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Vast Multiplicity of Very Singular Self-Similar

Solutions of a Semilinear Higher-Order Diffusion

Equation with Time-Dependent Absorption

By V. A. Galaktionov

Abstract. As a basic model, the Cauchy problem in R
N×R+ for

the 2mth-order semilinear parabolic equation of the diffusion-absorp-
tion type

ut = −(−∆)mu− tα|u|p−1u, with p > 1, α > 0, m ≥ 2,

with singular initial data u0(x) �≡ 0 such that u0(x) = 0 for any x �= 0,
is studied. The additional multiplier h(t) = tα → 0 as t → 0 in the
absorption term plays a role of a time-dependent non-homogeneous
potential that affects the strength of the absorption term in the PDE.
Existence and nonexistence of the corresponding very singular solu-
tions (VSSs) is studied. For m = 1 and h(t) ≡ 1, first nonexistence
result for p ≥ p0 = 1+ 2

N was proved in the celebrated paper by Brezis
and Friedman in 1983. Existence of VSSs in the complement interval
1 < p < p0 was established in the middle of the 1980s.

The main goal is to justify that, in the subcritical range 1 < p <

p0 = 1 + 2m(1+α)
N , there exists a finite number of different VSSs of the

self-similar form

u∗(x, t) = t−βV (y), y = x/t
1

2m , β = 1+α
p−1 ,

where each V is an exponentially decaying as y → ∞ solution of the
elliptic equation

−(−∆)mV + 1
2m y · ∇V + βV − |V |p−1V = 0 in R

N .

Complicated families of VSSs in 1D and also non-radial VSS patterns
in R

N are detected. Some of these VSS profiles Vl are shown to bifur-
cate from 0 at the bifurcation exponents

pl = 1 + 2m(1+α)
l+N , where l = 0, 1, 2, ... .
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1. Introduction: VSSs for Higher-Order Diffusion-Absorption

PDEs

1.1. Diffusion-absorption model

Our basic model is the 2mth-order semilinear heat equation in R
N ×R+

with non-autonomous (non-homogeneous) absorption term

ut = −(−∆)mu− h(t)|u|p−1u (p > 1, m ≥ 2),(1.1)

where the given function h(t) satisfies

h(t) > 0, h(t) → 0 as t → 0.

For m = 1 and h = 1, the critical Fujita-like exponent p0 = 1 + 2
N and

existence-nonexistence of very singular solutions (VSSs) was derived since

the 1980s; see first principal results of the 1980s in [4, 15, 5, 12, 21, 22,

23], and a long list of references in [18, Ch. 4]. In the higher-order case

m ≥ 2 and h = 1, such an investigation has been performed in [14, 17,

19]. The influence to VSSs of non-homogeneous potentials h(t) was first

studied in Marcus–Véron [26] in the case m = 1, which led to new nonlinear

phenomena; see more recent extensions in [31] and references therein.

1.2. Similarity VSSs: towards a non-variational problem

The layout of the paper is as follows. We investigate the phenomena

associated with the non-homogeneous term and consider the power case

(1.2) h(t) = tα, with the fixed exponent α > −1(
so that

∫
0 h(t) dt < ∞

)
.

In Section 2, for the higher-order parabolic equation (1.1) with m ≥ 2, we

study the existence and multiplicity of similarity solutions and show that,

in the subcritical range p ∈ (1, p0), with the critical (Fujita-like) exponent

p0 = 1 + 2m(1+α)
N ,

there exist VSSs of the similarity form

u∗(x, t) = t−βV (y), y = x/t
1

2m , with β = 1+α
p−1 > 0,(1.3)
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where V is a non-trivial radial solution of the elliptic equation


B1V − |V |p−1V ≡ −(−∆)mV + 1
2m y · ∇V + βV − |V |p−1V

= 0 in R
N ,

V (y) decays exponentially fast as |y| → ∞.

(1.4)

Passing then to the limit t → 0+ in (1.3) yields the corresponding initial

function satisfying

u∗(x, 0) = 0 for all x �= 0,(1.5)

which nevertheless is not a finite measure, and this reinforces the notion of

very singular solutions for (1.3). Condition in (1.4) on the exponential decay

at infinity is naturally enforced by introducing weighted L2 and Sobolev

spaces; details are given in Section 2.

1.3. On main results

The main goal is to detect the whole range of VSS profiles by using

spectral properties of the linear operator B1 in (1.4) and bifurcation the-

ory. This determines a countable number of p-bifurcation branches of VSS

profiles in the subcritical range p < p0 that, for any α > −1, are originated

at the bifurcation points

pl = 1 + 2m(1+α)
N+l , l = 0, 1, 2, ... .(1.6)

This also yields α-bifurcation points,

αl = (p−1)(N+l)
2m − 1, l = 0, 1, 2, ... .(1.7)

In Section 3, using numerical experiments, we show that, surprisingly,

the whole picture of branches of VSS similarity profiles is essentially more

complicated than that for α = 0 studied in [19]. It turns out that even

in 1D for sufficiently large α > 0, the whole set of VSS profiles consists of

various families of solutions of different geometric shapes. In addition, this

includes new branches that are expected to appear at saddle-node (turning)

bifurcation points in α.

In Section 4, for future use for non-power potentials such as

h∗(t) = e−1/t ,(1.8)
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we are particularly interested in the study of the limit behaviour of such

VSSs as α → +∞ in (1.4). Some nonexistence results of VSSs in the range

p ≥ p0 are proved in Section 5.

It is necessary to mention that for, any m ≥ 2, the problem (1.4) even

in 1D is not variational (it is for m = 1 only), so the operators there are

not potential in any topology. Moreover, even the linear principal part

B1 therein in not self-adjoint (symmetric) in any weighted space L2
ρ. In

addition, the corresponding parabolic flow is not order-preserving in view

of the lack of the Maximum Principle (again applies for m = 1 only).

Therefore, for describing the complicated discrete sets {Vσk
}, where σk

is a multiindex (see Section 3), we are going to use a machinery of various

bifurcation-branching methods of nonlinear analysis. Nevertheless, many of

our final conclusions on the global behaviour of bifurcation diagrams of V ’s

remain formal, and we do not expect that a reasonably simple justification

of these can be achieved soon. Therefore, we heavily rely on numerical

construction of, at least, a couple of hundreds of similarity profiles. These

numerics are also not that easy at all. Often, the reliable numerics will

be the only tool to detect this vast multiplicity of VSS profiles of (1.4)

far away from bifurcation points, which are detected rigorously. Such a

combination of rigorous and formal results of different natures seems to be

an unavoidable and essential feature in a detail studying of such difficult

modern higher-order non-potential semilinear elliptic problems.

