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On Charts with Two Crossings I: There Exist No

NS-Tangles in a Minimal Chart

By Teruo Nagase and Akiko Shima

Abstract. In this paper, we establish methods to count the num-
ber of crossings and terminal edges of charts. These methods are useful
to show that a chart Γ with at most two crossings is a ribbon chart
provided that the closure of the surface braid represented by Γ is a
disjoint union of spheres.

1. Introduction

S. Kamada introduced charts which correspond to surface braids [2],[3].

Charts are oriented labeled graphs in a disk with three kinds of vertices

called black vertices, crossings, and white vertices. Kamada also introduced

C-moves which are local modifications of charts in a disk. A C-move be-

tween two charts induces an ambient isotopy between the closures of the

corresponding two surface braids. Two charts are said to be C-move equiv-

alent if there exists a finite sequence of C-moves which modifies one of the

two charts to the other.

For a set X in a space, let Cl(X) be the closure of the set X.

Let Γ be a chart. Let e1 and e2 be edges of Γ which connect two white

vertices w1 and w2 where possibly w1 = w2. Suppose that the union e1 ∪ e2

bounds an open disk E. Then Cl(E) is called a bigon provided that any

edge containing w1 or w2 does not intersect the open disk E (see Fig. 1).

Since e1 and e2 are edges of Γ, they do not contain any crossings.

Let Γ be a chart. Let w(Γ), f(Γ) and b(Γ) be the number of white

vertices, the number of free edges and the number of bigons in Γ respectively.

Let C(Γ) = (w(Γ),−f(Γ),−b(Γ)). The triplet C(Γ) is called an extended

complexity of the chart Γ (see [2] for complexities of charts).
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Fig. 1. The edges e1 and e2 do not contain crossings.

For each non-negative integer k, let c(Γ) be the number of crossings in

a chart Γ and Ck = {Γ | c(Γ) ≤ k}. A chart Γ in Ck is said to be k-minimal

if its extended complexity is minimal among the charts in Ck which are

C-move equivalent to the chart Γ with respect to the lexicographical order

of the triad of the integers [9].

Let Γ be a chart. For each label m, we denote by Γm the subgraph of Γ

consisting of edges of label m and their vertices. In this paper,

crossings are vertices of Γ but we do not consider crossings as vertices

of the subgraph Γm.

A chart Γ with a white vertex is called a generalized n-chart if there

exist two non-negative integers p < q with n = q − p such that

(i) Γi does not have a white vertex except for p < i < q, and

(ii) the both Γp+1 and Γq−1 have white vertices.

We will prove the following two theorems in [10].

Theorem 1.1 ([10, Theorem 1.1]). Let Γ be a 2-minimal generalized

n-chart. If n ≥ 5, then Γ contains at least 4n− 10 black vertices.

Theorem 1.2 ([10, Theorem 1.2]). Let Γ be a chart with at most two

crossings. If the closure of the surface braid represented by Γ is a disjoint

union of spheres, then Γ is a ribbon chart. Hence the closure is a ribbon

surface.
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In this paper, to prove the above two theorems we establish methods to

count black vertices in graphs often appear in charts. Namely we show the

following three key theorems: Theorem 3.5, Theorem 4.8, and Theorem 5.4.

For a graph X in a chart Γ, let

w(X) = the number of white vertices in X.

Let Γ be a chart and D a disk. The pair (D ∩ Γ, D) is called a tangle if

it satisfies the following two conditions:

(i) ∂D does not contain any white vertices, black vertices nor crossings

of the chart Γ, and

(ii) ∂D transversely intersects edges of Γ.

Let Γ be a chart. A tangle (D ∩ Γ, D) is called an NS-tangle of label m

(new significant tangle) if it satisfies the following two conditions:

(i) If i �= m, then ∂D ∩ Γi is at most one point, and

(ii) w(D ∩ Γ) ≥ 1, and D contains at most one crossing.

The following is the first theorem of this paper.

Theorem 3.5. There does not exist any NS-tangle in a k-minimal

chart Γ.

To make the argument simple, we assume that the charts lie on the

2-sphere instead of the disk. In this paper,

all charts are contained in the 2-sphere S2.

We have the special point in the 2-sphere S2, called the point at infinity,

denoted by ∞. In this paper, all charts are contained in a disk which does

not contain the point at infinity ∞.

