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Remarks on Boundary Values

for Temperate Distribution Solutions

to Regular-Specializable Systems

By Susumu Yamazaki

Dedicated to Professor Kiyoomi Kataoka on his sixtieth birthday

Abstract. For temperate distribution solutions to regular-spe-
cializable systems of analytic linear differential equations, boundary
value problems are formulated in the framework of algebraic analy-
sis. Moreover, under a certain hyperbolicity condition, the solvability
theorems are discussed for some classes.

Introduction

In this paper, we consider boundary value problems for temperate dis-

tribution solutions to regular-specializable systems of analytic linear differ-

ential equations in the framework of Algebraic Analysis.

Regular-specializable system is first defined by Kashiwara [10], and con-

stitutes a special class of Fuchsian systems in the sense of Laurent-Monteiro

Fernandes [19]. In a single equation case, under the assumption that all

the characteristic exponents are constants, this corresponds to a Fuchsian

operator in the sense of Baouendi-Goulaouic [4] or equivalently, a regular-

singular operator with weak sense due to Kashiwara-Oshima [14] (cf. Os-

hima [28]). For any regular-specializable system, its vanishing cycle and

nearby cycle in the �-Module theory are defined (see Dimca [9], Kashi-

wara [10], Laurent [18], Maisonobe-Mebkhout [22]). After the results by

Kashiwara-Oshima [14] and Oshima [28], for any hyperfunction solutions

to a regular-specializable system, Monteiro Fernandes ([23], [24]) defined

an injective boundary value morphism which takes values in hyperfunc-

tion solutions to the nearby cycle of the system. This morphism extends
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268 Susumu Yamazaki

the non-characteristic boundary value morphism due to Komatsu-Kawai

and Schapira. Moreover Laurent-Monteiro Fernandes [20] reformulated this

morphism and discussed the solvability under a kind of hyperbolicity con-

dition (see Yamazaki [34] for a microlocal version).

Next, we replace hyperfunctions by distributions. Then, the functor of

moderate cohomology due to Kashiwara [11] and its microlocalization due

to Andronikof [2] enable us to apply the algebraic and geometrical tools in

Kashiwara-Schapira [15] to treat (temperate) distributions. As an applica-

tion of the theory of these functors, we shall consider boundary value prob-

lem for temperate distribution solutions to regular-specializable systems,

and prove that the boundary value morphism due to Monteiro Fernandes in-

duces the boundary value morphism for temperate distribution solutions to

these systems. Further as examples, we shall show that the boundary value

morphism is surjective if the system satisfies regular-singular and hyperbol-

icity conditions or if the equation under consideration is regular-specializable

and Fuchsian strictly hyperbolic operator in the sense of Bove-Lewis-Parenti

[6].

We remark that Tahara [32] investigated the structure of hyperfunc-

tion solutions to a general Fuchsian hyperbolic operator in depth, and

the uniqueness of boundary values was obtained by Oaku [25] without

hyperbolicity condition by using F -mild hyperfunctions. Further Oaku-

Yamazaki [27] extended the uniqueness results to Fuchsian systems. For

the Cauchy problem for hyperfunction and microfunction solutions to a

Fuchsian hyperbolic system, we refer to Yamazaki [35].

1. Preliminaries

In this section, we shall recall the notation and several facts needed in

later sections.

We denote by Z, R and C the sets of integers, of real numbers and of

complex numbers respectively. Moreover we set N := {n ∈ Z; n � 1} ⊂
N0 := N ∪ {0}, R>0 := {r ∈ R; r > 0} ⊂ R� 0 := {r ∈ R; r � 0}.

In this paper, we shall mainly follow the notation of Andronikof [2] and

Kashiwara-Schapira [15], [16].

Let A be a Ring on a topological space Z. We denote by Mod(A)

the category of (left) A-Modules, and by Modcoh(A) the full subcategory of

Mod(A) consisting of coherent A-Modules. Further we denote by Db(A) the
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bounded derived category of complexes of A-Modules, and by Db
coh(A) the

full subcategory of Db(A) consisting of objects with coherent cohomologies.

We set Mod(Z) := Mod(CZ), Db(Z) := Db(CZ) etc. for short.

Let C be any of Mod(A), Modcoh(A), Db(A) or Db
coh(A). Then by the

abuse of the notation, we write simply F ∈ C if F is an object of C on an

open subset.

In this paper, all the manifolds are assumed to be paracompact. For a

vector bundle τ : E → Z over a manifold Z, we set τ̇ : Ė := E�Z → Z (the

zero-section removed). Let Db
R>0

(E) ⊂ Db(E) be the subcategory of the

bounded derived category of sheaves such that each cohomology is conic.

Throughout this paper, M denotes an (n + 1)-dimensional real ana-

lytic manifold, N a one-codimensional real analytic closed submanifold of

M , and fN : N ↪→ M the canonical embedding. Let τN : TNM → N and

πN : T ∗
NM → N be the normal and the conormal bundles to N in M re-

spectively. Let X and Y be complexifications of M and N respectively such

that Y is a closed submanifold of X and that Y ∩M = N , and f : Y ↪→ X

the complexification of fN . We denote by N/M the relative orientation

sheaf attached to N → M , by ωN/M the relative dualizing complex, and by

ω⊗−1
N/M its dual. Explicitly, ωN/M = N/M [−1] and ω⊗−1

N/M = N/M [1]. Let

i : M ↪→ X be the canonical embedding.

Let �X and �X denote the sheaves on X of holomorphic functions and

of holomorphic linear differential operators respectively (see Kashiwara [12]

for �-Module theory). Let �Y→X := �Y ⊗
�X

�X and �X←Y be transfer

bi-Modules. We set �A
M := i−1�X etc. (we add the superscript A in or-

der to avoid the confusion with holomorphic cases). Let �M and � M

be the sheaves on M of Sato hyperfunctions and of Schwartz distributions

respectively. Let Db
R–c(M) denote the bounded derived category of R-

constructible sheaves. We denote by

(∗,� M ) = THM (∗) : Db
R–c(M)◦ → Db(�A

M ),

the Schwartz functor due to Kashiwara [11] (see also Kashiwara-Schapira

[16]). This functor is characterized by the following properties:

(i) If Z is a closed subanalytic subset of M , then (CZ ,� M ) =

ΓZ(� M );
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(ii) If U is an open subanalytic subset of M , then (CU ,� M ) =

� M

/
ΓX�U (� M ). In particular, we have

ΓX�U (� M ) ��

��

� M
�� (CU ,� M )

��

+1
��

RΓX�U (� M ) �� � M
�� RΓU (� M )

+1
��

(1.1)

Further, the functor of moderate cohomology due to Kashiwara [11] (see also

[16]) is defined by

(∗,�X) := R� �X
(�X , (∗,� X)) : Db

R–c(X)◦ → Db(�X).

Note that for any F ∈ Db
R–c(M), we have

(F,� M ) = i−1 (Ri∗F,�X)⊗ω⊗−1
M/X .

Let νN (∗) : Db(M) → Db
R>0

(TNM) and µN (∗) : Db(M) → Db
R>0

(T ∗
NM) be

the specialization and microlocalization functors respectively. Further, we

denote by

T-νN (∗,� M ) = T-νNTHM (∗) : Db
R–c(M)◦ → Db

R>0
(TNM),

T-µN (∗,� M ) = T-µNTHM (∗) : Db
R–c(M)◦ → Db

R>0
(T ∗

NM),

the temperate Schwartz specialization and temperate Schwartz microlocal-

ization functors along N respectively due to Andronikof [2]. In particular,

we set:

T-νN (� M ) := T-νN (CM ,� M ),

T-µN (� M ) := T-µN (CM ,� M ).