2. VSSs Profiles: Local Bifurcation Theory

Thus, consider the Cauchy problems for the PDE (1.1) with the power

potential (1.1).

2.1. The fundamental solution of the poly-harmonic equation

This is

b(x, t) = t−
N
2mF (y), y = x/t

1
2m ,(2.1)

being the fundamental solution of the linear poly-harmonic equation

ut = −(−∆)mu in R
N × R+.(2.2)
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The rescaled kernel F is then the unique radial solution of the elliptic equa-

tion

BF ≡ −(−∆)mF + L0F = 0 in R
N ,(2.3) ∫

F = 1; L0 = 1
2m y · ∇ + N

2m I,

satisfying for some positive constants D > 1 and d > 0 depending on m and

N [10]

|F (y)| < DF̄ (y) ≡ Dω1e
−d|y|α in R

N , α = 2m
2m−1 ∈ (1, 2),(2.4)

ω1 > 0 being a normalization constant such that
∫
F̄ = 1.

It turns out that the linear operator B1 in equation (1.4) is just a shift

of the operator (2.3) for the rescaled fundamental kernel F :

B1 = B + c1I, where c1 = N(p0−p)
2m(p−1) .(2.5)

2.2. The point spectrum of the non self-adjoint operator B

We consider the linear operator B given in (2.3) in the weighted space

L2
ρ(R

N ) with the exponentially growing weight function

ρ(y) = ea|y|
α
> 0 in R

N ,(2.6)

where a ∈ (0, 2d) is a sufficiently small constant. We ascribe to B the

domain H2m
ρ (RN ) being a Hilbert space with the norm, induced by the

corresponding inner product,

‖v‖2 =
∫
ρ(y)

∑2m
k=0 |Dkv(y)|2 dy,

where Dkv denote vectors {Dβv, |β| = k}. We have H2m
ρ ⊂ L2

ρ ⊂ L2. The

spectral properties B are as follows [9]:

Lemma 2.1. (i) B : H2m
ρ → L2

ρ is a bounded linear operator with the

real point spectrum

σ(B) =
{
λl = − l

2m , l = 0, 1, 2, ...
}
.(2.7)

The eigenvalues λl have finite multiplicity with eigenfunctions

ψβ(y) = (−1)|β|√
β!

DβF (y), with any |β| = l ≥ 0.(2.8)
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(ii) The set of eigenfunctions Φ = {ψβ, |β| = 0, 1, 2, ...} is complete in

L2
ρ.

In the classical second-order case m = 1, we have that

F (y) = (4π)−
N
2 e−

1
4
|y|2

is the rescaled positive Gaussian kernel and the eigenfunctions are

ψβ(y) = e−
1
4
|y|2Hβ(y),

where Hβ are separable Hermite polynomials in RN [3, p. 48]. The operator

B, with the domain H2
ρ and the weight ρ = e|y|

2/4, is self-adjoint and the

eigenfunctions form an orthogonal basis in L2
ρ.

Lemma 2.1 gives the centre and stable subspaces of B, Ec = Span{ψ0 =

F}, Es = Span{ψβ, |β| > 0}.

2.3. The polynomial eigenfunctions of the adjoint operator B∗

Consider the adjoint operator to B,

B∗ = −(−∆)m − 1
2m y · ∇ .(2.9)

For m = 1, the following representation holds:

B∗ ≡ 1
ρ∗ ∇ · (ρ∗∇), with D(B∗) = H2

ρ∗ , where ρ∗(y) = e−
1
4
|y|2 .

Hence B∗ is symmetric in L2
ρ∗ , and, as is well known, admits a self-adjoint ex-

tension possessing a discrete spectrum, etc. The eigenfunctions form an or-

thonormal basis in L2
ρ∗ and the classical Hilbert–Schmidt theory applies [3].

For m ≥ 2, we consider B∗ in L2
ρ∗ with the exponentially decaying weight

function

ρ∗(y) = 1
ρ(y) ≡ e−a|y|α > 0.

Lemma 2.2. (i) B∗ : H2m
ρ∗ → L2

ρ∗ is a bounded linear operator with

the same spectrum as B, (2.7). The eigenfunctions ψ∗
β(y) with |β| = l are

lth-order polynomials

ψ∗
β(y) = 1√

β!

[
yβ +

∑� |β|
2m

�
j=1

1
j!(−∆)mjyβ

]
.(2.10)
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(ii) The set {ψ∗
β} is complete in L2

ρ∗.

From this definition of the adjoint eigenfunctions, the orthonormality

condition holds

〈ψβ, ψ
∗
γ〉 = δβγ ,(2.11)

where 〈·, ·〉 denotes the standard L2 inner product. For m = 1, both (2.7)

and (2.10) are well-known properties of the separable Hermite polynomials,

[3, p. 48].

2.4. Bifurcations at p = pl: local existence of the VSSs

It follows from (2.5) and the above lemmas that the only possible bi-

furcation points from zero of VSSs in the elliptic problem (1.4) are given

by

c1 = −λl =⇒ p = pl = 1 + 2m(1+α)
N+l , l = 0, 1, 2, ... .(2.12)

We justify these bifurcation phenomena. Taking p near the critical values

as defined in (2.12), we look for small solutions of the problem (1.4). At

p = pl, the linear operator B1 has a nontrivial kernel, hence, the following

result holds:

Proposition 2.1. Let for an integer l ≥ 0, the eigenvalue λl = − l
2m

of operator (2.3) be of odd multiplicity. Then the exponent in (2.12) is a

bifurcation point for (1.4).

Proof. This result is standard in bifurcation theory; see [8, p. 381]

and similar results in a related problem in [19, § 6]. Necessary spectral

properties of the linearized operator are given in [9]. We present some

comments concerning the linearized operators involved.

Consider in H2m
ρ the equation

B̂V = −(1 + c1)V + |V |p−1V, B̂ = B1 − (1 + c1)I ≡ B − I.(2.13)

The spectrum of B̂ is a translation of that of B, σ(B̂) = {−1 − l
2m}, and

consists of strictly negative eigenvalues. The inverse operator B̂−1 is known
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to be compact (Proposition 2.4 in [9]). Therefore, in the corresponding

integral equation

V = A(V ) ≡ −(1 + c1)B̂
−1V + B̂−1|V |p−1V,(2.14)

the right-hand side contains a compact Hammerstein operator in Lq
ρ(RN )

space for some q ≥ 1 [24, p. 38] (see details on the resolvent of B in [6]).