For each graph G in S2, let (see Fig. 2)

M(G) = the maximal subgraph of G without vertices of degree 1,

Out(G) = the complementary domain of M(G) containing the

point at infinity ∞,

In(G) = (Cl(Out(G)))c , and

Brd(G) = M(G) ∩ Cl(Out(G)).
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Fig. 2. Out(G) and In(G) are shaded areas.

An edge in a chart is called a terminal edge if it contains a white vertex

and a black vertex.

A connected component G′ of a graph G is a small component of G if it

satisfies

(In(G′) −G′) ∩G = ∅.

In Fig. 3, X is a small component of X∪Y , but Y is not a small component

of X ∪ Y .

The following is the second theorem of this paper.

Theorem 4.8. Let Γ be a k-minimal chart. Let G be a small compo-

nent of Γn such that G ∪ In(G) does not contain any crossing. Then G

contains at least two terminal edges of label n.

Let Γ be a chart, (D ∩ Γ, D) a tangle and Gi = D ∩ Γi (i = 1, 2, · · · ).



On Charts with Two Crossings I 221

Fig. 3.

The tangle (D ∩Γ, D) is called a T -tangle of label n (a tangle with at most

three labels) if it satisfies the following two conditions:

(i) Gi = ∅ except for n− 1 ≤ i ≤ n + 1.

(ii) w(D ∩ Γ) ≥ 1, but D does not contain any crossing.

If In(Gn) = ∅ then we say that the T -tangle is linear. If Cl(In(Gn)) is a

disk then we say that the T -tangle is cellular.

Let (D ∩ Γ, D) be a T -tangle of label n. If an edge e of Γn intersects

∂D, then e ∩D is called an exceptional arc of the T -tangle.

Let (D∩Γ, D) be a T -tangle of a chart Γ. If s is the number of labels in

{ i | ∂D∩Gi �= ∅ }, then the T -tangle is called a Ts-tangle. Thus a T -tangle

means a T0-tangle, a T1-tangle, a T2-tangle or a T3-tangle.

Let Γ be a chart, and (D ∩ Γ, D) a cellular T -tangle of label n. The

tangle (D ∩ Γ, D) is tiny provided that the closure of each component of

(D − Cl(In(D ∩ Γn))) ∩ Γ is

(i) an arc connecting a point in ∂D and a point in Brd(D ∩ Γn), or

(ii) a terminal edge of label n.

Note. For any cellular T -tangle of label n, let X be the union of all the

terminal edges of label n in D each of which intersects Cl(In(D∩Γn)), and
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N a regular neighborhood of Cl(In(D∩Γn))∪X in D. Then (N ∩Γ, N) is

a tiny cellular T -tangle of label n.

The following is the third theorem of this paper.

Theorem 5.4. Let (D∩Γ, D) be a tiny cellular T2-tangle of label n in

a k-minimal chart Γ which possesses exceptional arcs.

(1) The tangle possesses at least two exceptional arcs.

(2) If the tangle possesses exactly two exceptional arcs, then D contains

at least two terminal edges of label n.

(3) If the tangle possesses exactly three exceptional arcs, then D contains

at least one terminal edge of label n.

A surface in R
4 is called a ribbon surface if it is the boundary of an

immersed handlebody with singularities which are mutually disjoint disks

such that the preimage of each disk is a union of a proper disk of the domain

and a disk in the interior of the domain, a handlebody. In the words of

charts, a ribbon surface is the closure of a surface braid which corresponds

to a ribbon chart where a ribbon chart is a chart which is C-move equivalent

to a chart without white vertices [2].

Kamada showed that any 3-chart is a ribbon chart [2]. Nagase and

Hirota extended Kamada’s result: Any 4-chart with at most one crossing is

a ribbon chart [5]. We showed that any n-chart with at most one crossing

is a ribbon chart [9].

We showed that if a 2-minimal 4-chart contains exactly two crossings,

then it contains at least eight black vertices [6]. It is well known that if the

closure of the surface braid represented by a 4-chart is one sphere, then the

chart contains exactly six black vertices. Using this fact we showed that any

4-chart with at most two crossings is a ribbon chart if the chart corresponds

to a surface braid whose closure is one sphere [6]. We give another proof of

this theorem [11] by using the results developed in this paper and [10].

2. Preliminaries

Let n be a positive integer. An n-chart is an oriented labeled graph in

a disk, which may be empty or have closed edges without vertices, called

hoops, satisfying the following four conditions:
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(i) Every vertex has degree 1,4, or 6.