Then we recall:

1.1. Theorem ([2]). (1) T-νN (� M ), νN (� M ) and νN (�M ) are

concentrated in degree zero, and there exist the following natural monomor-

phisms of sheaves:

T-νN (� M ) � νN (� M ) � νN (�M ).
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(2) T-µN (� M ) and µN (�M ) are concentrated in degree zero, and there

exist the following natural morphisms of sheaves:

T-µN (� M ) ∼→ H0µN (� M ) � µN (�M ).

(3) There exists the following isomorphisms:

RτN !T-νN (� M ) = RπN∗T-µN (� M ) = ΓN (� M ) 	 �A
M←N ⊗

�A
N

� N ,

RτN∗T-νN (� M ) = RπN !T-µN (� M )⊗ N/M [1] = f −1
N � M .

Here �A
M←N := �X←Y

∣∣
N ⊗ N/M .

1.2. Remark. By Sato’s fundamental distinguished triangle and The-

orem 1.1, there exist the following morphisms of distinguished triangles:

ΓN (� M ) ��

��

Rπ̇N∗T-µN (� M )

��

�� f −1
N � M ⊗ N/M

+1
��

RΓN (� M ) ��

��

Rπ̇N∗ µN (� M ) ��

��

f −1
N � M ⊗ N/M

+1
��

��

ΓN (�M ) �� Rπ̇N∗ µN (�M ) �� f −1
N �M ⊗ N/M

+1
��

(1.2)

Here we remark that ΓN (�M ) = RΓN (�M ) while ΓN (� M ) 
= RΓN (� M ).

Next, set

P+ := {(v, ξ) ∈ ṪNM ×
N
Ṫ ∗
NM ; 〈v, ξ〉 > 0}

and denote by p+
1 : P+ → ṪNM and p+

2 : P+ → Ṫ ∗
NM the canonical projec-

tions. Then:

1.3. Proposition ([33, Corollary A.2], cf [30, Chapter I]). For any

F ∈ Db
R>0

(TNM), there exists the following distinguished triangle:

F → τ −1
N RτN ! F ⊗ω⊗−1

N/M → Rp+
1∗ p

+−1
2 F∧⊗ω⊗−1

N/M

+1−→ .

Here F∧ denotes the Fourier-Sato transform of F .
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Let ϕ ∈ �X be a local defining function of Y ; that is, Y is locally

given by ϕ−1(0) and dϕ(z) 
= 0 for any z ∈ Y . Further, we can assume

that ϕ|M is a local defining function of N . Then, mappings s : N 
 x �→
(x; dϕ(x)) ∈ ṪNM and ts : N 
 x �→ (x; tdϕ(x)) ∈ Ṫ ∗

NM are well defined.

Set TNM+ := R>0 s(N) ⊂ ṪNM and T ∗
NM+ := R>0

ts(N) ⊂ Ṫ ∗
NM . Then,

we have

s−1Rp+
1∗ p

+−1
2 F∧⊗ω⊗−1

N/M = s−1RΓT+
NMRp+

1∗ p
+−1
2 F∧⊗ω⊗−1

N/M

= RτN∗Rp+
1∗ p

+−1
2 RΓT ∗

NM+(F∧)⊗ω⊗−1
N/M

	 RπN∗RΓT ∗
NM+(F∧)⊗ω⊗−1

N/M 	 ts−1F∧⊗ω⊗−1
N/M .

Taking F = νN (�M )⊗ N/M , νN (� M )⊗ N/M or T-νN (� M )⊗ N/M

in Proposition 1.3, we obtain by Theorem 1.1:

1.4. Proposition. For any � ∈ Modcoh(�X), there exist the follow-

ing morphisms of distinguished triangles:

ΓN (� M ) ��

��

ts−1T-µN (� M ) ��

��

s−1T-νN (� M )⊗ N/M

��

+1
��

RΓN (� M )

��

�� ts−1µN (� M )

��

�� s−1νN (� M )⊗ N/M

��

+1
��

ΓN (�M ) �� ts−1µN (�M ) �� s−1νN (�M )⊗ N/M

+1
�� .

2. Boundary Value Morphism and Regular-Specializable

Systems

In this section, we define boundary values of temperate distribution so-

lutions to a regular-specializable systems as a main result. For the notation

and related topics, see Appendix A. In particular, ModRY
(�X) denotes the

category of regular-specializable �X |Y -Modules. For a �X -Module �, let

Df∗� := �Y→X

L
⊗

�X

�,

Df !� := R� �Y
(R� �X

(�,�X←Y ),�Y )[−1],
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be the inverse image and the extraordinary inverse image of � in the �-

Module theory respectively. We take the following local coordinates:

N = Rn
x × {0}� �

��

� � fN �� M = Rn
x × Rt� �

i
��

Y = Cn
z × {0} � � f �� X = Cn

z × Cτ

(2.1)

2.1. Proposition. If � ∈ ModRY
(�X), then the exists the following

commutative diagram:

R� �X
(�, ΓN (� M ))⊗ω⊗−1

N/M

��

R� �Y
(Df !�,� N )

��

R� �X
(�, ΓN (�M ))⊗ω⊗−1

N/M R� �Y
(Df !�,�N ).

(2.2)

Proof. Let � be a �Y -Module. Since �X←Y is flat as a right �Y -

Module, by Theorem A.15 (1) and (A.3) we see

R� �Y
(Df !�,�)[−1] 	 R� �Y

(Df !�,�Y )
L
⊗

�Y

�[−1]

	 R� �X
(�,�X←Y )

L
⊗

�Y

� 	 R� �X
(�,�X←Y

L
⊗

�Y

�)

	 R� �X
(�,�X←Y ⊗

�Y

�).

(2.3)

Then, applying the functor RΓN (∗) ⊗ M to (A.4), we obtain

R� �X
(�,�A

M←N ⊗
�A

N

�N ) = R� �Y
(Df !�,�N )⊗ωN/M(2.4)

	 R� �X
(�, ΓN (�M )).

We can write a section (or a germ) of �A
M←N as

∑
j
aj(x, ∂x) ∂

j
t ⊗ |dt|⊗−1,

where |dt|⊗−1 is a generator of N/M . Then the morphism defined by

�A
M←N 
 ∂ j

t ⊗ |dt|⊗−1 �→ ∂ j
t δ(t)
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induces

�A
M←N ⊗

�A
N

� N

� �

��

ΓN (� M )
� �

��

�A
M←N ⊗

�A
N

�N
�� ΓN (�M ).

Thus by (2.3) and (2.4), we have

R� �Y
(Df !�,� N )⊗ωN/M

�� R� �Y
(Df !�,�N )⊗ωN/M

R� �X
(�,�A

M←N ⊗
�A

N

� N ) �� R� �X
(�,�A

M←N ⊗
�A

N

�N )

R� �X
(�, ΓN (� M )) �� R� �X

(�, ΓN (�M ))

thus we obtain (2.2). �

We recall a result on the boundary value morphism. For any � ∈
Modcoh(�X), we denote by Ch � the characteristic variety.

2.2. Remark. � ∈ Modcoh(�X |Y ) is said to be near-hyperbolic at

x0 ∈ N in ±dt-codirection in the sense of Laurent-Monteiro Fernandes [20,

Definition 1.3.1] if there exist positive constants C and ε such that the

following condition holds:

Ch � ∩ {(z, τ ; ζ, η) ∈ T ∗X; |z − x0|, |τ | < ε, Re τ 
= 0}
⊂ {(z, τ ; ζ, η) ∈ T ∗X; |Re η| < C

(
|Im ζ|(|Im z| + |Im τ |) + |Re ζ|

)
}.

