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A Short Time Asymptotic Behavior of The Brownian

Motion on Scale Irregular Sierpinski Gaskets

By Hideaki Noda

Abstract. We study short time asymptotic estimates for the
transition probability density of the Brownian motion on scale irreg-
ular Sierpinski gaskets which are spatially homogeneous but do not
have any exact self-similarity.

1. Introduction

Fractals are ideal examples of disordered media. We cannot define dif-
ferential calculus on fractals because of the lack of smoothness. This makes
difficult to analyze diffusion phenomena in a rigorous way. Several proba-
bilists have tried to solve such problem by constructing diffusion processes
on fractals. The first work was the construction of Brownian motion on the
Sierpinski gasket done by Goldstein [G] and Kusuoka [Kus]. Then Barlow-
Perkins [BP] showed the existence of the transition probability density of
Brownian motion and the estimate for them on the Sierpinski gasket. Once
a diffusion process is constructed on a metric space, it is of interest to know
relations between properties of the diffusion process and that of the metric
space. Short time asymptotic behavior of a heat kernel is one of them. The
first step in this direction was made by Varadahan [V1]. He showed

lim
t→0

t log pM
t (x, y) = −ρ(x, y)2

2
(1.1)

for a heat kernel pM
t on a Riemannian manifold M , where x, y ∈ M and

ρ is the Riemannian metric on M . Let F be the Sierpinski gasket on R
2

with an intrinsic geodesic metric d2, called a shortest path metric. Kumagai
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[Kum] gave Varadhan type short time asymptotic estimates for the transi-
tion probability density p2

t (x, y) of the Brownian motion on the Sierpinski
gasket: for x, y ∈ F and z ∈ [2/5, 1],

lim
n→∞

((2
5

)n
z
)1/(d2

w−1)
log p2

( 2
5
)nz

(x, y)(1.2)

= −d2(x, y)d2
w/(d2

w−1)G
( z

d2(x, y)

)
,

where d2
w = log 5/ log 2 = 2.321928 . . . and G is a periodic non-constant

positive continuous function with G(5s/2) = G(s). This G is defined as a
Legendre transform of some limiting function of a Laplace transform of a
certain hitting time of Brownian motion.

Barlow-Hambly [BH] introduced scale irregular Sierpinski gaskets and
showed the existence of Brownian motion on them and that of the transition
probability density. They also gave the estimate for transition probability
density functions as we will state below. In the present paper, we will study
their short time asymptotic behaviors.

Let us give some definitions and prepare some notations to state our
results. In the present paper we consider the simplest scale irregular Sier-
pinski gaskets. (See Section 2 for the detail of the scale irregular Sierpinski
gaskets and Brownian motion on them.) We call η ∈ {2, 3}N an environ-
ment. We denote the element in {2, 3}N whose all components are 2 (resp.
3) by 2 (resp. 3).

Define the projection πK
j : {2, 3}K → {2, 3} by πK

j η = ηj , η ∈ {2, 3}K for
each j ∈ K and the left shift operator θK : {2, 3}K → {2, 3}K by πK

j θKη =
πK

j+1η, η ∈ {2, 3}K, j ∈ K, where K is equal to N or Z. We will write them
simply θ and πj when there is no possibility of confusion.

We denote by η̄ an element of {2, 3}Z such that πkη̄ = ηk if k ∈ N and
πkη̄ = 2 otherwise for η ∈ {2, 3}N. Let b(i), m(i) and t(i) : {2, 3} → R for
each i = 2, 3 be given by

(b(2), m(2), t(2)) = (2, 3, 5) and (b(3), m(3), t(3)) = (3, 6, 90/7).

Here b(i), m(i) and t(i) are the length, mass and time scaling factors on
SG(i) for i = 1, 2, see Figure 1. Refer to subsection 2.1 for details of
notations. Let Bn : {2, 3}N → [0,∞), Mn : {2, 3}N → [0,∞) and Tn :
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Fig. 1. The standard Sierpinski gasket SG(2) and a variant SG(3).

{2, 3}N → [0,∞) be given by B0(η) = M0(η) = T0(η) = 1 and

Bn(η) =
n∏

i=1

b(πiη), Mn(η) =
n∏

i=1

m(πiη), Tn(η) =
n∏

i=1

t(πiη)(1.3)

for each n ∈ N. Moreover let dη
w(n) and dη

s(n), η ∈ {2, 3}N, n ∈ N be given
by

dη
w(n) =

log Tn(η)
log Bn(η)

, dη
s(n) = 2

log Mn(η)
log Tn(η)

.

Since it is clear that d2
w(n) = log t(2)/ log b(2) = 2.321928 . . . and d3

w(n) =
log t(3)/ log b(3) = 2.324660 . . . for each n ∈ N, we can set d2

w = d2
w(n) and

d3
w = d3

w(n). Also note that d2
w ≤ dη

w(n) ≤ d3
w for each η ∈ {2, 3}N and

n ∈ N. Let kη(n, m) be given by

kη(m, n) = inf{j ≥ 0 : Tm+j(η)/Bm+j(η) ≥ Tn(η)/Bm(η)}(1.4)

for η ∈ {2, 3}N and m, n ∈ N. Let F η be a scale irregular Sierpinski gasket
and dη a metric on F η for η ∈ {2, 3}N. There is a natural ‘flat’ measure µη

on F η which is characterized by the property that it assigns mass Mn(η)−1

to each triangle in F η of side length Bn(η)−1.
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Fig. 2. The scale irregular Sierpinski gasket for η = {3, 2, 2, 3, 3, · · · }.

On the above setting Barlow and Hambly [BH] have constructed a reg-
ular local Dirichlet form (Eη,Fη) on L2(F η, µη). Let {P η

t }t≥0 be the semi-
group of Markov operators associated with the Dirichlet form. They proved
the following.

Theorem 1.1 (Barlow-Hambly [BH]). Let η ∈ {2, 3}N.

(a) P η
t has a continuous transition probability density pη

t (x, y) with respect
to µη.

(b) There exist positive constants c1, c2, c3, c4 (independent of η ∈ {2, 3}N)
such that if Bm(η)−1 ≤ dη(x, y) < Bm−1(η)−1, Tn(η)−1 ≤ t <

Tn−1(η)−1, then

c3t
−dη

s (n)/2 exp
(
− c4

(dη(x, y)dη
w(m+k)

t

)1/(dη
w(m+k)−1)

)

≤ pη
t (x, y) ≤ c1t

−dη
s (n)/2 exp

(
− c2

(dη(x, y)dη
w(m+k)

t

)1/(dη
w(m+k)−1)

)
,

where k = kη(m, n). Also c3t
−dη

s (n)/2 ≤ pη
t (x, x) ≤ c1t

−dη
s (n)/2 for all

x ∈ F η.

In the present paper we consider {2, 3}Z and {2, 3}N as metric spaces in
a usual manner. Let Ga (resp. Gb) be a graph as illustrated in Figure 3 (a)
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(resp. (b)) and Y 2
· (resp. Y 3

· ) a simple random walk on Ga (resp. Gb),
starting at 0. We will denote by ϕ(·, 2) (resp. ϕ(·, 3)) the probability gen-
erating function of the first hitting time to {z1, z2} by Y 2

· (resp. Y 3
· ). For

details see Section 3. Let Dδ = {z ∈ C : Re(z) > −δ} for δ > 0 and fix
some ε > 0. Then we have the following theorem.

Theorem 1.2. There exists a unique function g : Dε × {2, 3}N → C

satisfying the following properties:

(a) g(z, η) = ϕ(g(z/T1(η), θη), π1η), g(0, η) = 1, g′(0, η) = −1,

(b) g(z, η) is holomorphic in Dε for each η ∈ {2, 3}N,

(c) g : Dε × {2, 3}N → C is continuous.

Let Ψ : [0,∞)×{2, 3}Z → [0,∞) be a function constructed from g given
by the theorem above and we will denote by Ψ∗ a Legendre transform of Ψ
(see Section 4 for details). Our main theorem is the following.

Theorem 1.3. For any compact set K ⊂ (0,∞),

lim
n→∞

sup
η∈{2,3}N

sup
x,y∈F η

z∈K

∣∣∣(Bn(η)
Tn(η)

)1/(dη
w(n)−1)

log pη
Bn(η)
Tn(η)

z
(x, y)

+ dη(x, y)Ψ∗
( z

dη(x, y)
, θnη̄

)∣∣∣ = 0,

where the second term in the left hand side is 0 when x = y.

This theorem corresponds to Varadhan type estimates for usual heat ker-
nel on R

d, (1.1) and is the extension of the result on Sierpinski gaskets, (1.2).
The part θnη̄ expresses the feature of scale irregular Sierpinski gaskets. Also
the uniformity with respect to η ∈ {2, 3}N of the convergence is remarkable
point in this theorem. The speed of convergence is independent of not only
x, y ∈ F η but also η ∈ {2, 3}N. Theorem 1.3 is one form of asymptotic
estimates with respect to the heat kernel pη

t . Note that the exponent of
the distance dη equals 1, which is different from (1.1) or (1.2). Now, let us
rewrite this result into another form. To this end we need some notations.
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Similarly to (1.3) let B−n : {2, 3}Z → [0,∞), and T−n : {2, 3}Z → [0,∞) be
given by

B−n(ξ) =
{ n∏

i=0

b(π−iξ)
}−1

, T−n(ξ) =
{ n∏

i=0

t(π−iξ)
}−1

for each n ≥ 0 and

Bn(ξ) = Bn(Pξ) and Tn(ξ) = Tn(Pξ) for each n ≥ 1,

where P : {2, 3}Z → {2, 3}N is the projection defined by πkP (ξ) = πkξ, ξ ∈
{2, 3}Z, k ∈ N. Let dξ

w(n), ξ ∈ {2, 3}Z, n ∈ Z be given by

dξ
w(n) = dPξ

w (n) if n ≥ 1 and dξ
w(−n) =

log T−n(ξ)
log B−n(ξ)

if n ≥ 0.