(ii) The labels of edges are in {1, 2, . . . , n− 1}.

(iii) In a small neighborhood of each vertex of degree 6, there are six short

arcs, three consecutive arcs are oriented inward and the other three

are outward, and these six are labeled i and i+1 alternately for some

i, where the orientation and label of each arc are inherited from the

edge containing the arc.

(iv) For each vertex of degree 4, diagonal edges have the same label and

are oriented coherently, and the labels i and j of the diagonals satisfy

|i− j| > 1.

A vertex of degree 1, 4, and 6 is called a black vertex, a crossing, and

a white vertex respectively (see Fig. 4). Among six short arcs in a small

neighborhood of a white vertex, a central arc of each three consecutive arcs

oriented inward or outward is called a middle arc at the white vertex (see

Fig. 4c). There are two middle arcs in a small neighborhood of each white

vertex.

C-moves are local modifications of charts in a disk as shown in Fig. 5

(see [1], [4] for the precise definition). Kamada originally defined CI-moves

as follows: A chart Γ is obtained from a chart Γ′ by a CI-move, if there

exists a disk D such that

(i) the two charts Γ and Γ′ intersect the boundary of D transversely or

do not intersect the boundary of D,

Fig. 4. (a) a black vertex, (b) a crossing, (c) a white vertex. Each arc with three
transversal short arcs is a middle arc.
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Fig. 5. In the C-III-1 move, the terminal edge does not contain a middle arc at the white
vertex in the left figure.

(ii) Γ ∩Dc = Γ′ ∩Dc, and

(iii) neither of Γ ∩D nor Γ′ ∩D contains a black vertex,

where (· · · )c is the complement of (· · · ).
Let Γ be a chart. An edge of Γ is the closure of a connected component

of the set obtained by taking out all white vertices and crossings from Γ.

On the other hand, an edge of Γm is the closure of a connected component

of the set obtained by taking out all white vertices from Γm. An edge of Γ

or Γm is called a free edge if it has two black vertices. An edge of Γ or Γm

is called a terminal edge if it has a white vertex and a black vertex. Note

that free edges and terminal edges may contain crossings of Γ.

A hoop is said to be simple if one of the complementary domain of the

hoop does not contain any white vertices.

A ring is a simple closed curve consisting of edges of the same label

which contains a crossing but does not contain any white vertices.

We can assume that any k-minimal charts Γ satisfy the following five

assumptions (See [9] and [7]):

Assumption 1. Any terminal edge of Γm does not contain a crossing.

Hence any terminal edge of Γm is a terminal edge of Γ and any terminal

edge of Γm contains a middle arc.
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Assumption 2. Any free edge of Γm does not contain a crossing.

Hence any free edge of Γm is a free edge of Γ.

Assumption 3. All free edges and simple hoops in Γ are moved into

a small neighborhood U∞ of the point at infinity ∞.

Assumption 4. Each complementary domain of any ring must con-

tain at least one white vertex.

Assumption 5. Hence we can assume that the subgraph obtained from

Γ by omitting free edges and simple hoops does not meet the set U∞. And

also we can assume that Γ does not contain free edges nor simple hoops, oth-

erwise mentioned. Therefore we can assume that if an edge of Γm contains a

black vertex, then it is a terminal edge and that each complementary domain

of any hoops and rings of Γ contains a white vertex, otherwise mentioned.

Furthermore as shown in [7], we can also assume the following assump-

tion:

Assumption 6. The point at infinity ∞ is moved in any complemen-

tary domain of Γ.

For a set X in a space, let Int(X), ∂(X) be the interior, the boundary

of the set X respectively.

3. NS-Tangles

Let Γ be a chart. A tangle (D ∩ Γ, D) is called an NR-tangle (a new

reducible tangle) of label m if it satisfies the following two conditions:

(i) ∂D ∩ (Γ − Γm) is at most one point, and

(ii) w(D ∩ Γ) ≥ 1 but D does not contain any crossing.

Note that an NR-tangle is a special NS-tangle.

The following two lemmata are proved in [9].

Lemma 3.1 ([9, Theorem 1]). There does not exist any NR-tangle in

any k-minimal chart.
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Lemma 3.2 ([9, Lemma 5.1]). Let G be a connected graph in S2. Let

D be a disk containing G. Then the following hold:

(1) Out(G) is an open disk.