Let �A
N |M denote the subsheaf of �M |N of hyperfunctions with a real

analytic parameter t (see [30], [35]). If � is near-hyperbolic and Fuchsian

in the sense of [19], then there exists an isomorphism (see [35]):

R� �X
(�,�A

N |M ) ∼→ R� �Y
(Df∗�,�N ).
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2.3. Theorem ([24], cf. [34]). For any � ∈ ModRY
(�X), there exists

the following morphism of distinguished triangles:

R� �X
(�, ts−1µN (�M ))⊗ N/M

α ��

��

R� �Y
(ΦY (�),�N )

��

R� �X
(�, s−1νN (�M ))

β
��

��

R� �Y
(ΨY (�),�N )

��

R� �X
(�, ΓN (�M ))⊗ω⊗−1

N/M

+1
��

R� �Y
(Df !�,�N )

+1
��

such that α, β induce monomorphisms:

H0(α) : � �X
(�, ts−1µN (�M ))⊗ N/M � � �Y

(ΦY (�),�N ),

H0(β) : � �X
(�, s−1νN (�M )) � � �Y

(ΨY (�),�N ).

In addition, if � is near-hyperbolic at any x0 ∈ N in ±dt-codirection, then

both α and β are isomorphisms.

2.4. Remark. (1) If Y is non-characteristic for �, then by (A.2) and

Theorem 2.3, we have

R� �X
(�, s−1νN (�M ))

β
��

��

R� �Y
(ΨY (�),�N )

R� �X
(�, ΓN (�M ))⊗ω⊗−1

N/M R� �Y
(Df∗�,�N ),

and H0(β) coincides with the boundary value morphism due to Komatsu-

Kawai and Schapira.

(2) A microlocal counterpart of β is defined in Yamazaki [34] along the

line of [27].

The main result in this paper is the following:

2.5. Theorem. For any � ∈ ModRY
(�X), there exists the following
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morphism of distinguished triangles:

R� �X
(�, ts−1T-µN (� M ))⊗ N/M

αt
��

��

R� �Y
(ΦY (�),� N )

��

R� �X
(�, s−1T-νN (� M ))

βt
��

��

R� �Y
(ΨY (�),� N )

��

R� �X
(�, ΓN (� M ))⊗ω⊗−1

N/M

+1
��

R� �Y
(Df !�,� N )

+1
��

which is compatible with Proposition 1.4 and Theorem 2.3. In particular, αt

and βt induce monomorphisms:

H0(αt) : � �X
(�, ts−1T-µN (� M ))⊗ N/M

� � �Y
(ΦY (�),� N ),

H0(βt) : � �X
(�, s−1T-νN (� M )) � � �Y

(ΨY (�),� N ).

Proof. First we define βt. The problem is local, so we take coor-

dinates as in (2.1). We follow the method in [23] (for the notation, see

Appendix A). Recall the set G in (A.1). For α ∈ G, set for short:

�(α)
p := R� �X

(ψ(α)
p (�X),�X).

Then, the inductive system {ψ(α)
p (�X)}p∈N0

defines a projective system

{�(α)
p }p∈N0

. Set Ω+ := {(x, t) ∈ M ; t > 0}, and let Ωc
+ ⊂ X be a con-

nected open neighborhood of Ω+ such that Y ∩ Ωc
+ = ∅ and that we can

take a branch L(τ) of log τ in Ωc
+. Let j : Ωc

+ ↪→ X be the embedding. Note

that j −1�(α)
p is concentrated in degree zero since j −1ψ

(α)
p (�X) is a coherent

j −1�X -Module. We define

s(α) ′
p ∈ j −1�(α)

p 	 � j −1�X
(j −1ψ(α)

p (�X), j −1�X)
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by the following:

j −1ψ(α)
p (�X) =

p∑
k=0

�Ω+ e
(α)
k 


p∑
k=0

mk e
(α)
k

�→
p∑

k=0

mk

e−αL(τ)L(τ)k

k!
∈ j −1�X .

Then applying the functor j!, we obtain a (�X)Ω+-linear morphism

s(α)
p := j!s

(α) ′
p : ψ(α)

p (�X)Ω+ → (�X)Ω+ .

Since ψ
(α)
p (�X) is �X -coherent, (locally) we can take a resolution

0 ← ψ(α)
p (�X) ← �X

r0
·P0←−− · · ·

·Pk−1←−−−− �X
rk ← 0.

Then, both (�(α)
p )Ωc

+
and R� (�X)

Ωc
+

(ψ
(α)
p (�X)Ωc

+
, (�X)Ωc

+
) are repre-

sented by (�X
r0)Ωc

+

(P0)Ωc
+
·

−−−−−→ · · ·
(Pk−1)Ωc

+
·

−−−−−−→ (�X
rk)Ωc

+
, that is,

s(α)
p ∈ � (�X)

Ωc
+

(ψ(α)
p (�X)Ωc

+
, (�X)Ωc

+
)

	 R� (�X)
Ωc

+

(ψ(α)
p (�X)Ωc

+
, (�X)Ωc

+
) = (�(α)

p )Ωc
+
.

For p � q, the morphism (�(α)
q )Ωc

+

 s

(α)
q �→ s

(α)
p ∈ (�(α)

p )Ωc
+

is compatible

with the projective system structure of {�(α)
p }p∈N0

. Let δ : X ↪→ X × X

be the diagonal embedding. We denote by ∗� ∗ and ∗�
�
∗ the external

tensor products of sheaves and of �-Modules respectively. We remark that

∗
L
⊗
�X

∗ = Dδ∗(∗�
�
∗). Let Z � N be a compact subset, and set

A := {(x; t) ∈ ṪNM ; x ∈ Z, t > 0},
	 := {U ⊂ M ; open subanalytic neighborhood of Z}.

Since the image of A in ṪNM/R>0 is compact, by [2, Proposition 2.1.4] we
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have for any k ∈ Z:

Hk(Z; s−1T-νN (� M )) = Hk(A;T-νN (� M ))

= lim−→
U∈	

Hk(M ; (CU∩Ω+
,� M )).

In particular, Hk(Z; s−1T-νN (� M )) = 0 holds if k 
= 0. On the other hand,

if U , V ∈ 	 with V � U , then the restriction Γ (U ; (CΩ+
,� M )) →

Γ (V ; (CΩ+
,� M )) factorizes through

Γ (U ; (CΩ+
,� M )) ��

��

Γ (V ; (CΩ+
,� M ))

Γ (M ; (CV ∩Ω+
,� M ))

��

Hence

lim−→
U∈	

Γ (M ; (CU∩Ω+
,� M )) = lim−→

U∈	

Γ (U ; (CΩ+
,� M ))

= Γ (Z; (CΩ+
,� M )),

that is, s−1T-νN (� M ) is identified with the soft sheaf (CΩ+
,� M )|N .

Thus by Proposition 1.4, there is a triangle

ts−1T-µN (� M )⊗ N/M → (CΩ+
,� M )|N → ΓN (� M )⊗ω⊗−1

N/M

+1−→.

We define a morphism ·s(α)
p : CX 
 C �→ Cs

(α)
p ∈ (�(α)

p )Ωc
+
.