In this application, there exist certain technical difficulties in checking com-

pactness of this Hammerstein operators in weighted Lq-spaces over whole

R
N . As an alternative, we can use Ladyzhenskii’s theorem [24, p. 34] es-

tablishing compactness in C.

To avoid this technicalities, we use [8, Thm. 28.1] where no assumptions

on compactness of the vector field are necessary. The main hypothesis

therein is oriented to the linearized operator in (2.14) that is assumed to be

Fredholm of index zero at bifurcation values (which is true by [9]). Then the

result is first obtained for truncated uniformly bounded nonlinearity instead

of |V |p−1V (see [19, p. 1088]), for which all the hypotheses are valid. Then

bifurcations in the truncated problem (2.14) are always guaranteed if the

derivative A′(0) = −(1 + c1)B̂
−1 has the eigenvalue 1 of odd multiplicity.

(cf. also [24, p. 196] for compact integral operators).

Thus, bifurcations in the problem (2.14) occur if the derivative A′(0) =

−(1 + c1)B̂
−1 has the eigenvalue 1 of odd multiplicity. Since σ(A′(0)) =

{(1 + c1)/(1 + l
2m)}, we arrive at critical values (2.12). By construction,

the solutions of (2.14) for p ≈ pl are small in L2
ρ and, as can be seen from

the properties of the inverse operator, in H2m
ρ . Since the weight ρ(y) is a

monotone growing function as |y| → ∞, this implies that V ∈ H2m
ρ in the

subcritical Sobolev range

1 < p < pS = N+2m
N−2m(2.15)

(which is true in our VSS range p ≤ p0) is a uniformly bounded, continuous

function by standard elliptic regularity results and embedding theorems;

these can be found in [27] and [32]. For N < 2m, the result is straightfor-

ward in view of embedding [32, p. 5]

Hm(RN ) ⊂ C(RN ) (N < 2m).

Let us mention related boundedness results of parabolic orbits of (1.4) (α =

0) in the range (2.15) obtained in [19, § 2] by Henry’s version of Gronwall’s

inequality with power kernel and scaling arguments.
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Therefore, for p ≈ pl, we have bounded, uniformly small solutions of

(2.14) only. By interior regularity results for elliptic equations, these so-

lutions are smooth enough to be classical ones of the differential equation

(2.13). �

Thus, l = 0 is always a bifurcation point since p0 = 0 is simple. In

general, for l = 1, 2, ..., the odd multiplicity occurs depending on the di-

mension N . In particular, for l = 1, the multiplicity is N , and for l = 2,

it is N(N+1)
2 . In the case of the even multiplicity of λl, an extra analysis is

necessary to guarantee that a bifurcation occurs, [25]. It is important that,

for key applications, namely, for N = 1 and for the radial setting in R
N ,

the eigenvalues (2.7) are simple and (2.12) are bifurcation points.

Since the nonlinear perturbation term in the integral equation (2.14) is

an odd sufficiently smooth operator, we easily obtain the following result

describing the local behaviour of bifurcation branches, see [24] and [25,

Ch. 8].

Proposition 2.2. Let λl be a simple eigenvalue of B with eigenfunc-

tion ψl. Denoting

κl = 〈|ψl|p−1ψl, ψ
∗
l 〉,(2.16)

we have that problem (1.4) has (i) precisely two small solutions for p ≈ p−l
and no solutions for p ≈ p+

l if κl > 0, and (ii) precisely two small solutions

for p ≈ p+
l and no solutions for p ≈ p−l if κl < 0.

In order to describe the asymptotics of solutions as p → pl, we apply the

Lyapunov–Schmidt method ([25, Ch. 8]) to equation (2.14) with the opera-

tor A being differentiable at 0. Since under the assumptions of Proposition

2.2 the kernel E0 = kerA′(0) = Span {ψl} is one-dimensional, denoting

by E1 the complementary (orthogonal to ψ∗
l ) invariant subspace, we set

V = V0 + V1, where V0 = εlψl ∈ E0 and

V1 =
∑

k �=l εkψk ∈ E1.

Let P0 and P1, P0 + P1 = I, be projections onto E0 and E1 respectively.

Projecting (2.14) onto E0 yields

γlεl = 〈B̂−1(|V |p−1V ), ψ∗
l 〉, γl = 1 − 1+c1

1+ l
2m

= − (N+l)s
(1+α)(p−1)(2m+l) ,(2.17)
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where s = pl − p. By the general bifurcation theory (see e.g. [25, p. 355],

[8, p. 383], and branching approaches in [33]; note that operator A′(0) is

Fredholm of index zero), the equation for V1 can be solved and this gives

V1 = o(εl) as εl → 0, so that εl is calculated from the Lyapunov bifurcation

equation (2.17) as follows:

γlεl = |εl|p−1εl〈B̂−1|ψl|p−1ψl, ψ
∗
l 〉+o(|εl|p) =⇒ |εl|p−1 = ĉl[(pl−p)+o(1)],

where ĉl = (N+l)2

4m2(1+α)κl
. Here, we have performed calculations as follows:

〈B̂−1ψp
l , ψ

∗
l 〉 = 〈ψp

l , (B̂
∗)−1ψ∗

l 〉 = −κl/(1 + l
2m).

It is natural to require κl > 0, though this is not always true for α > 0;

see a closed curve of solutions in Figure 2 (for α = 0 the branches were de-

tected to be always monotone, [19]). In view of the orthonormality property

(2.11), for p = 1 we have κl = 1, so that by continuity we can guarantee

that

κl > 0 at least for all p ≈ 1+.(2.18)

Thus, we obtain a countable sequence of bifurcation points (2.12) satisfying

pl → 1+ as l → ∞, with typical pitch-fork bifurcation branches appearing

in a left-hand neighbourhood, for p < pl. The behaviour of solutions in H2m
ρ

(and also uniformly on compact subsets in R
N ) takes the form

Vl(y) = ± [ĉl(pl − p)]1/(p−1) (ψl(y) + o(1)) as p → p−l .(2.19)

We now prove the main result concerning “local” existence and stability

of the VSS solution with the similarity profile V0(y) corresponding to the

first bifurcation point, p = p0. If κ0 > 0, as expected, then two bifurcation

branches exist for p < p0.