Then we obtain two corollaries as another expression of Theorem 1.3. The
first has a similar form to (1.2).

Corollary 1.4. Let K ⊂ (0,∞) be a compact set. There exist a
non-constant function Gz : (0,∞) × {2, 3}Z → (0,∞) for each z ∈ K and
constants c = c(K), c′ = c′(K) > 0 such that c ≤ Gz(s, ξ) ≤ c′ for all
s ∈ (0,∞), ξ ∈ {2, 3}Z, z ∈ K and

lim
n→∞

sup
η∈{2,3}N

sup
x,y∈F η

z∈K

∣∣∣(Bn(η)
Tn(η)

)1/(dη
w(n)−1)

log pη
Bn(η)
Tn(η)

z
(x, y)

+ dη(x, y)dθnη̄
w (m)/(dθnη̄

w (m)−1)Gz

( z

dη(x, y)
, θnη̄

)∣∣∣ = 0,

where m = mη,n,z,x,y is an integer with

Bm(θnη̄)/Tm(θnη̄) ≤ z/dη(x, y) < Bm−1(θnη̄)/Tm−1(θnη̄).

The second has a similar form to (1.1).

Corollary 1.5. There exist a non-constant function G : (0,∞) ×
{2, 3}Z → (0,∞) and constants c, c′ > 0 such that c ≤ G(s, ξ) ≤ c′ for all
s ∈ (0,∞), ξ ∈ {2, 3}Z and

lim
t→0

sup
η∈{2,3}N

sup
x,y∈F η

∣∣∣t1/(dη̄
w(m)−1) log pη

t (x, y)
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+ dη(x, y)dη̄
w(m)/(dη̄

w(m)−1)G
( t

dη(x, y)
, η̄

)∣∣∣ = 0,(1.5)

where m = mη,t,x,y is an integer with

Bm(η̄)/Tm(η̄) ≤ t/dη(x, y) < Bm−1(η̄)/Tm−1(η̄).

A short time asymptotic estimate is an interesting topic by itself. Also
there are some applications. For example this is a powerful tool to show
Schilder type large deviation principle, see for instance [V] and [BK]. In fact
our initial motivation of this paper is to study large deviation for Brownian
motion on scale irregular Sierpinski gaskets. The result will be presented in
a separate paper [N]. The uniformity with respect to η ∈ {2, 3}N in Theorem
1.3 plays an important role in that paper.

2. Dirichlet Form and Brownian Motion on Scale Irregular
Sierpinski Gaskets

2.1. Scale irregular Sierpinski gaskets
We describe the construction of the simplest scale irregular Sierpinski

gaskets. In this paper we restrict our attention to this case for simplic-
ity. However our results in this paper can be extended to the general case
after the obvious changes. See [BH] for a more detailed account of the
general setting. Our notation is slightly different from that of [BH]. We
set (b(2), m(2)) = (2, 3) and (b(3), m(3)) = (3, 6). Let F0 = {a1, a2, a3}
be the set of vertices of a unit equilateral triangle T in R

2. We define
ψ

(2)
i : R

2 → R
2 by

ψ
(2)
i (x) =

1
b(2)

(x − ai) + ai for each 1 ≤ i ≤ m(2).

Let a4, a5, a6 be the midpoints of the 3 sides of F0 and define ψ
(3)
i : R

2 → R
2

by

ψ
(3)
i (x) =

1
b(3)

(x − ai) + ai for each 1 ≤ i ≤ m(3).
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For j = 1, 2, maps {ψ(j)
i }1≤i≤m(j) carry the triangle T into each one of the

m(i) upward facing smaller triangles obtained by decomposing T into b(i)2

congruent equilateral triangles of side b(i)−1. For B ⊂ R
2 set

Φ(a)(B) =
m(a)⋃
j=1

ψ
(a)
j (B) for each a = 2, 3 and

Φ(η)
n (B) = Φ(π1η) ◦ · · · ◦ Φ(πnη)(B).

Then the scale irregular Sierpinski gasket F η associated with the environ-
ment sequence η is defined by the closure of

∞⋃
n=1

Φ(η)
n (F0).

Note that F 2 is the standard Sierpinski gasket SG(2) and F 3 is a variant
SG(3), see Figure 1 . We write W η

n = {(w1, . . . , wn) : 1 ≤ wi ≤ m(πiη), 1 ≤
i ≤ n} for the set of words of length n. For w ∈ W η

n we define

ψw = ψ(π1η)
w1

◦ · · · ◦ ψ(πnη)
wn

.(2.1)

We define F η
n = ∪w∈W η

n
ψw(F0), and call sets of the form ψw(F0) n-cells for

w ∈ W η
n . We define natural graph structure on F η

n by letting {x, y} be
an edge if and only if x, y both belong to the small n-cell. This graph is
connected. Write ρn(x, y) for the graph distance in F η

n . In [BH], Barlow-
Hambly have defined a metric dη on F η which have the following properties:

dη(x, y) = Bn(η)−1ρn(x, y) for all x, y ∈ F η
n and n ≥ 0.(2.2)

There exists a constant c > 0 such that(2.3)

|x − y| ≤ dη(x, y) ≤ c|x − y| for any x, y ∈ F η.

The time scaling factor t(2) associated SG(2) is defined by the expectation
of the first hitting time to {z1, z2} by Y 2

· . The time scaling factors t(3)
associated SG(3) is defined similarly. An easy computation shows that
t(2) = 5 and t(3) = 90/7.

2.2. Dirichlet form and Brownian motion
We can construct a regular local Dirichlet form Eη on L2(F η, µ). See

[BH] for details. Let {P η
t }t≥0 be the semigroup of Markov operators associ-

ated with the Dirichlet form (Eη,Fη) on L2(F η, µη). As (Eη,Fη) is regular
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Fig. 3. F η
1 .

and local, there exists a Feller diffusion (Xt, t ≥ 0, P η
x , x ∈ F η) with

semigroup {P η
t }t≥0, which is called Brownian motion on F η in [BH]. Be-

sides they remark that Gη
λ =

∫
e−λtP η

t dt has a bounded symmetric density
uη

λ(x, y) with respect to µη and uη
λ(x, ·) is continuous for each x.

3. Properties of Moment Generating Function of W

For Brownian motion X· on F η, define the stopping times Sk and Sk
i by

Sk = Sk
0 = inf{t ≥ 0 : Xt ∈ F η

k } and

Sk
i = inf{t > Sk

i−1 : Xt ∈ F η
k \ {XSk

i−1
}} for i ∈ N.

These are the times of the successive visits to F η
k by X·. Also for X·, let

W = inf{t ≥ 0 : Xt ∈ F η
0 \ {X0}}. Let Y m

i = XSm
i

, then Y m
. is a simple

random walk on F η
m. Similarly define stopping times Sk(Y m

· ), Sk
i (Y m

· ),
i ∈ N and W (Y m

· ) by Sk(Y m
· ) = Sk

0 (Y m
· ) = inf{n ∈ Z+ : Y m

n ∈ F η
k },

Sk
i (Y m

· ) = inf{n > Sk
i−1(Y

m
· ) : Y m

n ∈ F η
k \ {YSk

i−1(Y m· )}} for i ∈ N and
W (Y m

· ) = inf{n ∈ Z+ : Y m
n ∈ F η

0 \ {Y m
0 }}. We have the following theorem

in [BH] .

Theorem 3.1. (i) Eη
0 [W ] = 1 for all η ∈ {2, 3}N. (ii) W (Y n

· )/Tn(η) →
W P η

0 -a.s. for each η ∈ {2, 3}N and supη∈{2,3}N Eη
0 [|W (Y n

· )/Tn(η)−W |2] →
0 as n → ∞.
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Note that a probability generating function of W (Y 1
· ) with respect to

P η
0 depends only on π1η. So let us define ϕ : [0, 1] × {2, 3} → R by

ϕ(u, π1η) = Eη
0 [uW (Y 1

· )].

Also let fn(u, η) be a probability generating function of W (Y n
· ) with respect

to P η
0 :

fn(u, η) = Eη
0 [uW (Y n

· )].(3.1)

Since Eη
0 [uS1

k(Y n
· )−S1

k−1(Y n
· )] = Eθη

0 [uS0
k(Y n−1

· )−S0
k−1(Y n−1

· )] = fn−1(u, θη)
and W (Y n

· ) =
∑W (Y 1

· )
k=1 (S1

k(Y n
· ) − S1

k−1(Y
n
· )) for each k ∈ N, we have

fn(u, η) = ϕ(fn−1(u, θη), π1η).(3.2)

In addition we define moment-generating functions g(z, η), gn(z, η) : {z ∈
C : Re(z) ≥ 0} × {2, 3}N → C, n = 0, 1, 2, . . . to be

gn(z, η) = Eη
0

[
exp

(
− z

W (Y n
· )

Tn(η)

)]
and g(z, η) = Eη

0 [exp(−zW )].