Since ψ
(α)
p (�) ∈ ModRY

(�X) for any α ∈ G and p ∈ N0, by Proposition

2.1 we obtain

R� �X
(�, s−1T-νN (� M )) = R� �X

(�, (CΩ+
,� M ))|N

1⊗ ·s(α)
p−−−−−→ (R� �X

(�, (CΩ+
,� M ))

L
⊗ (�(α)

p )Ωc
+
)|N

→ (R� �X
(�, (CΩ+

,� M ))
L
⊗�(α)

p )|N
→ (δ−1R� �X ��X

(��ψ(α)
p (�X), (CΩ+

,� M )��X))|N
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→ (δ−1R� �X×X
(��

�
ψ(α)
p (�X), (CΩ+

,� M )�
�

�X))|N

→ R� �X
(Dδ∗(��

�
ψ(α)
p (�X)),Dδ∗(ΓN (� M )�

�
�X))⊗ω⊗−1

N/M

	 R� �X
(ψ(α)

p (�), ΓN (� M ))⊗ω⊗−1
N/M

	 R� �Y
(Df !ψ(α)

p (�),� N ).

By (A.5), for any α ∈ G we define a morphism βt
α by the following way:

βt
α : R� �X

(�, s−1T-νN (� M )) → R� �Y
(Df !ψ(α)

p (�),� N )

→ R� �Y
(gr−α

Y (�),� N ).

Thus by Theorem A.18 we can define:

βt :=
⊕
α∈G

βt
α : R� �X

(�, s−1T-νN (� M ))

→ R� �Y
(ΨY (�),� N ).

By (1.1) we have natural morphisms

(CΩ+
,� M ) → ΓΩ+

(� M ) → ΓΩ+
(�M ).

Hence by the construction, we have a commutative diagram:

R� �X
(�, (CΩ+

,� M ))|N

��

��

R� �X
(�, ΓΩ+

(�M ))|N

��
(R� �X

(�, (CΩ+
,� M ))

L
⊗ (�(α)

p )Ωc
+
)|N

��

�� (R� �X
(�, ΓΩ+

(�M ))
L
⊗ (�(α)

p )Ωc
+
)|N

(R� �X
(�, (CΩ+

,� M ))
L
⊗�(α)

p )|N

��
��

(R� �X
(�, ΓΩ+

(�M ))
L
⊗�(α)

p )|N

��

R� �Y
(Df !ψ

(α)
p (�),� N )

�� R� �Y
(Df !ψ

(α)
p (�),�N )
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Therefore, comparing this construction of βt with that of [23], [24], and [20,

Proposition 2.3.1], we see that βt is compatible with β, and we obtain αt

by Proposition 1.4 and Theorem A.15. Next, by Theorem A.15 we have the

following morphism of distinguished triangles:

R� �Y
(ΦY (�),� N ) ��

��

R� �Y
(ΦY (�),�N )

��

R� �Y
(ΨY (�),� N ) ��

��

R� �Y
(ΨY (�),�N )

��

R� �Y
(Df !�,� N ) ��

+1
��

R� �Y
(Df !�,�N )

+1
��

Taking cohomologies, we obtain the following commutative diagram by

Proposition 2.1, Theorem 2.3, and the standard construction of distin-

guished triangles:


 j
�X

(�, ts−1T-µN (� M ))⊗ N/M

Hj(αt)
��

��


 j
�Y

(ΦY (�),� N )

��


 j
�X

(�, ts−1µN (�M ))⊗ N/M

Hj(α)
�� 
 j

�Y
(ΦY (�),�N ).

Therefore αt is compatible with α. The proof is complete. �

2.6. Remark. Under the regular-singular condition and additional as-

sumptions, boundary values are defined by Oshima [28] and Parenti-Tahara

[29] for temperate distribution solutions. These boundary values coincide

with those obtained in Theorem 2.5 (see Example 2.7 below).

2.7. Example. Let b(α) ∈ C[α] be a monic polynomial of degree m, and

P ∈ FmV−1
Y (�X). Assume that b(α) =

µ∏
j=1

(α−αj)
νj (αi−αj /∈ Z for i 
= j)

with
µ∑

j=1
νj = m. We set � := �X/�X(b(ϑ) − P ). By Example A.14, we
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see that ΨY (�) 	 � m
Y . We take the following local coordinates:

N = Rn
x × {0}� �

��

� � �� M = Rn
x × Rt� �

��

� �

���������

Y = Cn
z × {0} � � �� L = Cn

z × Rt
� � �� X = Cn

z × Cτ ,

and set (see [26], [27], [34]):

�̃N |M := Hn+1
TNM (νY (RΓL(�X)))⊗ N/L .

Then there exists a natural monomorphism νN (�N |M ) � �̃N |M . Let us

take any v∗ = (x0; 1
d

dt
) ∈ TNM+ and u(x, t) ∈ � �X

(�, νN (�M ))v∗ .

Then it is known (see [34], cf. [26]) that u(x, t) can be written as

u(x, t) =
µ∑

j=1

νj∑
k=1

Jij∑
i=1

F i
jk(x +

√
−1Γ i

jk 0, t) tαj (log t)k−1,(2.5)

as a section of � �X
(�, �̃N |M )v∗ . Here each F i

jk(z, τ) is holomorphic on

a neighborhood of {(z, 0) ∈ X; |x0 − z| < ε, Im z ∈ Γ i
jk} with a positive

constant ε and an open convex cone Γ i
jk ⊂ Rn. Hence

ujk(x) :=
Jij∑
i=1

F i
jk(x +

√
−1Γ i

jk 0, 0) ∈ �N,x0

are well defined, and H0(β)(f) is equivalent to

{ujk(x, 0); 1 � j � µ, 1 � k � νj} ⊂ � m
N,x0

.

In particular, if

u(x, t) ∈ � �X
(�,T-νN (� M ))v∗ or u(x, t) ∈ � �X

(�, νN (� M ))v∗ ,

then the expression (2.5) can be compared with that of Parenti-Tahara [29,

Theorem 2].

3. Non-Characteristic and Regular System Case

In this section, we consider a non-characteristic boundary value problems

under a regular singular condition.
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Let 
X be the Ring of microdifferential operators on T ∗X. We de-

note by {
X (m)}m∈Z the usual order filtration on 
X (see Sato-Kawai-

Kashiwara [30] and Schapira [31]). Let Λ be a C×-conic involutory closed

subset of Ṫ ∗X, and set IΛ := {P ∈ 
X (1); σ1(P )
∣∣
Λ ≡ 0}. Let 
Λ ⊂ 
X

be a sheaf of subring generated by IΛ; that is, 
Λ :=
⋃

m∈N0

Im
Λ with con-

vention I0
Λ := 
X (0). By the definition, we have 
X (0) ⊂ 
Λ. Further

Kashiwara-Oshima [14] proved that 
Λ is a Noetherian Ring in the sense of

[15, Definition 11.1.1] (hence coherent), and that every coherent 
X -Module

is pseudocoherent as an 
Λ-Module.

3.1. Definition (see [14]). Let Λ be a C×-conic involutory closed sub-

set of Ṫ ∗X and M ∈ Modcoh(
X) defined on an open set of Ṫ ∗X. Then

we say that M has regular singularities along Λ if there exists locally an


Λ sub-Module L ⊂ M such that L ∈ Modcoh(
X (0)) and that 
XL = M

holds. Note that If M has regular singularities along Λ, then suppM ⊂ Λ

([13, Lemma 1.13]).

3.2. Definition. Let Λ be a C×-conic involutory closed subset of T ∗X
and � ∈ Modcoh(�X). We set Λ̇ := Λ � T ∗

XX. Then we say that �
has regular singularities along Λ̇ if the corresponding coherent 
X -Module

� := 
X ⊗

π−1�X

π−1� has regular singularities along Λ̇.

The notion of regular singularities is closely related to Levi conditions

(see for example [8] and references cited therein).