(2) Each connected component of In(G) is an open disk whose closure is

a disk.

(3) A regular neighbourhood of In(G) ∪ G in S2 is a disk, and so is a

regular neighbourhood of In(G) ∪G in D.

Let Γ be a chart, and D a disk. Let m be a label with D ∩ Γm �= ∅. A

connected component G of D ∩ Γm is a two-color component of label m in

D provided that

(i) G ∩ ∂D consists of at most one point,

(ii) there exists an integer δ ∈ {+1,−1} such that all the white vertices

in G are contained in Γm+δ, and

(iii) G is not an arc contained in a terminal edge.

Note that a two-color component may contain a crossing.

Lemma 3.3. Let Γ be a k-minimal chart and D a disk. Then for any

two-color component G in D, G ∪ In(G) contains at least one crossing.

Proof. Suppose that there exists a two-color component G of label m

in D such that G ∪ In(G) contains no crossing.

Suppose that w(G) = 0. Since G ∪ In(G) does not contain a crossing,

G is not a ring. Thus G must be a hoop. Let U be the open disk bounded

by the hoop. Since the hoop is not simple by Assumption 3, U contains a

white vertex. Let N be a disk in U such that U − N is a very thin open

annulus. Then N contains a white vertex and ∂N ∩Γ = ∅. Since G∪ In(G)

does not contain any crossing, (N ∩Γ, N) is an NR-tangle. This contradicts

Lemma 3.1.

Suppose that w(G) > 0. Let N be a regular neighbourhood of G∪In(G)

in D. Then N is a disk by Lemma 3.2(3).

Since G ∩ ∂D consists of at most one point, so does ∂N ∩ Γm. Since

G ∪ In(G) does not contain any crossing, neither does N . Now G ⊂ N
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implies that w(N ∩ Γ) > 0. Since G is a two-color component of label m,

all the white vertices in Brd(G) are contained in Γm ∩ Γm+δ for an integer

δ ∈ {+1,−1}. Thus ∂N ∩ (Γ − Γm+δ) = ∂N ∩ Γm. Since ∂N ∩ Γm consists

of at most one point, (N ∩ Γ, N) is an NR-tangle of label m + δ. This

contradicts Lemma 3.1. �

Lemma 3.4. Let Γ be a k-minimal chart and D a disk. If D contains

at most one crossing, then any two-color component in D does not contain

the crossing.

Proof. The proof will follow by contradiction. Suppose that there

exists a two-color component G of label m in D such that G contains the

crossing. There exists an integer δ ∈ {+1,−1} such that all the white vertex

in G is contained in Γm+δ. Let e be the edge in G containing the crossing

and e′ the other edge containing the crossing. Let t be the label of e′. Since

no terminal edge contains a crossing by Assumption 1, neither e nor e′ is a

terminal edge. Since e′ contains the crossing, e′ is not a hoop.

Suppose that G − e′ is connected. Then e′ is not a ring, and there

exists a connected component U in In(G) −G with U ∩ e′ �= ∅. Since G is

connected, U is an open disk. Since e′ is neither a ring nor a hoop and since

|m − t| ≥ 2, the edge e′ contains a white vertex w in U . Let N be a disk

in U such that U − N is a very thin open annulus. Then we can assume

that w ∈ N , ∂N ∩ Γt is one point, and ∂N ∩ (Γ − Γt) ⊂ Γm+δ. Since D

contains only one crossing, N does not contain a crossing any more. Hence

(N ∩ Γ, N) is an NR-tangle of label m + δ. This contradicts Lemma 3.1.

Now G− e′ must be disconnected. Let N be a regular neighbourhood of

G∪In(G) and E a regular neighbourhood of e′. Then N−E is disconnected.

Let N ′ be the closure of a connected component of N−E. Then N ′ is a disk.

Since e is not a terminal edge, N ′ contains a white vertex. Now ∂N ′∩Γm is

one point, and ∂N ′∩ (Γ−Γm) ⊂ Γm+δ. Since D contains only one crossing,

N does not contain a crossing any more. Hence (N ′∩Γ, N ′) is an NR-tangle

of label m + δ. This contradicts Lemma 3.1. �

For a graph X of a chart Γ, let

α(X) = min{ i | Γi ∩X �= ∅ },

β(X) = max{ i | Γi ∩X �= ∅ }.
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For an NS-tangle (D ∩ Γ, D) in a k-minimal chart Γ, let

n(D) = β(D ∩ Γ) − α(D ∩ Γ).

