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Ramification of Local Fields and

Fontaine’s Property (Pm)

By Manabu Yoshida

Abstract. We prove that the ramification filtration of the abso-
lute Galois group of a complete discrete valuation field with perfect
residue field is characterized in terms of Fontaine’s property (Pm).

1. Introduction

Let K be a complete discrete valuation field with perfect residue field k

of characteristic p > 0, OK its valuation ring, vK its valuation normalized by

vK(K×) = Z, Kalg a fixed algebraic closure of K and K̄ the separable closure

of K in Kalg. In this paper, we construct a certain decreasing filtration of

the absolute Galois group GK := Gal(K̄/K) to measure the ramification

of extensions of K. If E is an algebraic extension of K, we denote by OE

the integral closure of OK in E. The valuation vK can be extended to E

uniquely and the extension is also denoted by vK . For an algebraic extension

E of K and a real number m, we put amE/K := {x ∈ OE | vK(x) ≥ m}, which

is an ideal of OE . For a finite Galois extension L/K and a real number m,

we consider the following property studied in [Fo]:

(Pm) For any algebraic extension E/K, if there exists an OK-

algebra homomorphism OL → OE/a
m
E/K , then there exists

a K-embedding L ↪→ E.

For a finite Galois extension L of K, we put

mL/K := inf{m ∈ R | (Pm) is true for L/K}.

The property (Pm) is stable under composition of extensions of K (Prop.

2.3). Hence we can define two filtrations of GK as follows: For a real number
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m, we denote by K̄<m (resp. K̄�m) the composite field of all finite Galois

extensions L of K in K̄ such that mL/K < m (resp. mL/K ≤ m). We define

two closed normal subgroups G�m
K and G>m

K of GK by

G�m
K := Gal(K̄/K̄<m), G>m

K := Gal(K̄/K̄�m).

The filtration (G�m
K )m∈R satisfies

⋂
mG�m

K = 1 and G� 0
K = GK (Thm. 2.6

(i)). Moreover, G� 1
K is the inertia subgroup of GK and G>1

K is the wild

inertia subgroup of GK (Thm. 2.6 (iii), Rem. 2.7).

On the other hand, we denote by G
(m)
K the mth upper numbering ramifi-

cation group in the sense of [Fo]. Namely, we put G
(m)
K := Gm−1

K , where the

latter is the mth upper numbering ramification group defined in [Se]. In ad-

dition, we put G
(m+)
K :=

⋃
m′>mG

(m′)
K , where the overline means the closure

with respect to the Krull topology. These define two decreasing filtrations

of GK and they are well-known in the classical ramification theory.

We denote by K̄(m) (resp. K̄(m+)) the fixed field of K̄ by G
(m)
K (resp.

G
(m+)
K ). Our main result in this paper is:

Theorem 1.1. For a real number m, we have K̄<m = K̄(m) and

K̄�m = K̄(m+), so that

G�m
K = G

(m)
K , G>m

K = G
(m+)
K .

We prove this theorem by showing the equality mL/K = uL/K for a finite

Galois extension L of K, where uL/K is the greatest upper ramification break

of L/K in the sense of [Fo].

The property (Pm) is useful for obtaining ramification bounds for cer-

tain Galois representations ([CL], [Fo], [Ha]). Indeed, Fontaine proved the

following: in the case where the characteristic of K is 0, for an integer n ≥ 1,

if we denote by � a finite flat group scheme over OK killed by pn, then the

ramification of �(K̄) is bounded by m (meaning that G
(m)
K acts trivially on

�(K̄)) if m > e(n + 1/(p − 1)), where e is the absolute ramification index

of K ([Fo], Thm. A). He obtained the ramification bound by showing that

if (Pm) is true for a finite Galois extension L/K and a real number m then
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m > uL/K − e−1
L/K , where eL/K is the ramification index of L/K (Prop. 3.2

(ii)). The equality mL/K = uL/K is a refinement of this result. Hattori

([Ha]) generalized this kind of ramification bound to the case of semi-stable

torsion representations. Our equality was used in [Ha], Proposition 5.6, to

improve his bound.

In Section 2, we study some properties of (Pm) and the number mL/K .

By using these results, we define our filtrations of GK and deduce its proper-

ties. In Section 3, after recalling the classical ramification theory for Galois

extensions of K ([Fo], [Se]), we show the equality mL/K = uL/K to prove

Theorem 1.1. In Section 4, we begin with a review of the ramification the-

ory of Abbes and Saito ([AS1], [AS2]). Their theory does not require the

assumption that the residue field k is perfect. Then we consider the prop-

erty (Pm) in the imperfect residue field case, and translate our results in

Section 3 into the language of their theory. In the Appendix, we prove a

Galois theoretic property on filtrations of the absolute Galois group of an

arbitrary field. Theorem 1.1 is proved by the equality mL/K = uL/K and

the property checked in the Appendix.