For a subset A ⊂ T ∗X, we denote by CT ∗
MX(A) the normal cone of

A along T ∗
MX. Then CT ∗

MX(A) is a closed cone of TT ∗
MXT ∗X. Take a

local coordinate system (z; ζ) = (x +
√
−1y; ξ +

√
−1η) in T ∗X, where

T ∗
MX is defined by {y = 0, ξ = 0}. We may identify TT ∗

MXT ∗X with

T ∗X by the coordinates above, hence the corresponding coordinate sys-

tem of TT ∗
MXT ∗X is (x,

√
−1y; ξ,

√
−1η). By [15, Proposition 4.1.2], we see

that (x0,
√
−1y0; ξ0,

√
−1η0) ∈ CT ∗

MX(A) if and only if there exist sequences

{(zn; ζn)}∞n=1 ⊂ A and {cn}∞n=1 ⊂ R>0 such that

(zn; ζn) −→
n

(x0,
√
−1η0), cn(yn, ξn) −→

n
(y0, ξ0).

There exists a canonical inclusion T ∗M ↪→ TT ∗
MXT ∗X which is described
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by (x; ξ) �→ (x, 0; ξ, 0) in local coordinates above (see [15]). Then (x0; ξ0) ∈
T ∗M ∩ CT ∗

MX(A) if and only if there exists a sequence {(zn; ζn)}∞n=1 ⊂ A

such that

(xn +
√
−1yn; ξn) −→

n
(x0, 0; ξ0), |yn| |ηn| −→n 0.

Let V be a C×-conic closed subset of T ∗X. Recall that fN : N ↪→ M

(or simply N) is said to be hyperbolic for V if

Ṫ ∗
NM ∩ CT ∗

MX(V ) = ∅.

3.3. Theorem ([36]). Let Λ ⊂ T ∗X be a closed C×-conic subset, and

� ∈ Modcoh(�X). Suppose that Λ̇ ⊂ Ṫ ∗X is a regular involutory com-

plex submanifold, � has regular singularities along Λ̇, and fN : N ↪→ M is

hyperbolic for Λ. Then

R� �X
(�,T-µN (� M ))

∣∣
Ṫ ∗
NM = R� �X

(�, µN (� M ))
∣∣
Ṫ ∗
NM = 0.

For the proof, see [36]. Using this theorem, we can prove:

3.4. Theorem. Under the same assumption as Theorem 3.3, there ex-

ist the following isomorphisms:

f −1
N R� �X

(�,� M )

��������
��������

�

��

∼ �� R� �Y
(Df∗�,� N )

�

��

f −1
N R� �X

(�,� M )

�

��

∼ 		��������

R� �X
(�, s−1νN (� M ))

�

��

R� �Y
(ΨY (�),� N )

�

��

R� �X
(�, s−1T-νN (� M ))

�

��

∼

�������� ∼ 		��������

R� �X
(�,RΓN (� M ))⊗ω⊗−1

N/M R� �Y
(Df !�,� N )

R� �X
(�, ΓN (� M ))⊗ω⊗−1

N/M

∼

�������� ∼ 		��������
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Proof. By (A.2), we have

R� �Y
(Df∗�,� N ) 	 R� �Y

(ΨY (�),� N )

	 R� �Y
(Df !�,� N ).

In view of (1.2), Propositions 1.4 and 2.1, we have by Theorem 3.3:

f −1
N R� �X

(�,� M ) ∼ ��

�
��

R� �X
(�, ΓN (� M ))⊗ω⊗−1

N/M

�
��

R� �Y
(Df∗�,� N ) ∼ �� R� �X

(�,RΓN (� M ))⊗ω⊗−1
N/M ,

R� �X
(�,T-νN (� M )) ∼ ��

�
��

τ −1
N R� �Y

(Df∗�,� N )

�
��

R� �X
(�, νN (� M )) ∼ �� τ −1

N RΓNR� �X
(�,� M )⊗ω⊗−1

N/M .

Therefore we can obtain the theorem. �

3.5. Remark. (1) Under the same assumption as Theorem 3.3, there

exist the following commutative diagrams:

f −1
N R� �X

(�,� M )

�
��

�� f −1
N R� �X

(�,�M )

�
��

R� �Y
(Df∗�,� N ) �� R� �Y

(Df∗�,�N ),

R� �X
(�,T-νN (� M ))

�
��

∼ �� τ −1
N R� �Y

(Df∗�,� N )

R� �X
(�, νN (� M )) ∼ ��

��

τ −1
N R� �Y

(Df∗�,� N )

��

R� �X
(�, νN (�M )) ∼ �� τ −1

N R� �Y
(Df∗�,�N ).

(2) Each section of

� �X
(�,T-νN (� M ))

∣∣
ṪNM = � �X

(�, νN (� M ))
∣∣
ṪNM
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is an extensible mild distribution in the sense of Kataoka [17].

(3) Theorems 3.3 and 3.4 can be proved in the higher-codimensional case

(see [36]).

4. Example of Regular-Singular Operator

In this section, we consider a hyperbolic regular-singular operator. Since

the problem is local, we use the coordinate system in (2.1). Set for short

(each double sign in same order):

v± := (0;±1
d

dt
) ∈ ṪNM, p± := (0;±1 dt) ∈ Ṫ ∗

NM,

q± := (0;±√
−1 dt) ∈ Ṫ ∗

MX.

Set � A
N |M := �A

N |M ∩ � M

∣∣
N (recall that �A

N |M is the subsheaf of �M |N
of hyperfunctions with a real analytic parameter t). Let �M be the sheaf of

Sato’s microfunctions on T ∗
MX as usual, and �f

M the subsheaf of temperate

microfunctions on T ∗
MX (see [2] for a functorial construction of this sheaf).

Then we have the following exact sequence ([35, Proposition 3.2], cf. [30,

Chapter I, Theorem 2.2.6]):

0 �� � A
N |M,0

��

� �

��

� M,0
��

� �

��

�f
M,q+

⊕ �f
M,q−

��

� �

��

0

0 �� �A
N |M,0

�� �M,0
�� �M,q+

⊕ �M,q−
�� 0

(4.1)

We consider the following:

4.1. Condition. R� �X
(�,� A

N |M ) 	 R� �Y
(Df∗�,� N ).

Let b(α) = αm +
m−1∑
j=0

ajα
j be a polynomial of degree m with coefficients

in C. Assume that P has the following form:

P (z, τ, ∂z, ϑ) = b(ϑ)+
m∑

ν=0
τbν(z, τ)ϑν +

∑
1� |α|

|α|+ν�m

pαν(z, τ) (τ∂z)
αϑν ∈ �X (m).

Then P has regular singularities along Y in the sense of Kashiwara-Oshima

[14] (see also Oshima [28]) and regular-specializable simultaneously. We
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denote by {αj}mj=1 := b−1(0) ⊂ C the set of characteristic exponents of P .

For any α ∈ C, we set:

Pα(z, τ, ∂z, ϑ) := ταP (z, τ, ∂z, ϑ)τ−α = P (z, τ, ∂z, ϑ− α),

and consider � := �X

/
�XP and �α := �X

/
�XPα . In particular, � =

�0. Then, each �α is regular-specializable, and the set of the characteristic

exponents of Pα is {αj + α}mj=1 . Note that for any α ∈ C we have (cf. [11,

Lemma 3.8])

R� �X
(�, s−1T-νN (� M )) 	 R� �X

(�α, s
−1T-νN (� M )),(4.2)

and that ΨY (�α) 	 �⊕m
Y and ΦY (�α) 	 �⊕m

Y for any α (Example A.14).

We denote by �′
M the conic sheaf on T ∗

MX associated with the presheaf

T ∗
MX ⊃ U �→ Γ (πM (U); � M )

/
{u ∈ Γ (πM (U); � M ); WF(u) ∩ U = ∅}.

