (t)dt.



Periodic Solutions of Third-Order DDEs 45

From (i) and (2.5) we get

|...z (t)|22 ≤
∫ T

0
|f(t)||ẍ1(t) − ẍ2(t))||

...
z (t)|dt

+
∫ T

0
|g(x1(t))||ẋ1(t) − ẋ2(t)||

...
z (t)|dt

+
∫ T

0
|g(x1(t)) − g(x2(t))||ẋ2(t))||

...
z (t)|dt

+ b

∫ T

0
|x1(t − r(t)) − x2(t − r(t))||...z (t)|dt

≤ c1

∫ T

0
|z̈(t)||...z (t)|dt + c2

∫ T

0
|ż(t)||...z (t)|dt

+ c3

∫ T

0
|z(t)||ẋ2(t))||

...
z (t)|dt

+ b

∫ T

0
|z(t − r(t))||...z (t)|dt.

By using Schwarz inequality we have

|...z |22 ≤ c1|z̈|2|
...
z |2 + c2|ż|2|

...
z |2 + c3|z|∞|ẋ2|∞

√
T |...z |2 + b|z|∞

√
T |...z |2.

From (2.14), (2.15), (2.23) and (2.6) we obtain

|...z |22 ≤ 1
2
c1T |...z |22 +

1
4
c2T

2|...z |22 +
1
8
c3kT 3|...z |22 +

1
8
bT 3|...z |22.

Thus we find

{1 − (c1
T

2
+ c2

T 2

4
+ c3k

T 3

8
+ b

T 3

8
)}|...z |22 ≤ 0.(2.24)

Since z(t), ż(t), z̈(t) and
...
z (t) are T-periodic and continuous functions, in

view of (iv), (2.12), (2.22) and (2.24) we have

z(t) ≡ ż(t) ≡ z̈(t) ≡ ...
z (t) = 0, for all t ∈ R.

Thus x1(t) ≡ x2(t), for all t ∈ R. Therefore (1.1) has at most one T-periodic
solution.
This completes the proof of condition (iv) in Lemma 2.2.
So the proof of Lemma 2.2 is now completed. �
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3. Main Result

Theorem 3.1. Suppose that (i) and (iv) hold, then (1.1) has a unique
T-periodic solution.

Proof. Condition (iv) of Lemma 2.2 states that (1.1) has at most one
T-periodic solution. Thus to prove Theorem 3.1 it suffices to show that (1.1)
has at least one T-periodic solution. To do this, we shall apply Lemma 2.1.
First we will claim that the set of all possible T-periodic solutions of (2.3)
is bounded.
Let x(t) be a T-periodic solution of (2.3). Multiplying (2.3) by

...
x (t) and

then integrating it over [0, T ] we obtain
∫ T

0
|...x (t)|2dt = − λ

∫ T

0
f(t, x(t))ẍ(t)

...
x (t)dt − λ

∫ T

0
g(x(t))ẋ(t)

...
x (t)dt

− λ

∫ T

0
h(t, x(t − r(t)))

...
x (t)dt + λ

∫ T

0
p(t)

...
x (t)dt.

In view of (i), (iv), (2.4), (2.7) and the inequality of Schwarz we have

|...x |22 ≤ (c1
T

2
+ c2

T 2

4
+ b

T 3

8
)|...x |22

+ [bd + max{|h(t, 0)| : 0 ≤ t ≤ T} + |p|∞]
√

T |...x |2,

which together with (2.13), (2.16), (2.17) and (2.19) implies that there exist
positive constants D1, D2 and D3 such that

|ẍ|∞ ≤ 1
2

√
T |...x |2 := D1,

|ẋ|∞ ≤ T

2
D1 := D2,

|x|∞ ≤ d +
T 2

4
D1 := D3.

Let D0 = max{D1, D2, D3} and take Ω = {x|x ∈ X, ‖x‖ < D0}.
If x ∈ ∂Ω ∩ KerL = ∂Ω ∩ R, then x is a constant with x(t) = D0 or
x(t) = −D0. Then

QNx =
1
T

∫ T

0
{−f(t, x(t))ẍ(t) − g(x(t))ẋ(t) − h(t, x(t − r(t))) + p(t)}dt
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=
1
T

∫ T

0
{−h(t,±D0) + p(t)}dt �= 0.

So the conditions (a) and (b) in Lemma 2.1 hold.
Furthermore define a continuous function H(x, µ) by setting

H(x, µ) = (1 − µ)x − µ.
1
T

∫ T

0
{h(t, x) − p(t)}dt, µ ∈ [0, 1].

It follows from (ii) that

xH(x, µ) �= 0, for all x ∈ ∂Ω ∩ KerL.

Thus H(x, µ) is a homotopy.
Hence by using the homotopy invariance theorem we have

deg{QN,Ω ∩ KerL, 0} = deg{− 1
T

∫ T

0
[h(t, x) − p(t)]dt, Ω ∩ KerL, 0}

= deg{x,Ω ∩ KerL, 0} �= 0.

