Smooth Right Quasigroup Structures on 1-Manifolds

By A. C. YADAV and Ramji LAL

Abstract. Smooth loop structures on one- manifolds for which the groups topologically generated by right translations are locally compact, are known. In this article we study smooth right loop structures on one-manifolds.

1. Introduction

The smooth loop (quasigroup) structures on one dimensional manifolds are completely classified. One dimensional manifolds are (i) \mathbb{R} , (ii) \mathbb{S}^1 and (iii) Alexandroff half line [1, 2], [[3], page 235]. But on the Alexandroff half line, no smooth quasigroup structure can be defined. However on \mathbb{R} and \mathbb{S}^1 we have smooth quasigroup structures [2, 3] which are obtained by looking at copies of \mathbb{S}^1 appearing as transversals to 2-dimensional subgroups of $PSL(2, \mathbb{R})$ and that on \mathbb{R} appear as transversals to special type of subgroups in the universal cover of $PSL(2, \mathbb{R})$. This paper is devoted mainly to study smooth right quasigroup structures on \mathbb{R} and \mathbb{S}^1 obtained by deformation of their group structures.

2. Preliminaries

Let S be a nonempty set and \circ be a binary operation on S. Then the groupoid (S, \circ) is called a right quasigroup if for all $x, y \in S$, the equation $X \circ x = y$, where X is unknown in the equation, has a unique solution in S. If there exists $e \in S$ such that $e \circ x = x = x \circ e$ for all $x \in S$, then (S, \circ) is called a right quasigroup with identity also called a right loop. A right quasigroup (right loop) (S, \circ) is called a quasigroup (loop) if the equation $x \circ X = y$, where X is unknown in the equation and $x, y \in S$, has a unique solution in S. Throughout the paper a right quasigroup will always be assumed to contain the identity.

2010 Mathematics Subject Classification. 22A22, 20N05.

Key words: Right quasigroups, $PSL(2, \mathbb{R})$, Borel subgroups.

Let S be a fixed right transversal to a subgroup H in a group G. Then every right transversal to H in G determines and is determined uniquely by a map $g : S \to H$ such that g(e) = e, the identity of G (see, [5]). The right transversal S_g determined by a map $g : S \to H$ is given by $S_g = \{g(x)x | x \in S\}$. S and S_g are right quasigroups with identities with respect to the operation o on S and o' on S_g given by

$$\{xoy\} = Hxy \cap S$$

and

$$\{g(x)xo'g(y)y\} = S_q \cap Hg(x)xg(y)y$$

respectively. Further, H acts on S from right through an action θ given by $\{x\theta h\} = Hxh \cap S, \forall x \in S, h \in H$

PROPOSITION 2.1. [5] The right quasigroup (S_g, o') is isomorphic to the right quasigroup (S, o_g) where o_g is the operation given by $xo_g y = x\theta g(y)oy$.

The operation o_g will be termed as the deformation of o through the map $g: S \to H$.

DEFINITION 2.2. Let H be a subgroup of a group G. Then a map $s: G/H \to G$ is called a *section* if s(H) = e, the identity of group G and $\nu s = \mathbf{1}$ where ν denotes the quotient map given by $\nu(x) = Hx$.

If s is a section then the image s(G/H) is a right transversal to H in G. Conversely every right transversal S determines a section s given by $\{s(Hx)\} = S \cap Hx$.

PROPOSITION 2.3. [5] Let H be a closed subgroup of a topological group G and S a right transversal to H in G. Suppose that the section s from the quotient space $G/^{r}H$ (the set of right cosets of H in G) to G given by $\{s(Hg)\} = S \cap Hg$ is continuous. Then the binary operation o on S given by $\{xoy\} = S \cap Hxy$ and the map $\chi : S \times S \to S$ given by $\chi(x, y)$ ox = y are continuous (Here S is given the subspace topology).

PROPOSITION 2.4. [5] Let S be a right transversal to a closed subgroup H of a topological group G which is the image of a continuous section $s : G/^r H \to G$. Then the right transversal $S_g = \{g(x)x \mid x \in S\}$ corresponding to the map $g : S \to H$ with g(e) = e is the image of a continuous section if and only if g is continuous from S (with subspace topology) to H.

