J. Math. Sci. Univ. Tokyo
17 (2010), 387-417.

Orbit Decomposition of Jordan Matrix Algebras of

Order Three under the Automorphism Groups

By Akihiro NisH10 and Osami YASUKURA

Abstract. The orbit decomposition is given under the automor-
phism group on the real split Jordan algebra of all hermitian matrices
of order three corresponding to any real split composition algebra, or
the automorphism group on the complexification, explicitly, in terms
of the cross product of H. Freudenthal and the characteristic polyno-
mial.

0. Introduction

Let J' be a split exceptional simple Jordan algebra over a field F of
characteristic not two, that is, the set of all hermitian matrices of order three
whose elements are split octonions over F with the Jordan product. And
let G’ be the automorphism group of J’. N. Jacobson [16, p.389, Theorem
10] found that X,Y € J’ are in the same G’-orbit if and only if X, Y admit
the same minimal polynomial and the same generic minimal polynomial, by
imbedding a generating subalgebra with the identity element F in terms of
the Jordan product into a special Jordan algebra. When F = R, the field of
all real numbers, some elements of 7' are not diagonalizable under the action
of G' = Fy, since J' admits a G'-invariant non-defnite R-bilinear form
such that the restriction to the subspace of all diagonal elements is positive-
definite [19, Theorem 2|, although every element of [J' is diagonalizable
under the action of a linear group Fgg) containing Fy4) on J' by [15] (cf.
[17]) or under the action of the maximal compact subgroup Sp(4)/Zs of
Egs) on J' given by [22].

This paper presents a concrete orbit decomposition under the automor-
phism group on a real split Jordan algebra of all hermitian matrices of order
three corresponding to any real split composition algebra, or the complexi-
fication of it, that is special or exceptional as a Jordan algebra. As a result,
X,Y € J’ are in the same G’-orbit if and only if X,Y admit the same
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dimension of the generating subspace with E by the cross product [8] and
the same characteristic polynomial, which gives a simplification for N. Ja-
cobson [16]’s polynomial invariants on G’-orbits when F = R or the field of
all complex numbers C. To state the main results more precisely, let us give
the precise notations:

Put F:= R or C. Let V be an F-linear space, and Endp(V') (or GLr(V))
denote the set of all F-linear endomorphisms (resp. automorphims) on V.
For a mapping f : V — V and ¢ € F, put V¢, := {v € V| f(v) = cv} and
V¢ := V;. For a subgroup G of GLr(V), let G° be the identity connected
component of G. For v € V and a mapping ¢ : V — V, put Og(v) :=
{a(w)| a € G}, Gy :={a € G| a(v) =v} and G? := {a € G| poa = aop}.
For a subset W of V', put Gy := {a € G| {aw| w € W} = W}. For positive
integers n,m, let M(n,m; V') be the set of all n x m-matrices with entries
in V. Put V" := M(n,1; V),V := M(1,m; V) and M, (V) := M(n,n; V).
Since V can be considered as an R-linear space, the complexification is
defined as V€ := V @r C = V @ v/—1V with an R-linear conjugation:
. vC VC; v1+v/—1vg = v1—v/—1vg (v1,v2 € V). For any a € Endg(V),
put o€ : V€ — VCiu 4/ Ty — (av1)++v/—1(awy) such that aCr = raC,
which is identified with a € Endg(V): o = oF.

By W.R. Hamilton, the quaternions is defined as an R-algebra H :=
®?_oRe; given as epe; = ejeq = e, €2 = —eg (i € {1,2,3}); exerr1 =
—ept1€k = €2 (where k,k+1,k+2 € {1,2,3} are counted modulo 3) with
the unit element 1 := eg and the conjugation Z?:o Tie; = 53060—22:1 TLek,
which contains the complex numbers C := Reg & Re; and the real numbers
R := Reg as R-subalgebras. By A. Cayley and J.T. Graves, the octanions is

defined as a non-associative R-algebra O := H @ Hey given as follows [4]:
(z @ yea) (@' Dy'es) := (22" — y'y) ® (v’ + y'w)es

with the R-linear basis {e;| i = 0,1,2,3,4,5,6, 7}, where the numbering is
given as es 1= ejeq, €6 1= —egey, e7 := ezeq after [26, p.127], [5, p.20] or [20].
Put H .= C& Ceq and C := R P Rey. For K := O,H,C,R, put dg :=
dimpK. And put vV—1:=¢y®e; € KC.=K ®r C with the identification
K=K®®eyC KC. Then K€ = K ® V/—1K is split (i.e. non-division) as
a C-algebra with 7 : K€ — KC 2+ v=1y — 2 — vV—1y (x,y € K) as the
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complex conjugation with respect to the real form K. Put
7 3 7
v ot — OC; Zmiei — inei — inei; and
i=0 i=0 i=4
7 7
e: 0% — Oc;x = ngiei — T = X9 — inei
i=0 i=1

as C-linear conjugations with respect to HC and ]R(C, respectively. And a
C-bilinear form are defined on OC as (z|y) := (zj+77)/2 = ZZ:O zy; € C.
The restrictions of 7, e and (z|y) on K€ are also well-defined and denoted
by the same letters. Then K Cis a composition C-algebra with respect
to the norm form given by N(z) := (z|x) [5, §1.3], because of N((z @
yea)(a' @ y'es)) — Nz @ yea)N(2' @ yles) = 2{(y2'ly'x) — (z2'|y'y)} =
2(y' (yx') — (y'y)a’| ©) = 0 since HC is an associative composition algebra
with respect to N [3, §6.4]. And K = (K©), is a division composition
R-algebra with the norm form N (z) such that a=! = a/N(a) for a # 0.

Put K’ := (K©),, as a composition R-algebra with the norm form N (z)
such that (K'), = K, = (K'), = K' N K. Precisely, O’ = {327 ze; +
ZZ:4 riv/—1e;| x; € R} is the R-algebra of the split-octanions containing
the R-subalgebra H' = {Zil:() xie; + 2?24 riv/—1e;| x; € R} of the split-
quaternions and the R-subalgebra C' = {x¢ + z4v/—1le4| z; € R} of the
split-complex numbers such that O'NO =H, H'NH = C and C'NC =R.
Then K’ = K’ & v/—1K’ = K€ as a C-subalgebra of OC.

Put K := K, K’ (or K’C, KC) with F := R (resp. C) and di = dimpK.
For A € M,(K) with the (i, j)-entry a;; € K, let'A,7A, eA € M,(K) be the
transposed, T-conjugate, e-conjugate matrix of A such that the (i, j)-entry is
equal to aji, T(aij), €(aij), respectively, with the trace tr(A) := > " | ai; € F,
and the adjoint matrix A* := *(eA) € M, (K). Let denote the set of all
hermitian matrices of order three corresponding to K as follows:

J3(K) = {X € M3(K)| X* = X}

with an F-bilinear Jordan algebraic product XoY := %(X Y+Y X), the iden-
tity element E := diag(1,1,1) and an F-bilinear symmetric form (X|Y) :=
tr(X oY) € F. After H. Freudenthal [8] (cf. [7, (7.5.1)], [25], [14], [16, p.232,

(47)], [28]), the cross product on J3(K) is defined as follows:

XxY:=XoY — %(tr(X)Y (V)X — (tr(X)te(Y) — (X|Y))E)
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with X*? := X x X as well as an F-trilinear form (X|Y|Z) := (X x Y|2)
and the determinant det(X) := (X |X|X) € F on T3(K) (cf. [9, p.163]).
Put E; := diag(di1, 62, 6i3) for i € {1,2,3} with the Kronecker’s delta 6;;.
For z € K, put

0 0 0 0 0= 0 =z O
Fi(z):=(0 0 x|, F(z):==[0 0 0], F3(z):=|Z 0 O
0z O z 0 0 0 0O

For z € K€ =RC € HC or OF, put My (z), Mas(z) € J5(KC) such as
Ml(SC) = ($|1)(E2 — Eg) + Fl(\/ *11’), M23(IL’) = Fg(\/ *15) + Fg(l’)

Wlth Ml = Ml(l)’ M23 = M23(1) FOr x € K/ — C/’H/ or O/, put
My (x), Myrg(z) € J3(K') such as

er(x) = ($|1)(E2 — Eg) + Fl(\/ —164.17),
Mg/g(l‘) = FQ(—\/ —1645) + Fg(l‘)
with My, := My/(1), Myg := Mas(1). For x € K, let denote
Mj(z) := My (x) (when K = K©) or My/(2) (when K = K'),
Mys(z) := Mas(z) (when K = K©) or Mys(z) (when K = K');
M := M; (when K = K©) or My, (when K = K'),
My := Mys (when K = K©) or My3 (when K = K').

And denote
Po(K) = {X € J3(K)| X*? =0, tr(X) =1},
J3(K)o := {X € J3(K)| tr(X) = 0},

Mi(K) = {X € J3(K)o| X #0, X** =0},

Moz(K) = {X € J3(K)o| X*? #0, tr(X*?) = det(X) = 0}.
When K = K, Po(K) has a structure of Moufang projective plane [9, p.162,
4.6, 4.7], the algebraization method of which motivates to define the cross

product on J3(K ) for any K. The automorphism group of J3(K ) with
respect to the F-bilinear Jordan product X oY is denoted as follows:

G(K) := Aut(B(K)) = {a € GLr(F(K))| a(X oY) = aX o aY},
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which is a complex (resp. compact; real split) snnple Lle group of type
(Fy) (vesp. (Fy—s2)); (Fya))) when K = 0% = 0o° (resp. O; O')
by C. Chevalley and R.D. Schafer [2] (resp. [7], [9, p.161], [20, p.206,
(2), (3)]; [29]). When K = R,C or H, the group G(K) is a simple
Lie group of type (A1), (A2) or (C3), respectively (cf [9, p.165]). Put v :
B(K) — J(K); X — ~vX such that yX := El (&GE: + Fi(yw;)) for
X =30 (GEi + Fi(m:) € Js(K). Put 7: J3(K) — F(K); X — 17X
such as 7X := Y20 ((7&)E; + Fy(r2;)). Then 7 € GLr(J3(K)) such that

r(X oY) = (rX) 0 (r¥).7(X x V) = (rX) x (+Y), tr(rX) = r(ur(X),
(TX|7Y) = 7(X|Y) and det(7X) = 7(detX), and that 2 =id, B(K) =
T3(K)r @ J3(K ) - and JB(KC)_, = V=1J55(K), so that G(K)E{a(c|ae
G(K)} = G(KO)".

For X € J3(K) and the indeterminate A, put ¢x(A) := AE — X. Then
the characteristic polynomial of X is defined as the polynomial ®x(\) :=
det(px(A)) of X with degree 3 and the derivative ®'y () is %(I)X()\), S0
that (I)X()\) = ()\ — )\1)()\ — )\2)()\ — /\3) with some A1, Ao, A3 € C. In this
case, the set {A1, A2, A3} is said to be the characteristic roots of X. Put
Ax = {)\1,)\2,)\3} C C with #Ax € {1,2,3} and Vx = {CLXX2 +bX +
cE| a,b,c € F} with vx = dimVx € {1,2.3}.