Convention and Notation. Fix an algebraic closure Kalg of K and de-

note by K̄ the separable closure of K in Kalg. We assume throughout that

all algebraic extensions of K under discussion are contained in Kalg. If E is

an algebraic extension of K, then we denote by eE/K the ramification index

of E/K and by OE the integral closure of OK in E. The valuation vK of

K extends to Kalg uniquely and the extension is also denote by vK .
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2. Ramification Theory via (Pm)

In this section, we study the property (Pm). For a finite Galois extension

L of K, we put

mL/K := inf{m ∈ R | (Pm) is true for L/K}.

If L = K, the property (Pm) holds for all real numbers m, so that we have

mL/K = −∞. The following proposition is a basic property of the number

mL/K :

Proposition 2.1. Let L be a finite Galois extension of K such that

L �= K. Then (Pm) is not true for L/K and any real number m ≤ 0, and is

true for sufficiently large real number m. In particular, the number mL/K

is non-negative and finite.

Proof. For any real number m ≤ 0, OK/amK/K is zero ring. Then

the zero map OL → OK/amK/K is an OK-algebra homomorphism. However,

there is no K-embedding L ↪→ K by assumption. Hence (Pm) is not true for

L/K and any real number m ≤ 0. Thus we have mL/K ≥ 0. Next, we show

that (Pm) is true for sufficiently large real number m. Choose an element

α of OL such that OL = OK [α]. Let P be the minimal polynomial of α

over K and α = α1, . . . , αn the zeros of P in K̄. Suppose there exists an

OK-algebra homomorphism η : OL → OE/a
m
E/K for an algebraic extension

E of K and m > n supi�=1 vK(α−αi). Then we have vK(P (β)) ≥ m, where

β is a lift of η(α) in OE . By the inequalities

n sup
i

vK(β − αi) ≥ vK(P (β)) ≥ m > n sup
i�=1

vK(α− αi),

we have vK(β−αi0) > supi�=1 vK(α−αi) for some i0. By Krasner’s lemma,

we have K(αi0) ⊂ K(β). Thus we obtain a K-embedding L = K(α)
∼=→

K(αi0) ⊂ K(β) ⊂ E. Hence (Pm) is true for m > n supi�=1 vK(α − αi).

Therefore, we have mL/K ≤ n supi�=1 vK(α− αi) < ∞. �

The following proposition often allows us to assume L/K is totally ram-

ified:
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Proposition 2.2. Let L be a finite Galois extension of K and K ′ an

arbitrary finite separable extension of K. Put e′ := eK′/K . If (Pm) is

true for L/K, then (Pe′m) is true for LK ′/K ′. Moreover, if K ′/K is an

unramified subextension of L/K such that L �= K ′, then the converse is

true. In particular, we have mLK′/K′ ≤ e′mL/K with equality if K ′/K is an

unramified subextension of L/K such that L �= K ′.

Proof. Put L′ := LK ′. First, we assume that (Pm) is true for L/K

and a real number m. Then we want to show that (Pe′m) is also true for

L′/K ′. Suppose there exists an OK′-algebra homomorphism η : OL′ →
OE/a

e′m
E/K′ for an algebraic extension E of K ′. Then the composite map

defined by

η′ : OL ↪→ OL′
η→ OE/a

e′m
E/K′ = OE/a

m
E/K

is an OK-algebra homomorphism. Since (Pm) is true for L/K, there exists a

K-embedding L ↪→ E corresponding to η′. Since L/K is a Galois extension,

there exists a K ′-embedding L′ = LK ′ ↪→ E. Hence (Pe′m) is true for

L′/K ′. Next, we assume K ′/K is an unramified subextension of L/K such

that L �= K ′ and (Pm) is true for L/K ′ and m. Note that m > 0 by

Proposition 2.1. Then we want to show that (Pm) is also true for L/K and

m. Suppose there exists an OK-algebra homomorphism η : OL → OE/a
m
E/K

for an algebraic extension E of K. The composite map

η′ : OK′ ↪→ OL
η→ OE/a

m
E/K

is an OK-algebra homomorphism. Since K ′/K is unramified, η′ lifts to

an OK-algebra homomorphism OK′ → OE . Hence η is an OK′-algebra

homomorphism. By the property (Pm), there exists a K ′-embedding L ↪→ E

corresponding to η. This is also a K-embedding. Therefore, (Pm) is true

for L/K and m. �

To define filtrations of GK , we show that the property (Pm) is stable

under composition of finite Galois extensions of K as follows:

Proposition 2.3. Let L and K ′ be finite Galois extensions of K. For

a real number m, if (Pm) is true for both L/K and K ′/K, then (Pm) is also
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true for the composite extension LK ′/K. In particular, we have mLK′/K ≤
max{mL/K ,mK′/K}.