An NS-tangle (D ∩ Γ, D) is minimal provided that

n(D) = min{ n(D′) | (D′ ∩ Γ, D′) is an NS-tangle in Γ}.

Theorem 3.5. There does not exist any NS-tangle in a k-minimal

chart Γ.

Proof. Suppose that there exists an NS-tangle. Then there exists a

minimal NS-tangle (D ∩ Γ, D) of label m.

Let α = α(D ∩ Γ) and β = β(D ∩ Γ). Since w(D ∩ Γ) ≥ 1, we have

α < β. Hence α �= m or β �= m.

Suppose that α �= m. Then α < m. By Condition (i) of an NS-tangle of

label m, ∂D ∩ Γα is at most one point.

If D ∩ Γα is an arc contained in a terminal edge, then we take a regular

neighborhood N of the arc in D. Then we have (Cl(D−N)∩Γ, Cl(D−N))

is an NS-tangle with Cl(D−N)∩Γα = ∅. Thus α(D)+1 ≤ α(Cl(D−N)).

Hence β(Cl(D−N))−α(Cl(D−N)) ≤ β(D)− (α(D)+1) < β(D)−α(D).

This contradicts that (D∩Γ, D) is a minimal NS-tangle. Hence there exists

a connected component of D∩Γα which is not contained in a terminal edge.

Let G be a small component of D ∩ Γα which is not contained in a

terminal edge. Then G ∩ ∂D is at most one point. Thus G is a two-color

component in D. Hence G∪In(G) contains at least one crossing by Lemma

3.3. Since D contains at most one crossing, G∪ In(G) contains exactly one

crossing. Now G does not contain the crossing by Lemma 3.4. Thus there

exists a connected component U of In(G)−G which contains the crossing.

Since G is connected, U is an open disk.

Let s, t (s < t) be the labels such that Γs ∩ Γt contains the crossing.

Since α ≤ s < s + 2 ≤ t, we have α + 2 ≤ t. Since G does not contain the

crossing, we have G ∩ Γt = ∅.
We show that U contains a white vertex. Suppose that U ∩Γt contains a

ring or a hoop �. Then the open disk bounded by � contains a white vertex by

Assumption 3 and 4, and so does U . Suppose that U ∩ Γt does not contain

any ring nor a hoop. Since there is no free edge in U by Assumption 3,
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G ∩ Γt = ∅ implies that U contains a white vertex in Γt. Either case, the

open disk U contains a white vertex, say w.

Let N be a disk in U such that U−N is a very thin open annulus. Then

we can assume that w ∈ N and ∂N ∩Γ ⊂ Γα+1. Hence (N ∩Γ, N) is an NS-

tangle. Since G is a small component of D∩Γα, we have N ∩Γα = ∅. Thus

α(D)+1 ≤ α(N). Hence β(N)−α(N) ≤ β(D)−(α(D)+1) < β(D)−α(D).

This contradicts that (D ∩ Γ, D) is a minimal NS-tangle.

Similarly we have a contradiction for the case β �= m. �

Lemma 3.6. Let Γ be a k-minimal chart and D a disk. Then for any

two-color component G in D, G ∪ In(G) contains at least two crossings.

Proof. The proof will follow by contradiction. Suppose that there

exists a two-color component G of label m in D such that G∪In(G) contains

at most one crossing. Let δ ∈ {+1,−1} be the integer such that all the white

vertices in G are contained in Γm+δ. By Lemma 3.3 G ∪ In(G) contains at

least one crossing. Thus G ∪ In(G) contains exactly one crossing.

By Lemma 3.4 G does not contain the crossing. Hence the crossing is

contained in In(G) − G. Let U be a connected component of In(G) − G

which contains the crossing. We can show that U contains a white vertex

by the same way as the one in Theorem 3.5. Thus In(G) contains a white

vertex.

Let N be a regular neighbourhood of G∪ In(G) in D. By Condition (i)

for two-color components, we have that G∩ ∂N is at most one point. Thus

(N ∩Γ, N) is an NS-tangle of label m+ δ. This contradicts Theorem 3.5. �

4. The Number of Terminal Edges in Cellular T -Tangles

Lemma 4.1 [Boundary Condition Lemma]. Let (D ∩ Γ, D) be

a tangle in a k-minimal chart Γ such that D does not contain any cross-

ing. Let a = α(∂D ∩ Γ) and b = β(∂D ∩ Γ). Then D ∩ Γi = ∅ except for

a ≤ i ≤ b.