PROPOSITION 0.1. Let K be K, K' or K€ with K =R,C,H or O.

(1) G(K) € {a € GLp(J3(K))| tr(aX) = tr(X), oF = E}. And
G(K) = {aeGLp(J(K))| det(aX) = det(X), aFE = E}

{a € GLR(J3(K))| ®ax(A) = Dx(N)}
= {a € GLp(J3(K))| det(aX) = det(X), (aX|aY) = (X|V)}
= {a € GLp(J(K))| a(X xY) = (aX) x (aY)}.
Especially, Aox = Ax and vox = vx for all X € jg(f() and o € G(f()
(2) G(K)T™ is a mazimal compact subgroup of G(K). And~ € G(K )E1 By Es-
(3) P2(K) = Og(f()o<E1)7
(4) Assume that K # K, i.e., K = RC.cC HC 0% ' H or O'. Then:

() M () = O e (1),
(i) Mas(R) = Oy eye (V).
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THEOREM 0.2. Let KC be RC, CC, HC or OF. Then the orbit decom-
position of J3(K©) over G(KC) or G(KC)° is given as follows:
(1) Take X € J3(K©). Then #Ax = 3,2 or 1.
(i) Assume that #Ax = 3 with Ax = {1, A2, A3}. Then diag(A1, A2, A3) €
Oc(kCye (X) with vx = 3.
(ii) Assume that #Ax = 2 with Ax = {1, A2} such that 'y (A2) = 0. Then
vx = 2 or 3. Moreover:

(ii-1) vx = 2 4ff diag(A1, A2, A2) € Ogeye (X); and

(ii-2) vx = 3 iff diag(A1, A2, A2) + M1 € Oggeye (X).
(iii) Assume that #Ax =1 with Ax = {\1}. Then:

(iii-1) vx = 1 iff M E € Oggcye (X);

(iii-2) vx =2 iff M E + My € Og ey (X); and

(iii-3) vx = 3 iff ME + Maz € Ogeye(X).
(2) For X,Y € J3(K OchK(C X) = Ogrcy(Y) iff Ax = Ay and
vx = vy. For any X € J3(K~), O(X) := OgC)e(X) = Og(rcy(X) and

O(X) N J5(RC) # 0.

THEOREM 0.3. Let K' be C', H' or O'. Then the orbit decomposition
of J3(K') over G(K') or G(K')° is given as follows:
(1) Take X € J3(K'). Then #Ax = 3,2 or 1.
(i) Assume that #Ax = 3. Then vy = 3. And Ax = {\1, A2, A3} for some
A1 € R and Xa, A3 € C such that Ax C R or {X2, A3} = {p £ ¢v/—1} with
some p € R and ¢ € R\{0}. Moreover:

(i—l) If Ax C R with A\ > Xo > A3, then diag()\l, )\2,)\3) S Og(K/)o(X),‘
and

(i-2) If {\2, A3} = {p £ ¢/—1} with some p,q € R such that ¢ > 0, then
diag(A1,p,p) + Fi(gv—1es) € Og(rryo (X).
(ii) Assume that #Ax = 2 with Ax = {1, \a} such that @'y (A2) = 0. Then
AL, A2 €ER and vx = 2 or 3. Moreover:

(ii—l) vx = 2 iff diag()\l,)\g,)\Q) S OG(K’)O(X); and

(ii—2) vx = 3 iff diag()\l, Ao, )\2) + My € OG(K!)O (X)
(iii) Assume that #Ax =1 with Ax = {\}. Then A\; € R. Moreover:
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(iii—l) vx =1iff \E € OG(K’)"(X);
(iii—2) vx = 2 Zﬁ ME+ M€ OG(KI)O (X), and
(111—3) vx = 3 Zﬁ )\1E + M2/3 S OG(K’)°<X>

(2) For X,Y € jg(K/), OG(K(C)o(X) = OG(K(C)o(Y) ’iﬁ AX = Ay and vx =
vy. For any X € J3(K'), O(X) := Oy (X) = Ogx(X) and O(X) N
J3(C") # 0.

By Proposition 0.1 (1), Ax and vy are invariants on Oci) (X), so that
the Theorems 0.2 (2) and 0.3 (2) follow from Theorems 0.2 (1) and 0.3 (1),
respectively. Hence, this paper is concentrated in proving Theorems 0.2 (1)
and 0.3 (1) with Proposition 0.1.

Note that the second equality of Propositoin 0.1 (1) was obtained by
N. Jacobson [13, Lemma 1] in a more general setting (cf. [24, p.159, Propo-
sition 5.9.4, §5.10]). In §1, by Lemma 1.2, it appears that the characteristic
polynomial ®x () of X equals the generic minimal polynomial of X defined
by N. Jacobson [16, p.358 (5)]. By Lemma 1.6 (3), it appears that vy equals
the degree of N. Jacobson [16, p.389, Theorem 10]’s minimal polynomial for
X e jg(K) with respect to the Jordan product.
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1. Preliminaries and Proposition 0.1 (1) and (2)
Let i,i 4+ 1,i+ 2 € {1,2,3} be the indices counted modulo 3. Then
E;o E; = E;, EioFE;it1 =0,

E; o Fy(z) =0, Ejo Fj(z) = 5Fj(x) (i # ),
Fi(z) o Fi(y) = (z[y)(Eir1 + Eit2), Fi(x) o Fipa(y) = 5F42(T7);



394 Akihiro NisHI1IO and Osami YASUKURA

E; x E; =0, E; X Eip1 = $Ejy9,
E; x Fy(z) = —§F(x), E; x Fj(z) =0 (i # j),
Fi(z) x Fi(y) = —(z|y)Ei, Fi(w) x Fipa(y) = $Fi2(zy)

for any z,y € K. And
My(z) x Mi(y) = \/_{(x\l)(yll) — (z|y)}En,
My (z) x Mas(y) = ——{Fz(\/_(w— (z[1))y) + F3(y( — (z[1)))},
Mas(z) x Mag(y) = (x|y) My, My = My and
My (z) x My (y) = {(z|y) — (z[1)(y[1) } E1,
My(x) x Mys(y) = 3 {Fo(~(@/"Tea)y + (2]1)v/Tes)
+ F3(—(yv—1ea) (V' —1eq) + (x[1)y)},
Moy (x) x Moy (y) = (aly) My, My = M3,

Let denote X(r;z) := Y20 7B + 5| Fi(;) for any 7 = (r1,72,73) €
Fs and © = (z1,29,23) € K3. If Y = X(r;2) € B(K), put (YV)g, =
(Y’EZ) =7T; and (Y)Fz = (Y|FZ(1))/2 = Z;.

LEmMA 1.1. (1) Leti,i+1,i+2 € {1,2,3} be counted modulo 3. Then

3

1
X(r;z) x X(s;y) = 3 Z{(Ti+18i+2 + sit1riv2 — 2(zilyi) ) Ei
=1

+ Fi(zit1Yit2e + Yit1Tite — TilYi — SiTi) };
3

(X(r;2)[X(si9) = D (rasi + 2(xilys));

=1

(X(r;2)IX(s;9)[X(us 2)) = (X(r;2)[X(s39) x X(u;2))
3

T _
= 2{5(3i+1ui+2 +uir15iv2) + (Tilyit12ziv2 + zip1Yir2)
i=1

- Ti(yz'lzz‘) = si(zilz:) — ui(yilz:) }s

det(X(r;x)) = rirors + 2(Ti|Tit1Tive) — Zr] (x) for i € {1,2,3}.

(2) For X,Y,Z € J3(K), all of X oY, (X|Y), X X Y, (X 0 Y|Z) and
(X|Y|Z) are symmetric. And (X|Y') is non-degenerate.
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(3) 2E x X = tr(X)E — X = ox(tr(X)). Especially, E** = E and
2F x X*2 = tr(X*?)E — X*? = pxxa(tr(X*?)).
(4) (X|Y|E) = tr(X x Y) = 3(tr(X)tr(Y) — (X]Y)).

ProOF. (1) follows from the definitions except the 3rd equality, which
is proved by [5, p.15, 3.5 (7)] as follows:

3
(X(r;2)[X(5;9)[X (0 2)) = > {uilripasiva + siv17i42)/2
i—1
+  (Zilwis1Yive + Yit1Tiv2) — ;z(xz’yz) —ri(yilzi) — si(xi|z)}
3
= Z{(ui+2ri+33i+4 + Uip18i42Ti43) /2
i—1
+ Em Ziv2|Yira) + (Zirt Tivslyive) — wi(@ilyi) — ri(yilzi) — si(zilzi)}
3
= Z{”'i(si+1ui+2 + uit15i+2)/2 + (Tilyir1zit2 + zit1Yiv2)
i=1

— ri(yilzi) — si(zil2i) — wi(yil@i)}
= (X(r;2)[X(s;y) x X(u; 2)).

(2) follows from the definitions or (1). (3) follows from direct computations.
(4) follows from the definitions of (X|Y|Z) and X x Y. O

For X € J3(K), put Ax(\) = —1{3)\% — 2tr(X)\ + tr(X)? — 2(X|X)},
which values in F (or C) if A € F (resp. C).

LEMMA 1.2. (1) &x(\) = A3 — tr(X)A? + tr(X*H)\ — det(X) with
F> tr(X) = A1+ Ao+ A3, tI‘( ) = )\1)\2—1—)\2)\3 4+ A3Aa, det(X) = M A2)A3
ifAX = {/\1,)\2,)\3} cC fOTX S Jg( )

(2) @ (N) = 307 — 2tr(X)A + tr(X*?) = tr(px(N\)*?) = —2Ax(\) —
3 {tr(X)? = 3(X|X)}.

(3) Put M(K) := {X € J3(K)o| X #0, ®x(A) = *}. Then M(K) =
{X € jg( )ol X £ 0,tr(X*?) = det( ) =0} = M(K) U Mas(K) with
My (K)NMas(K) = 0. And{X € J3(K)| #Ax = 1} = FE&({0}UM(K)).

PROOF. (1) ®x(A) = 3(AE — X|A\E — X|\E — X), which equals the
required one by Lemma 1.1 (2, 3) and ®x(A) = (A — A1)(A — A2)(A — A3).
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(2) The first equality folllows from (1). By Lemma 1.1 (3), ¢ x (A )X2 =
(AE — X)*2 = \2F — (t1(X)E — X)\ + X *2 so that tr(px())*?) = 3)\2
2tr(X)A+tr(X*?). And 3M% —2tr(X)A+tr(X*?) = —2Ax (X)) — 2 {tr(X)*—

3(X|X)} by the second equality of Lemma 1.1 (4).