Proof. Put L′ := LK ′. Assume (Pm) is true for L/K and K ′/K.

Suppose there exists an OK-algebra homomorphism η : OL′ → OE/a
m
E/K

for an algebraic extension E of K. Then the composite maps defined by

η′ : OL ↪→ OL′
η→ OE/a

m
E/K , η′′ : OK′ ↪→ OL′

η→ OE/a
m
E/K

are also OK-algebra homomorphisms. Since (Pm) is true for both L/K and

K ′/K, there exist K-embeddings L ↪→ E and K ′ ↪→ E corresponding to η′

and η′′ respectively. Since L/K and K ′/K are Galois extensions, we obtain

a K-embedding L′ ↪→ E. Therefore, (Pm) is true for L′/K. �

By this proposition, we can define two increasing filtrations (K̄<m)m∈R
and (K̄�m)m∈R of K̄ as follows: For any real number m, K̄<m (resp. K̄�m)

is defined by the composite field of all finite Galois extensions L of K in K̄

such that mL/K < m (resp. mL/K ≤ m). Then we put

G�m
K := Gal(K̄/K̄<m), G>m

K := Gal(K̄/K̄�m),

which are closed normal subgroups of GK . Clearly, these subgroups form

decreasing filtrations of GK .

Remark 2.4. In fact, Proposition 2.1, 2.2 and 2.3 remain true in the

case where the residue field k may be imperfect, though we have to show the

finiteness of mL/K in Proposition 2.1 by a different way via Proposition 4.3.

Hence the filtrations G�m
K and G>m

K can be defined even when the residue

field of K is imperfect.

The property (Pm) has the following property for unramified extensions

of K:

Proposition 2.5. Let L be a finite Galois extension of K. Then the

following conditions are equivalent:

(i) L/K is unramified.
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(ii) mL/K ≤ 0.

(iii) mL/K < 1.

Proof. First, assume L/K is unramified. Then we show that (Pm) is

true for L/K and m > 0. Suppose there exists an OK-algebra homomor-

phism η : OL → OE/a
m
E/K for an algebraic extension E of K. Since L/K

is unramified, η lifts to an OK-algebra homomorphism OL → OE . Thus (i)

implies (ii). Since it is clear that (ii) implies (iii), it is enough to verify that

(iii) implies (i). To prove this, we show that if L/K is not unramified, then

mL/K ≥ 1. Let K ′ be the maximal unramified subextension of L/K and

πK (resp. πL) a uniformizer of OK (resp. OL). Then there is an OK-algebra

homomorphism OL → OL/πLOL
∼= OK′/πKOK′ = OK′/a1

K′/K . However,

there is no K-embedding L ↪→ K ′. Hence (P1) is not true for L/K, so that

mL/K ≥ 1. �

By the properties of the number mL/K , our filtration (G�m
K )m∈R has the

following properties:

Theorem 2.6. (i) For a real number m ≤ 0, we have G�m
K = GK .

Moreover, we have
⋂

mG�m
K = 1 and

⋃
mG�m

K = GK .

(ii) Let K ′ be a finite separable extension of K, of ramification index e′. We

identify the Galois group GK′ := Gal(K̄/K ′) with a subgroup of GK . Then,

for a real number m > 0, we have G� e′m
K′ ⊂ G�m

K , with equality if K ′/K is

unramified.

(iii) For a real number 0 < m ≤ 1, G�m
K is the inertia subgroup of GK .

Proof. The assertion (i) follows from Proposition 2.1. (iii) follows

from Proposition 2.5. The first assertion of (ii) follows from Proposition 2.2.

Hence we prove the second assertion of (ii). Assume K ′/K is unramified.

It suffices to show K̄ ′
<m ⊂ K̄<m. By the definition of K̄ ′

<m, it is enough

to show that if a finite Galois extension L′ of K ′ contained in K̄ satisfies

mL′/K′ < m, then L′ ⊂ K̄<m. Since the case L′ = K ′ is true by Proposition

2.5, we may assume L′ �= K ′. Take the Galois closure K ′′ of K ′ over K in

K̄ and put L′′ := L′K ′′. Note that K ′′/K is an unramified Galois extension

and L′′/K ′′ is a Galois extension. Then we have mL′′/K′′ ≤ mL′/K′ < m by

Proposition 2.2. Let L̃′′ be the Galois closure of L′′ over K in K̄. If L̃′′ = K ′′,
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then Proposition 2.5 shows m
L̃′′/K ≤ 0 < m, so that L′ ⊂ L̃′′ ⊂ K̄<m. Thus

we may assume L̃′′ �= K ′′. Any σ ∈ Gal(L̃′′/K) satisfies σ(K ′′) = K ′′ since

K ′′/K is a Galois extension, so that

mσ(L′′)/K′′ = mσ(L′′)/σ(K′′) = mL′′/K′′ < m.