3. Main Results

The main results of the paper are:

THEOREM 3.1. The circle group $\mathbb{S}^1 = \left\{ \overline{\begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}} \middle| 0 \le t < \pi \right\}$ is a right transversal to the subgroup $H = \left\{ \overline{\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}} \middle| a > 0, b \in \mathbb{R} \right\}$ in the projective special linear group $PSL(2,\mathbb{R})$. Let g be a map from \mathbb{S}^1 to H given by

(1)
$$g\left(\overline{\left(\begin{array}{cc}\cos t & \sin t\\ -\sin t & \cos t\end{array}\right)}\right) = \overline{\left(\begin{array}{cc}u(t) & v(t)\\ 0 & (u(t))^{-1}\end{array}\right)}$$

where $u: [0,\pi) \to \mathbb{R} \setminus \{0\}$ and $v: [0,\pi) \to \mathbb{R}$ are smooth maps with u(0) = 1, v(0) = 0. Then (\mathbb{S}^1, o_g) is a smooth right quasigroup with identity where o_g is given by

(2)
$$\overline{\left(\begin{array}{c} \cos t & \sin t \\ -\sin t & \cos t \end{array}\right)} o_g \overline{\left(\begin{array}{c} \cos s & \sin s \\ -\sin s & \cos s \end{array}\right)} \\ = \overline{\left(\begin{array}{c} \cos(t_1 + s) & \sin(t_1 + s) \\ -\sin(t_1 + s) & \cos(t_1 + s) \end{array}\right)}$$

and

(3)
$$t_1 = \tan^{-1}\left(\frac{u(s)\sin t}{u(s)^{-1}\cos t - v(s)\sin t}\right)$$

PROOF. A two dimensional subgroup of $PSL(2,\mathbb{R})$ is a conjugate of the subgroup

$$H = \left\{ \overline{\left(\begin{array}{cc} a & b \\ 0 & a^{-1} \end{array}\right)} | a > 0, b \in \mathbb{R} \right\}.$$

The circle group \mathbb{S}^1 is given by $\mathbb{S}^1 = \left\{ \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} | \ 0 \le t < 2\pi \right\}.$ Clearly $\mathbb{S}^1 \subseteq SL(2, \mathbb{R})$. The subgroup $\mathbb{S}^1/\{I, -I\}$ of the group $PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{I, -I\}$ is again a circle group which is given by

$$\mathbb{S}^{1} = \left\{ \overline{\left(\begin{array}{cc} \cos t & \sin t \\ -\sin t & \cos t \end{array}\right)} \mid 0 \le t < \pi \right\}.$$

We claim that \mathbb{S}^1 is a right transversal to the subgroup H in the group $PSL(2,\mathbb{R})$. To prove this it is sufficient to prove that $PSL(2,\mathbb{R}) = H\mathbb{S}^1$ and $H \cap \mathbb{S}^1 = \{\overline{I}\}$.

Let $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \mathbb{R})$. Then ad - bc = 1. Thus c and d will not be zero simultaneously. If $c \neq 0$. Without loss we may assume that c > 0. Then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} u(t) & v(t) \\ 0 & (u(t))^{-1} \end{pmatrix} \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}$$

where $u(t) = a \cos t + b \sin t$, $v(t) = -a \sin t + b \cos t$ and $t = \tan^{-1} \left(\frac{-c}{d}\right)$. If c = 0 then $d = a^{-1}$. In this case,

$$\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} = \begin{cases} \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \text{if } a > 0 \\ \\ \begin{pmatrix} -a & -b \\ 0 & -a^{-1} \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} & \text{if } a < 0 \end{cases}$$

Thus $PSL(2,\mathbb{R}) = H\mathbb{S}^1$. Clearly $H \cap \mathbb{S}^1 = \{\overline{I}\}$. This shows that \mathbb{S}^1

is a right transversal to H in $PSL(2,\mathbb{R})$. The induced right quasigroup structure o on \mathbb{S}^1 is given by

(4)
$$\overline{\left(\begin{array}{cc}\cos t & \sin t\\-\sin t & \cos t\end{array}\right)} o \overline{\left(\begin{array}{cc}\cos s & \sin s\\-\sin s & \cos s\end{array}\right)} \\ = \overline{\left(\begin{array}{cc}\cos(t+s) & \sin(t+s)\\-\sin(t+s) & \cos(t+s)\end{array}\right)} \\ \end{array}$$

and the action θ of H on \mathbb{S}^1 is given by

(5)
$$\overline{\left(\begin{array}{ccc}\cos t & \sin t\\-\sin t & \cos t\end{array}\right)}\theta\overline{\left(\begin{array}{ccc}u(s) & v(s)\\0 & (u(s))^{-1}\end{array}\right)} = \overline{\left(\begin{array}{ccc}\cos t_1 & \sin t_1\\-\sin t_1 & \cos t_1\end{array}\right)}$$

where t_1 is given by Eq.(3).