(3) The first claim follows from (1). For X € J3(K), put Xp := X —
$tr(X)E € J3(K)o. Then X = $tr(X)E + Xo, so that J3(K) = FE &
Ts(K)o. TE@x(N) = T, (A= \;), then @, (A) = det((A+ Ltr(X)) E—X) =
I3, (A+4tr(X)—)\;), so that Px,(A) = A & Ltr(X)—X; =0(i = 1,2,3) &
A = A = A3 & #Ax = 1, because of tr(X) = Y22 | \; by (1). Hence,
{X € BK)| #Ax =1} =FE @ ({0} UM(K)). O

Let V be an [F-algebra with the multiplication xy of x,y € V. For
xz € V, put an F-linear endomorphism on V, L, : V — V;y — zxy, as the
left translation by z. And put the automorphism group of V' as follows:

Aut(V) :={a € GLR(V)| azy) = (ax)(ay); x,y € V}.

LemMA 1.3. (1) Let V be an F-algbra. Assume that o € Aut(V'). Then
trace(L(ag)) = trace(Ly), det(L(qq)) = det(Ly) for all x € V.. If moreover
V' admits the identity element e, then ae = e.

(2) Let L and L% be the left translations by X € J3(K) on J3(K)
with respect to the product o and the cross product x, respectively. Then

trace(LS) = (di + 1) tr(X) and trace(LY) = Stdg tr(X).

Proor. (1) For z,y € V and a € G(V), Ly = (ax)y =
a(z(aly)) = (aLza™ )y, ie. Ligy) = alza™!, so that trace(Liy,)) =
trace(L;) and det(L(a,)) = det(L,) as an F-linear endomorphism on V.
Assume that ex = ze = x for any z € V. Take a € Aut(V). Then
(ae)(az) = (ax)(ae) = azx, so that (ae)y = y(ae) =y for all y € V. In
particular, ae = (ae)e = e.

(2) {Ei, Fi(e;/V2)] i=1,2,3;7=0,--- ,dxg — 1} forms an orthonormal
basis of (J3(KC), (x*)) by Lemma 1.1 (1). And L% and L% can be identi-
fied with a C-linear endomorphism on J3(K®) = J3(K) or C @ J3(K).
By Lemma 1.1 (1, 2), trace(L%) = S0 {(X o Ei|E;) + 339 (X o

Fi(ej)|Fi(e))} = YL XIE: o E) + § 39571 (X|Fi(e)) o Fi(e))} =
YL A{XIE) + 33X By + Eia)} = (dg + 1) tr(X); and
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trace(LY) = 7 1{(X X Ei,Bp) + 5355 (X x Fylej)lFile;)} =

S {(X|E x B + § 205 (X[ Fileg) x Fileg))} = Yoimy 5 2550 H(X| —
E;) = Fdgtr(X). O

PROOF OF PROPOSITION 0.1 (1). The first claim follows from Lemma
1.3 (1)(2). For the second claim, since det(X) is defined by X o X, tr(X) and
E, the first equality is recognized as the inclusion €. By ®x(\) = det(\E —
X), the 2nd equality is recognized as the inclusion &. By Lemmas 1.1 (4)
and 1.2 (1), the 3rd equality is recognized as the inclusion €. By polarizing
3det(X) = (X|X|X) with Lemma 1.1 (2), the 4th equality is recognized
as the inclusion €. Assume that a € GLp(J3(K)) and (aX) x (aY) =
(X xY)forall X,Y € J5(K). By Lemma 1.3, tr(aX) = tr(X). By Lemma
1.1 (4), (X[|Y) = tr(X)tr(Y) — 2tr(X x Y), so that (aX|aY) = (X]Y). B
the definition of x, (X oY|Z) = (X xY|Z)+ (tr(X)(Y|Z2) + tr(Y)(X|Z) —
(tr(X)tr(Y) — (X|Y)tr(Z))/2, so that ((aX) o (aY)|aZ) = (X oY|Z) for
all X,Y,Z € J3(K). By Lemma 1.1 (2), o '((aX) o (aY)) = X oY, that
is, & € G(K). Hence, all of the equations of the second claim follow. The
last claim follows from these equations.

PROOF OF PROPOSITION 0.1 (2). Note that 7v = ~v71, vE; = E;,
vE = E and det(yX(r;z)) = det(X(r;z)) by Lemma 1.1 (1), so that
v E G(IN()%17E27E3. By Proposition 0.1 (1), the last claim follows. For the
first claim, put < X|Y >:= (7X|Y) € F for X,Y € J3(K), which defines a
positive-definite symmetric (or hermitian) 2-form on J3(K”) (resp. J3(K©))
over R (resp. C) by Lemma 1.1 (1). For a € G(K), a* € GLF(jg( K)) is
defined such that < aX|Y >=< X|o*Y > for all X|Y € J3(K). By (1),
< X]a*Y >= (TaX\Y) =7(aX|TY) = T(X\oz_lTY) =< X|ra~ 17‘Y >, 80
that a* = 7a~'7 € G(K) because of (1) by det(a*X) = rdet(a'7X) =
72det(X) = det(X) and o E = 7o~ '7E = E. Then G(K) = G(K)" x R as
a polar decomposition of C. Chevalley [1, p.201] (resp. [12, p.450, Lemma
2.3]), so that G(K)7 is a maximal compact subgroup of G(K). O]

For i € {1,2,3} and a € K, put B;(a) : J3(K) — J3(K);X(r;z) —
X(s;y) such that s; := 0,841 = 2(alx;), Sive = —2(alx;),yi = —(rig1 —
Tit2)A, Yirl ‘= —Titol, Yir2 ‘= GTit1, where i,i 4+ 1,i+2 € {1,2,3} are
counted modulo 3. Then exp(tB;(a)) € (G(K)g,;)° for t € F. In fact, s; =
Sit+1 = Sit+2 = Yi = Yi+1 = Yire = 0 if X(r;2) = E; or E. Put X = X(r; ).
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By Lemma 1.1 (1), (Bi(a)X|X|X) = (Bi(a)X|X*?) = 2{(a|x;)(ris2r; —
N(@iv1)=ririq1+ N (zig2)) = (rig1—ripe) (a|Zii @i —rizs) — (Tig2a|Tia Ti—
Ti41Zi+1) + (ATip1[TiTis1 —ripeiv2) } = 0, so that exp(tB;(a)) € (G(K)g,)°
for all t € F by Proposition 0.1 (1), as required. Note that B;(a) is nothing
but A% given in H. Freudenthal [7, (5.1.1)].

For v € {1,/—1}, put C,,(t) := ("' +e7"%)/2, S, (t) := (e"' —e7 ") /(2 )
as F-valued functions of ¢ € F. Then (Cy(t),S,(t)) = (cosh(t),sinh(t)) o
(cos(t),sin(t)) if v = 1 or v/—1, respectively. Note that
TC,(t) = Cy(1t), 7S,(t) = S, (7t),
Cy(t1)Cy(ta) + 28, (t1) Sy (t2) = Oy (t1 + ta),
Cy(t) = v28,(1), S,(t) = Cu(t),
Sy(t1)Cu(t2) + Cu(t1)Su(t2) = Su(ts + ta),
CH(0) =0, S,0) =1, C,(2t) =1+ 202S2(t).
For i € {1,2,3}, t € F, a € K and v € {1,v/=1}, put Bi(t;a,v) :
T3(K) — J3(K); X(r; z) — X(s;y) such that

Si = Ty,
Sit1 _ n‘+1;n‘+2 + T‘i+1;7‘i+2 C,,(Qt) 4 (a\xi)SV(Qt),
Siyg = TELTER  Telriae o (04 (alay)S,(21),
Yi = x;— a—”“;”“ Sy(2t) — 2a(a\:ﬂ7;)53(t),
Yir1 = 2i410,(t) — Ti2aS, (1),
Yira = xit20,(t) +aTir1Su(t).

For ¢ € F, put Si(¢, K) := {x € K| N(z) = ¢}, which is said to be a
generalized sphere [11, p.42, (3.7)] of first kind over F.

LEMI\/{A 1.4. (1) (i) Assume that i € {1,2,3}, v € {1,v/~1} and a €
S1(—v% K). Then Bi(t;a,v) = exp(tBi(a)) € (G(K)g,)° fort € F such that
Bi(t;a,v)T = 7Bi(Tt;Ta,v) for allt € F. Especially, o; := Bi(m; 1, V-1) €
(( ( ) l) )Ei+laEi+2'

(ii) Fori € {1,2,3}, put B; = Bi(5;1,v/—1). Then B e (G(IN()%Z)O such
that B;X = riB;+rita Byt +7i1 Biva+ Fy(—T7) + Firr (= Ti42) + Fi2(Ti1)
if X = X(r;z) € J3(K). Especially, for any permutation p= (ul,;@,ug)
of the triplet (1,2,3), there exists 3 € (G(K)7)° such that ﬁ(z 1 riE;) =
23:1 T, By for allry € F (i =1,2,3).
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(iii) Put B23 = Bz(\/jl) — Bg(l), 323/ = Bg(l) Bg(re4) 32/3 =
Ba(—v/~1ea) — B3(1), Bas(t) := exp(tBas), Bax(t) := exp(tBay), Pus(t) :=
exp(tBay3). Then Pas(t) € (G(KC)®)ar, and Bas(t)Mag(z) = 2t(z|1)M; +
Mas(z) (z € KC, t € C). And Boy (1), Bas(t) € (G(K')°)n,, such that
Basr (t)M2/3($) = 2t(\/—_164\x)M1/ —{—Mg/g(l‘), ﬂg/g(t)Mglg(l‘) = 275(1’.%‘)M1/ +
M2/3( ) (l‘ S K/ t e R)

(2) (i) Let S1(1, K)° be the connected component of S1(1, K) containing

1 = ¢ in K. And O(K) = {a € GLF(IN{)| N(az) = N(z)}. Then
Si1(1, K) = Opiy(e0) = S1(1, K)° U (=81(1, K)°). Especially, S1(1, K) =
Si(1,K)° = =81(1,K)° when K = H',0'; ¢, HC, OF.

(ii) For a € Si(1,K) and i € {1,2,3}, put 6;(a) € Endp(J3(K)) with

X(s;y) := 6;(a)X(r;xz) such that $; := Ti, Sit1 = Tit1,Sit2 = Ti42,Yi =
AT, Yir1 = ATit1, Yir2 = Tiroa. Then 6;(a) € ((G(f()Ei)O)EHhEi+2 such
that 6;(a)o; = 0;6;(a) = 6;(—a) and 6;(a)T = T6;(Ta). Especially, 6;(a) €
(G(K)p,.py.1,)° when K = H',0';C HC, 0F.

(iii) Assume that di = 4. Fora c S1(1,K) and i € {1,2,3}, put
Bi(a) € Endp(J3(K)) with X(s;y) := Bi(a)X(r;x) such that s; := 14, 8i41 1=
Titl, Sit2 1= Tit2,Yi 1= AT, Yi41 = ATiy1,Yit2 = Tit2a. Then fBia) €
(G(K)E;)°)Eiyr,Eipe,Fi(1) Such that Bi(a)o; = 0iBi(a) = Bi(—a). Especially,
Bi(a) € (G(K) g, y.5s.;1))° when K = H';C% HE.