Theorem 2.1. For p ≈ p−0 , the problem (1.4) admits a solution

V0(y) �≡ 0 provided that 2m
N is small enough, and then it is an asymptotically

stable stationary solution.

Proof. As we have shown, a continuous branch bifurcating at p = p−0
exists if

κ0 = 〈|ψ0|p0−1ψ0, ψ
∗
0〉 ≡

∫
|F | 2mN F > 0 (ψ∗

0 ≡ 1).(2.20)
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In view of the positivity dominance of the rescaled fundamental solution F ,∫
F = 1, we have that (2.20) holds by continuity provided that 2m

N � 1.

Therefore, in this case there exists a solution (2.19) with l = 0 satisfying for

small s = p0 − p > 0 uniformly

V0(y) = (ĉ0s)
1

p−1 [F (y) + o(1)], ĉ0 = N2

4m2κ0
.(2.21)

We now estimate the spectrum of the corresponding linearized operator

D0 = B1 − p|V0|p−1I.(2.22)

Some of the eigenvalues of the operator (2.22) follow from the original PDE

(1.1). For instance, the stable eigenspace with λ̂ = −1, ψ̂ = 1
p−1V0 + 1

2my ·
∇V0 ∈ L2

ρ, follows from the time-translational invariance of the PDE. For

N = 1, translations in x yield another pair λ̂ = − 1
2m , ψ̂ = V0y ∈ L2

ρ. For N >

1, in the non-radial setting, this p̂ has multiplicity N with eigenfunctions

V0yi . These are not the first pair with the maximal real part.

Bearing in mind that the spectrum of the unperturbed operator B is

real, (2.7), and has the unique, non-hyperbolic eigenvalue λ0 = 0, we use

(2.21) to obtain

D0 = B + s(1 + o(1))C,(2.23)

where, as it follows from (2.20) and (2.21) at p = p0, the perturbation has

the form

C = N2

4m2(1+α)

(
1 − p0

κ0
|F |

2m(1+α)
N

)
I.(2.24)

Therefore, we consider the spectrum of the perturbed operator

D̃0 = B + sC.(2.25)

Since (B − I)−1C is bounded,

(D̃0 − I)−1 = [I + s(B − I)−1C]−1(B − I)−1

is compact for small |s| as the product of a compact and bounded operators.

Hence, D̃0 also has only a discrete spectrum. By the classical perturbation

theory of linear operators (see e.g. [20]), the eigenvalues and eigenvectors
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of D̃0 can be constructed as a perturbation of the discrete spectrum σ(B)

consisting of eigenvalues of finite multiplicity. We are interested in the

perturbation of the first simple eigenvalue p0 = 0. Setting

λ̃0 = sµ0 + o(s), ψ̃0 = ψ0 + sϕ0 + o(s) as s → 0

and substituting these expansions in the eigenvalue equation D̃0ψ̃0 = λ̃0ψ̃0

yield

Bϕ0 = (−C + µ0I)ψ0.(2.26)

We then obtain the solvability (orthogonality) condition

〈(−C + µ0I)ψ0, ψ
∗
0〉 = 0 =⇒ µ0 = 〈CF, 1〉.

Using (2.24) yields

µ0 = − N
2m < 0.

Therefore, Re λ̃0 < −Ns
4m < 0 for all p ≈ p−0 . Since, with these properties

of the spectrum, the perturbation (2.22) of B remains a sectorial operator

with σ(D̃0) ⊂ {Reλ ≤ −Ns
4m} and ‖eB̃1τ‖L ≤ Ce−N(p0−p)τ/4m in the norm

of L(H2m
ρ , H2m

ρ ) [13], V0(y) is exponentially stable in H2m
ρ . �

We expect that the condition (2.20) remains valid for any m and N so

that V0(y) is stable without the restriction 2m � N . We have a numerical

support for this, but, as yet, no rigorous proof exists. Possibly, to check

conditions such as (2.20) we must currently rely on numerical evidence and

then, as often happens in spectral theory and applications, Theorem 2.1

can be established with a hybrid analytic-computational proof. We also

expect that the whole branch bifurcating from p = p0 remains stable for all

p ∈ (1, p0), though the proof would require to establish that the discrete

spectrum σ(D0) never touches the imaginary axis. In particular, this open

problem means that a new (nonlinear) saddle-node bifurcation never occurs

on this p0-branch, i.e., it does not have turning points. For the variational

problem with m = 1, this is valid [30] as well as for ordinary differential

higher-order equations with self-adjoint positive operators of special struc-

ture of quasi-derivatives [1, 29]; see also properties of bifurcation branches

in Berger [2, p. 380].
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Further, it is easy to see that the other bifurcation branches are unstable.

Taking any l ≥ 1, instead of (2.23) we now have

Dl = B1 − p|Vl|p−1I ≡ B +
[
c1 − splĉl(|ψl|p−1 + o(1))

]
I, s = pl − p.

From the definition of B1, (2.5), c1 > 0 for all p ≈ pl, thus Vl for l ≥ 1 is

unstable.

2.5. Remark on global bifurcation diagrams

Global bifurcation results concerning continuous branches of solutions

were already given in Krasnosel’skii [24, p. 196] (the first Russian edition was

published in 1956). Concerning further results and extensions, see references

in [8, Ch. 10] (especially, see [8, p. 401] for typical global continuation of

bifurcation branches), and also [25, § 56.4]. These approaches deal with

integral equations with compact operators such as (2.14).

In the present non-variational problem, the main open problem of con-

cern is to establish under which conditions the p-branch originated at some

p = pl can be extended up to p = 1−, so that cannot end up at another

bifurcation point pk < pl. Actually, this can happen for α > 0; see Figure

2, where the closed branch is originated at p = p0 and ends up at p = p2.

3. p- and α-Bifurcations and Branches: VSS Multiplicity

We consider the fourth-order equation (1.4) in 1D with m = 2, i.e., the

ODE problem

−V (4) + 1

4 yV
′ + βV − |V |p−1V = 0 in R

(
β = 1+α

p−1

)
,

V (y) has exponential decay as y → ∞.
(3.1)

Note that the condition of the exponential decay is crucial for VSS setting,

since the ODE in (3.1) admits continuous families of solutions with algebraic

power decay such as

V (y) = C±|y|−
2m
p−1 (1 + o(1)) as y → ±∞,(3.2)

where C± ∈ R are, in general, arbitrary constants; see an example in [19, § 8]

for the case α = 0. In numerical applications, the exponentially decaying
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(a) p0-branch (b) V0 profiles

Fig. 1. The first p0-branch of solutions of (3.1) for m = 2 and α = 0; the branch (a) and
deformation of profiles V0(y) with p, (b).

solutions of (3.1) are always clearly oscillatory for y � 1 that strongly differ

them from those satisfying (3.2).