We check at once that for all η ∈ {2, 3}N, s ≥ 0 and n ≥ 1

gn+1(T1(η)s, η) = ϕ(gn(s, θη), π1η),(3.3)

which is clear from (3.2).
Let Gn(s, η) = − log gn(s, η) for s ≥ 0 and η ∈ {2, 3}N. Noting that

ϕ(u, π1η) = g1(−T1(η) log u, η) for all u ∈ (0, 1] and η ∈ {2, 3}N, by (3.3) we
have

Gn+1(s, η) = G1

(
T1(η)Gn

( s

T1(η)
, θη

)
, η

)
(3.4)

for all η ∈ {2, 3}N, s ≥ 0 and n ≥ 1. By the way the function G1(·, η) is
extensible to a holomorphic function in a neighborhood of the origin. This
follows from the exponential decay of the tail probability of W (Y 1

· ).

Lemma 3.2. For any η ∈ {2, 3}N,

lim sup
n→∞

1
n

log P η
0 [W (Y 1

· ) ≥ n] < 0.
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Proof. We only consider the case (b) in Figure 3. Let vj
n =

P η
bj

[W (Y 1
· ) = n] for j = 1. . . . 7 and v0

k = P η
0 [W (Y 1

· ) = n]. Note that
v1
n = v2

n, v3
n = v5

n and v6
n = v7

n by the symmetry of the figure. Set
vn = (v0

n, v1
n, v3

n, v4
n, v6

n)′. Then the markov property shows that there exists
a matrix such that vn = Avn−1. We can solve this difference equation by
considering the Jordan canonical form of A. Noting that v0

n → 0 as n → ∞,
it is easy to complete the proof. �

Let B(0, δ) = {z ∈ C : |z| < δ} for δ > 0. It is easy to check that
G1(0, η)=0, G′

1(0, η) = 1. Therefore there are ε0 > 0 and M > 0 such that

|G1(z, η)| ≤ M |z| for any z ∈ B(0, ε0) and η ∈ {2, 3}N.

Constants ε0 and M are not depending on η ∈ {2, 3}N, because G1 depends
only on π1η = η1 ∈ {2, 3}. Let Dδ = {z ∈ C : Re(z) > −δ} for δ > 0. We
can show the following in the same way as Proposition 3.7 in [Kus].

Proposition 3.3. Let ε1 = (ε0/2) ∧ (1/(2M)). Then for each n ∈ N,
there are holomorphic functions Hn(z, η) defined in B(0, ε1) such that

Gn(z, η) = z(1 + Hn(z, η)), |Hn(z, η)| ≤ 2M |z|

for any η ∈ {2, 3}N. In particular for ε2 = ε1/4,

sup
η∈{2,3}N,n∈N

|gn(−ε2, η)| ∨ |g(−ε2, η)| < ∞.

Proof. We only give the proof of the latter part. It follows immedi-
ately that supn∈N,η∈{2,3}N gn(−2ε2, η) < ∞ from the former part, which im-
plies that the sequence {exp(ε2W (Y n

· )/Tn(η))}∞n=1 is uniformly integrable.
Also we have already known that W (Y n

· )/Tn(η) → W as n → ∞ from The-
orem 3.1. These imply supη∈{2,3}N Eη

0 [exp(ε2W )] < ∞. This completes our
assertion. �

Let ε = ε2/4. Then we have the following lemma.

Lemma 3.4.

(1) Functions gn(·, η) : Dε → C is holomorphic for each n ∈ N, η ∈ {2, 3}N

and gn : Dε × {2, 3}N → C is continuous for each n ∈ N.



12 Hideaki Noda

(2) For each compact set K ⊂ Dε,

sup
z∈K,η∈{2,3}N

|g(z, η) − gn(z, η)| → 0 as n → ∞.

In particular from (1) and (2), g(·, η) : Dε → C is holomorphic for each
η ∈ {2, 3}N and g : Dε × {2, 3}N → C is continuous.

Proof. (1) It is easy to see that gn(·, η) : Dε → C is holomorphic for
each n ∈ N, η ∈ {2, 3}N from Proposition 3.3. Also noting that gn(z, η)
depends only on first n components of η, the continuity of gn is obvious.
(2) Since there is a constant c = c(ε) > 0 such that

|g(z, η) − gn(z, η)| ≤ Eη
0

[∣∣∣ ∫ W

W (Y n· )/T (η)
z exp(−zt)dt

∣∣∣]

≤ |z|Eη
0

[
eε(W+W (Y n

· )/Tn(η))
∣∣∣W − W (Y n

· )
Tn(η)

∣∣∣] ≤ c|z|Eη
0

[∣∣∣W − W (Y n
· )

Tn(η)

∣∣∣2]1/2

for all z ∈ Dε by Schwarz inequality and Proposition 3.3, Theorem 3.1 (ii)
implies our assertion. �

The moment-generating function g is characterized by Theorem 1.2.
Now let us prove this theorem.

Proof of Theorem 1.2. It is easy to check that the moment-gen-
erating function g satisfies (a), (b) and (c). Let us prove the uniqueness.
Though we follow the proof of Theorem 8.2 in [H], we need some improve-
ments. Let U1(z, η) and U2(z, η) be functions satisfying (a), (b) and (c).
We choose ε1 > 0 such that ε1 < ε. By assumption for any η ∈ {2, 3}N there
are ak(η), bk(η) ∈ C, k ≥ 2 such that

U1(z, η) = 1 − z +
∞∑

k=2

ak(η)zk and U2(z, η) = 1 − z +
∞∑

k=2

bk(η)zk

for any z ∈ B(0, ε1). Setting Mi(r) = sup{|Ui(z, η)| : |z| = r, η ∈ {2, 3}N}
for i = 1, 2 and r > 0, we have

|an(η)| ≤ M1(ε1)
εn
1

, |bn(η)| ≤ M2(ε1)
εn
1

.(3.5)
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Note that M1 and M2 exist by the continuity of U1 and U2. Define the
function γ : Dε × {2, 3}N → C by

γ(z, η) = z
∞∑

k=2

(ak(η) − bk(η))zk−2.

Then we have limz→0 supη∈{2,3}N |γ(z, η)| = 0 from (3.5). By the way there
are constants s0 = s0(ε1) > 0 and c = c(ε1) such that

sup
η∈{2,3}N,i=1,2

|Ui(s, η)| ≤ 1 − s +
c

ε1 − s
s2 < 1

for any s > 0 with s < s0. Also we have |ϕ′(z, π1η)| ≤ T1(η) for z ∈ B(0, 1).
Therefore since

|T1(η)sγ(T1(η)s, η)|
= |ϕ

(
U1(s, θη), π1(η)

)
− ϕ

(
U2(s, θη), π1(η)

)
| ≤ T1(η)|sγ(s, θη)|

for any s < s0 and η ∈ {2, 3}N from (a), we get |γ(s, η)| ≤ |γ(s/T1(η), θη)|.
Hence we obtain

|γ(s, η)| ≤ lim
n→∞

|γ(
s

Tn(η)
, θnη)| = 0 for all s < s0 and η ∈ {2, 3}N.

Uniqueness theorem implies our assertion. �

At the end of this section, we give another important property of g.

Lemma 3.5. There exist constants c, c′ > 0 such that

exp(−cs1/dη
w(n)) ≤ g(s, η) ≤ exp(−c′s1/dη

w(n))

for any η ∈ {2, 3}N, n ≥ 0, s ∈ [Tn(η), Tn+1(η)].

Proof. We follow the argument of Proposition 3.2 in [Kum1].
(i) Proof of the lower bounds: By Jensen inequality g(s, η) = Eη

0 [e−sW ] ≥
e−s for all η ∈ {2, 3}N and s ∈ [0,∞). We can choose c > 0 such that

e−s ≥ e−t(3) ≥ 4 exp(−cs1/d3
w) for any s ∈ [1, t(3)].
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Hence we obtain

g(s, η̂) ≥ e−s ≥ 4 exp(−cs1/d3
w) ≥ 4 exp(−cs1/dη̃

w(n))

for all n ≥ 1, η̃, η̂ ∈ {2, 3}N, s ∈ [1, t(3)]. Therefore by the definition (3.1)
of fn(s, η) and Theorem 1.2 (a) we get

g(Tn(η)s,η) = fn(g(s, θnη), η) ≥ 4
(g(s, θnη)

4

)Bn(η)

≥ 4 exp(−cBn(η)s1/dη
w(n)) = 4 exp(−c(Tn(η)s)1/dη

w(n))

for any s ∈ [1, t(3)], η ∈ {2, 3}N. Thus we see that

g(s, η) ≥ 4 exp(−cs1/dη
w(n))

for any η ∈ {2, 3}N and s ∈ [Tn(η), Tn+1(η)].
(ii) Proof of the upper bounds: It is easy to see that supη∈{2,3}N g(1, η) < 1
by Theorem 1.2 (c). So there exists c′ > 0 such that

g(s, η) ≤ exp(−c′t(3)1/d2
w) ≤ exp(−c′s1/d2

w)

for any s ∈ [1, t(3)] and η ∈ {2, 3}N. So we have

g(s, η̂) ≤ exp(−c′s1/d2
w) ≤ exp(−c′s1/dη̃

w(n))

for any η̃, η̂ ∈ {2, 3}N, s ∈ [1, t(3)]. Therefore by the definition (3.1) of
fn(s, η) and Theorem 1.2 (a),

g(Tn(η)s,η) = fn(g(s, θnη), η) ≤ g(s, θnη)Bn(η)