By this inequality and Proposition 2.3, we have

m
L̃′′/K′′ ≤ max{mσ(L′′)/K′′ | σ ∈ Gal(L̃′′/K)} < m

since L̃′′/K is the composite field of all the conjugate fields σ(L′′) (σ ∈
Gal(L̃′′/K)). Thus we have m

L̃′′/K = m
L̃′′/K′′ < m by Proposition 2.2 since

K ′′/K is unramified. Therefore, we have L′ ⊂ L̃′′ ⊂ K̄<m. �

Remark 2.7. We can prove that G>1
K is the wild inertia subgroup of

GK by using the property (Pm) together with the classical theory of Her-

brand functions in a similar way to the proof of Proposition 1.5, (ii), of

[Fo]. However, we restricted ourselves here to showing what can be derived

rather directly from (Pm).

3. Ramification Breaks

In this section, we compare our ramification filtration with the classical

one. First, we recall the classical ramification theory for Galois extensions

of K. Let L be a finite Galois extension of K with Galois group G. The

order function iL/K is defined on G by

iL/K(σ) := inf
a∈OL

vK(σ(a) − a), σ ∈ G.

Then the ith lower numbering ramification group G(i) are defined for any

real number i by

G(i) := {σ ∈ G | iL/K(σ) ≥ i}.
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The transition function ϕ̃L/K : R → R of L/K is defined by

ϕ̃L/K(u) :=

∫ u

0
�G(t)dt

where �G(t) is the cardinality of G(t). Then ϕ̃L/K : R → R is piecewise

linear, strictly increasing and bijective ([Se], Chap. IV, Sect. 3, Prop. 12).

Denote by ψ̃L/K its inverse function. We also define another function uL/K

on G by

uL/K(σ) := ϕ̃L/K(iL/K(σ)), σ ∈ G.

Then the uth upper numbering ramification group G(u) are defined for any

real number u by

G(u) := {σ ∈ G | uL/K(σ) ≥ u}.

For any non-negative real number u, we have G(u) = Gu−1, where the latter

is the uth upper numbering ramification group defined in [Se] (cf. [Fo],

Rem. 1.2). We denote by uL/K (resp. iL/K) the greatest upper (resp. lower)

ramification break of L/K defined by

uL/K := inf{u ∈ R | G(u) = 1}, iL/K := inf{u ∈ R | G(i) = 1}.

We put uK/K = −∞ by convention. The next lemma is a basic property of

the number uL/K :

Lemma 3.1. For finite Galois extensions M ⊂ L of K, we have uM/K ≤
uL/K .

Proof. By the compatibility with the quotient (cf. [Se], Chap. IV,

Sect. 3, Prop. 14), Gal(L/K)(u) = 1 implies Gal(M/K)(u) = 1 for any real

number u. Thus we obtain the inequality. �

Fontaine proved the following proposition:
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Proposition 3.2 ([Fo], Prop. 1.5). Let L be a finite Galois extension

of K and m a real number. Then there are the following relations:

(i) If we have m > uL/K , then (Pm) is true.

(ii) If (Pm) is true, then we have m > uL/K − e−1
L/K .

By this proposition, we have the inequalities

uL/K − e−1
L/K ≤ mL/K ≤ uL/K ,

for a finite Galois extension L of K. More precisely, we have the following

equality:

Proposition 3.3. For a finite Galois extension L of K, we have

mL/K = uL/K .

Proof. It is enough to show that (Pm) is not true for L/K and m <

uL/K . Suppose L/K is unramified. Then we have uL/K = mL/K = 0

if L �= K, and uL/K = mL/K = −∞ if L = K, so that the proposition

follows. Therefore, we may assume L/K is not unramified. The number

uL/K is stable under unramified base change. Thus we may assume L/K is

a totally ramified extension by Proposition 2.2. If L/K is a tamely ramified

extension, (Pm) is not true even for m = uL/K = 1 because we can find a

counter-example to (Pm) for m = uL/K as follows: Let πL (resp. πK) be a

unifirmizer of OL (resp. OK). Then there is an OK-algebra homomorphism

OL → OL/πLOL
∼= OK/πKOK = OK/a1

K/K . However, there is no K-

embedding L ↪→ K. Therefore, we may assume L/K is a wildly ramified

extension. To prove this proposition, we shall find a counter-example to

(Pm) for L/K and m = uL/K − e′−1, where e′ can be taken to be an

arbitrarily large number. Take a finite tamely ramified Galois extension K ′

of K. Put L′ := LK ′ and e′ := eL′/K . If we apply (ii) of Proposition 3.2

to L′/K, then there exists an algebraic extension E of K such that there

exists an OK-algebra homomorphism η : OL′ → OE/a
m0

E/K , but there is

no K-embedding L′ ↪→ E, where m0 := uL′/K − e′−1. By Lemma 3.1, we

have m0 ≥ m1, where m1 := uL/K − e′−1. Consider the two OK-algebra

homomorphisms defined by composite maps:

η′ : OL ↪→ OL′
η→ OE/a

m0

E/K � OE/a
m1

E/K , η′′ : OK′ ↪→ OL′
η→ OE/a

m0

E/K .
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Since K ′/K is a tamely ramified extension, we have uK′/K ≤ 1. On the

other hand, since L′/K is a wildly ramified extension, we have e′m0 >

e′ as shown in the proof of [Fo], Proposition 1.5, (ii), hence we deduce

m0 > 1. Thus we have m0 > uK′/K . According to (i) of Proposition 3.2

for K ′/K, there exists a K-embedding K ′ ↪→ E corresponding to η′′. If

we suppose there exists a K-embedding L ↪→ E, then there exists a K-

embedding L′ = LK ′ ↪→ E since L/K and K ′/K are Galois extensions.

This is a contradiction. Therefore, (Pm) is not true for L/K and m = m1.

Hence the result follows. �

Remark 3.4. By Proposition 2.3, Lemma 3.1 and Proposition 3.3, we

deduce the equality uLK′/K = max{uL/K , uK′/K} for any finite Galois ex-

tensions L and K ′ of K.

Remark 3.5. In the above proposition, we proved the equality

mL/K = uL/K with the assumption that the residue filed k is perfect. We

are also interested in the case where k may be imperfect. In Chapter IV

of [Se], the ramification filtration is defined in the case where L/K is un-

ferociously1 ramified. Our proof of Proposition 3.3 remains true in this

case since so does Fontaine’s proof of Proposition 3.2 and the composite

field of L/K and any tamely ramified extension K ′/K is still unferociously

ramified.

Theorem 1.1 follows from Propositions 3.3 and 5.4.

4. The Ramification Theory of Abbes and Saito

First, we recall the ramification theory of Abbes and Saito ([AS1], [AS2]).

In Subsection 4.1, we generalize the property (Pm) to the imperfect residue

field case. In Subsection 4.2, we translate our results in Section 3 into

the language of the ramification theory of Abbes and Saito. Let K be

a complete discrete valuation field whose residue field k may not be per-

fect. Let Kalg be a fixed algebraic closure of K, K̄ the separable closure

of K in Kalg and GK := Gal(K̄/K) the absolute Galois group. Abbes

and Saito defined a decreasing filtration (Gm
K)m≥0 by closed normal sub-

groups Gm
K of GK indexed by rational numbers m ≥ 0, in such a way that

1We mean by an unferociously ramified extension L/K a finite algebraic extension
whose residue field extension is separable.
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⋂
m≥0 G

m
K = 1, G0

K = GK and G1
K is the inertia subgroup of GK . It is de-

fined by using certain functors F and Fm from the category FEK of finite

étale K-algebras to the category SK of finite GK-sets. We recall the defini-

tion of F and its quotients Fm for positive rational numbers m. Let L be

a finite étale K-algebra and OL the integral closure of OK in L. We define

F (L) := HomK(L, K̄) = HomOK
(OL,OK̄). The functor F gives an anti-

equivalence of FEK with SK , thereby making FEK a Galois category. To

define Fm, we proceed as follows: An embedding of OL is a pair (B,B → OL)

consisting of an OK-algebra B which is formally of finite type2 and formally

smooth over OK and a surjection B → OL of OK-algebras which induces

an isomorphism B/mB → OL/mL, where mB and mL are respectively the

radicals of B and OL (cf . [AS2], Def. 1.1). Let I be the kernel of the sur-

jection B → OL. Write m = m2/m1 for some positive integers m1 and

m2. Then the affinoid algebra B[Im1/πm2
K ]∧⊗OK

K does not depend on the

presentation of m ([AS2], Lem. 1.4, 4), where πK is a uniformizer of K and

∧ means the πK-adic completion. Hence we denote this ring by �m. Let

Xm(B → OL) be the affinoid variety Sp(�m) associated with �m. For any

affinoid variety X over K, let π0(XK̄) denote the set lim
←−K′

π0(X ⊗K K ′)

of geometric connected components, where K ′ runs through the finite sep-

arable extensions of K contained in K̄. Then we define the functor Fm

by

Fm(L) := lim
←−

(B→OL)

π0(X
m(B → OL)K̄),

where (B → OL) runs through the category of embeddings of OL (cf.