For even profiles V0, V2,... satisfying (3.1) that we pay more attention

to, we impose the symmetry conditions at the origin

V ′(0) = V ′′′(0) = 0.(3.3)

For the odd profiles V1, V3,... , we pose the anti-symmetry conditions

V (0) = V ′′(0) = 0.(3.4)

3.1. p-branches for fixed α ≥ 0

As we have mentioned, the autonomous case α = 0 is rather well-

understood, [19]. For example, in Figure 1, we present the first strictly

monotone p0-branch of similarity profiles V0(y) for α = 0. This branch

blows up as p → 1− according to the asymptotics in [19, p. 1091].

For α > 0, the p-bifurcation branches can essentially change their topol-

ogy and can be closed curves, as Figure 2 demonstrates for α = 1. Here,

the first p0-branch is initiated at p0 = 9 and has the saddle-node (turning)

point at

ps−n = 3.51... .
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(a) p0-branch (b) V0 profiles

Fig. 2. The closed p0-branch of solutions of (3.1) for m = 2, and α = 1; the branch (a)
and deformation of profiles V0(y), (b).

Eventually, the branch ends up at the third critical point (1.6), i.e., at

p2 = 1 + 8
3 = 3.666... .

For convenience, in Figure 3, we give the enlarged structure of the almost

vertical part of the branch in Figure 2(a) and VSS profiles on it for p ∈
[ps−n, p2].

3.2. On α-branches for fixed p

A typical example is presented in Figure 4, where we show the first

α-branch for N = 1, p = 2, that, according to (1.7), is originated at the

bifurcation point

α0 = −3
4 (l = 0).

We observe from (b) that the profiles get wider as α increases. This is a

natural phenomenon that will play an important role in what follows. It

should be noted that Figure (b) does not explain jump-discontinuities that

are not only possible but often happen in such numerics (in view of huge

density of various branches of solutions), and were observed even with the

enhanced Tolerances 10−4 and the step ∆α = 10−3. In fact, (a) shows

for α ≈ 1 a certain non-smoothness of the branch that we cannot explain.



338 V. A. Galaktionov

(a) p0-branch (b) V0 profiles

Fig. 3. The p0-branch of solutions of (3.1) between two bifurcations; p ∈ [3.51, 3.66],
m = 2, α = 1; the branch (a) and deformation of profiles V0(y), (b).

To be honest, we cannot guarantee that here this is not associated with

a discontinuous jump to other neighbouring branches. The α-branching

deserves both extra numerical and analytical study.

3.3. Further bifurcations and discussion

We denote the basic set of VSS profiles by

the basic spectrum: V0, V1, V2, ..., Vk, ... .(3.5)

Each Vk(y) satisfies the approximate Sturmian property, i.e., has precisely

k dominant extrema. For m = 1, this is true sharply, by the Maximum

Principle. For m ≥ 2, by “dominant” we mean those minima or maxima

that are different from smaller ones in the oscillatory tail of the solutions.

This approximate Sturm’s zero (extremum) property for N = 1 is associated

with the fact that in the ODE (1.4) with m ≥ 2, the leading 2mth-order

operator is a multiplication of m positive second-order ones,

−(−1)mD2m
y ≡ −(−D2

y)
m,

for which Sturm’s property is true concerning its eigenfunctions; see gen-

eral conclusions in Ellias [11], and also applications to bifurcation diagrams

of interest here in [1, 29]. It turns out that lower-order perturbations in



Vast Multiplicity of Solutions 339

(a) α0-branch (b) V0 profiles

Fig. 4. The first α0-branch of solutions of (3.1) for m = 2, and p = 2; the branch (a)
and deformation of profiles V0(y), (b).

(1.4) create only sufficiently small extrema and infinitely many zeros in the

exponential tails of solutions.

For α > 0, the basic profiles are essentially deformed. For instance, a

few of such profiles (already available in Figure 4(b)) are shown in Figure 5

for various α ≥ 0.

A principal new feature of the problem with the exponent α is that there

may occur other saddle-node bifurcations in the ODE in (3.1). The origin

of extra α-bifurcations can be seen as follows. The leading operator in (1.4),

B̃V = −(−∆)mV − |V |p−1V,

is coercive and negative in the topology of the Sobolev space H2m(Bl) ∩
Lp+1(Bl) in the subcritical range (2.15) (this is enough for N = 1). Here

Bl is the ball of the radius l > 0 in R
N . It follows from Lemma 2.1(i) that

a similar result remains true in the weighted space L2
ρ(R

N ), and moreover,

the first linear term 1
2m y · ∇V can be estimated via the leading operator.

We then observe that the crucial part is played by the second term

βV ≡ 1+α
p−1 V.

The multiplier 1+α
p−1 gets arbitrarily large positive for α � 1, and hence
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Fig. 5. Various VSS profiles associated with the first basic pattern V0(y) for p = 2,
N = 1, and different values of α ∈ [0, 7].

can produce a bifurcation, where the negative and positive operators are

sufficiently balanced; see more precise estimates below.

Let us discuss such a numerical evidence more systematically. In Figure

6, we show the first VSS profiles V0(y) satisfying (1.4) for p = 3, N = 1,

and for a number of different values of α. The bold line corresponds to V0

in the classic case α = 0 studied in [19].

In Figure 7, we show twelve different even VSS profiles V2k(y) for p = 2,

N = 1, and α = 4. Note that according to critical exponents (1.7), there

exist precisely ten critical values below 4, at which such profiles can be

originated,

α0 = −3
4 , α2 = −1

4 , α4 = 1
4 , ... , α16 = 13

4 , α18 = 15
4 .

On the other hand, according to (1.6), there exists the same number of

critical exponents pl that are above 2,

p0 = 21, p2 = 23
3 , ... , p16 = 37

17 , p18 = 39
19 .

It follows that at least two profiles in Figure 7 are not generated by standard

p- or α-curves originated at bifurcation points. This mystery remains an
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Fig. 6. Deformation with α of the first profile V0(y) of (3.1), with p = 3, for α ∈ [−0.5, 7].