Proof. Let α = α(D ∩ Γ) and β = β(D ∩ Γ). Since ∂D ∩ Γ ⊂ D ∩ Γ,

α ≤ a and b ≤ β.

The proof will follow by contradiction. Suppose that α < a. Then

∂D ∩ Γα = ∅. Let G be a small component of D ∩ Γα. Then we have that
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G ∩ ∂D = ∅ and D ∩ Γα �= ∅. Then any vertex of G is contained in Γα+1.

The condition G∩ ∂D = ∅ implies that G is a two-color component of label

α in D. Now D does not contain any crossing, and neither does G∪ In(G).

This contradicts Lemma 3.3.

Similarly we have a contradiction for the case b < β. �

Lemma 4.2. Any linear T -tangle in a k-minimal chart Γ possesses at

least two exceptional arcs.

Proof. Suppose that there exists a linear T -tangle (D∩Γ, D) of label

n with at most one exceptional arc. Since In(D ∩ Γn) = ∅, D ∩ Γn is a

union of trees. Since any white vertex of D ∩ Γn is of degree 3, and since

∂D ∩ Γn consists of at most one point, there exists two terminal edges of

label n in D ∩ Γn which contain the same white vertex (see Fig. 6). Since

there exists only one middle arc of label n at the white vertex, one of the

two terminal edges does not contain a middle arc at the white vertex. Hence

by a C-III-1 move we can eliminate the white vertex. This contradict that

Γ is k-minimal. �

Lemma 4.3. For any k-minimal chart, any open disk bounded by a

hoop contains a crossing.

Proof. Suppose that an open disk U bounded by a hoop does not

Fig. 6.
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contain a crossing. Then U∩Γ = ∅ by Boundary Condition Lemma (Lemma

4.1). Thus the hoop is simple. This contradicts Assumption 3. �

Lemma 4.4 ([9, Lemma 4.1]). Let Γ be a chart and U a complementary

domain of Γm (possibly U may not be an open disk). If Cl(U) contains no

terminal edges of label m, then Cl(U) contains even number of middle arcs

of label m± 1 which intersect ∂U .

Let Γ be a chart. Let m be a label and Γ∗
m the graph obtained by

omitting all the free edges, hoops and rings from Γm. A complementary

domain U of Γ∗
m is a reducible complementary domain of label m provided

that

(i) U is an open disk,

(ii) U does not contain a crossing,

(iii) U ∩ (Γm−2 ∪ Γm+2) = ∅, and

(iv) U does not intersect any middle arc of label m± 1.

Lemma 4.5 ([9, Lemma 4.2]). Let Γ be a k-minimal chart. Then for

any label m there does not exist any reducible complementary domain of

label m.

Lemma 4.6 ([9, Corollary 2.2]). Let Γ be a k-minimal chart and U a

complementary domain of Γm. If U contains at most one crossing and if

U ∩ (Γm−2 ∪ Γm+2) = ∅, then Cl(U) does not contain any terminal edge of

label m.

Let (D∩Γ, D) be a tiny cellular T -tangle of label n in a k-minimal chart

Γ. An exceptional arc is essential if it contains a middle arc of the white

vertex on Brd(D ∩ Γn). Let A = D − In(D ∩ Γn) and

m(D ∩ Γ, D) = the number of middle arcs of label n± 1 in A each

of which does not intersect any exceptional arcs,

t(D ∩ Γ, D) = the number of terminal edges of label n in A,

ε(D ∩ Γ, D) = the number of essential exceptional arcs of the tangle.
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Fig. 7. Each arc with three transversal short arcs is a middle arc.

In Fig. 7, four arcs e2, e4, e5, e9 contain middle arcs, but e5 intersects the

exceptional arc e6. Thus we have m(D∩Γ, D) = 3. Since e8 is the only one

terminal edge of label n, we have t(D ∩ Γ, D) = 1. Since e1 and e3 contain

middle arcs among three exceptional arcs e1, e3, e6, we have ε(D∩Γ, D) = 2.

The following lemma is a generalization of Lemma 7.2 in [9]. The proof

is almost parallel to the one of Lemma 7.2 in [9].