≤ exp(−c′Bn(η)s1/dη
w(n)) = exp(−c′(Tn(η)s)1/dη

w(n))

for any s ∈ [1, t(3)]. As a result we deduce that

g(s, η) ≤ exp(−c′s1/dη
w(n))

for any η ∈ {2, 3}N and s ∈ [Tn(η), Tn+1(η)]. This completes the proof of
the lemma. �
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4. Properties of Ψ(s, ξ)

From the definition of ϕ(u, π1η), we have ϕ(u, π1η) = P η
0 [W (Y 1

· ) =
b(π1η)]ub(π1η) +

∑∞
j=b(π1η)+1 P η

0 [W (Y 1
· ) = j]uj . Let us define h : [0, 1] ×

{2, 3} → [0,∞) by

h(u, k) = − log
ϕ(u, k)
ub(k)

.

Note that h(·, k) : [0, 1] → [0,∞) is continuous for each k ∈ {2, 3} and there
exist constants c, c′ > 0 such that

0 ≤ h(u, k) ≤ c and − c ≤ h′(u, k) ≤ −c′(4.1)

for any u ∈ [0, 1] and k ∈ {2, 3} by the definition. Here we define Ln :
[0,∞) × {2, 3}N → [0,∞) by

Ln(s, η) = − log g(Tn(η)s, η)
Bn(η)

.

Note that Ln(s, η) is a concave function with respect to s for each η ∈ {2, 3}N

and n ∈ N. In the case η = 2 ( i.e. usual Sierpinski gasket) limn→∞ Ln(s,2)
exists for all s ≥ 0 (see Lemma 3.3 in [Kum]). But limn→∞ Ln(s, η) does not
necessarily exist for all η ∈ {2, 3}N. By using Theorem 1.2 (a) repeatedly,
we have

g(Tn(η)s, η) = g(s, θnη)Bn(η)
n∏

k=1

exp
(
− Bk−1(η)h

(
g
(Tn(η)
Tk(η)

s, θkη
)
, πkη

))

for all η ∈ {2, 3}N, s ∈ [0,∞) and n ∈ N. Therefore an easy computation
shows that

Ln(s,η) = − log g(s, θnη) +
1

b(π0(θnη̄))
h
(
g(s, θnη), π0(θnη̄)

)

+
n−1∑
k=1

B−(n−k)(θ
nη̄)h

(
g
( s

T−(n−k−1)(θnη̄)
, θ−(n−k)θnη

)
, π−(n−k)(θ

nη̄)
))

≤ − log g(s, θnη) +
1

b(π0(θnη̄))
h
(
g(s, θnη), π0(θnη̄)

)

+
∞∑

j=1

B−j(θnη̄)h
(
g
( s

T−(j−1)(θnη̄)
, P (θ−jθnη̄)

)
, π−j(θnη̄)

))
.
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This motivates us to consider the following functions. Let Fk : [0,∞) ×
{2, 3}Z → [0,∞) for k ≥ 0 be given by

Fk(s, ξ) = B−k(ξ)h
(
g(s/T−(k−1)(ξ), P (θ−kξ)), π−kξ

)
, k ≥ 1

and

F0(s, ξ) =
1

b(π0ξ)
h
(
g(s, P (ξ)), π0ξ

)
.

By (4.1) we see that sups∈[0,∞),ξ∈{2,3}Z

∑∞
k=0 Fk(s, ξ) < ∞. So we can define

the function Ψ : [0,∞) × {2, 3}Z → [0,∞) to be

Ψ(s, ξ) = − log g(s, P (ξ)) +
∞∑

k=0

Fk(s, ξ).(4.2)

Also we have

F ′
k(s, ξ) = − B−k(ξ)

T−(k−1)(ξ)

× h′(g(
s

T−(k−1)(ξ)
, P (θ−kξ)), π−kξ

)
E

P (θ−kξ)
0

[
W exp(− sW

T−(k−1)(ξ)
)
]

for each k ≥ 1 and

F ′
0(s, ξ) = − 1

b(π0ξ)
h′(g(s, P (ξ)), π0ξ

)
E

P (ξ)
0

[
W exp(−sW )

]
.

By Lemma 3.5 and Schwarz inequality there are constants c, c′ > 0 such
that

E
P (θ−kξ)
0

[
W exp(− sW

T−(k−1)(ξ)
)
]
≤ c exp(−c′(t(2)ks)1/d3

w)(4.3)

for any s > 0 and k ≥ K, where K = K(s) is a non-negative integer with
t(2)Ks ≥ 1. For each s0 ∈ (0,∞), let (a, b) ⊂ (0,∞) be an open interval
containing the s0. Then from (4.1) and (4.3), we see that

∞∑
k=K

|F ′
k(s, ξ)| ≤ c′′

∞∑
k=K

( t(3)
b(3)

)k exp(−c′(t(2)ka)1/d3
w) < ∞
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for any s ∈ (a, b). Hence Ψ(s, ξ) is differentiable with respect to s for each
ξ ∈ {2, 3}Z and we obtain

Ψ′(s, ξ) = −g′(s, P (ξ))
g(s, P (ξ))

+
∞∑

k=0

F ′
k(s, ξ).(4.4)

Ψ(s, ξ) has the following properties and approximates Ln(s, η) in the
following sense.

Lemma 4.1.

(1) Ψ : [0,∞) × {2, 3}Z → [0,∞) is continuous.

(2) sups∈[0,∞),ξ∈{2,3}Z |Ln(s, P (ξ)) − Ψ(s, θnξ)| → 0 as n → ∞.

(3) The function Ψ satisfies Ψ(0, ξ) = 0 and the following functional equa-
tion Ψ(T1(ξ)s, ξ) = B1(ξ)Ψ(s, θξ) for all s ∈ [0,∞) and ξ ∈ {2, 3}Z.

Proof. (1) From Theorem 1.2 (c) it suffices to show the continuity
the second term of the right hand side of (4.2). It is easy to see that Fk :
[0,∞) × {2, 3}N → [0,∞) is continuous by Theorem 1.2 (c) and continuity
of h(·, π−kξ) for each k ≥ 0. Since there is some constant c > 0 such that

sup
s∈[0,∞)

ξ∈{2,3}Z

∣∣∣ ∞∑
k=1

Fk(s, ξ) −
m∑

k=1

Fk(s, ξ)
∣∣∣ ≤ c

∞∑
k=m+1

1
b(2)k+1

=
c

b(2)m

for any m ∈ N by (4.1), the partial sum
∑m

k=1 Fk(s, ξ) converges uniformly
with respect to s ∈ [0,∞) and ξ ∈ {2, 3}Z as m → ∞. This implies our
assertion.
(2) It is easily seen that B−(n−k)(θnξ) = Bk−1(ξ)/Bn(ξ), T−(n−k−1)(θnξ) =
Tk(ξ)/Tn(ξ), π−(n−k)θ

nξ = πkPξ and P (θnξ) = θn(Pξ). These imply that

Fn−k(s, θnξ) =
Bk−1(ξ)
Bn(ξ)

h
(
g
(Tn(ξ)
Tk(ξ)

s, θkPξ
)
, πkPξ

)
for all k ∈ N with 1 ≤ k ≤ n − 1 and

F0(s, θnξ) =
1

b(πnPξ)
h
(
g(s, θnPξ), πnPξ

)
.
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Therefore it follows that∣∣∣ log g(Tn(ξ)s, Pξ)
Bn(ξ)

− Ψ(s, θnξ)
∣∣∣ =

∣∣∣ ∞∑
k=n

Fk(s, θnξ)
∣∣∣ ≤ c

b(2)n

for some constant c > 0 by (4.1).
(3) It is easy check that B1(ξ)Fk(s, θξ) = Fk−1(T1(ξ)s, ξ) for all k ∈ N and
B1(ξ)(− log g(s, P (θξ)) + F0(s, θξ)) = − log g(T1(ξ)s, P (ξ)), where we use
Theorem 1.2 (a) in the second equation. These imply our assertion. �

Next we state some properties of Ψ′.

Lemma 4.2.

(1) Ψ′ : (0,∞) × {2, 3}Z → (0,∞) is continuous.

(2) Ψ′(s, ξ) is strictly decreasing with respect to s ∈ (0,∞) for each ξ ∈
{2, 3}Z.

(3) minξ∈{2,3}Z Ψ′(s, ξ) → ∞ as s ↓ 0 and maxξ∈{2,3}Z Ψ′(s, ξ) → 0 as
s → ∞.