So condition (c) of Lemma 2.1 is satisfied.
In view of all the discussions above, we conclude from Lemma 2.1 that
Theorem 3.1 is proved. �

4. Example

Example 4.1. Let h(t, x) = − x
6π , for all t, x ∈ R. Then the equation

...
x (t) +

3
8
(sin 4t)ẍ(t) +

3
8
(sinx)ẋ(t) +

x(t − sin2 t)
6π

=
1
6π

e− cos2 t,(4.1)

has a unique π
4 -periodic solution.

Proof. By (4.1) we have

d = 1, b =
1
6π

, c1 = c2 = c3 =
3
8
, r(t) = sin2 t, T =

π

4
and

p(t) =
1
6π

e− cos2 t.
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Then

1
4

[bd + max{|h(t, 0)| : 0 ≤ t ≤ T} + |p|∞]T 2

1 − (c1
T
2 + c2

T 2

4 + bT 3

8 )

=
1
4

( 1
6π + 1

6π )π2

16

(1 − 3
8

π
8 − 3

8
π2

64 − 1
6π

π3

512)
:= k = 0.02,

c1
T

2
+ c2

T 2

4
+ (c3k + b)

T 3

8

=
3
8
(
π

8
+

π2

64
) + (

3
8

2
100

+
1
6π

)
π3

512
= 0.20835 < 1.

It is obvious that the assumptions (i) and (iv) hold.
Hence by Theorem 3.1, equation (4.1) has a unique π

4 -periodic solution. �

References

[1] Burton, T. A., Stability and Periodic Solutions of Ordinary and Functional
Differential Equations, Academic Press, 1985.

[2] Gaines, R. E. and J. Mawhin, Coincidence Degree and Nonlinear Differential
Equations, Lecture Notes in Math., Springer-Verlag, Berlin, 568, 1977.

[3] Gui, Z., Existence of positive periodic solutions to third-order delay differ-
ential equations, Elect. J. of Diff. Eqs. 91 (2006), 1–7.

[4] Hale, J. K., Theory of Functional Differential Equations, Springer-Verlag,
New York, 1977.

[5] Hale, J. K. and S. M. Verduyn Lunel, Introduction to Functional Differential
Equations, Springer-Verlag, New York, 1993.

[6] Kolmanovskii, V. and A. Myshkis, Introduction to the Theory and Appli-
cations of Functional Differential Equations, Kluwer Academic Publishers,
Dordrecht, 1999.

[7] Liu, B. and L. Huang, Periodic solutions for a kind of Rayleigh equation
with a deviating argument, J. Math. Anal. Appl. 321 (2006), 491–500.

[8] Liu, B. and L. Huang, Existence and uniqueness of periodic solution for a
kind of first order neutral functional differential equations, J. Math. Anal.
Appl. 322 (2006), 121–132.

[9] Liu, B. and L. Huang, Existence and uniqueness of periodic solutions for a
kind of first order neutral functional differential equations with a deviating
argument, Taiwanese Journal of Mathematics 11(2) (2007), 497–510.



Periodic Solutions of Third-Order DDEs 49

[10] Shao, J., Wang, L., Yu, Y. and J. Zhou, Periodic solutions for a kind of
Liénard equation with a deviating argument, J. Comput. Appl. Math. 228
(2009), 174–181.

[11] Te.jumo. la, H. O. and B. Tchegnani, Stability, boundedness and existence of
periodic solutions of some third and fourth order nonlinear delay differential
equations, J. Nigerian Math. Soc. 19 (2000), 9–19.

[12] Wu, Y., Xiao, B. and H. Zhang, Periodic solutions for a kind of Rayleigh
equation with two deviating arguments, Elect. J. of Diff. Eqs. 107 (2006),
1–11.

[13] Xiao, J. and B.Liu, Existence and uniqueness of periodic solutions for first-
order neutral functional differential equations with two deviating arguments,
Elect. J. of Diff. Eqs. 117 (2006), 1–11.

[14] Zhou, Q., Xiao, B., Yu, Y., Liu, B. and L. Huang, Existence and unique-
ness of periodic solutions for a kind of Rayleigh equation with a deviating
argument, J. Korean Math. Soc. 44(3) (2007), 673–682.

[15] Zhu, Y., On stability, boundedness and existence of periodic solution of a
kind of third-order nonlinear delay differential system, Ann. of Diff. Eqs.
8(2) (1992), 249–259.

(Received November 22, 2010)

A. M. A. Abou-El-Ela
Department of Mathematics
Faculty of Science
Assiut University
Assiut 71516, Egypt
E-mail: A El-Ela@aun.edu.eg

A. I. Sadek
Department of Mathematics
Faculty of Science
Assiut University
Assiut 71516, Egypt
E-mail: Sadeka1961@hotmail.com

Ayman. M. Mahmoud
Department of Science and Mathematics
Faculty of Education
Assiut University
New Valley, El-khargah 72111, Egypt
E-mail: math ayman27@yahoo.com