Lemma 4.7. Let (D ∩ Γ, D) be a tiny cellular T -tangle of label n in a

k-minimal chart Γ. If D ∩ Γn is connected, then we have

m(D ∩ Γ, D) + 2 ≤ t(D ∩ Γ, D) + ε(D ∩ Γ, D).

Proof. We prove the lemma by contradiction. Suppose that

m(D ∩ Γ, D) + 2 > t(D ∩ Γ, D) + ε(D ∩ Γ, D).
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Let
ε0 = ε(D ∩ Γ, D),

m0 = m(D ∩ Γ, D), and

t0 = t(D ∩ Γ, D).

Then we have

(1) m0 + 2 > t0 + ε0.

Let D′ = Cl(In(D ∩ Γn)) and A = Cl(D −D′). Let

V = the number of the white vertex in D′,

E = the number of the edges of label n in D′, and

F = the number of connected components of D′ − Γn.

Since D∩Γn is connected, each connected component of D′−Γn is an open

disk. Since the T -tangle is cellular, D′ is a disk. Thus by Euler formula we

have

(2) V − E + F = 1.

Let

p = the number of the exceptional arcs of the T -tangle.

On Brd(In(D∩Γn)), p+ t0 is the number of white vertices contained in an

exceptional arc or in a terminal edge in the annulus A. Each of the white

vertices is contained in exactly two edges of label n in D′ locally. Since

there is no terminal edge of label n in D′ by Lemma 4.6, V − (p+ t0) is the

number of the white vertices in D′ each of which is contained in the three

edges of label n in D′ locally. Since each edge in D′ possesses two white

vertices locally, we have that

(3) 2(p + t0) + 3(V − (p + t0)) = 2E.

Hence by using the equation (3) and the equation obtained by doubling each

side of the equation (2), we have

(4) 2V − (3V − p− t0) + 2F = 2.

Thus
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(5) 2F = 2 + V − p− t0.

On the other hand, for each white vertex there exists only one middle arc

of label n± 1. Thus the number of middle arcs of label n± 1 in D′ is

(6) V − (m0 + (p− ε0)).

Hence by using the equation (5) and (6), we have

(7)
2F − (V −m0 − p + ε0) = 2 + V − p− t0 − (V −m0 − p + ε0)

= 2 + m0 − t0 − ε0.

By using the inequality (1), we have

(8) 2F − (V −m0 − p + ε0) > 0.

There are even number of middle arcs of label n ± 1 in the closure of each

connected component of D′ − Γn by Lemma 4.4. If the closure of each

connected component of D′ − Γn contains a middle arc of label n± 1, then

the number of middle arcs of label n±1 in D′ is greater than or equal to 2F .

Thus the last inequality (8) implies that there exists a connected component

of D′ − Γn whose closure does not include any middle arc of label n ± 1.

Since D∩Γn is connected, the connected component is an open disk. Hence

the connected component is a reducible complementary domain of label n.

This contradicts Lemma 4.5. �

Theorem 4.8. Let Γ be a k-minimal chart. Let G be a small compo-

nent of Γn such that G ∪ In(G) does not contain any crossing. Then G

contains at least two terminal edges of label n.

Proof. Let D be a regular neighborhood of G ∪ In(G). Then D is

a disk by Lemma 3.2(3). Since G ∪ In(G) does not contain any crossing,

neither does D.

Since G does not contain any crossing, G is not a ring. Further G is not

a hoop by Lemma 4.3. Furthermore G is not a free edge by Assumption 3.

Thus w(G) > 0.

Since D is a regular neighbourhood of G∪In(G), G ⊂ Γn implies that we

have ∂D∩Γ ⊂ Γn−1 ∪Γn+1. By Boundary Condition Lemma (Lemma 4.1),

we have D ∩ Γi = ∅ except for i ∈ {n − 1, n, n + 1}, namely D ∩ Γ ⊂
Γn−1 ∪ Γn ∪ Γn+1. Thus w(G) > 0 implies that (D ∩ Γ, D) is a T -tangle
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of label n without any exceptional arc. Hence the tangle is not linear by

Lemma 4.2.

Since G is a small component of Γn, D ∩ Γn = G is connected.

Let N1, N2, · · · , Nu be the connected components of Cl(In(G)). See Fig.