Proof. (1) This is the same as that of Lemma 4.1 except for obvious
modifications.
(2) Let η be a element of {2, 3}N whose the first component π1η is π−kξ.
Then note that by Hölder’s inequality

h
(
g(s/T−(k−1)(ξ), P (θ−kξ)), π−kξ

)
= − log Eη

0

[
E

P (θ−kξ)
0

[
exp

(
− sW

T−(k−1)(ξ)
)]W (Y 1

· )−b(π1η)
]

is a concave function with respect to s > 0 for each k ≥ 1, ξ ∈ {2, 3}Z.
Hence the second term in the right hand of (4.4) is monotone decreasing with
respect to s for each ξ ∈ {2, 3}Z. Since it is easy to check that 2-th derivative
of − log g(s, η) is strictly negative for all s ∈ (0,∞) and η ∈ {2, 3}N, the
first term in the right hand of (4.4) is strictly monotone decreasing. This
implies our assertion.
(3) Fix ξ ∈ {2, 3}Z. As we stated above, the first term in the right hand of
(4.4) is strictly monotone decreasing. We assume that this term converges to
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c > 0 as s → ∞. Then an easy computation shows that there is a constant
c′ such that − log g(s, P (ξ)) ≥ c′s for large enough s, which contradicts
Lemma 3.5. So the first term in the right hand of (4.4) converges to 0 as
s → ∞. Also by (4.1) and the monotone convergence theorem, we see that

∞∑
k=1

F ′
k(s, ξ) ≥ c′

∞∑
k=1

B−k(ξ)
T−(k−1)(ξ)

E
P (θ−kξ)
0

[
W exp

(
− sW

T−(k−1)(ξ)
)]

→ ∞

as s ↓ 0. Similarly we have
∑∞

k=1 F ′
k(s, ξ) → 0 as s → ∞ by (4.1) and

Lebesgue convergence theorem. As a result we have Ψ′(s, ξ) → ∞ as s ↓ 0
and Ψ′(s, ξ) → 0 as s → ∞ for each ξ ∈ {2, 3}Z. Since Ψ′(·, ξ) is strictly
monotone decreasing from (2), Dini’s theorem implies our assertion. �

From Lemma 4.2 (2), Ψ′(·, ξ) is strictly decreasing for each ξ ∈ {2, 3}Z.
Therefore Ψ′(·, ξ) has the inverse function (Ψ′)−1(·, ξ) for each ξ ∈ {2, 3}Z.

Lemma 4.3.

(1) For each compact set K ⊂ (0,∞) there exists compact set K1 ⊂ (0,∞)
such that ⋃

ξ∈{2,3}Z

(Ψ′)−1(K, ξ) ⊂ K1.(4.5)

(2) (Ψ′)−1 : (0,∞) × {2, 3}Z → (0,∞) is continuous.

Proof. (1) Let us denote by K2 the left hand side of (4.5). Assume
that inf K2 = 0. Then there is an ∈ K2 such that 0 < an < 1/n for each
n ∈ N. Further for each an there exist ξn ∈ {2, 3}Z and zn ∈ K such that
Ψ′(an, ξn) = zn ∈ K. This contradicts Lemma 4.2 (3). Next assume that
supK2 = ∞. Then there exist bn ∈ K2 and ξn ∈ {2, 3}Z such that bn > n

and Ψ′(bn, ξn) ∈ K for each n ∈ N. This contradicts Lemma 4.2 (3).
(2) It is easily seen that (Ψ′)−1(·, ξ) : (0,∞) → (0,∞) is continuous for each
ξ ∈ {2, 3}Z. By Lemma 4.2 (1), Ψ′(s, ξ′) converges to Ψ′(s, ξ) pointwise as
ξ′ → ξ for each s ∈ (0,∞). So does inverse function. Since (Ψ′)−1(·, ξ) is
monotone decreasing, this convergence is compact uniform on (0,∞). This
completes the proof. �
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Define the Legendre transform Ψ∗(z, ξ) by Ψ∗(z, ξ) = sups>0{Ψ(s, ξ) −
zs} for z > 0 and ξ ∈ {2, 3}Z. Since we have

Ψ∗(z, ξ) = sup
s>0

{Ψ(T1(ξ)s, ξ) − zT1(ξ)s} = B1(ξ)Ψ∗
( T1(ξ)

B1(ξ)
z, θξ

)

by Lemma 4.1 (3), the function Ψ∗ satisfies the following functional equa-
tion:

Ψ∗
(B1(ξ)

T1(ξ)
z, ξ

)
= B1(ξ)Ψ∗(z, θξ).

From T−n(ξ) = Tn+1(θ−(n+1)ξ)−1 and B−n(ξ) = Bn+1(θ−(n+1)ξ)−1, we ob-
tain

Ψ∗(z, ξ) =

{
Bn(ξ)Ψ∗(Tn(ξ)z/Bn(ξ), θnξ) if n ≥ 1,

Bn(ξ)Ψ∗(Tn(ξ)z/Bn(ξ), θn−1ξ) if n < 0
(4.6)

for all ξ ∈ {2, 3}Z and z > 0. At the end of this section, we give some
properties of Ψ∗.

Lemma 4.4.

(1) Ψ∗ : (0,∞) × {2, 3}Z → (0,∞) is continuous.

(2) There exist constants c, c′ > 0 such that

cz−1/(dξ
w(n)−1) ≤ Ψ∗(z, ξ) ≤ c′z−1/(dξ

w(n)−1)

for any z > 0 and ξ ∈ {2, 3}Z, where n is an integer with Bn(ξ)/
Tn(ξ) ≤ z < Bn−1(ξ)/Tn−1(ξ).

(3) Let K be a compact set on (0,∞). There exists a compact set Γ =
Γ(K) ⊂ (0,∞) such that Ψ∗(z, ξ) = sups∈Γ{Ψ(s, ξ) − zs} for any
z ∈ K and ξ ∈ {2, 3}Z.

Proof. (1), (3) Since Ψ′(·, ξ) is strictly decreasing for each ξ ∈ {2, 3}Z,
(Ψ′)−1(z, ξ) is a unique point such that Ψ∗(z, ξ) = Ψ((Ψ′)−1(z, ξ), ξ) −
z(Ψ′)−1(z, ξ) for each z ∈ (0,∞), ξ ∈ {2, 3}Z. By Lemma 4.1 (1) and Lemma
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4.3 (2), Ψ : [0,∞)×{2, 3}Z → [0,∞) and (Ψ′)−1 : (0,∞)×{2, 3}Z → (0,∞)
are continuous. These imply our assertion.
(2) Since supξ∈{2,3}Z Ψ∗(1, ξ) < ∞, from (4.6) there is a constant c′ > 0
such that

Ψ∗(z, ξ) ≤ Ψ∗
(Bn(ξ)

Tn(ξ)
, ξ

)
= Bn(ξ) sup

ξ∈{2,3}Z

Ψ∗(1, ξ) ≤ c′z−1/(dξ
w(n)−1)

for any n ∈ Z, ξ ∈ {2, 3}Z and z ∈ [Bn(ξ)/Tn(ξ), Bn−1(ξ)/Tn−1(ξ)). The
lower bound is proved in exactly the same way. �

5. Hitting Time and Distance

In this section, our goal is to prove the next proposition. This shows the
relation between hitting times and distances.

Proposition 5.1. For any δ0 > 0 and compact set K ⊂ (0,∞),

lim
n→∞

sup
η∈{2,3}N

sup
dη(x,y)≥δ0

s∈K

∣∣∣ log Eη
x[exp(−Tn(η)sτy)]

log g(Tn(η)s, η)
− dη(x, y)

∣∣∣ = 0,

where τy = inf{t ≥ 0 : Xt = y}.

In the case η = 2, this proposition corresponds Lemma 3.4 in [Kum].
We make some preparations to show this proposition. First, we consider
the estimates of probability generating functions of stopping times S0(Y n

· )
and W (Y n

· ). Let c1 = maxη∈{2,3}N maxx∈F η
1

Eη
x[S0(Y 1

· )].

Lemma 5.2. For any η ∈ {2, 3}N, n ∈ N, x ∈ F η
n and u ∈ [0, 1],

Eη
x[uS0(Y n

· )] ≥ Eη
0 [uW (Y n

· )]c1 .(5.1)

Proof. Let z1, z2 ∈ F η
0 and b1 ∈ F η

1 be as in Figure 3. Then by
Jensen’s inequality we have

Eη
0 [uW (Y 1

· )]c1 ∨ Eη
b1

[uS0(Y 1
· )]c1 ≤ uc1 ≤ Eη

x[uS0(Y 1
· )](5.2)
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for all η ∈ {2, 3}N, x ∈ F η
1 and u ∈ [0, 1]. Thus by strong Markov property

we see that

Eη
b1

[uS0(Y m
· )]c1 = Eη

b1

[
Eη

0 [uS1
1(Y m

· )]S
0(Y 1

· )
]c1

≤ Eη
x

[
Eη

0 [uS1
1(Y m

· )]S
0(Y 1

· )
]

= Eη
x[uS0(Y m

· )](5.3)

for all η ∈ {2, 3}N, x ∈ F η
1 , m ∈ N and u ∈ [0, 1]. Now we will prove (5.1)

by induction on n. Assume that our assertion is true for n − 1. Then we
have

Eη
0 [uS1

1(Y n
· )]c1 ≤ Eη

x[uS1(Y n
· )](5.4)

for any η ∈ {2, 3}N and x ∈ F η
n . Note that S1

1(Y n
· ) is the first hitting time

of b1, b2 under P η
0 . Hence by (5.3) and (5.4) we obtain

Eη
x[uS0(Y n

· )] =
∑

y∈C1(x)

Eη
x[1{XS1(Y n· )=y}u

S1(Y n
· )]Eη

y [uS0(Y n
· )]

≥ Eη
x[uS1(Y n

· )]Eη
b1

[uS0(Y n
· )]c1 ≥ Eη

0 [uS1
1(Y n

· )]c1Eη
b1

[uS0(Y n
· )]c1

for all x ∈ F η
n \ F η

1 , where C1(x) is the 1-cell which contains x. Note that
this is true for all x ∈ F η

1 from (5.3). On the other hand by strong Markov
property

Eη
0 [uW (Y n

· )] = Eη
0 [uS1

1(Y n
· )]Eη

b1
[uτ1,2(Y n

· )] ≤ Eη
0 [uS1

1(Y n
· )]Eη

b1
[uS0(Y n

· )],

where τ1,2(Y n
· ) = inf{i ∈ N : Y n

i ∈ {z1, z2}}. This implies (5.1) is true for
n. �

Next we prove the continuous version of Lemma 5.2.