ProOF. (1) (i) Put X(u; 2) := 4 8;(t; a,v)X(r; x) — Bi(a)X(r; z). Then
u; = 2 = 0, uiy1 = (V2 + N(a))((rix1 — 7i42) S, (2t) + 4(a, xZ)S2( ) =0=
—Uiya, zit1 = (V2 + N(a)2i118,(t) = 0, 242 = (v* + N(a))zi125,(t) =
Le. 4B(tja,v)X(r;z) = Bi(a)X(r;z) (t € F) with 5;(0;a,v)X(r;2)
X(r;x). Hence, Bi(t;a,v) = exp(tB;(a)), so that f;(t;a,v) € (G(K)g,)°
and (;(t;a,v)T = exp(tBi(a))T = 7Texp((7t)B;(Tta)) = 76i(t;a,v) for all
t € F. Especially, 04(t) := Bi(nt;1,v/—1) € (G(K)5 p,)° for all t € R such
that g; = 0'1'(1), UiEi+1 = EZ+1, UzElJrZ EZ+2.

(ii) The first claim follows from (i), so that the second claim follows.

(iii) For a,b € KC, (By(a) — Bs(b))M; = Moz(—v/—1a — b). Then
BosM; =0by a=+/—1and b= 1. For z € K€, (By(a) — Bs(b))Mas(z) =
X(—2((a|lv/—1%) + (b|z)),2(b|z),2(a|v/—1Z);@Z + /—1 bx,0,0). In par-
ticular, BpsMas(x) = 2(1|z)M;. Hence, By3(t) € (G(KC)°), and
Bos(t) Mas(x) = 2t(1|x) My 4+ Mas(z) for € K€ and t € C. For a,b € K',
(B2(a) — B3(b)) My = Mys(ay/—1es —b). Then Boy My = BysMyr = 0 by
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b = av/—1leyq with (a,b) = (1,v/—1eq), (—v/—1ey, 1). For x € K’', (Ba(a) —
B3(8)) My (2) = X(~2((a] —v=Tes) + (b)), 2(b[), 2(a] - v—Tesz)saz —
(\/_64T)b 0,0), so that B23/M2/3( ) = 2(\/—_164’$)E2 — 2(1‘\/—_164T)E3 +
Fi(@+v/~1eq(x/—1eq)) and BorgMyrz(z) = 2(1]2) My, Put x = p+qv/—1ley
with p,q € H, so that T = p — qv/—1les. Then (v/—leq)(zv/—1les) =
P+ qvV—1les, T —v/—les(zv/~1ley) = —(q+q)vV—1es = 2(v/—leyg|x)v/—1ey.
And BQg/MQ/g({E) = 2(\/—_le4|x)M1/. Hence, ﬂgg/(f),ﬂg/g(i) € (G(KC)O)MI,
such that By (t) Moz (x) = 2t(v/~Lea|x) My + Moz (x) and By (t) Moz () =
2t(1]z) My + Mys(z) for x € K" and t € R.

(2) (i) Since K is a composition algebra, L, € O(K {) for all a € Si(1, K).
Hence, 81(1 K) = {La(eo)] a € Si(1,K)} = OO(K)(eo) Put SO(K) :=
{a € O(K)| _det(a) = 1}. When dg = 1. Si(1, K) = {#eo}, Si(1, K)°
{eo}; Si(1, K) = Si1(1,K)° U (~=S1(1,K)°). When dp = 2,4,8: O(K) =
SO(K) U SO(K)e with e(ep) = ep, SO(K) = —SO(K), so that S;(1, K) =
Osoity(€0) = =Og0 ) (€0) = ~-S81(1, K). Since SO(KC) is connected,

S1(1L, K = 8(1, K% = -81(1, KO
And MdK, (R) 2 SO(KI) ~ S( (dK’/2) X O(dK//2)) x R dK//2) . Put
1n = dlag(la ) 1)7 1;L = dia’g(ln_l’ _1) < Mn(K/)

When dg//2 = 2,4, SO(K') admits just four connected components con-
taining idg, diag(l’dK/ﬂ, ldK,/Q) dlag(ldK,/Q, ,/2) diag(l&K,/Q, 1&}(,/2),
so that 81(1,K/) = Oé‘O(K’)(eO) OSO(K’)~( ) 81(1 K/)O.

(ii) For a € 81(1,K), 5Z(CL) € GLIF(jS(K))El,Eg,Eg with (SZ(CL) (7)
6i(a)T = 716;(7a) and 6;(a)E = E. By Lemma 1.1 (1), det(6;(a )X(r x)) =
T1T2T3+2(m| (6$i+1)(xz'_:,_ga))—TiN(CL:EZ'a)—Ti+1N(E$i+1) —TH_QN(:EH_QG) =
11213+ (2(Zi|wip12ige) =N (2:)) N (a)? = (risa N (2is1) +ri2 N (2i42) )N (a)
= det(X(r;x)). By Proposition 0.1 (1), é;i(a) € (G(K)El,E%ES)O for a €
S1(1,K)°. And 8;(—a) = 0:6;(a) = bi(a)o; with 0; € ((G(K)E,)°)Eiy1,Birs
by (1)(i). By (i), {6i(a)] a € S1(1, K)} = {6:(a), i(—a)| a € Si1(1,K)°} =
{6i(a), b;(a )al| a € 8(1, K)} € (G (K)Ei)O)EJ+2 Eiys- By the last claim of
(i), {6i(a)] a € 51(1 K)} = {8i(a)| a € §1(1, K)°} € (G(K)p,,p,,m,)° when
K =H',0;c%HC 0" ]

(iii) K is associative by di = 4. Hence, GLF(J3(K))g, By,55,F,01) 2
Bi(a) is well-defined such that ﬂl( )t =6,(a), Bi(a)T = 7Bi(ta), Bi(a)E =
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E. Then det(53;(a)X(r;x)) = rirars + 2(az;al(axit1) (zir0a)) — i N (az;a) —
7‘1'+1N(a.7}i+1) — ’I“Z‘+2N(.2L‘i+25> = 7r1ror3 + (2(@1"51)1'4_1.7)1'4_2) — riN(xi))N(a)z —
(rig1N(xiq1) — rigaN(2i42))N(a) = det(X(r;z)) by Lemma 1.1 (1). Be-
cause of Proposition 0.1 (1), Gi(a) € (G (K)El,Ez,Eg,Fl(l))o for a € Sy(1, K)°.
By (1) (i)a g € ((G(K)Ei)o)EHL Eito with ﬂz( ) = Uiﬂi(a) = ﬂz(a)ﬂ'z By
virtue of (i), {Bi(a)| a € Si(1, K)} = {Bi(a), Bi(—a)| a € Si(1,K)°} =
{Bi(a), Bi(a)oi| a € S1(1, K)°} is contained in (G(K)E,)°) g, 0,E,.4,F, F (1) By
the last claim of (i), {Bi(a)| a € Si(1, K)} = {ﬂl( )| a € Si(1,K)°} is
contained in (G(R)El,EQ,EJ,F( y)° when K = H';C® HC with dp 4.0

Put G;(K,) := {Bij(t;a,v/—1)| j € J;t € R,a € K,,N(a ) =1} for
any subset J S {1,2,3}. By Lemma 1.4 (1) (i), G;(K,) C (G(K)7)°.
Proposition 0.1 (2), G(K)™ and the identity connected component (G (K)" )
are compact.

LEMMA 1.5. (1) For any X € J3(K); and any closed subgroup H of
G(K)™ such that G j(K;) & H with some J & {1,2,3},

Ou(X)N{Y € B(K)| (Y|Fj(z)) =0 (j € J, v € K,)} # 0.

—~~
[\)
~—
O

G(K)T)‘)(X) N {diag(’r’17’f’277’3)| ri € R (7’ = 17273)} 7é @ fO?” any
)7, where {ri,ro,r3} = Ax iff diag(ri,ro,r3) € O(G(f()f)o (X).

1o (X) NA{Y + /=1diag(r1,m2,73)| Y € J3(K), i € R (i =
for any X € J3(KC).

b
m

R
=

t#
O( (K')7)e ( )Q{X(S y)\ s; € R, yi:\/—_lpiezl, Di e KNK' (@':
} 40 for any X € Jy(K).

ProOOF. (1) (cf. [27, 3.3]): Since the closed subgroup H of the compact
group G(K)™ is compact, the orbit O (X) is compact, which is contained in
J5(K)r if X € J3(K)r. Put ¢ : J3(K)r — R;X(r;z) — Y.0_ r?, which
is a continuous R-valued function admitting a maximal point X(r;z) €
Ow(X). Suppose that (X(r,x)|Fj(q)) # 0 for some j € J and ¢ € K,.
By Lemma 1.1 (1), 2(z;[g) # 0. Since (z|y) is non-degenerate on K and
K. K = K@KLforKL' {x€K|(|y)—0(y€K)},sothat
xj = y; +y+ for some y; € K, and yj € K+. Then (yjlq) = (z;]q) # 0,
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so that y; # 0 and (y;|y;) = (1y;ly;) > 0. Put a := y;//(y;ly;) € K, so
that (ala) = 1. By Lemma 1.4 (1) (i), 8;(t;a,v/—1) € Gy(K,;) S H. Put
e := (aly) = (aly;) = /(yily;) > 0, 57 := (rjr1£7rj42)/2 € Rand Y (1) :=
Bi(t;a,/—1)X(r;z) € J3(K),. Then (Y (t)) = TJQ-—I—Zi(sj:l:(sj_ cos(2t) +
esin(2t)))? = r3+2(s;)?+2(s; cos(2t)+esin(2t))? = 75 +2(s])*+2((s;)*+
£2) cos(2t + ) for some constant @ of ¢ determined by s; and € > 0. Hence,
O () =ri+ri +ri,+2e2 = ¢(X(r;2)) + 262 2 ¢(Y () + 262 by
the maximality of ¢(X(r;x)), which gives € = 0, a contradiction.

(2) Take X € Jy(K),. By (1) on H = (G(K))° 2 Gpram(Ko),
there exists § € H such that (8X, Fi(z)) = 0 (z € K,:i = 1,2,3), so
that fX = diag(ri,re,r3) for some r; € R (i = 1,2,3). In this case,
Px(A) = Paiag(ry,rars) (A) = 1 (X = 1y), so that {r1,r2,r3} = Ax. Con-
versely if {ri,r2,73} = Ax, then diag(si, se,s3) € (’)(G(R),)O(X) for some
{s1, 2,53} = Ax, so that diag(r1,r2,73) € O(G(K)T)O(X) by Lemma 1.4 (1)
(ii).