[AS2], Def. 1.1). The projective system in the right-hand side is con-

stant ([AS2], Lem. 1.9). The finite set F (L) can be identified with a

subset of Xm(B → OL)(K̄), and this induces a natural surjective map

F (L) → Fm(L). The mth ramification subgroup Gm
K is characterized by

the property that F (L)/Gm
K = Fm(L) for all L. If the residue field of K is

perfect, this filtration (Gm
K)m defined as above coincides with the classical

one (G
(m)
K )m defined in Section 3 (cf. [AS1], Subsect. 6.1).

2We say that an OK-algebra A is formally of finite type over OK if A is semi-local,
mA-adically complete Notherian and the quotient A/mA is finite over k, where mA is the
radical of A (cf. [AS2], Sect. 1).
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4.1. Generalization of Fontaine’s proposition

In this subsection, we generalize Fontaine’s proposition to the imperfect

residue field case. Let L be a finite Galois extension of K and m a positive

rational number. We define the property (Pm) and the number mL/K in

the same way as those in the Introduction. For an affinoid variety X over

K and a point x ∈ X(Kalg), we denote by K(x) and Xx, respectively, the

definition field of x, and the geometric connected component of X which

contains x. The ring OL is a complete intersection over OK . Namely, we

have OL
∼= OK [T1, . . . , Tn]/(f1, . . . , fn) ([AS1], Lem. 7.1). We denote by

z1, . . . , zd the common zeros of f1, . . . , fn in K̄n. Let I := (f1, . . . , fn) be

the ideal of OK [T1, . . . , Tn] generated by f1, . . . , fn. Consider the surjection

ϕ : OK [T1, . . . , Tn] → OK [T1, . . . , Tn]/(f1, . . . , fn) ∼= OL. Put wi := ϕ(Ti)

for i = 1, . . . , n. Then the formal completion B → OL of OK [T1, . . . , Tn] →
OL, where B := lim

←−r
OK [T1, . . . , Tn]/Ir, is an embedding of OL. Let Xm :=

Xm(B → OL) be the affinoid variety over K associated with this embedding.

Then we have

Xm(Kalg) = {x ∈ On
Kalg | vK(fi(x)) ≥ m (i = 1, . . . , n)}.

Remark 4.1. If m is not a rational number, then Xm does not form

a K-affinoid variety.

Lemma 4.2. Let m be a positive rational number and E/K an alge-

braic extension. Then, the map Xm(E) → HomOK
(OL,OE/a

m
E/K) sending

(x1, . . . , xn) to the homomorphism defined by wi �→ xi (mod amE/K), is sur-

jective.

Proof. Obvious. �

Consider the following property for L/K and m:

(P′
m) For any x ∈ Xm(Kalg), there exists a common zero z of

f1, . . . , fn in K̄n which is K(x)-rational.

We can easily check that (P′
m) is equivalent to (Pm) if m is a positive ratio-

nal number by Lemma 4.2. On the other hand, we consider the following

property for L/K and m:
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(Q′
m) For any x ∈ Xm(Kalg), there exists a common zero z of

f1, . . . , fn in K̄n such that x �∈ Xm
zi for any zi except z.

By definition, the property (Q′
m) is equivalent to the bijectivity of F (L) →

Fm(L). Let cL/K be the conductor of L/K ([AS1], Def. 6.3), which is defined

by

cL/K := inf{m ∈ Q≥0 | (Q′
m) is true for L/K.}.

If the residue field k is perfect, we have cL/K = uL/K for any finite Ga-

lois extension L of K. We can show the following proposition which is a

generalization of (i) of Proposition 3.2 to the imperfect residue field case:

Proposition 4.3. If (Q′
m) is true, then (P′

m) is true. In particular,

we have the inequality mL/K ≤ cL/K .

Proof. We need the following lemma which is a version of Krasner’s

lemma. This is due to Hiranouchi and Taguchi.

Lemma 4.4. Let X be an affinoid variety over K. Let x ∈ X(K̄) and

y ∈ X(Kalg). Assume that any GK-conjugates of x different from x is not

contained in Xx and that y is in the geometric connected component Xx.

Then K(x) ⊂ K(y).

This lemma is proved in the same way as the classical one.

Proof. If σ ∈ HomK(y)(K(x, y),Kalg), we have y ∈ Xσ(x) and y ∈ Xx,

so that we have Xσ(x) = Xx. Hence σ fixes x by the assumption on x. Thus

we have K(x) ⊂ K(y). �

Now we can prove Proposition 4.3 as follows: Let m be a positive rational

number and x a point of Xm(Kalg). By the property (Q′
m), there exists a

zero z of f1, . . . , fn such that x ∈ Xm
z but x �∈ Xm

zi for any zi �= z. Then we

have zi �∈ Xm
z for any zi �= z. Indeed, if zi ∈ Xm

z , then Xm
zi = Xm

z , which

contradicts x ∈ Xm
z and x �∈ Xm

zi for any zi �= z. Thus K(z) ⊂ K(x) by

Lemma 4.4. Hence (P′
m) is true. �

Remark 4.5. The author does not know whether the equality mL/K =

cL/K remains true in the case where the residue field of K is imperfect.