Lemma 5.3. It holds that

Eη
x[uS0

] ≥ Eη
0 [uW ]c1 for all η ∈ {2, 3}N, x ∈ F η and u ∈ [0, 1].

Proof. Firstly from strong Markov property and Lemma (5.2) we see
that

Eη
0 [uW ]c1 = Eη

0

[
Eη

0 [uSn
1 ]W (Y n

· )
]c1 ≤ Eη

x

[
Eη

0 [uSn
1 ]S

0(Y n
· )

]
= Eη

x[uS0
](5.5)



Short Time Behavior of BM on SISG 23

for all η ∈ {2, 3}N, n ∈ N, x ∈ F η
n and u ∈ [0, 1]. Next we consider in case

x ∈ F η \ F η
∞. We have by strong Markov property

Eη
x[uS0

] =
2∑

i=0

Eη
wn

i
[uS0

]Eη
x[uSn

1{XSn=wn
i }] ≥ Eη

0 [uW ]c1Eη
x[uSn

](5.6)

for all n ∈ N, where {wn
0 , wn

1 , wn
2 } is the boundary of n-complex which

contains x. Since P η
x [limn→∞ Sn = 0] = 1, the dominated convergence

theorem implies our assertion. �

Let us state some properties of resolvent densities. Let η ∈ {2, 3}N and
remind the function

uη
s(x, y) =

∫ ∞

0
e−stpη

t (x, y) dt, (s, x, y) ∈ (0,∞) × F η × F η.

Lemma 5.4.

(1) Let η ∈ {2, 3}N. It follows that

Eη
x[e−sτy ] =

uη
s(x, y)

uη
s(x, x)

for all x, y ∈ F η and s > 0,

where τy = inf{t ≥ 0 : Xt = y}.

(2) There exist constants c, c′ > 0 such that

c
Mn(η)
Tn(η)

≤ us(x, x) ≤ c′
Mn(η)
Tn(η)

for any η ∈ {2, 3}N, x ∈ F η and s ≥ 1, where n is a positive integer
with Tn(η) ≤ s ≤ Tn+1(η).

Proof. (1) We can deduce this lemma in a similar fashion of Lemma
5.6 in [BP].
(2) Firstly we shall prove the lower bounds. The function pη

t (x, x) is decreas-
ing in t for each x ∈ F η from a general fact about symmetric processes. So

uη
s(x, x) ≥

∫ 1/s

0
e−stpη

t (x, x)dt ≥ 1 − e−1

s
pη
1/s(x, x).
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By Theorem (1.1) we have the lower bounds.
Next we shall prove the upper bounds. From Theorem (1.1) and the

monotonicity of pη
t (x, x) with respect to t again, we have pη

t (x, x) ≤ c1Mn(η)
if 1/Tn+1(η) ≤ t ≤ 1/Tn(η) and pη

t (x, x) ≤ c1 if 1 ≤ t. We divide uη
s(x, x)

into three parts:

uη
s(x, x) =

n∑
j=0

∫ 1/Tj(η)

1/Tj+1(η)
e−stpη

t (x, x)dt

+
∞∑

j=n+1

∫ 1/Tj(η)

1/Tj+1(η)
e−stpη

t (x, x)dt +
∫ ∞

1
e−stpη

t (x, x)dt.

Clearly the third term is smaller than c1/Tn(η). Also it follows easily
that there is some constant c2 > 0 such that the first term is bounded
c2Mn(η)/Tn(η) for any η ∈ {2, 3}N, x ∈ F η, s ≥ 1 and n ∈ N with
Tn(η) ≤ s ≤ Tn+1(η). Finally we estimate the second term. However,
noting that e−x/t(3) − e−x ≤ (1 − 1/t(3))x for all x > 0, this is straightfor-
ward too. Then we have our assertion. �

From above Lemma 5.4 there is a constant C > 0 such that

Eη
x[exp(−sτy)] =

uη
s(x, y)

uη
s(x, x)

≤ c′

c

uη
s(y, x)

uη
s(y, y)

= CEη
y [exp(−sτx)](5.7)

for any η ∈ {2, 3}N, x, y ∈ F η and s ≥ 1. We can now prove Proposition
5.1.

Proof of Proposition 5.1. Let η ∈ {2, 3}N, m ∈ N and a shortest
F η

m-path be π = {x0, · · · , xl} connecting x(= x0) and y(= xl) for each
x, y ∈ F η

m. As in the proof of Lemma 3.4 in [Kum], Theorem 1.2 (1) and
strong Markov property give( 1

m(3)

)l
g
( s

Tm(η)
, θmη

)l
≤ Eη

x[exp(−sτy)] ≤ g
( s

Tm(η)
, θmη

)l

for all η ∈ {2, 3}N, m ≥ 1 and s > 0. Substituting Tn(η)s for s, we get

∣∣∣ log Eη
x[exp(−Tn(η)sτy)]

Bm(η) log g(Tn(η)s
Tm(η) , θmη)

− dη(x, y)
∣∣∣ ≤ −c log m(3)

log g(Tn(η)s
Tm(η) , θmη)

,(5.8)
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where c is the constant in (2.3). Note that dη(x, y) = l/Bm(η). In particular
considering in the case x, y ∈ F η

0 , we have

lim
n→∞

sup
η∈{2,3}N

sup
s∈K

∣∣∣ log g(Tn(η)s, η)
Bm(η) log g(Tn(η)s/Tm(η), θmη)

− 1
∣∣∣ = 0(5.9)

for each m ∈ N. By adding (5.8) and (5.9) we see that

lim
n→∞

sup
η∈{2,3}N

sup
x,y∈F η

m
s∈K

∣∣∣ log Eη
x[exp(−Tn(η)sτy)]

log g(Tn(η)s, η)
− dη(x, y)

∣∣∣ = 0(5.10)

for each m ∈ N. Next we consider the case x, y ∈ F η \ F η
m. Let Am(x) be a

m-complex which contains x. For any δ0 > 0 there exists M = M(δ0) ∈ N

such that if m ≥ M then Am(x) ∩ Am(y) = φ for any x, y ∈ F η \ F η
m with

dη(x, y) ≥ δ0. By (5.7) and strong Markov property we have

Eη
x[exp(−sτy)] =

2∑
i=0

Eη
x[exp(−sSm

0 )1{XSm
0

=zm
i }]E

η
zm
i

[exp(−sτy)]

≥ C−1Eη
x[exp(−sSm

0 )]Eη
y [exp(−sSm

0 )] min
i,j

Eη
wm

j
[exp(−sτzm

i
)]

for all η ∈ {2, 3}N, x ∈ F η and s ≥ 1, where ∂Am(x) = {zm
0 , zm

1 , zm
2 },

∂Am(y) = {wm
0 , wm

1 , wm
2 }. In the same way we have

Eη
x[exp(−sτy)] ≤ C max

i,j
Eη

wm
j

[exp(−sτzm
i

)]

for all η ∈ {2, 3}N, x ∈ F η and s ≥ 1. By the way we have

log Eη
x[exp(−sSm

0 )]
log g(s/Tm(η), θmη)

=
log Eη

x[exp(−sSm
0 )]

log Eη
0 [exp(−sSm

1 )]
≤ c1

for all η ∈ {2, 3}N, x ∈ F η, m ∈ N and s > 0 from Lemma 5.3. Since
supη∈{2,3}N supx,y∈F η supi,j |dη(x, y) − dη(zm

i , wm
j )| → 0 as m → ∞, (5.9)

and (5.10) imply the proof. �

Define the function kx,y
n (s, η) : [0,∞) × {2, 3}N → R by

kx,y
n (s, η) = − log Eη

x[exp(−Tn(η)τys)]
Bn(η)
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for each x, y ∈ F η and n ∈ N. Set cK = sups∈K,η∈{2,3}N,n∈N |Ln(s, η)| for a
compact set K ⊂ (0,∞). Then Theorem 1.2 (c) implies 0 < cK < ∞. For
any ε > 0 there exists N = N(ε, K) ∈ N such that if n ≥ N then

sup
η∈{2,3}N

sup
s∈K

dη(x,y)≥δ0

∣∣∣kx,y
n (s, η)
Ln(s, η)

− dη(x, y)
∣∣∣ <

ε

cK

from Lemma 5.1. Therefore we deduce that

lim
n→∞

sup
η∈{2,3}N

sup
s∈K

dη(x,y)≥δ0

|kx,y
n (s, ξ) − dη(x, y)Ln(s, ξ)| = 0(5.11)

for any compact set K ⊂ (0,∞). By using Lemma 4.1 (2) and (5.11), we
have

lim
n→∞

sup
η∈{2,3}N

sup
s∈K

dη(x,y)≥δ0

|kx,y
n (s, η) − dη(x, y)Ψ(s, θnη̄)| = 0.(5.12)

6. Proof of Theorem 1.3

For the uniformity with respect to η ∈ {2, 3}N in Theorem 1.3, we divide
the proof into two parts. First, we consider the case where the distance
between x and y is larger than some constant δ0 > 0, which is the main
part of this section. It is comparatively easy to check the second case where
x is near enough to y from Theorem 1.1.