(3) Take X € J5(KC). Then X = X 4+ v/—1X> for some X; € J3(K) =
J5(KC), (i = 1,2). By (2), there exist 8 € (G(K)7)° = G(K)° and
{r1,72,73} C R such that 8Xs = diag(ri,r2,73), so that X = X; +
v/—18X5 has the required form with 8X; € J3(K).

(4) Take X € J3(K’). Then X = X4 + X_ for some Xy € J3(K') 1.
By (1) on H := (G(K')")° 2 G{17273}(I~(T), there exists § € H such that
BXy = diag(ry,re,r3) for some r; € R. Then X = X, + fX_ has the
required form because of X _ € J3(K')_; = {X(0;9)| y; = vV—1pieq; p; €
KNK' (i=1,2,3)}. 0

LeEMMA 1.6. (1) For a positive integer m, let f(X1,---,Xm) be a
J3(K)-valued polynomial of E and X1,--- X, € J3(K) with respect to o,
x and the scalar multiples of tr(X;), (X;|X;), det(X;) and (X;|X;|Xk)
for i,j k € {1,--- ,m}. Assume that f(X1,X2,---,X;n) = 0 for any
X, - X € J3(K) and all diagonal forms X1 in J3(R). Then
F(X1,-+ Xp) =0 for all Xy, X € J3(K©).

(2) Assume that X,Y € J3(K). Then:

(i) Xo((XoX)oY)=(XoX)o(XoY);

(i) X*20 X = det(X)E, (X*2)%2 = det(X)X;

(iii) X 2x X = — 3 {tr(X) X 4+tr(X*?) X — (tr(X *?)tr(X)—det (X)) E}.
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(3) Vx is the minimal subspace over F generated by X and E under the
cross product. Especially, ox(X\)*? € Vx for all A € F.

(4) (px(M)*2)*2 =0 if X € J3(K) and A\, € C with ®x(\;) = 0.
(5) Mas(K) = {X € Js(K)o| X*2 #0, tr(X*?) =0, (X*?)*2 =0} and
{XX2| X € Mos3(K)} & My(K).

Proor. (1) (cf. [7, p.42], [28, p.T4, £¢.2-4], [6, p.91, Corollary V.2.6]):
By Lemma 1.5 (2), any X; € J3(K) admits some 3 € G(K) = G(K©)™ such
that fX; is a diagonal form in J3(R). Then f(8X1, X9, -+, X,,) = 0 for
any X; € J3(K) with i € {2,--- ,m}. By Proposition 0.1, 3 preserves o, X,
tr(x), (x|*), det(*), (x| * |*) and E, so that f(X1,8 ' Xs---,871X,,) =0
for all X; € J3(K) (@ = 2,---,m). Hence, f(X1,---,Xm) = 0 for all
X; € J3(K) (i=1,---,m). Since this formula consists of some polynomial
equations on the R-coefficients of each matrix entry of X;’s with respect to
the R-basis {e;} of K, the formula holds on J3(KC) = J3(K) @r C.

(2) The formulas in (i) and (ii) are polynomials of X,Y and E with
respect to o, x, tr(x), (x|*), det(x), (x| * [¥). If X is a diagonal form in
J3(R), the formulas can be checked by Lemma 1.1 (1), easily. By (1), the
formulas (i) and (ii) hold for any X,Y € J3(KC). Hence, they hold for any
X,Y € J3(K) € J3(KC). The formula (iii) follows from the first formula
of (i) and the definition of cross product with (X*2|X) = 3 det(X).

(3) follows from the formulas in (ii), (iii) and Lemma 1.1 (3).

(4) (px(M)*?)? = det(px(M))px (M) = Px(A1)px (A1) = 0 by the
second formula of (ii) in (2).

(5) By (2) (ii), (X*?)*2 = det(X)X, so that (X*2)*2 = 0 if and only if
det(X) = 0, which gives the results. [J

The formula (i) of Lemma 1.6 (2) implies that (J3(K),0) is a Jordan
algebra over F, which is also reduced simple in the sense of N. Jacobson [16,
Chapters IV, IX], where J3(K) is called split iff K is split (i.e. non-division),
that is the case when K = K’ or K'C.

PROOF OF “PROPOSITION 0.1 (3) wHEN K = K” (cf, [7], [27, 4.1
Proposition]). Take any X € Py(K) € B(K) = J3(K©)". By Lemma
1.5 (2) with K = KC, there exists o € G(K)° = (G(K®)7)° such that
aX = diag(ry, ro,r3) for some r1,72,73 € R. By tr(aX) =1 and (aX)*? =
0, r1 +r2+ 73 = 1 and rors = r3r; = rirg = 0, so that (ri,re,7r3) =
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~

(1,0,0),(0,1,0),(0,0,1). By Lemma 1.4 (1) (ii), there exists 8 €
G(K)° such that f(aX) = E;. O

Q
=

\_@
3

S
Il

H. Freudenthal [7, 5.1] gave the diagonalization theorem on J3(O) with
the action of {a € G(O)| tr(aX) = tr(X)} (cf. [27, 3.3 Theorem], [20,
p.206, Lemma 1], [23, Proposition 1.4], [6, p.90, Theorem V.2.5]), which is
developing to Lemma 1.5 (2) for K = O with J3(K), = J3(0%), = 5(0)
under the action of G(K)™ = G(O®)™ =~ G(O) =: Fy. 1. Yokota [27, 4.2 and
6.4 Theorems| proved the connectedness and the simply connectedness of Fy
by the diagonalization theorem of H. Freudenthal (cf. [18, Appendix], [20,
p.210, Theorem 3], [10, p.175, Proposition 1.4]). O. Shukuzawa & I. Yokota
[22, p.3, Remark] (cf. [29, p.63, Theorem 9; p.54, Remark]) proved the
connectedness of Fj := G(O’) by showing the first formula of Proposition
0.1 (1) by virtue of Hamilton-Cayley formula on J3(O’) given as the first
formula of Lemma 1.6(2)(ii) (cf. [24, p.119, Proposition 5.1.5], [11, Lemma
14.96]). Because of F© & (FC) x R with (FI)™ = Fj [30, Theorem 2.2.2]
(cf. Proposition 0.1 (2)), FC := G (O®) is connected and simply connected,
so that Fy = (Ric)"Y is again proved to be connected by virtue of a theorem
of P.K. Rasevskii [21].

2. Proposition 0.1 (3) and (4) (i)

Assume that K = K’ or K€ with K’ = C',H' or O'; and K€ =
RC, € HC or OF. And put o := oy defined in Lemma 1.4 (1) (i) such that
0'2 = idja(f()' Then jg(K) == jg(k)g ©) j3([~()—a'7 jg(f%)a = {Zle T‘iEZ' +
Fi(z1)| s € F,z1 € K} such that J3(K)_, = {Fo(x2) + F3(x3)| 29,23 €
K} = {X € B(K)| (X,Y) =0 (Y € B(K),)}. And B(K), = FE; &
Jo(K) with Jo(K) := {32 ,riE; + Fi(z1)| 7 € F,z; € K}. By Lemma

1(1), jg(f()L;El = {r(Fy+ E3)| r € F} and jg(f()_L;El = {r(Fy— E3)+

Fi(z)| 7 € F,z € K}, so that Jo(K) = Jg(f()LQxE o J(K)_;

LEMMA 2.1. (1) G(K)El = G(K)E17E2+E3aj3(R)iLX jQ( )._73( )

( ) () {X((X|E1) 8275370 0 0)| 82,83 € R S9 = Sg}ﬁO(G ( ) 7&
and {X((X|E1), t2, 331, 0,0)] t2,t3,u € Ryu 2 0}NO((6(k)p, )° )E1 (X)) #0
if X € J3(K)g.
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(il) {X((X|E1), s2, s3;uv/—1leq,0,0)| s2,83,u € Ryu = 0,89 = sz} N
O(G(K,)O)El (X) # @ ZfX € jg(K/)a-.

(iii) {X((X‘El) to++v—1s2,t3 ++/—1s3;u,0 0)‘ to,t3,89,83,u € Ryu =
0,82 2 s3} N O(G(r)e), (X X)#0if X € B(KC),.

PrROOF. (1) For a € G(K)g,, one has that a(Ey + E3) = a(E — Ey) =
aF —aF| = E — E; = E> + E5 and aj?’(K)iLzXEl = ‘73([()iLZXE1 since

preserves X by Proposition 0.1 (1), so that a/z(K) = J(K), aJs(K)s =
J3(K)y and aJ3(K)_y = J3(K)_s because of the orthogonal direct-sum
decompositions of them and that a preserves (x|*) on J3(K') by Proposition
0.1 (1).

(2) (i) Take any X € J3(K),. Then there exist r; € R and 21 € K
such that X = X(ry,rg,r3;21,0,0). By Lemmas 1.4 (1) and 1.5 (1) with
K=K=K, F=Rand H := (G(K)g,)° 2 G;(K) with J = {1}, there
exists a € H such that (aX)r, = 0. By (1), aX € J3(K),, so that aX is
diagonal with s; := (aX|E;) € R (i = 1,2,3) such that s; = (aX|aE,) =
(X|E1) =7r1. If s9 = s3, then X gives an element of the left-handed set of
the first formula. If s9 < s3, put a; := Bla with ﬁl € (G(K)g,)° given in
Lemma 1.4 (1) (ii), so that ay X gives an element of the left-handed set of
the first formula. Hence, follows the first formula.

If 1 = 0, then X gives an element of the left-handed side of the second
formula with w = 0 € R. If 21 # 0, put a := z1/+/(z1]z1) € S1(1, K), so
that 63(a) € ((G(K)Ey)°)Ey, B, in Lemma 1.4 (2) (ii) such that é3(a)X =
X(ry,72,73;1,0,0) with w := /(z1]|z1) > 0, which gives an element of the
left-handed side of the second formula. Hence, follows the second formula.

(ii) Take any X € J3(K")y. By Lemmas 1.4 (1) and 1.5 (1) with K = K’
and H := (G(K')g,)° 2 G (K;) with J = {1} there exists § € H such that
(BX|Fi(z)) =0forall z € K. = KNK'. By (1), 3X € J3(K'),. Hence,
BX = X((X|E1),32,33;\/—71qe4,0,0) for some ¢ € KN K'. Put ay := 8
(if 53 = s3) or B8 (if sy < s3), so that a; € H by Lemma 1.4 (1) (ii).
Then a1 X = X((X|FE1), s2, 83; vV —1¢geq, 0,0) for some ¢ € KNK', 59,53 €R
with so 2 s3. Put o := a3 (if ¢ = 0) or §3(a)p for a := q/\/ (qlq) € K.
with N(a) = 1 (if  # 0). where é3(a) € (G(K')£,)°)F, 5, € (GU))F,
by Lemma 1.4 (2) (ii). Then aX = X((X|E1), s2,s3;v/—1uey,0,0) w1th
u:=/N(q) 2 0, which is an element of the left-handed set.