However, we can show at least the following:



Ramification of Local Fields 261

Proposition 4.6. Let L be a finite Galois extension of K. Let K ′ be a

weakly unramified3 extension of K such that L′ := LK ′/K ′ is unferociously

ramified (the existence of such an extension is proved in [AS1], Append.

Cor. A.2). Then we have cL′/K′ ≤ mL/K .

Proof. We have mL′/K′ ≤ mL/K by Proposition 2.2 (cf. Rem. 2.4).

Since L′/K ′ is unferociously ramified, we can apply Proposition 3.3 to L′/K ′

(cf. Rem. 3.5). Then we have cL′/K′ = mL′/K′ . Thus the desired inequality

cL′/K′ ≤ mL/K holds. �

4.2. Comparison with the ramification theory of Abbes and Saito

In this subsection, we translate our results in Section 3 into the language

of the ramification theory of Abbes and Saito. Let K be a complete discrete

valuation field with perfect residue field and L a finite Galois extension of

K. We define a non-Archimedean valuation on Kalg by |y| = θvK(y), where

0 < θ < 1 is a real number. Fix a generator z of OL as an OK-algebra. Let

P be the minimal polynomial of z over K, and z = z1, . . . , zd the zeros of

P in K̄. Let Xm be the affinoid variety over K as defined in the previous

subsection, so that Xm(Kalg) = {x ∈ OKalg | vK(P (x)) ≥ m}. If the residue

field of K is perfect, we can rewrite (P′
m) for L/K and a positive rational

number m as follows:

(P′′
m) For any x ∈ Xm(Kalg), there exists a zero z of P in K̄

which is K(x)-rational.

On the other hand, we consider the following property:

(Q′′
m) For any x ∈ Xm(Kalg), there exists a zero z of P in K̄ such

that |z − x| = mini |x− zi| and |z − x| < mini�=1 |z − zi|.

Proposition 4.7. The properties (Q′
m) and (Q′′

m) are equivalent.

Proof. Put D(zi, θ
m) := {x ∈ OKalg | |x− zi| ≤ θm} for i = 1, . . . , d.

The disc D(zi, θ
m) is connected and contains zi. Denote ψ̃ := ψ̃L/K for

3We mean by a weakly unramified extension K′/K a finite algebraic extension such
that eK′/K = 1.
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simplicity. Then we have the following by Lemma 4.8 below:

Xm(Kalg) = {x ∈ OKalg | |P (x)| ≤ θm}
= {x ∈ OKalg | min

i
|x− zi| ≤ θψ̃(m)}

=
⋃
i

D(zi, θ
ψ̃(m)).

The property (Q′
m) is true if and only if Xm

zi (1 ≤ i ≤ d) are disjoint. The

assertion of the proposition follows from the following equivalences:

Xm
zi ∩Xm

zj = ∅ (i �= j)

⇐⇒ min
i�=j

|zi − zj | > θψ̃(m)

⇐⇒ min
i

|zi − x| < min
i�=j

|zi − zj | for all x ∈ Xm(Kalg).

The first equivalence is proved as follows: Let i �= j. Assume Xm
zi (1 ≤

i ≤ d) are disjoint. Then we have zj �∈ Xm
zi . On the other hand, we

have D(zi, θ
ψ̃(m)) ⊂ Xm

zi since D(zi, θ
ψ̃(m)) is connected and contained in

Xm(Kalg). Hence the zero zj is not contained in D(zi, θ
ψ̃(m)), so that

|zi − zj | > θψ̃(m). Conversely, suppose |zi − zj | > θψ̃(m). Then we have

D(zi, θ
ψ̃(m)) ∩ D(zj , θ

ψ̃(m)) = ∅. Hence we obtain the decomposition

Xm(Kalg) =
⊔

iD(zi, θ
ψ̃(m)). Thus we deduce Xm

zi = D(zi, θ
ψ̃(m)). In

particular, the connected components Xm
zi (0 ≤ i ≤ d) are disjoint. Finally,

we prove the second equivalence. Assume min
i�=j

|zi − zj | > θψ̃(m). For a point

x ∈ Xm(Kalg), take i1 such that x ∈ D(zi1 , θ
ψ̃(m)). Then we have

min
i

|zi − x| ≤ |zi1 − x| ≤ θψ̃(m) < min
i�=j

|zi − zj |.