Proposition 6.1. For any compact set K ⊂ (0,∞) and δ0 > 0,

lim
n→∞

sup
η∈{2,3}N

sup
dη(x,y)≥δ0

z∈K

∣∣∣ 1
Bn(η)

logP η
x [τy ≤ Bn(η)

Tn(η)
z]

+ dη(x, y)Ψ∗
( z

dη(x, y)
, θnη̄

)∣∣∣ = 0.

Proof. We follow the proof of Theorem II.6.1 in [E].
(i) From Chebyshev’s inequality we have

P η
x

[
τy ≤ Bn(η)

Tn(η)
z
]
≤ Eη

x[es(Bn(η)z−Tn(η)τy)] = eBn(η)(sz−kx,y
n (s,η))
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for all η ∈ {2, 3}N, s > 0, z > 0, x, y ∈ F η and n ∈ N. We can choose a
compact set Γ(K, δ0) ⊂ (0,∞) such that

Ψ∗
( z

dη(x, y)
, θnη̄

)
= sup

s∈Γ(K,δ0)

{
Ψ(s, θnη̄) − z

dη(x, y)
s
}

(6.1)

for any η ∈ {2, 3}N, x, y ∈ F η with dη(x, y) ≥ δ0, n ∈ N and z ∈ K

from Lemma 4.4 (3). By (5.12) and (6.1) for any ε > 0 there exists N =
N(ε, K, δ0) such that if n ≥ N then

1
Bn(η)

log P η
x

[
τy ≤ Bn(η)

Tn(η)
z
]
≤ −dη(x, y)Ψ∗

( z

dη(x, y)
, θnη̄

)
+ ε

for any η ∈ {2, 3}N, z ∈ K, x, y ∈ F η with dη(x, y) ≥ δ0.
(ii) Without loss of generality, we can assume that K is a closed interval
[p, q] for p, q ∈ (0,∞) with p < q. Let Qη,x,y

n be the distribution function of
Tn(η)τy/Bn(η) under P η

x . Define probability measures

dQη,x,y
n,t (v) =

exp(−Bn(η)tv)
exp(−Bn(η)kx,y

n (t, η))
dQη,x,y

n (v) for each t ≥ 0.

To simplify the notation, we will drop the subscript x, y, η and refer to Qη,x,y
n

(resp. Qη,x,y
n,t ) as Qn (resp. Qn,t). By virtue of the continuity of Ψ∗, for any

ε > 0 we can choose γε > 0 such that p > 2γε and

sup
η∈{2,3}N

sup
dη(x,y)≥δ0
z∈K,n∈N

∣∣∣Ψ∗
( z − γε

dη(x, y)
, θnη̄

)
− Ψ∗

( z

dη(x, y)
, θnη̄

)∣∣∣ < ε.(6.2)

Let us abbreviate z − γε by zγε . Then we have

log Qn[(0, z]] ≥− Bn(η)kx,y
n (t, η)

+ Bn(η)(tzγε − tβ) + log Qn,t[(zγε − β, zγε + β)]

for any η ∈ {2, 3}N, x, y ∈ F η, z ∈ K and β > 0 with β < γε Set Kε =
[p − γε, q − γε]. Note that zγε ∈ [p − γε, q − γε] and Kε ⊂ [p/2, q] for small
enough ε > 0. Then we can choose a compact set Γ = Γ(ε, δ0, K) ⊂ (0,∞)
such that

Ψ∗
( zγε

dη(x, y)
, θnη̄

)
= sup

s∈Γ

{
Ψ(s, θnη̄) − zγε

dη(x, y)
s
}
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for any η ∈ {2, 3}N, x, y ∈ F η with dη(x, y) ≥ δ0, n ∈ N and z ∈ K from
Lemma 4.4 (3). Let t = t(η, x, y, zγε , n) = (Ψ′)−1(zγε/dη(x, y), θnη̄) > 0 for
each η ∈ {2, 3}N, x, y ∈ F η with dη(x, y) ≥ δ0, n ∈ N and zγε ∈ Kε. Note
that zγε = dη(x, y)Ψ′(t, θnη̄) and t ∈ Γ. From (6.2) and (5.12), for any ε > 0
there exists N1 = N1(δ0, ε, K) such that if n ≥ N1 then

log Qn[(0, z]]
Bn(η)

− log Qn,t[(zγε − β, zγε + β)]
Bn(η)

≥ −
(
kx,y

n (t, η) − zγεt
)
− βt

≥ −dη(x, y)Ψ∗
( z

dη(x, y)
, θnη̄

)
− βt − (c + 1)ε(6.3)

for any η ∈ {2, 3}N, x, y ∈ F η with dη(x, y) ≥ δ0, z ∈ K and β > 0 with β <

γε, where c is the constant in (2.3). Now we consider Qn,t[(zγε −β, zγε +β)].
Let us fix ε > 0. First, we have

Qn,t[{v ∈ [0,∞) : |v − zγε | > β}] exp(βBn(η)s)

≤
∫ ∞

0
e−sBn(η)(v−zγε )dQn,t(v) +

∫ ∞

0
esBn(η)(v−zγε )dQn,t(v).

For s > 0 we have

1
Bn(η)

log
∫ ∞

0
exp(−Bn(η)s(v − zγε))dQn,t(v)

= −
(
kx,y

n (t + s, η) − kx,y
n (t, η) − dη(x, y)Ψ′(t, θnη̄)s

)
.(6.4)

Also it is easy to check that there are s0 = s0(Γ) > 0 and a closed interval
C = C(Γ) ⊂ (0,∞) such that

|Ψ(t + s, θnη̄) − Ψ(t, θnη̄) − Ψ′(t, θnη̄)s|
≤ s sup

u,v∈C,|u−v|<s

ξ∈{2,3}Z

|Ψ′(u, ξ) − Ψ′(v, ξ)|

for any t ∈ Γ, s ≤ s0. Let r(s), s ≤ s0 denote the right hand side of above
inequality. Then from (5.12) for any ε′ > 0 there exists N2 = N2(ε, δ0, ε

′, K)
such that if n ≥ N2 then

|kx,y
n (t + s, η) − kx,y

n (t, η) − dη(x, y)Ψ′(t, θnη̄)s| ≤ 2ε′ + cr(s)
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for any t ∈ Γ, s ≤ s0, η ∈ {2, 3}N and x, y ∈ F η with dη(x, y) ≥ δ0. Hence
by adding (6.4) we obtain

sup
η∈{2,3}N,t∈Γ

dη(x,y)≥δ0,z∈K

1
Bn(η)

log
∫ ∞

0
e−Bn(η)s(v−zγε )dQn,t(v) ≤ 2ε′ + cr(s)

for any s ≤ s0 and n ≥ N2. By replacing s with −s (s > 0), we deduce
the following in exactly the same way. For any ε′ > 0 there exists N3 =
N3(ε, δ0, ε

′, K) > 0 such that if n ≥ N3 then

sup
η∈{2,3}N,t∈Γ

dη(x,y)≥δ0,z∈K

1
Bn(η)

log
∫ ∞

0
eBn(η)s(v−zγε )dQn,t(v) ≤ 2ε′ + cr(s)

for any s ≤ s0 and n ≥ N3. Therefore it follows that for any ε′ > 0 there is
N4 = N2 ∨ N3 such that if n ≥ N4 then

sup
η∈{2,3}N

sup
dη(x,y)≥δ0
z∈K,t∈Γ

1
Bn(η)

log Qn,t[{v ∈ [0,∞) : |v − zγε | > β}]

≤ −βs + 2ε′ + cr(s) +
log 2
Bn(η)

for any β > 0 with β < γε and s < s0. From Lemma 4.2 (1) it is easy to
check that for any ε > 0 there is a N = N(ε, δ0, K) such that if n ≥ N then

log Qn[(0, z]]
Bn(η)

≥ −d(x, y)Ψ∗
( z

d(x, y)
, θnη̄

)
− ε

for any η ∈ {2, 3}N, z ∈ K, x, y ∈ F η with dη(x, y) ≥ δ0. (i) and (ii) imply
our assertion. �

By using Theorem 1.1, Lemma 4.4 (1) and Proposition 6.1, we can prove
the following in the same way as the proof of Theorem 1.2 in [Kum]. For
any compact set K ⊂ (0,∞) and δ0 > 0 we have

lim
n→∞

sup
η∈{2,3}N

sup
dη(x,y)≥δ0

z∈K

∣∣∣ 1
Bn(η)

log pη
Bn(η)
Tn(η)

z
(x, y)(6.5)

+ dη(x, y)Ψ∗
( z

dη(x, y)
, θnη̄

)∣∣∣ = 0
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Let us complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Recall that the upper bound of the heat ker-
nel of Theorem (1.1) (b) is written in the following form (4.21) in [BH]. There
exist constants c1, c2 > 0 such that if 1/Bm(η) ≤ dη(x, y) < 1/Bm−1(η),
1/Tn(η) ≤ t < 1/Tn−1(η) then

pt(x, y) ≤ c1Mn(η) exp
(
− c2

Bm+kη(m,n)(η)
Bm(η)

)
.(6.6)

Therefore we have

1
Bn(η)

log pη
Bn(η)
Tn(η)

z
(x, y) ≤ log(c1 + Ml)

Bn(η)
− c2

Bn(η)
Bm+kη(m,l)(η)

Bm(η)
,

where m ∈ N with 1/Bm(η) ≤ dη(x, y) ≤ 1/Bm−1(η), l = l(n, z, η) ∈ N with
1/Tl(η) ≤ Bn(η)z/Tn(η) < 1/Tl−1(η). There exists a constant c = c(K) ∈
Z+ such that Bn+c(η)/Tn+c(η) ≤ Bn(η)z/Tn(η) for any z ∈ K ⊂ (0,∞).
Then we have Tl−1(η) ≤ Tn+c(η)/Bn+c(η). Since t(3) ≤ Bm(η) for m ≥ 4,
we see that

Tl(η)
Bm(η)

≤ Tl−1(η)t(3)
Bm(η)

≤ Tn+c(η)
Bn+c(η)

for any η ∈ {2, 3}N, n ∈ N, z ∈ K and m ≥ 4. Recalling the definition (1.4)
of kη, we deduce kη(m, l) + m ≤ n + c. Then we obtain

sup
η∈{2,3}N

1
Bn(η)

sup
m≥M,z∈K

Bm+kη(m,l)(η)
Bm(η)

≤ b(3)c

b(2)M

for any M ≥ 4, n ≥ 1. Therefore Theorem 1.3 is valid if we replace
supx,y∈F η ,z∈K by supdη(x,y)≤δ0,z∈K from Lemma 4.4 (2). By adding (6.5)
this completes the proof. �

Finally let us prove Corollary 1.4 and 1.5. Let G : (0,∞) × {2, 3}Z →
(0,∞) be given by

G(s, ξ) = s1/(dξ
w(m)−1)Ψ∗(s, ξ),

where Bm(ξ)/Tm(ξ) ≤ s < Bm−1(ξ)/Tm−1(ξ). Then there exist constants
c, c′ > 0 such that c ≤ G(s, ξ) ≤ c′ for any s ∈ (0,∞), ξ ∈ {2, 3}Z by Lemma
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4.4 (2). We know that G(s,2) is a non-constant function (See [Kum]), so is
G. Letting Gz(s, ξ) = z−1/(dξ

w(m)−1)G(s, ξ) for each z > 0, it is obvious that
Corollary 1.4 immediately follows.

Proof of Corollary 1.5. We see at once that for any δ0 > 0

sup
η∈{2,3}N

sup
z∈K

dη(x,y)≥δ0

∣∣∣ 1
Ψ∗( z

dη(x,y) , θ
nη̄

) 1
Bn(η)

log pη
Bn(η)
Tn(η)

z
(x, y) + dη(x, y)

∣∣∣ → 0

as n → ∞ by (6.5), where K = [1, t(3)/b(3)]. Let n = n(η, t) be an integer
satisfying Bn(η)/Tn(η) ≤ t < Bn−1(η)/Tn−1(η) for each η ∈ {2, 3}N and
t > 0. Note that setting z = z(η, t) = tTn(η,t)(η)/Bn(η,t)(η), we have z ∈ K.
Since infη∈{2,3}N n(η, t) is large if t > 0 is small enough, it follows that

lim
t→0

sup
η∈{2,3}N

sup
dη(x,y)≥δ0

∣∣∣ 1

Ψ∗
(
t/dη(x, y), η̄

) log pη
t (x, y) + dη(x, y)

∣∣∣ = 0

for any δ0 > 0 from (4.6). By the definition of G, (1.5) is valid if we replace
supx,y∈F η by supdη(x,y)≥δ0 . Next we consider the case where x is near enough
to y. By (6.6) it is enough to show that for some δ0 > 0 we have

lim
t→0

sup
η∈{2,3}N

sup
dη(x,y)<δ0

t1/(dη̄
w(n)−1)

Bm+kη(m,l)(η)
Bm(η)

= 0,(6.7)

where m, n and l are integers with 1/Bm(η) ≤ dη(x, y) < 1/Bm−1(η),
Bn(η̄)/Tn(η̄) ≤ t/dη(x, y) < Bn−1(η̄)/Tn−1(η̄), and 1/Tl(η) ≤ t <

1/Tl−1(η). Now there are the following three cases : (i) dη(x, y) > t and
m < l, (ii) dη(x, y) > t and m ≥ l, (iii) dη(x, y) ≤ t and m ≥ l. Since
kη(m, l) = 0 in cases (ii) and (iii), it is obvious that (6.7) holds. So we
consider the case (i). For any ε > 0 there are c ∈ N and δ0 = δ0(ε, c) > 0
such that (b(2)/t(2))c ≤ 1/t(3) and

b(3)c
( t(3)
b(3)

)1/(d2
w−1)

δ
1/(d3

w−1)+1
0 < ε.

In this case we have Bn(η̄) = Bn(η) and Tn(η̄) = Tn(η) since n ∈ N.
From the definition of c, we see that m + kη(m, l) ≤ n + c. Since
(Bn(η)/Tn(η))1/(dη

w(n)−1) = 1/Bn(η) we obtain

t1/(dη̄
w(n)−1)

Bm+kη(m,l)(η)
Bm(η)

≤
( t(3)

b(3)
Bn(η)
Tn(η)

δ0

)1/(dη
w(n)−1) Bm+kη(m,l)(η)

Bm(η)
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≤ b(3)c
( t(3)
b(3)

)1/(d2
w−1)

δ
1/(d3

w−1)+1
0

Bm+kη(m,l)(η)
Bn+c(η̄)

≤ ε

for any η ∈ {2, 3}N, t < δ0, and dη(x, y) < δ0. This completes the proof. �

Acknowledgment . This work is part of the author’s Ph.D. thesis under
the supervision of Professor S. Kusuoka. The author would like to thank
him for his valuable suggestions, helpful comments and encouragements.
The author also thanks M. Fukasawa, K. Kamatani and T. Otobe for their
helpful comments and encouragements and is grateful to a referee for his/her
useful comments for making the final version of this paper.

References

[BK] Ben Arous, G. and T. Kumagai, Large deviations for Brownian motion
on the Sierpinski gasket, Stochastic Process. Appl. 85 (2000), 225–235.

[BH] Barlow, M. T. and B. M. Hambly, Transition density estimates for Brow-
nian motion on scale irregular Sierpinski gaskets, Ann. IHP. 33 (1997),
531–557.

[BP] Barlow, M. T. and E. A. Perkins, Brownian Motion on Sierpinski Gasket,
Probab. Theory Rel. Fields 79 (1988), 543–623.

[E] Ellis, R. S., Entropy, Large Deviations, and Statistical Mechanics,
Springer-Verlag New York Berlin Heidelberg Tokyo.

[G] Goldstein, S., Random walks and diffusion on fractals. In: Kesten, H
(ed.) Percolation theory and ergodic theory of infinite particle systems
(IMA Math. Appl. 8) Springer, New York, 1987, 121–129.

[H] Harris, T. E., The theory of branching processes, Berlin Heidelberg
Springer, 1963.

[Kum1] Kumagai, T., Estimates of the transition densities for Brownian motion
on nested fractals, Probab. Theory Relat. Fields 96 (1993), 205–224.

[Kum] Kumagai, T., Short time asymptotic behaviour and large deviation for
Brownian motion on some affine nested fractals, Publ. R.I.M.S Kyoto
Univ. 33, Kyoto Univ (1997), 26–55.

[Kus] Kusuoka, S., A diffusion process on a fractal. In: Ito, K., Ikeda, N. (ed.)
Symposium on Probabilistic Methods in Mathematical Physics, Taniguchi,
Katata, Academic Press, Amsterdam, 1987, 251–274.

[N] Noda, H., Large deviations for Brownian motion on scale irregular Sier-
pinski gaskets, Preprint.

[V] Varadhan, S., Diffusion processes in a small time interval, Commu. Pure
Appl. Math. 20 (1967), 659–685.



Short Time Behavior of BM on SISG 33

[V1] Varadhan, S., On the behavior of the fundamental solution of the heat
equation with variable coefficients, Commu. Pure Appl. Math. 20 (1967),
431–455.

(Received September 3, 2008)
(Revised May 25, 2011)

Graduate School of Mathematical Sciences
The University of Tokyo
Meguro-ku, Komaba 3-8-1
Tokyo 153-8914, Japan
E-mail: kumn146.40@gmail.com