Fig. 7. Twelve even VSS profiles V2k(y) for p = 2, N = 1, and α = 4.
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Fig. 8. Three VSS profiles V0, V1, and V2 for α = 0; p = 1.5 and N = 1.

open problem and needs extra analysis. We expect that some pairs of these

profiles could be originated at saddle-node bifurcations at some αs−n > 0.

It is seen that the profiles slightly “oscillate” about the constant equilibrium

of the ODE in (3.1) which is

V+ =
(

1+α
p−1

) 1
p−1 = 5 for p = 2 and α = 4.

For convenience, below we present the standard multiplicity result for

the autonomous case. In Figure 8, we show first three solutions V0(y), V1(y),

and V2(y) of the problem (3.1) with p = 1.5 and α = 0. As was shown in

[19], these p-bifurcation branches exhaust the whole set of VSS profiles in

the case α = 0. Notice that the mutual geometry of VSS profiles in the case

α = 0 essentially differs from that in Figure 7.

Let us more clearly show that, for α > 0, there occur other bifurcation-

branching phenomena. In Figures 9 and 10, we again consider the case p =

1.5, N = 1, and α = 7. For this sufficiently large α, according to (1.7), we

observe several profiles from the basic family {V2k} of even functions that are

now concentrated about the constant equilibrium. Namely, in Figure 9, we
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Fig. 9. Several VSS profiles V2k(y) from satisfying (3.1) for p = 1.5 and α = 7.

Fig. 10. Several odd VSS profiles V2k+1(y) satisfying (3.1) for p = 1.5 and α = 7.
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Fig. 11. VSS profiles from {V2k} and {Vσ1} for p = 4, N = 1, and α = 10.

show nine profiles {V2k}. Figure 10 demonstrates thirteen odd profiles from

the family {V2k+1}. In this case, instead of symmetry conditions (3.3), we

take the anti-symmetry ones (3.4). Then the solutions V (y) are continued

in the odd manner, V (−y) ≡ −V (−y) for y < 0.

Before performing some easy preliminary estimates, we show in Figure

11 the case p = 4 and α = 10, where a similar set of seven VSS patterns

from the even family {V2k} are presented. In addition, we see here another

new family

{Vσ1}, with multiindex σ1 = {+0, 1,−k},(3.6)

where 0, 1, and k in σ1 stand for an “effective number of intersections” of the

profiles with three consecutive equilibria V+, 0, and −V+. We will discuss

this new family later on.

In Figure 12, we show the basic profiles V2k(y) and others for m = p = 2

and α = 10. This computation is important to treat the results in Figure 4

on the α-branches.

For future convenience, some of the results are natural to present for the
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Fig. 12. Profiles from the family {V2k} for m = p = 2, N = 1, and α = 10.

rescaled equation by using the scaling

V �→ CV, y �→ cy, where Cp−1 = β, c = C
p−1
2m = β

1
2m ,(3.7)

that gives the following rescaled ODE:

(−1)m+1V (2m) + 1
β

1
2m yV ′ + V − |V |p−1V = 0.(3.8)

The constant equilibria are now fixed and are independent of the parameters,

V± = ±1 (and V = 0),(3.9)

so we do not observe such huge VSS profiles as, for instance, in Figure 9.

The corresponding rescaled families {V2k} and {Vσ1} for m = 2, p = 1.5,

and α = 7 are shown in Figure 13(a) and (b). Figure 14 shows another

more complicated family of even VSS profiles

Vσ2(y), where σ2 = {+1, 1,−2, 1,+k}.

By the boldface dotted line we denote therein a different profile from the

family {Vσ3}, with a distinct multiindex σ3 = {−0, 1,+2, 1,−k}. It seems
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(a) profiles V2k (b) profiles Vσ1

Fig. 13. Two different families of VSS profiles for m = 2, p = 1.5, N = 1, and α = 7.

that there are other families of VSS profiles with more involved geometric

structures, that are very difficult to catch numerically (to say nothing of a

rigorous manner), so we need to stop such a discussion at this moment.

We expect that all the new profiles from families {Vσ1}, {Vσ2}, etc.,

are originated at saddle-node bifurcations at some ασj > 0 and cannot be

extended to α = 0. Recall that such VSS solutions were not detected in

the autonomous case α = 0, [19]. Numerics with ∆α = 10−3 show some

evidence concerning this, though the numerical results are also rather un-

stable demonstrating typical jumps between many neighbouring α-branches.

We believe that such stable jumps definitely show existence of saddle-node

points that are difficult to detect numerically.

On countable sets via shooting arguments. As an illustration, con-

sider the ODE in (3.1) (i.e., for m = 2 and N = 1) in the symmetric case

(3.3), so we study V2k and other even profiles. The shooting argument jus-

tifies existence of a connection of the 2D bundle near the origin, which is

characterized by two symmetry conditions (3.3), so that the bundle has two

parameters

f(0) and f ′′(0).(3.10)

We then need to intersect this bundle with the exponential bundle at y =
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Fig. 14. Some profiles from the family {Vσ2} for m = 2, p = 1.5, and α = 40.

+∞, where the linearized ODE admits the following WKBJ-type asymp-

totics (we omit power-like multipliers ∼ y−δ that are not important at this

stage):

V (4) = − 1
2m V ′y + ... =⇒ V (y) ∼ eay

4/3
, with a3 = 1

4

(
3
4

)3
.

Therefore, there exists a 1D unstable bundle with positive a0 = 3
4 4−1/3,

and a 2D stable oscillatory bundle with

a± = a0

(
− 1

2 ± i
√

3
2

) (
Re a± < 0

)
.

Thus, we observe here a typical difficult two-parameter shooting problem of

a 2D→2D connection of two manifolds. In this case, in the above shooting

approach, we arrive at two equations for two parameters given in (3.10).

In the analytic case p = 3, 5, ..., where the dependence on parameters is

assumed to be analytic, we conclude that the set of VSS profiles is at most

countable. Moreover, for a fixed p < p0 and any α > 0, we expect a finite

(but, possibly, arbitrarily large for some values) number of VSS profiles

according to the above p- and α-bifurcations and extra possible α-saddle-

node bifurcations that much less are known about.
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Fig. 15. Oscillatory blow-up for the ODE (3.11) for p = 3
2

and p = 2.

On oscillatory blow-up in the ODE. Here we briefly discuss an im-

portant aspect of ODEs such as (1.4), N = 1 (or in the radial geometry).