Here πM : T ∗
MX → M is the canonical projection, and WF(u) ⊂ T ∗M 	

T ∗
MX denotes the wave-front set of a distribution u. Let � ∞

N |M be the

sheaf on M of distributions with a C∞ parameter t. Then we have:

0 �� � A
N |M,0

��

� �

��

� M,0
�� �f

M,q+
⊕ �f

M,q−
��

��

0

0 �� � ∞
N |M,0

�� � M,0
�� �′

M,q+
⊕ �′

M,q−
�� 0.

(4.3)

4.2. Proposition (see [6]). For any α and ε = ±, there exist the

following isomorphisms:

R� �X
(�α,�f

M )qε
∼→ R� �X

(�α,�′
M )qε 	 � ⊕m

N,0 .(4.4)

In particular,

R� �X
(�α,� A

N |M )0 ∼→ R� �X
(�α,� ∞

N |M )0 .(4.5)

Proof. If we prove (4.4), then we obtain (4.5) by (4.3).
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We denote by �d
M the conic sheaf on T ∗

MX associated with the presheaf

T ∗
MX ⊃ U �→ Γ (πM (U);C∞

M )
/
{u ∈ Γ (πM (U);C∞

M ); SS(u) ∩ U = ∅}.

Here C∞
M is the sheaf of C∞ functions on M , and SS(u) denotes the singu-

larity spectrum of u (see Bony [5]). We have an exact sequence (see [1]):

0 → �d
M

∣∣
Ṫ ∗
MX → �f

M

∣∣
Ṫ ∗
MX → �′

M

∣∣
Ṫ ∗
MX → 0.

Let 
R,f
X be the Ring of temperate holomorphic microlocal operators on T ∗X

due to Andronikof [2]. Since both �f
M and �d

M are 
R,f
X -Modules ([2], [5],

[7]) and conically soft (even conically supple), so is �′
M . Let CM be any of

�f
M , �d

M or �′
M , and q either q+ or q−. By [3, Corollary 3.3] and the fact

that ∂τ is invertible in 
R,f
X,q, we have

R� �X
(�α,CM )q 	 R�


R,f
X

(
R,f
X

/

R,f
X ϑ,CM )⊕m

q

	 R�

R,f
X

(
R,f
X

/

R,f
X τ,CM )⊕m

q 	 R� �X
(�X

/
�Xτ,CM )⊕m

q .

We set C
∞,A
N |M := �A

N |M ∩ C∞
M

∣∣
N . Then we easily obtain

0

��

0

��

� N,0

��

0 �� � A
N |M,0

��

t
��

� M,0
��

t
��

�f
M,q+

⊕ �f
M,q−

��

t ��

0

0 �� � A
N |M,0

��

�� � M,0
��

��

�f
M,q+

⊕ �f
M,q−

�� 0

� N,0

��

0

0



288 Susumu Yamazaki

0

��

0

��

0 �� C
∞,A
N |M,0

��

t ��

C∞
M,0

��

t
��

�d
M,q+

⊕ �d
M,q−

��

t ��

0

0 �� C
∞,A
N |M,0

��

��

C∞
M,0

��

��

�d
M,q+

⊕ �d
M,q−

�� 0

C∞
N,0

��

C∞
N,0

��

0 0

Hence by Snake Lemma, we have

R� �X
(�X

/
�Xτ,�f

M )q = � N,0, R� �X
(�X

/
�Xτ,�d

M )q = 0.

By a distinguished triangle

R� �X
(�X

/
�Xτ,�d

M )q → R� �X
(�X

/
�Xτ,�f

M )q

→ R� �X
(�X

/
�Xτ,�′

M )q
+1−→,

we have

R� �X
(�X

/
�Xτ,�f

M )q = R� �X
(�X

/
�Xτ,�′

M )q = � N,0.

Therefore we obtain (4.4). �

We consider the following condition on α:

4.3. Condition. αj + α /∈ Z holds for any 1 � j � m.

4.4. Remark. By [25] (see also [35]), there is a morphism

R� �X
(�α,�A

N |M ) → R� �Y
(Df∗�α,�N ),

such that this induces a monomorphism

� �X
(�α,�A

N |M ) → � �Y
(Df∗�α,�N ).

Next, assume Condition 4.3. Then it is known that Df !�α = Df∗�α = 0

(see [21]). Since � A
M is a subsheaf of �A

N |M , it follows that

� �X
(�α,� A

N |M ) = � �X
(�α,�A

N |M ) = 0,
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and by Proposition 2.1 we have:

R� �X
(�α, ΓN (�M ))⊗ω⊗−1

N/M = R� �Y
(Df !�α,�N ) = 0,(4.6)

R� �X
(�α, ΓN (� M ))⊗ω⊗−1

N/M = R� �Y
(Df !�α,� N ) = 0.

Further we can write Condition 4.1 as

R� �X
(�α,� A

N |M ) = 0.(4.7)

4.5. Proposition. Under Condition 4.3 and assumption (4.7), there

exists the following isomorphisms:

R� �X
(�α,

ts−1T-µN (� M ))⊗ N/M
∼ ��

�
��

� ⊕m
N

�
��

R� �X
(�α, s

−1T-νN (� M )) ∼ �� � ⊕m
N .

Proof. Since problem is local, we may identify N/M with ZN , and

prove in the stalk at the origin. We have morphisms for ε = ±:

R� �X
(�α,T-µN (� M ))pε → � ⊕m

N,0 ,

R� �X
(�α,T-νN (� M ))vε → � ⊕m

N,0 .

Therefore by Theorem 2.5, we have only to show

R� �X
(�α,T-µN (� M ))p+

	 � ⊕m
N,0 .(4.8)

Since 0 → �X
·Pα−−→ �X → �α → 0 is exact, for any j � 2 we have


 j
�X

(�α,T-µN (� M ))p+
= 
 j

�X
(�α,T-µN (� M ))p− = 0.

By Proposition 4.5, (4.1) and (4.7), we obtain:

R� �X
(�α,� M )0 	 � ⊕m

N,0 ⊕ � ⊕m
N,0 .(4.9)
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Hence by (1.2), (4.6) and (4.9), we have

� ⊕m
N,0 ⊕ � ⊕m

N,0
∼←

⊕
ε=±

R� �X
(�α,T-νN (� M ))pε

→ � ⊕m
N,0 ⊕ � ⊕m

N,0

Considering the correspondence of each morphism, we obtain (4.8). �

4.6. Theorem. Assume that there exists an α ∈ C which satisfies

Condition 4.3 and assumption (4.7). Then there exists the following iso-

morphism of distinguished triangles:

R� �X
(�, ts−1T-µN (� M ))⊗ N/M

∼ ��

��

� ⊕m
N

��

R� �X
(�, s−1T-νN (� M )) ∼ ��

��

� ⊕m
N

��

R� �X
(�, ΓN (� M ))⊗ω⊗−1

N/M

+1
��

R� �Y
(Df !�,� N )

+1
��

(4.10)

Proof. By (4.2) and Proposition 4.5, we have

� ⊕m
N,0 	 R� �X

(�α, s
−1T-νN (� M ))

	 R� �X
(�, s−1T-νN (� M ))

→ R� �Y
(ΨY (�),� N ) 	 � ⊕m

N,0 .

Hence we can prove

R� �Y
(ΨY (�),� N ) ∼→ � ⊕m

N,0 .

Then Theorem 2.5 completes the proof. �

By definition we can write

σm(P )(z, τ ; ζ, λ) = τmpm(z, τ ; ζ, λ),
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where pm(z, τ ; ζ, λ) is a polynomial of degree m with respect to (ζ, λ). Here

we remark that pm(z, τ ; 0, λ) = λm, and for any α ∈ C,

σm(Pα)(z, τ ; ζ, λ) = σm(P )(z, τ ; ζ, λ) = τmpm(z, τ ; ζ, λ).