(iii) Take any X € jg(KC)g. Then X = X; + /—1X; for some X; €
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J3(K)e (i =1,2). By (i), there exist a; € (G(K)g,)° such that a;(X2) =
X((X2|E1), s2,53;0,0,0) for some s2,s3 € R with so = s3. Because of
J3(K)e 2 a1(X1) = X((X1]E1), ta, t3;2,0,0) for some to,t3 € Rand z € K,
so that a1(X) = X((X|E1),ts + v —1sa,t3 + v/—1s83;2,0,0). Put o :=
(if = 0) or 83(a)ay with a = z/+/(z|x) € S1(1,K) (if © # 0), where
03(a) € ((G(K)E;)°)E,,E, by Lemma 1.4 (2) (ii). Then a € (G(K)°)g, and
aX = X((X|E1),ta + vV/—1sg,t3 + v/—1s3;1,0,0) with u := /(z|r) = 0,

which is an element of the left-handed set. OJ

For ¢ € F, put Sy(c, K) = {W € jg(R—)_L;E | (W|W) = ¢, W # 0},
1
Whiﬁ]h is said to bq a generalized sphere of second kind over F. Then
G(K)El = NceF G(K)EI,SQ(Q}%),

LemMmA 2.2. (1) Jg,(K’)_LQXE1 = (UeerS2(c, K')) U {0} such that
(i-1) Sa(e, K') = Og(xrye) 5, (/5 (B2 — E3)) for ¢ > 0;
(12) Sa(e, K') = Oeicryoy (\/%Fl(\/—_m)) for ¢ < 0;
(ii) 82(0, K') = O(xrye)p, (M1r); and
(i) {0} = O(x1)e) s, (0)-
(2) J:),(K(C)_L;E1 = (UpecSa(c, K©)) U {0} such that

(i) Sa(e, KC) = Oa(kCye)p, (V5 (B2 — E3)) for c € C\{0};
(i) 82(0, K€) = O(g(xCye) , (M1); and

Proor. (1) For W € jg(K/)_L;E , put ¢ := (W|W) € R. By Lemma
1

2.1 (1) and (2) (i), aW = X(0, s, —s; u\/—1e4,0,0) for some s = 0,u = 0
and a € (G(K')°)g,- Then ¢ = (aW|aW) = 2(s?> —u?). For t € R,
put X(r;z) := B1(t; v/ —1leq, 1)(aW), so that r1 = 20 = 23 =0, 19 = —13 =
cosh(2t)(s—utanh(2t)) and 21 = vy/—1eq with v := cosh(2t)(u—stanh(2t)).

(i-1) If ¢ > 0, then s > u = 0 and |u/s| < 1, so that tanh(2t) = u/s
for some ¢ € R such that v = 0 and ro = cosh(2t)(s?> — u?)/s > 0. In this
case, X(r;z) = ro(By — F3) with ¢ = (W|W) = (X(r; 2)|X(r;2)) = 2(r2)?,
so that X(r;2) = /§(E2 — E3) € Sa(c, K').
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(i-2) If ¢ < 0, then uw > s 2 0 and |s/u| < 1, so that tanh(2t) = s/u for
some t € R such that r, = 0 and v = cosh(2t)(u® — s%)/u > 0. In this case,
X(r;x) = v (V—1eq) with ¢ = (W|W) = (X(r; 2)|X(r;2)) = —2v2, so that
X(r;x) = \/%Fl(\/—_1€4) € Sa(c, K').

(ii, iii) If ¢ = 0, then s> —u? = ¢/2 = 0, so that s = v = 0 and
ro =v = ue 2. When u # 0: u > 0 and ue ™ =1 for some ¢ € R. In this
case, X(r;z) = Ey — B3 + F1(v/—1eq)) = My € 8(0,K’). When u = 0:
ro =v=u=0 and X(r;z) = 0 € {0}.

(2) For W € Jg(KC)_LQXE , put ¢ := (W|W) € C. By Lemma 2.1

1

(1) and (2) (iii), aW = X(0,t2 + s2v/—1, —t2 — s2¢/—1;u,0,0) for some
ty, s2,u € R with sp,u = 0 and some a € (G(K)g,)° S (GKC)g,)°.
Then ¢ = (aW|aW) = 2((ts + s23/—1)? + u?). For t € R, put X(r;2) :=
Bult: 1, V=T)(aWV) with By(t51,v/=T) € (G(K)z,)° € (G(KO),)7, 5o that
=3 =3 =0, 79 = —1r3 = (to + s20/—1) cos(2t) + usin(2t) and 1 =
ucos(2t) — (ta + so/—1) sin(2t).

(i) If ¢ # 0, then (ta+ (s2+u)v/—1)(ta+(s2 —u)v/—1) = ¢/2 # 0, so that
eV 14t — (t2+(82+u)\/_)/(t2+(82— )v/—1) # 0 for some t € C, and that
2y = u(eV 12+ VT3 (1 4+ 5py/=T) (V2 — V1) (27T =
YL (b 4 (52 — u)V/=1)eV 120 — (t + (sg + u)y/—1)e~ F?t} = 0. In this
case, X(r;z) = ro(Ey — F3) with ¢ = (X(r;2)|X(r;z)) = 2(r2)?, so that
X(r;z) = \/_(E2 —E3) € Sg(c K )

When s9 = 0: t2 =u= 0, so that X(r,x) =0¢ {0} When so # 0: tg = 0,
u=s89>0,19=—r3 =+/—lue 2V=1 2, = ue 2V=1. There exists t € C
such that v/—Tue 20V=1 =1, so that X(r;z) = By — B3+ Fi(v/—1) = M, €
S»(0, K©). O

LEMMA 23. (1) If Y = X(r;2) € Ja(K), then tr(Y) = ry + 73,
det(Ey +Y) = ror3 — N(z1) and Y*? = det(Ey + Y)E;.

(2) For any X € J3(K),, there exists Y € Jo(K) such that X =
(X|E1)E1+Y and that Y = tr(QY) (Ba+ E3) +W for some W € J3(K)_;x

28,
such that (W, W) = £ (tr(Y)? — ddet(Ey +Y)). In this case, put Uy (A) :=
N —tr(Y)A+det(By +Y) = (A — X)) (A — A3) with some Ay, A3 € C. Then
Dx(N) = (A= (X|E1))¥y () and 2(W, W) = (Ag — A3)%.

(3) Oaiicyry J(X)NT(K) # 0 if X € J3(K) with X*2 = 0.
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PrROOF. (1) By Lemma 1.1, one has the first and the second equations.
And Y*2 = %(27“27"3 — 2N($1))E1 = det(E1 —|: Y)El
(2) Take X :=X(ry,79,73;21,0,0) € J3(K)y. Put

ro — T3

2
Then X = rE14Y,Y = 238 (Ey+ E3)+ W tr(Y) = ra+rs, det(E1+Y) =
rors — N(z1) and (W|W) = 22l —|—2N(a:1):%(tr(Y)2—4 det(E; +Y)).
By Lemma 1.1 (1), px(A\) = (/\ —r))(A=ra)(A—r3) = (A —711)N(x1) =
(A —71)(A% = (12 + r3)A + (r2r3 — N(21))) = (A — 71)¥y()). Because of
Uy (A) = (A—=X2)(A—A3), one has that tr(Y) = Ao+ A3, det(E1+Y) = A,
so that Q(W, W) ()\2 + /\3) — 4)\2)\3 (/\2 — )\3)2.

(3 ) Take X € Jg( ) with X*2 = 0. (i) When K = K’: By Lemma
1.5 (4), aX = Z (siE; + Fi(piv/—1e4)) for some p; € KNK', s; € R
and a € (G(K')™ )°, so that 0 = a(X*?) = (aX)*? = Zf’ 1(Sit18i42 +
2N (p;))E; + i Fi(Pizibiez — sipiv/—Lea), that is, sis18:42 + 2N (p;) =
Dit1ipit2 = sip; = 0 for all 1 € {1,2,3}. (Case 1) When p; = 0 for all
: 0 = $983 = 8351 = 8182, so that aX = s;F; for some ¢. If i = 2
or 3, then aX € J(K'). If i = 1, then f3(aX) = s1Ey € Jo(K') b
B3 € (G(K')7)° defined in Lemma 1.4 (1) (ii). (Case 2) When p; # 0 for
some i: pir1 = pir2 =0 and s; = 0. If i = 1, then aX € Jo(K'). If i = 2,
then B3(aX) € Jo(K'). If i = 3, then fo(aX) € Jo(K') by B2 € (G(K')7)°
defined in Lemma 1.4 (1) (ii).

(i) When K = KC: aX = Y + /—=1diag(r}, ), r}) for some 7, € R
(i =1,2,3), Y € B(K), and o € G(K)° = (G(K©)7)° by Lemma 1.5
(3). Putting Y = X(r;z), s; :== r; + v/—1r. € C, one has 0 = (aX)*? =
2?21{(5i+151‘+2 — 2N($1))EZ + Fz(m — Sil‘i)}, that is, 0 = T‘;:L‘i =
Tit1Tit2 — 1% = Sit18i42 — 2N (z;) for all i € {1,2,3}. Then (Case 1)
x; = 0 for all ¢, (Case 2) x; # 0, zj4+1 = wit2 = 0 for some i, (Case 3)
x; # 0, xi41 # 0, xiy2 = 0 for some i; or (Case 4) x; # 0 for all i. In
(Case 1), 0 = s;418;42 for all i, so that aX = s;E; for some ¢. If i = 2
or 3, then aX € J(KC). If i = 1, then f3(aX) = s1Fy € Jo(KC) by
B3 € (G(K®)T)° defined in Lemma 1.4 (1) (ii). In (Case 2), 0 = 7} = ry,
so that aX = s;4+1Ei41 + Sit2Fit2 + Fi(x;) and that ﬁk(aX) IS jg(KC)
for some (; € (G(K®)7)° defined in Lemma 1.4 (1) (ii). In (Case 3), 0 =
ri =1i =ri 1 = rix1 = N(2;) = N(2i11), so that aX = s;12F; 2 and that
Br(aX) € Jo(KC) for some f € (G(KC)7)° defined in Lemma 1.4 (1) (ii).