Let $g : \mathbb{S}^1 \to H$ be a map given by Eq.(1). Since u, v are smooth, therefore g is smooth. By Eq.(4), Eq.(5) and Proposition 2.1, the right quasigroup structure o_g on \mathbb{S}^1 is given by

$$\overline{\left(\begin{array}{cc}\cos t & \sin t\\-\sin t & \cos t\end{array}\right)} o_g \overline{\left(\begin{array}{cc}\cos s & \sin s\\-\sin s & \cos s\end{array}\right)}$$
$$= \overline{\left(\begin{array}{cc}\cos(t_1+s) & \sin(t_1+s)\\-\sin(t_1+s) & \cos(t_1+s)\end{array}\right)}$$

where t_1 is given by Eq.(3). By Proposition 2.4, the operation o_g is smooth. \Box

REMARK 3.2. In general (\mathbb{S}^1, o_g) need not be a loop and it may not have right inverse property. For example, if we take u and v given by $u(t) = \sin \frac{t}{2} + \cos \frac{t}{2}$ and $v(t) = \sin t \cos t$ then $\boxed{\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}} \in \mathbb{S}^1$ has no right

inverse. However for certain g, for example

$$g\left(\overline{\left(\begin{array}{ccc}\cos t & \sin t\\ -\sin t & \cos t\end{array}\right)}\right) = \overline{\left(\begin{array}{ccc}1 & \frac{1}{4}t\sin t\\ 0 & 1\end{array}\right)},$$

 (\mathbb{S}^1, o_g) is indeed a loop.

Consider the additive group of real numbers. Since a differentiable function can be approximated by a polynomial function. In this light, we establish the following

PROPOSITION 3.3. Let $n \geq 3$. Then a polynomial $P_n(x,y) = \sum_{i=0}^n a_i y^i + x \sum_{j=0}^{n-1} b_j y^j$ of degree n in two variables x and y over the field \mathbb{R} determines a smooth right quasigroup structure o with identity 0 given by $xoy = P_n(x,y)$ if and only if $P_n(x,y) = x + y + x\phi(y)$ where $\phi(y)$ is a polynomial in y of degree n-1 such that $\phi(a) \neq -1$ for every $a \in \mathbb{R}$ and $\phi(0) = 0$. In particular $P_{2n+1}(x,y) = x + y + xy^{2n}$ where $n \in \mathbb{N}$ determines a smooth right quasigroup structure on \mathbb{R} .

PROOF. Suppose that $n \ge 3$ and $P_n(x, y) = \sum_{i=0}^n a_i y^i + x \sum_{j=0}^{n-1} b_j y^j$. Suppose that the structure o given by $xoy = P_n(x, y)$ is a right quasigroup structure with identity 0. Then 0o0 = 0 and xo0 = x = 0ox implies that

(6)
$$a_0 = 0, a_1 = b_0 = 1, a_i = 0, \forall i \ge 2$$

Thus $P_n(x,y) = x + y + x\phi(y)$, where $\phi(y) = \sum_{j=1}^{n-1} b_j y^j$ is a polynomial of degree n-1 such that $\phi(0) = 0$. Consider the equation Xoa = 0 where $a \in \mathbb{R}$ and X is unknown in the equation. Then the existence of solution to the equation implies that $\phi(a) \neq -1$.

Conversely, suppose that $P_n(x, y) = x + y + x\phi(y)$ and $xoy = P_n(x, y)$, where $\phi(y)$ is a polynomial of degree n - 1 such that $\phi(a) \neq -1$ for every $a \in \mathbb{R}$ and $\phi(0) = 0$. Let $a, b \in \mathbb{R}$. Then $U = \frac{b-a}{1+\phi(a)}$ is the solution to the equation Xoa = b, where X is unknown in the equation. Also xo0 = x = 0ox. The smoothness of polynomial function implies the smoothness of o. Thus (\mathbb{R}, o) is a smooth right quasigroup with identity. In particular if $\phi(y) = y^{2n}, n \in \mathbb{N}$ then $\phi(a) = a^{2n} \ge 0$ for every $a \in \mathbb{R}$. Thus the result follows. \Box

More generally we have the following proposition:

PROPOSITION 3.4. Let $\phi(y)$ be a differentiable function on \mathbb{R} such that $\phi(y) \neq -1$, for all $y \in \mathbb{R}$ and $\phi(0) = 0$. Then (\mathbb{R}, o) is a smooth right quasigroup with identity 0, where $xoy = x + y + x\phi(y)$.

REMARK 3.5. The right quasigroup (\mathbb{R}, o) where $xoy = x + y + xy^{2n}$ does not have right inverse property for 1 has no right inverse.