4.7. Condition. pm(z, τ ; ζ, λ) is strictly hyperbolic with respect dt;

that is, for any (x, t, ξ) ∈ M × (Rn � {0}), the polynomial (with respect

to λ) C 
 λ �→ pm(x, t; ξ, λ) has roots λj(x, t; ξ) (1 � j � m) such that

(i) {λj(x, t; ξ)}mj=1 are real and distinct;

(ii) each λj(x, t; ξ) homogeneous with respect to ξ of degree one;

(iii) if |ξ| = 1, then each λj(x, t; ξ) is bounded.

Note that Condition 4.7 entails the near-hyperbolicity of each �α . Then

we recall:

4.8. Theorem ([6]). Under Conditions 4.3 and 4.7, it follows that

R� �X
(�α,� ∞

N |M )0 	 0.

In particular by (4.5),

R� �X
(�α,� A

N |M )0 	 0.

Hence if we assume Condition 4.7, then there exists an α ∈ C which

satisfies Conditions 4.1 and 4.3. Therefore, we obtain

4.9. Theorem. Under Condition 4.7, the isomorphism (4.10) holds.

4.10. Remark. Under Conditions 4.3 and 4.7, Parenti-Tahara [29,

Theorem 1] proved:

� �X
(�α, s

−1T-νN (� M )) ∼→ � �X
(�α, s

−1νN (� M )).
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Appendix A. Specializable Systems and Nearby, Vanishing

Cycles

We recall the definitions of (regular-) specializable system and its van-

ishing and nearby cycle Modules. The contents in this Appendix are known

to specialists, but we cannot find suitable references for the purpose of this

paper. Therefore, we review the definitions and properties in some detail (cf.

[9], [19], [22], [31] for the proof of corresponding contents). Since the prob-

lem is local, we fix the coordinates of (2.1). Set ϑ := τ∂τ . Let {�X (m)}m∈N0

the usual order filtration.

A.1. Definition. Let IY be the defining Ideal of Y in �X with a

convention that I j
Y = �X for j � 0. The V -filtration {Vk

Y (�X)}k∈Z (along

Y ) is a filtration on �X |Y defined by

Vk
Y (�X) :=

⋂
j∈Z

{P ∈ �X |Y ; PI j
Y ⊂ I j−k

Y }.

This filtration is given by Vk
Y (�X) = {

∑
j−i� k

Pij(z, τ, ∂z) τ
i∂ j

τ ∈ �X

∣∣
Y }.

In what follows we omit the phrase “along Y ” since Y is fixed.

A.2. Definition. Let � ∈ Modcoh(�X).

(1) A V -filtration V(�) on � is a family {Vµ(�)}µ∈Z of sub-Groups

such that

(i) if ν ∈ N0, then Vµ(�) ⊂ Vµ+ν(�);

(ii)
⋃
µ

Vµ(�) = �;

(iii) If µ, ν ∈ Z, then Vµ
Y (�X)Vν(�) ⊂ Vµ+ν(�) holds.

(2) A V -filtration V(�) is said to be good if (locally) there exist m ∈ N,

{uj}Jj=1 ⊂ �, {µj}Jj=1 ∈ Z such that for any µ, the following holds:

Vµ(�) =
J∑

j=1
VY
µ−µj (�X)uj .
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A.3. Proposition. For any � ∈ Modcoh(�X |Y ), the following condi-

tions are equivalent :

(1) there exist (locally) a good V -filtration V1(�) and a non-zero polynomial

b(s) ∈ C[s] such that for any k ∈ Z

b(ϑ + k)Vk
1(�) ⊂ Vk−1

1 (�).

(2) for any good V -filtration V(�), there exists (locally) a non-zero polyno-

mial b′(s) ∈ C[s] such that for any k ∈ Z

b′(ϑ + k)Vk(�) ⊂ Vk−1(�).

(3) for any system of (local) generators {uj}Jj=1 of �, there exists (locally)

a non-zero polynomial b(s) ∈ C[s] such that for any 1 � j � J

b(ϑ)uj ⊂
J∑

i=1
V−1
Y (�X)ui .

A.4. Definition. � ∈ Modcoh(�X |Y ) is said to be specializable if

� satisfies equivalent conditions of Proposition A.3. We denote by

ModBY
(�X) ⊂ Modcoh(�X |Y ) the subcategory consisting of specializable

�X |Y -Modules.

Next, we set FpVµ
Y (�X) := �X (p) ∩ Vµ

Y (�X), and call

FVY (�X) := {FpVµ
Y (�X)}p∈N0,µ∈Z

the bi-filtration. This enjoys the following properties:

(i)
⋃
p,µ

FpVµ
Y (�X) = �X ;

(ii) if q, ν ∈ N0, then FpVµ
Y (�X) ⊂ Fp+qVµ+ν

Y (�X);

(iii) if p, q, µ, ν ∈ Z, then FpVµ
Y (�X)FqVν

Y (�X) ⊂ Fp+qVµ+ν
Y (�X).

A.5. Definition. Let � ∈ Modcoh(�X |Y ).

(1) A bi-filtration FV(�) on � is a family {FpVµ(�)}p,µ∈Z of sub-Groups

such that
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(i) if q, ν ∈ N0, then FpVµ(�) ⊂ Fp+qVµ+ν(�);

(ii)
⋃
p,µ

FpVµ(�) = �;

(iii) if p, q, µ, ν ∈ Z, then FpVµ
Y (�X)FqVν(�) ⊂ Fp+qVµ+ν(�) holds.

(2) A bi-filtration FV(�) is said to be good if locally there exist J ∈ N,

{uj}Jj=1 ⊂ �, {pj}Jj=1, {µj}Jj=1 ⊂ Z such that for any p, µ, the following

holds:

FpVµ(�) =
J∑

j=1
Fp−pjVY

µ−µj (�X)uj .

A.6. Proposition. For any � ∈ Modcoh(�X |Y ), the following condi-

tions are equivalent :

(1) there exist (locally) a good bi-filtration FV(�) and non-zero polynomial

b(s) ∈ C[s] of degree m such that for any k, l ∈ Z

b(ϑ + l)FkVl(�) ⊂ Fk+mVl−1(�).

(2) for any good bi-filtration FV(�), there exist (locally) a non-zero poly-

nomial b(s) ∈ C[s] of degree m such that for any k, l ∈ Z

b(ϑ + l)FkVl(�) ⊂ Fk+mVl−1(�).

(3) for any system of (local) generators {uj}Jj=1 of �, there exists (locally)

a non-zero polynomial b(s) ∈ C[s] of degree m such that for any 1 �
j � J

b(ϑ)uj ⊂
J∑

i=1
FmV−1

Y (�X)ui .

A.7. Remark. The author cannot find literature of the proof of Propo-

sition A.6, and Professor T. Oaku kindly informed the author of the proof.

A.8. Definition. � ∈ Modcoh(�X |Y ) is said to be regular-specializ-

able if � satisfies the equivalent conditions of Proposition A.6. We denote
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by ModRY
(�X) ⊂ Modcoh(�X |Y ) the subcategory consisting of regular-

specializable �X |Y -Modules. By definition, ModRY
(�X) ⊂ ModBY

(�X).

A.9. Remark. (1) Let � ∈ Modcoh(�X), and assume that Y is non-

characteristic for �. Then � ∈ ModRY
(�X).

(2) It is known that every holonomic �X |Y -Module is specializable, and

moreover every regular-holonomic �X |Y -Module is regular-specializable.