Y :=X(0,r2,73;21,0,0), W := (By — E3) + Fi(21) € Jo(K).
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In (Case 4), r; = 0 for all i, so that aX € J3(K) and that a (aX) is diagonal
for some oy € G(K)° by Lemma 1.5 (2). Then B(a1(aX))) € Jo(KC) for
some (3 € (G(KC)7)° by the argument on (Case 1). [

PROOF OF PROPOSITION 0.1 (3) WHEN K # K. Take any X €
Py(K). By (3), X € Jo(K) for some a; € (G(K)7)°. By (1), det(E; +
a1 X)E; = (a1 X)*? = a(X*?) = 0, ie. det(E) + auX) = 0. By ( )
X = 2N (B 4 B+ W = L(Ey+ E3)+ W for some W € J3(K)_,
such that (W]W) $(tr(a1 X)? — 4det(Ey + a1 X)) = 1, so that W 6
S2(1/v2,K). By Lemma 2.2 (1)(2), aeW = L(E> — E3) € 82(1/\/_, K) for
some oo € (G(K)El)o Then ag(alX) (E2 + Eg) + %(EQ — Eg) = Fy
by Lemma 2.1 (1). By (3 € (G (K)E) defined in Lemma 1.4 (1) (ii),
B3(aa(a1 X)) = Ey, where B3aza1 € G(K)°. O

PROOF OF PROPOSITION 0.1 (4) (i). Take any X € M;(K) defined
in Lemma 1.6 (5). By (3), 0 # aX € J(K) for some a € (G(K)7)° with
tr(aX) = tr(X) = 0. In this case, by (2), aX = HX) By 4 B3) + W =W
for some W € jg(K)*szEl' And (aX|aX) = (X|X) = (X o X|E) =
—2(X x X|E) = —2tr(X*?) = 0 by Lemma 1.1 (4). Hence, aX € S»(0, K).
By Lemma 2.2 (1) (ii) or (2) (ii), there exists 8 € (G (K)°)g, such that
B(aX) = My (when K = K') or M; (when K = K©). O

3. Theorems 0.2 and 0.3 in (1) (i, ii)

Assume that X € J3(K) admits a characteristic root A; € F of multi-
plicity 1. Then 0 # &% (A1) = tr(¢ox(M\1)*?) by Lemma 1.2 (2), so that
1

E =

SR u(ex ()

is well-defined. Put Wy, := X = M Ex, — "8 0p | (1) € Vy. Then

QOX()\l)XQ e Vx

tI‘(X) -\

X =MFEx + PEx ., (1) + Wx

LEMMA 3.1. Assume that X € jg(f() admits a characteristic root A1 €
F of multiplicity 1. Then:



410 Akihiro NisHI1IO and Osami YASUKURA

(1) Vx N Po(K) 3 Expy, # 0, @uy,, (1) # 0, B, = 0, 2Ex 5, X
pux, (1) =¢rc,, (1), 0Ey,, (1) = Ex ), 2Ex 0, X Wx o, = =W,
(2) Vx = IFEX)\1 D FQDEX,Al(l) D FWX,M such that vy = 2 (’lf WX,)q =
0) orvx = 3 (if Wxn, # 0) with (Ex,|¢Ex,, (1) = (Ex|[Wxpy,) =
(QDEX,Al(l)’WX,M) =0, (Exx|Exa) =1,
ey, (Dlepy,, (1) =2 and (Wx \, [Wxx,) = Ax(Ar).

PROOF. (1) Put Z := px(\1) and Y := Z*2  so that Y*? = 0 by
Lemma 1.6 (4). Then Ex ), = gpyY, tr(Ex,,) = 1 and By = 0, so
that Ex ., € P2(K) N Vy. Note that tr(ppy,, (1) = tr(E) — tr(Ex ) =
3—1=2%#0, so that pp,, (1) # 0. By Lemma 1.1 (3), 2Ex, X
SOEX,Al(l) = 2EX7)\1 X (E — EX,)\l) = 2EX7)\1 x B = tI‘(EX)\l)E — EX,)\l =
pExy, (1) and pp,, (1) = (B - Ex),)** = E** =2E x Ex ), = E -

¢Ex, (1) = Ex,. By direct compuations, Wy, = tr(Z)(p o (1) — Z.
By Lemma 1.6 (2) (iii) and det(Z) = 0, 2Bx, x Z = 252" x 7 =

trfy) Sr(2)Y +tr(Y)Z — tr(Y)tr(2)E + det(Z)E) = —tr(Z)Exp, — Z +

tr(Z)E = —Z + tr(Z)pEy ,, (1). Hence, 2Exy, x Wy, = tr(Z)(p oy (1) +
Z = t0(Z)ppyy, (1) = 2 = SPop, , (1) = —WX,M-

(2) Since Vx is spanned by E, X, X *?, vx = dimpVx < 3. If Wx 5, # 0,
then Ex y,, SOEX,Al( ), Wx .\, are eigen- Vectors of L2E with different

eigen-values 0,1, -1, i.e. vx = 3. If Wx,, = 0, then X = MEx ) +
w(pE‘X’)\l (1) and X><2 — MSOEX,)\l (1) + (W)Z‘E‘)(’)\l7 SO
that Vx is spanned by Ex ), and ¢p,, (1) = E — Ex,, i.e. vx =2. By
Lemmas 1.1 (2) and 1.6 (3), Ly, , is a symmetric F-linear transformation
e

n (Vx, (x|*)), so that Exx,,¢Ey,, (1), Wx,, are orthogonal as zero or

eigen-vectors of Ly, with the different eigen-values. By (1) and Lemma
A1
1.1 (4), 0 = QtI'(E;—?)\l) = tr(EX,)\l)2_(EX,/\1‘EX,)\1) = 1—(EX’)\1|EX7)\1), SO
that (EX,/\JEX,M) =1 and (SOEX,Al (1)‘(10EX,)\1(1)) = (E|E) - 2(E‘EX,>\1) +
(Ex . |Exy,) =3 —2tr(Ex, ) +1 = 2. Because of the orthogonality in
(1), (X[Exna) = A, (X[ppg,, (1)) = tr(X) = Ay and (Wxn, [Wx ) =
. y\2

(X]20) + Af 4+ CEERE — 90 (X[ Bx ) = (00(X) = M)(X ey, (1) =

(X|X) = 303 + tr(X)A — 2tr(X)% = Ax(A\1). O

Note that Ax (A1) = —3{3A% — 2tr(X)A; + tr(X)? — 2(X|X)} € F is an
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invariant on (’)G< Q) (X) if Ay € F is a characteristic root of multiplicity 1 for
X € B(K).

LEMMA 3.2. Assume that X € Jg(f() admits an eigen-value \1 € F
of multiplicity 1. Put ®x(\) = I_, (A — \;) for some Ay, A3 € C with
A 7& Ao, Az3. Then OG(f{)O 5 ME1 + %(tr(X) — /\1)(E — El) + W fOT W e
j3(K)7L£<E1 such that (W|W) = Ax (A1) = (A2 — A3)%/2 given by Ax and

vx as follows:
(1) When K = K" with F = R:
(i—l) W = —‘A\)/(—Q()\l)(Eg — E3) with #AX =vx =3 ’if Ax(Al) >0,

(i-2) W = Y=2X R By (=Tey) with #Ax = vx =3 if Ax (M) < 0;
(ii) W = My if Ax (M) =0 with vx = 3;
(iii) W =0 if Ax (A1) = 0 with vx = 2.
(2) When K = K€ with F = C:
(i) W = %(Eg — E3) for any w € C such that w? = Ax(\1) with #Ax =
vx =3 if0# Ax(\1) € C;
(ii) W = My if Ax(\) =0 with vy = 3;
(ifi) W = 0 if Ax (A1) = 0 with vy = 2.

ProoF. By Lemma 3.1 (1) and Proposition 0.1 (3), aEx , = Ey for
some o € G(K)°, so that app,, (1) = a(E — Ex),) = E — E1. Put
W' := aWyx.,. Then aX = A\ Ey + 282 (B _ B 4 W with §,x(\) =
IP_ (A = Ni). And 2By x W' = a(2Exy, x Wx ) = —aWxy, = —W'
by Lemma 3.1 (1), i.e. W' € ‘73(K)—L2XE1 C J3(K),. By Lemmas 3.1 (2)

and 2.3 (2), AX()\l) == (WX7)\1|WX7)\1) == (W’|W’) = ()\2 - )\3)2/2, which
is determined by Ax, so that W’ € S(Ax(A1)) U{0}. Note that W' = 0
(or W' % 0) iff Wx, = 0 (resp. Wx ., # 0) iff vy = 2 (resp. vx = 3)
by Lemma 3.1 (2). If Ax(\) # 0, then (W/|W') #£ 0, so that W' #£ 0
and Ay # Az, i.e. vx = #Ax = 3: By Lemma 2.2 (1) (i-1, 2) or (2) (i),
W := BW' is given as (1) (i-1, 2) or (2) (i) for some 8 € (G(K)g,)°, so that
BaX) = MBE + )M g(p B+ W =\ B+ S By 4w

2 g
If Ax(A1) =0, then (W/|WW') =0, so that W’ € S»(0, K)U{0}: By Lemma
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some 3 € (G(K)g,)°, so that B(aX) = \BE; + WB(E —E)+ W=
MEL+ W(E —-E)+w. O

PROOF OF THEOREMS 0.2 AND 0.3 IN (1) (i, ii). Let X € J3(K) be
such as #Ax # 1, that is, X admits no characteristic root of multiplicity
3. Since the degree of ®x(\) equals 3 =1+ 1+ 1 = 1+ 2, there exists
a characteristic root p; € C of multiplicity 1. If F 3 pq, put Ay := pq. If
F # u1, then F = R # puq, so that &x(A\) = (A — p1)(A — @) (A — vq) for
some v1 € R. In this case, put A\; := v;. In all cases, put Ax = {A1, A2, A3}
with #Ax = 3 or 2 such that ®(\) # 0 and tr(X) = 322 | ), so that
Ax (M) = (A2 — A3)?/2 by Lemmas 3.1 (2) and 2.3 (2). By Lemma 3.2 (2)
(it K = KC) or (1) (if K = K'), aX = \Ey + "2 (B — B) + W for
some W € ‘73(I~(>_L§E1 and a € G(K)°.

(0.2.1) When F = C: K = K€ =RC, cC, HC or OC.

(0.2.1.1) The case of #Ax = 3: Put w := (Aa — X\3)/v/2. Then Ay # As.
And Ax (A1) = w? # 0. By Lemma 3.2 (2) (i), vx = 3 and aX = \ By +
WA (B By )+ (By— B3) = M By + 25525 (By + )+ 2252 (B, — By) =
diag(Al, )\2, )\3)

(0.2.1.ii) The case of #Ax = 2: Aa = A3 and Ax (A1) = 0.

(0.2.1.ii-1) When vy = 2: By Lemma 3.2 (2) (iii), X = A\ E1 4+ A2 (Fa+
E3) = diag(A1, A2, A2).

(0.2.1.ii-2) When vx = 3: By Lemma 3.2 (2) (ii), aX = A\ E1 + Xo(Ea +
Eg) + My = diag()\l, Ag, )\2) + M.

(0.3.1) WhenF =R: K =K' =C',H' or O'. And \; € R, Ay, \3 €

C.

(0.3.1.1) The case of #Ax = 3:

(0.3.1.i-1) When Ax C R: It can be assumed that A\; > A2 > A3 by
translation if necessary. Then Ax (A1) > 0. By Lemma 3.2 (1) (i-1), vx =3
and aX = A\ By + 2282 (Ey + E3) + 22523 (By — E3) = diag(A1, A2, A3).