Namely, these admit a strong (nonlinear) unstability of orbits V (y) that is

associated not with the exponential growth in the linear setting, but with

the blow-up due to the main two terms in the ODE in (3.1). For m = 2

these are

V (4) = −|V |p−1V,(3.11)

where we omit all linear terms that are negligible as |V | → +∞. Obviously,

(3.11) does not admit blow-up solutions of constant sign, so we need to

describe the oscillatory blow-up. In Figure 15, we present typical blow-up

behaviour of solutions ln |V (y)| of (3.11) for y > 0 with Cauchy data

V (0) = 1, V ′(0) = V ′′(0) = V ′′′(0) = 0.

Solutions blow-up at some finite y0 > 0 with definite oscillatory behaviour

as y → y−0 .
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In order to detect this oscillatory behaviour, by shifting y0 − y �→ −y,

we have that blow-up happens at y = 0, i.e., as y → 0−, and introduce the

oscillatory component ϕ(s) as follows:

V (y) = (−y)µϕ(s), where s = ln(−y) and µ = − 4
p−1 < 0.(3.12)

Then ϕ(s) solves the following autonomous ODE in R:

ϕ(4) + 2(2µ− 3)ϕ′′′ + (6µ2 − 18µ + 11)ϕ′′ + 2(2µ3 − 9µ2

+ 11µ− 3)ϕ′ + µ(µ− 1)(µ− 2)(µ− 3)ϕ = −|ϕ|p−1ϕ.
(3.13)

Obviously, this ODE also admits blow-up singularities as (3.11), but we are

interested in bounded or slower growing orbits that can be extended up to

the blow-up point s = −∞.

In addition, using a standard min-max scenario of orbits behaviour on

parameters, we expect a bounded (e.g, a periodic) or a nonlinear “spiral-

type” solution ϕ∗(s) of (3.13) in R− to exist, which, according to (3.12), will

describe a generic structure of blow-up singularities. The blow-up instabil-

ities make it very difficult to see necessary orbits of equation (3.13) even

numerically. A corresponding logarithmic-type distribution of zeros close to

blow-up points y = y−0 as in (3.12) after shifting is well seen in Figure 15.

What is crucial in this case, is that the whole unstable bundle is two-

dimensional, incorporating the parameter y0 as the position of the blow-

up point (i.e., y �→ y0 − y in (3.12)) and the parameter s0 of translation,

ϕ∗(s) �→ ϕ∗(s+s0). Therefore, our VSS profiles are those that have nothing

to do with this singular blow-up bundle, so we again observe two equations

for two parameters in (3.10).

4. Passing to the Limit α → ∞

Without loss of generality, we consider the 1D case in (1.4) and bear in

mind the first symmetric similarity profile V0(y) for the ODE

(4.1) (−1)m+1V (2m) + 1
2m yV ′ + βV − |V |p−1V = 0,

where β = 1+α
p−1 → +∞

as α → +∞. For β � 1, the first natural step is to use the scaling (3.7)

and to write the resulting equation in the perturbed form,

D∞(V ) ≡ (−1)m+1V (2m) + V − |V |p−1V = − 1
β

1
2m yV ′.(4.2)



350 V. A. Galaktionov

Hence, the right-hand side becomes negligible as β → ∞ on smooth solu-

tions.

Formally passing to the limit β → ∞ in (4.2), we obtain the limit equa-

tion

(4.3) D∞(W ) ≡ (−1)m+1W (2m) + W − |W |p−1W = 0

for y > 0, W (+∞) = 0.

Let us show that a nontrivial solution of (4.3) does not exist. For instance,

for m = 2,

−W (4) + W − |W |p−1W = 0, so that, for y � 1,

W (4) = W + ... =⇒ ∃ 1D bundle, W (y) ∼ Ce−y + ... .
(4.4)

This 1D is not enough to satisfy two symmetry conditions (3.4). Similarly,

for m = 3,

W (6) + W − |W |p−1W = 0, and for y � 1,

W (6) = −W + ... =⇒ ∃ 2D bundle with char. values λ± = −π
6 ± i

√
3

2 .
(4.5)

The 2D bundle is not sufficient to satisfy three symmetry conditions at the

origin,

W ′(0) = W ′′′(0) = W (5)(0) = 0.

The same lack of dimension happens for any m ≥ 1. In other words, nonex-

istence for (4.3) is a typical property.

Such nonexistence is easily checked numerically. In Figure 16, we show

for m = p = 2 that as α increases the VSS profiles with a fixed length of

the flat part (such solutions exist) become more and more oscillatory and

ceases to exist for α = +∞.

On the other hand, profiles with huge flat non-oscillatory parts get very

wide for α � 1. For instance, Figure 17 shows for p = 1.5 that for α = 40,

the last less oscillatory VSS profile V2k(y) has the flat part of the length

∼ 380, while the first profiles are strongly oscillatory (and do not admit

passage to the limit α → ∞). Notice that according to bifurcation exponents

(1.7), for α = 40, we expect, at least,

164 profiles V2k and 164 profiles Vσ1 ,
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Fig. 16. Towards nonexistence for the ODE (4.4), m = p = 2: solutions of (4.2) get very
oscillatory for α � 1.

i.e., 328 VSS profiles overall (and more in view of possible saddle-node

bifurcations beforehand, at some αs−n ∈ (0, 40)).

Therefore, as α → +∞, one can that the VSS profiles get wider indef-

initely in the sense that, in the rescaled variables, uniformly on bounded

intervals,

V0(y) → 1 as α → +∞,(4.6)

and the divergence is sufficiently (exponentially) fast.

As a simple illustration of this behaviour presented in Figure 17, we give

a nonexistence result concerning a step-like profile for the limit equation

(4.4). Assume that, unlike (4.6), there exists a nontrivial finite limit as

α → ∞, so (4.4) admits solution W (y) with an exponential decay such that

W (y) ≈ 1 for y ∈ [0, L], with some L � 1,(4.7)

and that the internal layer at y ∼ L does not depend essentially on L (recall

that (4.4) is an autonomous ODE), and, in a natural sense,∫∞
L W 2 � L and

∫∞
L |W |p+1 � L.(4.8)
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Fig. 17. Some VSS profiles satisfying (4.2) for m = 2, p = 1.5, and α = 40.