A.10. Proposition. Let 0 → �′ → � → �′′ → 0 be an exact se-

quence in Modcoh(�X |Y ). Then

(1) � ∈ ModBY
(�X) if and only if �′, �′′ ∈ ModBY

(�X).

(2) � ∈ ModRY
(�X) if and only if �′, �′′ ∈ ModRY

(�X).

Let ≺ be the lexicographical order on C = R +
√
−1 R. We set

G := {α ∈ C; 0 � α ≺ 1}.(A.1)

A.11. Proposition. For any � ∈ ModBY
(�X), there exist a unique

good V -filtration VY (�) = {Vk
Y (�)}k∈Z and a non-zero polynomial b(s) ∈

C[s] such that b−1(0) ⊂ G and for any k ∈ Z

b(ϑ + k) Vk
Y (�) ⊂ Vk−1

Y (�).

Moreover, for any k ∈ N0,

Vk+1
Y (�) = Vk(�X)V1

Y (�), V−k
Y (�) = tk V0

Y (�).

In particular, � = �XV1
Y (�) holds.

A.12. Definition. For any � ∈ ModBY
(�X), we denote by

GrY (�) =
⊕
j∈Z

GrjY (�) the associated graded Module with VY (�) in Propo-

sition A.11 (i.e. GrjY (�) := Vj
Y (�)

/
Vj−1
Y (�)). Then the vanishing cycle

ΦY (�) and nearby cycle ΨY (�) are defined respectively by

ΦY (�) := Gr1Y (�), ΨY (�) := Gr0Y (�).
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It is known that GrkY (�) ∈ Modcoh(�Y ) for any k ∈ Z, and for any k ∈ N0

Grk+1
Y (�) = ∂ k

t ΦY (�), Gr−k
Y (�) = tk ΨY (�).

A.13. Remark. (1) There are several conventions about the defini-

tions of vanishing and nearby cycles, and this fact causes some confusion.

For the relation between our definition (the choice of G in (A.1), Definition

A.12 and Theorem A.18 below) and another definition, see [9, § 5.3].

(2) Laurent [18] extended the definitions of nearby and vanishing cycles

by using the theory of second microlocalization.

A.14. Example. Let b(s) ∈ C[s] be a polynomial of degree m ∈ N,

and P ∈ MatJ(V−1
Y (�X)). Set � := � J

X /� J
X (b(ϑ) − P ). Then � ∈

ModBY
(�X), and as �Y -Modules

ΦY (�) 	 � mJ
X , ΨY (�) 	 � mJ

X .

We shall give a sketch of proof.

(1) Set � := �X/�X(ϑ− α)ν . Then a direct calculation gives

ΦY (�) 	 � ν
Y , ΨY (�) 	 � ν

Y .

(2) Set �0 := �X/�Xb(ϑ). We write b(s) =
m′∏
j=1

(s − αj)
νj (αi 
= αj if

i 
= j), and set �(j) := �X/�X(ϑ−αj)
νj . Then by using Chinese remainder

theorem, we can show

�0 	
m′⊕
j=1

�(j), Vk
Y (�0) 	

m′⊕
j=1

Vk
Y (�(j)),

and hence for any k ∈ Z

GrkY (�0) 	
m′⊕
j=1

GrkY (�(j)).

(3) By the proof of Proposition A.11, for any k ∈ Z we can show

GrkY (�) = GrkY ((�0)
J) = GrkY (�0)

J .
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A.15. Theorem. For any � ∈ ModBY
(�X), the following hold :

(1) There exist the following distinguished triangles:

ΦY (�)
t−→ΨY (�) → Df∗�

+1−→ ,

Df !� → ΨY (�)
∂t−→ ΦY (�)

+1−→ ,

and Df∗�, Df !� ∈ Db
coh(�Y ).

(2) Γ[X�Y ](�), Hj
[Y ](�) ∈ ModBY

(�X) for any j ∈ N0. In addition if

� ∈ ModRY
(�X), then Γ[X�Y ](�), Hj

[Y ](�) ∈ ModRY
(�X) for any j ∈ N0

(here note that RΓ[X�Y ](�) = Γ[X�Y ](�)).

(3) ΨY (�) = ΨY (Γ[X�Y ](�)) and ΨY (Γ[Y ](�)) = 0.

A.16. Proposition. Let � ∈ Modcoh(�X |Y ), and assume that Y is

non-characteristic for �. Set Df∗� := H0Df∗�. Then ΦY (�) = 0 and

Df !� 	 ΨY (�) 	 Df∗� 	 Df∗�.(A.2)

A.17. Theorem. For any � ∈ ModRY
(�X), there exist the following

isomorphisms:

R� �X
(�,�X←Y )[1] ∼→ R� �Y

(Df !�,�Y ),(A.3)

RΓY R� �X
(�,�X)[2] 	 R� �Y

(Df !�,�Y ).(A.4)

For any k ∈ Z and α ∈ G, we set

gr k−α
Y (�) :=

⋃
p∈N

Ker(GrkY (�)
(ϑ+k−α)p−−−−−−→ GrkY (�)).

Here we remark that each β ∈ C can be written uniquely as β = k−α with

k ∈ Z and α ∈ G.

A.18. Theorem. Let � ∈ ModBY
(�X).
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(1) There exists a finite subset A ⊂ G such that if α ∈ A, then there

exists locally p ∈ N such that for any k ∈ Z

gr k−α
Y (�) = Ker(GrkY (�)

(ϑ+k−α)p−−−−−−→ GrkY (�)),

and if α ∈ G � A, then gr k−α
Y (�) = 0 for any k ∈ Z.

(2) For any k ∈ Z, there exists the following finite direct decomposition:

GrkY (�) =
⊕
α∈G

gr k−α
Y (�).

In particular,

ΦY (�) =
⊕
α∈G

gr 1−α
Y (�), ΨY (�) =

⊕
α∈G

gr−α
Y (�).

Let � ∈ ModBY
(�X). For any α ∈ G and p, j ∈ N0, we set

e
(α)
j :=

t−α (log t)j

j!
, ψ(α)

p (�X) :=
p∑

k=0

Γ[X�Y ](�X) e
(α)
j ,

ψ(α)
p (�) := � ⊗

�X

ψ(α)
p (�X) =

p∑
k=0

Γ[X�Y ](�) e
(α)
j .

It is known that each ψ
(α)
p (�) ∈ ModBY

(�X) for any α and p, and if � ∈
ModRY

(�X), so is each ψ
(α)
p (�). In particular, ψ

(α)
p (�X) ∈ ModRY

(�X).

By a natural inclusion ψ
(α)
p (�X) ↪→ ψ

(α)
q (�X) for any p � q, {ψ(α)

p (�X)}p∈N0

has a structure of an inductive system. Moreover for any α ∈ G, the system

{ψ(α)
p (�X)}p∈N0

induces an inductive system {Df !ψ
(α)
p (�)}p∈N0

. We set

Djf !ψ
(α)
p (�) := HjDf !ψ

(α)
p (�).

A.19. Proposition. Let � ∈ ModBY
(�X), and take any Z � Y .

Then there exists a p0 ∈ N such that the following hold :

(1) Γ (Z; gr−α
Y (�)) ∼→ Γ (Z;D0f !ψ

(α)
p (�)) holds for any p � p0,

(2) Γ (Z;D1f !ψ
(α)
p (�)) → Γ (Z;D1f !ψ

(α)
p+p0

(�)) is the zero morphism for

any p ∈ N0.
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By Proposition A.19, for any Z � Y , there exists the following natural

morphism on Z if p is large enough:

gr−α
Y (�) → Df !ψ(α)

p (�),(A.5)

which is compatible with the inductive system structure.
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