Smooth right quasigroup structures on $\mathbb R$ are obtained also in the following manner :

THEOREM 3.6. Let $\phi : \mathbb{R} \longrightarrow \mathbb{R} \setminus \{0\}$ be a differentiable map such that $\phi(0) = 1$. Then (\mathbb{R}, \odot) is a smooth right quasigroup with identity 0, where \odot is given by $x \odot y = y + x[\phi(y)]^{-2}$.

PROOF. Consider the Borel subgroup $\mathcal{B} = \left\{ \overline{\begin{pmatrix} \alpha & \beta \\ 0 & \alpha^{-1} \end{pmatrix}} \middle| \alpha, \beta \in \mathbb{R}, \alpha > 0 \right\}$ of the projective special linear group $PSL(2, \mathbb{R})$. Then $\mathcal{B} = HS, H \cap S = \{\overline{I_2}\}$ where

$$H = \left\{ \overline{\left(\begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array}\right)} \mid \alpha \in \mathbb{R}, \alpha > 0 \right\} \quad \text{and} \quad S = \left\{ \overline{\left(\begin{array}{cc} 1 & \beta \\ 0 & 1 \end{array}\right)} \mid \beta \in \mathbb{R} \right\}.$$

Let $A_{\alpha} = \overline{\begin{pmatrix} 1 & \alpha \\ 0 & 1 \end{pmatrix}}$, $\forall \alpha \in \mathbb{R}$. Then (S, o) is a right quasigroup with identity $\overline{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}$ where o is given by $A_{\alpha}oA_{\beta} = A_{\alpha+\beta}$. Let $g: S \to H$ be a deformation map given by $g(A_{\alpha}) = \overline{\begin{pmatrix} \phi(\alpha) & 0 \\ 0 & \phi(\alpha)^{-1} \end{pmatrix}}$ where $\phi: \mathbb{R} \longrightarrow$

 $\mathbb{R} \setminus \{0\}$ is a differentiable map such that $\phi(0) = 1$. The induced right quasigroup structure o_g on S is given by

$$A_{\alpha}o_{g}A_{\beta} = S \cap H[g(A_{\alpha})A_{\alpha}g(A_{\beta})A_{\beta}].$$

Since,

$$g(A_{\alpha})A_{\alpha}g(A_{\beta})A_{\beta} = g(A_{\alpha})g(A_{\beta}) \begin{pmatrix} 1 & \beta + \alpha\phi(\beta)^{-2} \\ 0 & 1 \end{pmatrix}.$$

Therefore $A_{\alpha}o_{g}A_{\beta} = A_{\beta+\alpha\phi(\beta)^{-2}}$. Clearly the map $\psi : \mathbb{R} \longrightarrow S$ defined by $\psi(\alpha) = A_{\alpha}$ is bijective. This in turn induces the operation \odot on \mathbb{R} given by $\alpha \odot \beta = \beta + \alpha\phi(\beta)^{-2}$ so that ψ is an isomorphism. Clearly the operation \odot on \mathbb{R} is smooth. \Box

REMARK 3.7. The right quasigroup structure o on \mathbb{R} given by $xoy = x + y + x\phi(y)$, is determined by the structure \odot on \mathbb{R} given by $x \odot y = y + x[\psi(y)]^{-2}$, where $\psi(y) = \frac{1}{+\sqrt{1+\phi(y)}}$ and ϕ is a differentiable map from \mathbb{R} into $(-1, \infty)$ such that $\phi(0) = 0$. Further, none of the right loops on \mathbb{R} are loops except the trivial one which is the additive group of real numbers.

Acknowledgments. This work is supported by CSIR, India. The authors are grateful to referee for his/her valuable suggestions.

References

- Kneser, H. and M. Kneser, Reell analytische Strukturen der Alexandroff-Halbgeraden und der Alexandroff-Geraden, Archiv Math. 11 (1960), 104– 106.
- Strambach, K., Rechtsdistributive Quasigruppen auf 1- mannigfaltigkeiten, Math. Z. 145 (1975), 63–68.
- [3] Nagy, P. T. and K. Strambach, Loops in group theory and Lie theory, De Grueter Expos. Maths. **35** (2002).
- [4] Lal, R., Transversals in groups, Journal of algebra **181** (1996), 70-81.
- [5] Lal, R. and A. C. Yadav, Topological gyrogroups, gyrotransversals and their deformations, preprint 2008.
- [6] Lang, S., Algebra, Rev. Third Edit., second Indian reprint, (2006).

(Received July 24, 2009) (Revised December 20, 2010)

> A. C. Yadav Department of Mathematics K. N. Govt. PG College Gyanpur, SRN Bhadohi (India) E-mail: am2203@rediffmail.com

Ramji Lal Department of Mathematics University of Allahabad Allahabad (INDIA) 211002 E-mail: mathrjl@gmail.com