The following nonexistence result has a “conditional” nature, where we pro-

hibit certain solutions of a specific spatial shape:

Proposition 4.1. The ODE (4.4) does not admit a nontrivial solution

with exponential decay at infinity satisfying (4.7) and (4.8).

Proof. We use two identities obtained by multiplying (4.4) in L2 by

W and yW ′ (Pohozaev’s multiplier in elliptic theory, [28]) to get

{
−
∫

(W ′′)2 +
∫
W 2 −

∫
|W |p+1 = 0,

−3
2

∫
(W ′′)2 − 1

2

∫
W 2 + 1

p+1

∫
|W |p+1 = 0.

(4.9)

Substituting
∫

(W ′′)2 from the first into the second identity yields

∫
W 2 = γ0

∫
|W |p+1, where γ0 = 3p+5

4(p+1) .(4.10)

Since γ0 < 1 for any p > 1, this contradicts hypotheses (4.7), (4.8) under

which both integrals in (4.10) are close to L. �
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Fig. 18. Twenty nine VSS solutions V2k(y) of (5.3) for m = 2, p = 1.5, α = 7.

5. VSSs Results for the Non-Monotone Absorption

In this short section, we orient our nonexistence business to the following

PDE:

ut = −(−∆)mu− tα|u|p,(5.1)

where, unlike (1.1), we take the non-monotone absorption nonlinearity |u|p.

5.1. Local existence close to bifurcation points

Local existence of similarity solutions for p < p0 for equation (1.4),

where

|V |p−1V �→ |V |p,(5.2)

can be established as above by bifurcation theory. Then, for several types

of “positively dominant” VSS profiles V (y) as in Figures 7, 9, 10, 12, and

13(a), their structure changes slightly after the replacement (5.2).
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Fig. 19. Seventeen VSS solutions Vσ1(y) of (5.3) for m = 2, p = 1.5, and α = 7.

For instance, in Figure 18, we present even VSS profiles for the ODE

−V (4) + 1
4 yV

′ + βV − |V |p = 0 in R
(
β = 1+α

p−1

)
,(5.3)

in the case p = 1.5, α = 7, where most of the solutions are very close

to those in Figure 13(a). Excluding first sufficiently small profiles, all the

others are clearly positively dominant (the last ones look “almost” positive;

careful checking shows that all of them remain oscillatory). Small solutions

(dotted lines as well as that of order ∼ 2 · 10−2 given by the solid line)

become essentially different. Instead of (3.9), equation (5.3) admits the

single constant non-zero equilibrium

V+ = +1 (and V0 = 0),(5.4)

so that VSS profiles Vσ1 such as in Figures 11 and 12 are impossible. Since

(5.4) means that for the nonlinearity −|V |p, two equilibria −1 and 0 just

coincide (in fact, identified), we obtain another but similar family of profiles

again denoted by {Vσ1} that are shown in Figure 19. For large α = 40,

step-like solutions of (5.3) are practically indistinguishable from those in
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Figure 17, so that this behaviour as α → +∞ suits both monotone and

non-monotone absorption terms.

On the contrary, nonexistence of VSSs for

p ≥ p0 = 1 + 2m(1+α)
N(5.5)

can be proved much easier than for the original PDE (1.1). This is explained

in detail in [17] for α = 0, so we present here a few nonexistence comments.

5.2. On nonexistence of similarity profiles

The similarity solutions remain the same, (1.3), with the elliptic equa-

tion (1.4), where we use the replacement (5.2). Therefore, integrating this

equation over R
N with the condition of exponential decay, we obtain in

particular that

∫
|V |p = 0 for p = p0 =⇒ V = 0.(5.6)

Therefore, all the continuous p-branches do not cross the vertical line p = p0,

so that in the parameter region {p ≥ p0} there are no such VSS profiles at

all.

Obviously, for the original equation (1.4), this analysis leads to

∫
|V |p−1V = 0 for p = p0,(5.7)

which is not that controversial. Of course, this prohibits clearly positively

dominant VSS profiles such as those in Figure 13(a), but not obvious for

profiles having essential negative parts as in (b) therein. Nevertheless, one

can see that, for all these profiles, (5.7) is valid, since these are also positively

dominant.

5.3. Nonexistence for the PDE

Using a slight modification of the statement and the proof in [17, § 2]

based on Pohozaev’s nonlinear capacity approach (see details and related

references therein), we formulate the following nonexistence result for (5.1):

Theorem 5.1. Let α > −1 and

p ≥ p0 = 1 + 2m(1+α)
N .(5.8)



356 V. A. Galaktionov

If a function u(x, t) ∈ Lp
loc(R

N × R+ \ {(0, 0)}) satisfies (5.1) and (1.5) in

the weak sense, then u = 0.

In particular, this means that, for this nonlinearity, any similarity prob-

lem such as (1.4) does not admit a nontrivial solution. Of course, this

implies that no other, non-similarity, VSSs exist. For the monotone nonlin-

earity as in (1.4), the proof of nonexistence gets more involved, and can be

done, with some technical changes, along the lines in [17, § 3.2].

Acknowledgement . The author thanks A.E. Shishkov for drawing his

attention to time dependent absorption phenomena.
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[23] Kamin, S. and L. Véron, Existence and uniqueness of the very singular so-
lution of the porous media equation with absorption, J. Analyse Math. 51
(1988), 245–258.

[24] Krasnosel’skii, M. A., Topological Methods in the Theory of Nonlinear Inte-
gral Equations, Pergamon Press, Oxford/Paris, 1964.

[25] Krasnosel’skii, M. A. and P. P. Zabreiko, Geometrical Methods of Nonlinear
Analysis, Springer-Verlag, Berlin/Tokyo, 1984.

[26] Marcus, M. and L. Veron, Initial trace of positive solutions to semilinear
parabolic inequalities, Adv. Nonlinear Studies 2 (2002), 395–436.

[27] Maz’ja, V. G., Sobolev Spaces, Springer-Verlag, Berlin/Tokyo, 1985.
[28] Pohozaev, S. I., Eigenfunctions of the equation ∆u+λf(u) = 0, Soviet Math.

Dokl. 6 (1965), 1408–1411.
[29] Rynn, B., Global bifurcation for 2mth-order boundary value problems and

infinitely many solutions of superlinear problems, J. Differ. Equat. 188
(2003), 461–472.

[30] Shi, J. and J. Wang, Morse indices and exact multiplicity of solutions to
semilinear elliptic problems, Proc. Amer. Math. Soc. 127 (1999), 3685–3695.



358 V. A. Galaktionov
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