Conversely, assume mini |zi − x| < mini�=j |zi − zj | for any x ∈ Xm(Kalg).

Take y ∈ Kalg such that |y| = θm (< 1) and take x ∈ Kalg such that

P (x) = y. Then we have x ∈ OKalg and |P (x)| = θm. In particular, this

shows x ∈ Xm(Kalg). By assumption and Lemma 4.8 below, we have the
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inequality

θψ̃(m) = min
i

|zi − x| < min
i�=j

|zi − zj |. �

Lemma 4.8 ([Fo], Prop. 1.4). Let x be an element of Kalg. Put i :=

supi vK(zi − x) and u := vK(P (x)). Then we have

u = ϕ̃L/K(i), ψ̃L/K(u) = i.

We obtain the following consequences:

Proposition 4.9. We have the following relations:

(i) If (Q′′
m) is true, then (P′′

m) is true.

(ii) If (P′′
m) is true, then (Q′′

m+ε) is true for any ε > 0.

In particular, we have the equality mL/K = cL/K .

Proof. The above (i) is the special case of Proposition 4.3. (ii) follows

from Propositions 3.3, Proposition 4.7 and the equality uL/K = cL/K . �

5. Appendix

In this section, we prove a Galois theoretic property of a filtration of

the absolute Galois group of an arbitrary field. This section is independent

of the other sections. Let K be a field, K̄ a fixed separable closure of K,

GK := Gal(K̄/K) the absolute Galois group of K and G the set of all

finite Galois extensions of K contained in K̄. Throughout this Appendix,

all separable extensions of K are assumed to be subfields of K̄. Let R be a

totally ordered set.

Definition 5.1. Assume we are given a system of decreasing filtra-

tions (Gal(L/K)u)L/K∈G,u∈R. Then we say that the system of filtrations

(Gal(L/K)u)L/K∈G,u∈R is quotient-compatible if, for any L, L′ ∈ G such that

L′ ⊂ L, the image of Gal(L/K)u under the natural projection Gal(L/K) →
Gal(L′/K) coincides with Gal(L′/K)u.
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Proposition 5.2. There is a natural one-to-one correspondence be-

tween the set of decreasing filtrations (Gu
K)u∈R on GK consisting of closed

subgroups of GK and the set of quotient-compatible systems of decreasing

filtrations (Gal(L/K)u)L/K∈G,u∈R.

Proof. Assume we are given a decreasing filtration (Gu
K)u∈R on GK

consisting of closed subgroups of GK . Let L be a finite Galois extension

of K with Galois group G. Then a decreasing filtration Gu can be de-

fined by the image of Gu
K by the restriction map GK → G. Conversely,

suppose we are given a quotient-compatible system of decreasing filtra-

tions (Gal(L/K)u)L/K∈G,u∈R. For any finite Galois extensions L′ ⊂ L

of K, the compatibility with the quotient induces a natural projection

Gal(L/K)u → Gal(L′/K)u by the restriction map. Hence we can define

a decreasing filtration Gu
K on GK by

Gu
K := lim

←−
Gal(L/K)u,

where L runs through the set of all finite Galois extensions of K contained

in K̄. This correspondence induces the desired bijection. �

Definition 5.3. Let G be a set and (Gu)u∈R a decreasing filtration

on G. Then we say that (Gu)u∈R is separated if
⋂

uG
u = 1 and (Gu)u∈R is

left continuous if Gu =
⋂

m<uG
m.

Let (Gu
K)u∈R be a decreasing filtration on GK which is separated and

left continuous, and L a finite Galois extension of K with Galois group G.

Put Gu+
K :=

⋃
u′>uG

u′
K , where the overline means the closure with respect

to Krull topology. Then we denote by K̄(u) (resp. K̄(u+)) the fixed field of

K̄ by Gu
K (resp. G

(u+)
K ). Define Gu (resp. Gu+) as the image of Gu

K (resp.

Gu+
K ) by the restriction map π : GK → G. Put

uL/K := inf{u ∈ R | Gu = 1},

assuming that the infimum exists in R. We denote by K̄<u (resp. K̄�u) the

union of all finite Galois extension L of K in K̄ such that uL/K < u (resp.

uL/K ≤ u).
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Proposition 5.4. We have K̄<u = K̄(u) and K̄�u = K̄(u+) for any

u ∈ R.

Proof. If L is a finite Galois extension of K with Galois group G,

then the left continuousness makes GuL/K �= 1. Hence uL/K < u (resp.

uL/K ≤ u) is equivalent to Gu = 1 (resp. Gu+ = 1). This is equivalent to

Gu
K ⊂ Ker(π) = GL (resp. Gu+

K ⊂ GL). The result follows it. �
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