(0.3.1.i-2) When Ax ¢ R: {X2,A3} = {p &+ ¢/—1} for some p,q € R
with ¢ > 0. And Ax(\1) = —2¢®> < 0. By Lemma 3.2 (1) (i-2), aX =
MEL+ p(E2 + B3) + qF1(V—1es) = diag(A, p,p) + Fi(qv/—Tea).

(0.3.1.i) The case of #Ax = 2: Ax = {\1, A2} with ®(A2) = 0. Then
Ay = %(tr(X) — )\1) € R and AX()\I) = 0.
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(0.3.1.ii-1) When vx = 2: By Lemma 3.2 (1) (iii), aX = M E1+ A2 (B2 +
Es3) = diag(A1, A2, A2).

(0.3.1.ii-2) When vx = 3: By Lemma 3.2 (1) (ii), X = M E1+ X2(E2 +
E3) + My = diag()\l, Ag, /\2) + My, O

4. Proposition 0.1 (4) and Theorems 0.2 and 0.3 in (1) (iii)

Assume that K # K, ie., K = R%,C% H® 0%C',H or O'. Put
M(K) = (J3(K)o)L Ly, 0 and N2( () == {X € J3(K)o| X*? = M}.

LEmMMA 4.1. (1) No(K) S Mi(K).
(2) N1 (K) = {M;(z) + Mas(y)| z,y € K};
(3) No(K) = {sMy + Mas(y)| s € F,y € Si(1,K)};

PROOF. (1) Take X € Ny(K). Then tr(X) = 0 and tr(X*?) =
tr(M;) = 0. By Lemma 1.6 (2) (ii), det(X)X = (X*?)*2 = M* = 0,
so that det(X) = 0. By Lemma 1.6 (2) (iii), X x M; = X x (XXQ) =
—3(tr(X) X2 + tr( X)X — (tr(X)tr(X %) — det(X))E) = 0, as required.

(2) (i) Take X = X(r;z) € N1(KC). Then r; + 5 + 3 = 0 and that
0=2M;xX =2X(0,1,-1;v/~1,0,0) xX(r; 2) = (r3—r2—2(/—1|71)) E1 —
T’1E2+7’1E3—|—F1(—\/—71T1)+F2(\/—71.CE_3—$2)+F3(\/—71$_2+$3) by Lemma 1.1
(1), that is, m3 = /=173, 11 = 0, r9 = —1r3 = —(v/—1]21) = (1| — V~111)
with Ir1 = \/—_1(—\/—_1.131), so that X = Ml(—\/—_ll‘l) + Mgg(l‘g).

(ii) Take X = X(r;z) € No(K’). Then r1 + ro + r3 = 0 and that 0 =
2My x X = 2X(0,1, —1;4/—1eq,0,0) xX(r;2) = (r3—r2—2(v/—leg|x1)) E1—
rEy + mEs + Fi(— 7“1\/_64) + Fo(—v—leqm3 — x2) + F3(—T3v/—1leq +
r3) by Lemma 1.1 (1), that is, 20 = —v/—les73, r1 = 0, 793 = —r3 =
—(\/?164’x1) = (1‘\/?64231) with 1 = (\/—_164)21'1 = \/?164(\/j1€4$1),
so that X = Mll(\/—_1€4.%‘1) + M2/3(5L‘3).

(3) (i) Take X € No(K©). By (1), X e M (KC). By (2), X = My (1) +
Moss(x3) for some x1,x3 € KC, so that X*2 = My (21)*% + 2Mq(21) x
Moz (w3)+Maz(23)*? = V=1{(21]1)*~N(21) } E1— Fo(vV=1(T1— (1]1))T3)
F3(x3(@1 — (21|1))) + N(23)M;. Hence, X*2 = M; iff N(x3) = 1 and
77 = (21]1) € RC, ie. (z1,23) = (s,2) for some (s,2) € RC x S (1, K©).

(ii) Take X € My(K'). By (1), X € Mi(K'). By (2), X = My/(x1) +
Myi3(z3) for some 1,73 € K', so that X*2 = My (21)*% + 2My(z1) x
Mars(w3)+Mayz(x3)** = (N(21) = (21]1)%) E1 — Fo (T~ (21]1)) v/~ Tea)T3) +
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F3(—(z3v/—1eq)(@1vV/—1es) + (z1]1)z3) + N(z3)My,. Hence, X*? = My, iff
N(z3) =1 and z; € R, as required. [

LEMMA 4.2. Ny(K) = O(G(K)o)  (Mag).

My

PROOF. (1) Take any X € Ny(K®). By Lemma 4.1 (3), X = sM; +
Moas(z) for some s € RC and z € 8(1,KC). Put 2 = E?fofl &ie; with
& € RC and z, := fol_l & e; such that T, = —x,,.

(Case 1) When & = 0: By z, =z € 81(1, K©), 2z = —2T = —1. By
Lemma 1.4 (2) (ii), 61(2)X = s(Es — E3 — F1(v/—1)) — Fo(v/—1) + F3(1), so
that 0'3(51(.’]3)X = 8M1 + M23. By Lemma 1.4 (1) (111)7 ﬂgg(t)(0'351($)X) =
(Qt + 8)M1 + Moy = Mg if t = —5/2 with ng(—5/2) € (G(KC)O)Ml and
(B23(—s/2)0301(x)) My = B23(—s/2)(M1) = M;, as required.

(Case 2) When & # 0: Put Y := [fa3(—5/(2£))X with
Bas(—s/(260)) € (G(K®)°)pr,. By Lemma 1.4 (1) (iii), Y = Mo ().

(i) When z,, = 0: €3 = (z|z) —(zy|zy) =1-0=1,2=¢§ =+land Y =
Mos :tl) = +Mbos, so that Y = Mb3 or 01Y = Moz with o1 € (G(KC)O)Ml.

(ii) When z, # 0 with dg = 4: Then dx — 1 = 3. If 5% + 532 = 0 for
all j € {2,---,dg — 1} and & + & = 0, then —¢2 = & = & = ... =
§§K_1 = 0, that is, z, = 0, a contradiction. Hence, &2 + sz- # 0 for some
i,7 € {1,--- ,dg — 1} with ¢ # j. Take ¢ € RC such that ¢ = £2 +£j2.
Put a := (£e; — &ej)/c, so that —a = a € Si(1, K©) and (a|z) = 0. Put
y := za. Then (y|1) = (a|lz) = 0 and 036¢Y = Fo(v/—1y) + F3(y) with
0369 € (G(KC)°)ps,. According to the (Case 1), B(036%Y) = Mas for some
ﬁ € (G(KC)O)M1

(iii) When z, # 0 with dg < 4: By Lemma 1.4 (2) (iii), 1 (z)Y = Mas
with f(x) € (G(K©)*)a, -

(2) Take any X € No(K'). Then X = sMy + Moy3(x) for some s € R and
r € S1(1, K') by Lemma 4.1 (3). Take p,q € K. such that x = p+ gv/—1le,
so that pp — gg = N(x) = 1. Note that /—1lesz = ¢+ pv/—1ley, and that
w(V—=Tesw) = (p+ qv—1es) (@ + DV —1es) = p(g +q) + (¢° + Pp)vV—1Lea.

(Case 1) When (y/—1legz|1) = 0: Then ¢+¢q = 2(g|1) = 0. By ¢ = —¢,
@ +Dpp =Dp—qq = 1, so that x(v/—lesr) = /—1leq and T/ —1lesT =
—xv/—legr = —/—1ley = \/—1leyq. By Lemma 1.4 (2) (i), 61 (z)My = By —
Es3+ Fy (:E\/—_1€4LL’) = My, and 67 (:L’)X = sMy +F2(—f\/—_164f)+F3($f) =




Orbit Decomposition 415

sMyr + My3. By Lemma 1.4 (1) (iii), Bo3(—s/2)(sMy + Mo3) = Moz with
Bz (t) € (G(K')°) -

(Case 2) When (v/—leqz|l) # 0: Then (v—leg|lz) = —(1|v/—legx) #
0. By Lemma 1.4 (1) (iii), Boz(—s/(2(v/—1le4|x)))X = Maos(x) with
Ba3(t) € (G(K')°),, - Note that ¢ +q = 2(v/—1les|x) # 0, so that ¢ € K/
and q # 0.

(i) When dgr 2 4: By dimgpK, = dgs/2 2 2, there exists q1 €
K. such that (g|¢1) = 0, so that (v/—les(zq)|l) = —(2q1]v—1es) =
—(@lzv~1es) = (@|V—leaxr) = (qfg) = 0. Put a = q1/\/N(q1) €
S1(1,K’). Because of (v/—1lesa|l) = 0, &1(a)My = My as well as (Case
1), so that NQ(K,) ) 51((1)M2/3(1') = My3(za) with xa € Sl(l,K/) such
that (v/—les(x@)|1) = 0. Then &1 (a)My = My, and & (va) My 3(z@) = Mos
as well as (Case 1).

(i) When dgs < 2: Then K’ = C’, so that z € §1(1,C’). By Lemma
1.4 (2) (iii), f1(x) € (G(C")°)n,, such that G1(z)Maz(z) = Moz, O

PROOF OF PROPOSITION 0.1 (4) (ii). Take any X € May3(K). By
Lemma 1.6 (5), X*? € My (K {). By Proposition 0.1 (4) (i), there exists
o € G(K)° such that M; = a(X*?) = (aX)*?, so that aX € No(K {).
By Lemma 4.2, there exists § € (G (K)")M1 such that 3(aX) = Moz, as
required. [

PROOF OF THEOREMS 0.2 AND 0.3 IN (1) (iii). Take any X € J3(K)
with #Ax = 1 such as Ax = {\}. By Lemmas 1.2 (1) and (3), X =
M E + X with some Xg € {0} UM, (K)U Mas(K).

(iii-1) When Xy = 0: X = AF and vy = dimpVx = dimp{aX* + bX +
cE| a,b,c € F} = dimp{cE| ce F} =1.

(iii-2) When X € M (K K): By Proposition 0.1 (4) (i), there exists o €
G(K)° such that aX = A\;E+M;. By Lemma 1.1 (3) with M7 = tr(M;) =
0, one has that (aX)*? = \2E—X; M, so that vy = dlm]F{a(aX)XZ—i-baX—i-
cE| a,b,c e F} = dim]}r{(a)\% + b\ +¢)E + (b—a\)Mi| a,b,c € F} = 2.

(iii-3) When X € Mo3(K): By Proposition 0.1 (4) (ii), there exists
o € G(K)° such that X = \; E+4 My3. By Lemma 1.1 (3) with M2>§2 =M
and tr(Ma3) = 0, one has that (aX)*? = ME — A\ Mas + M, so that
vy = dimp{a(aX)*? + baX + cE| a,b,c € F} = dimp{(a)? + b\; + ¢)F +
(b— al) Moz + aM| a,b,c € F} = 3. O
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