8. Since each white vertex of G is of degree 3, N1, N2, · · · , Nu are mutually

disjoint disks. Since the tangle is not linear, we have u ≥ 1. For each

i = 1, 2 · · · , u, let Xi be the union of the terminal edges of G intersecting

Ni, and Di a regular neighborhood of Ni ∪Xi. Then each (Di ∩ Γ, Di) is a

tiny cellular T -tangle of label n.

Let wu+1, wu+2, · · · , ws be the white vertices in G− (
u⋃

i=1

Di). The

set G ∪ (

u⋃

i=1

Di) is deformed to a tree T if we contract each of the disks

N1, N2, · · · , Nu to a point which we also call a vertex.

Suppose that the tree T contains only one vertex. Then u = 1, and

the tangle (D ∩ Γ, D) is a tiny cellular T -tangle. Since (D ∩ Γ, D) does not

possess any exceptional arc, ε(D ∩ Γ, D) = 0. Thus by Lemma 4.7 we have

m(D ∩ Γ, D) + 2 ≤ t(D ∩ Γ, D).

Hence t(D∩Γ, D) ≥ 2. Thus there exist at least two terminal edges of label

Fig. 8. (D3 ∩ Γ, D3), (D4 ∩ Γ, D4) and (D5 ∩ Γ, D5) are tiny cellular T -tangles with
exactly one exceptional arc.
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n in D. Since G is a small component of Γn, the terminal edges of label n

in D are contained in G.

Suppose that the tree T contains at least two vertices. Then there exists

at least two vertices v1 and v2 of degree 1 in T . Each vertex vj (j = 1, 2)

corresponds to either a disk Dij or a black vertex contained in a terminal

edge. If vj corresponds to a disk Dij , then (Dij ∩Γ, Dij ) is a tiny cellular T -

tangle with exactly one exceptional arc (see Fig. 8). Thus ε(Dij∩Γ, Dij ) ≤ 1.

By Lemma 4.7 we have

m(Dij ∩ Γ, Dij ) + 2 ≤ t(Dij ∩ Γ, Dij ) + 1.

Hence t(Dij ∩ Γ, Dij ) ≥ 1. For the both cases, there exists a terminal edge

of label n. Therefore G possesses at least two terminal edges of label n. �

5. The Number of Terminal Edges in Cellular T2-Tangles

Let h and n be labels of a chart Γ with |h−n| = 1. Let e1, e2, · · · , ep be

edges of label n and w2, · · · , wp white vertices with ei−1∩ei = wi (1 < i ≤ p).

Suppose that there exists a disk D such that (see Fig. 9a)

(1) (D ∩ Γ) ⊂ (Γh ∪ Γn),

(2) if e∗1 = e1 ∩D and e∗p = ep ∩D, then each of e∗1 and e∗p is a non-empty

arc,

(3) D ∩ Γn = ∂D ∩ Γn = e∗1 ∪ e2 ∪ e3 ∪ · · · ∪ ep−1 ∪ e∗p,

(4) for each i = 2, · · · , p there exists an arc e′i of label h connecting the

white vertex wi and a point on ∂D, and

(5) D ∩ Γh = e′2 ∪ e′3 ∪ · · · ∪ e′p.

The p-tuple (e∗1, e2, · · · , ep−1, e
∗
p) is called a path of label n between two arcs

e∗1 and e∗p. We often say that

each arc e′i is an arc situated between e∗1 and e∗p.

The path (e∗1, e2, · · · , ep−1, e
∗
p) of label n is an m&m path provided that (see

Fig. 9b)

(6) e∗1 contains a middle arc at w2 and e∗p contains a middle arc at wp.
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Fig. 9. Each arc with three transversal short arcs is a middle arc.

Lemma 5.1 ([9, Lemma 3.1(2)]). Let Γ be a k-minimal chart. Then

for any m&m path (e∗1, e2, · · · , ep−1, e
∗
p) there exists a middle arc situated

between the two arcs e∗1 and e∗p.

Lemma 5.2. Let (D ∩ Γ, D) be a tiny cellular T2-tangle of label n in a

k-minimal chart Γ. If the T2-tangle possesses exceptional arcs, then D ∩Γn

is connected.

Proof. Since the T2-tangle possesses an exceptional arc, there exists

an integer δ ∈ {+1,−1} with ∂D ∩ Γ ⊂ Γn ∪ Γn+δ. Thus we have D ∩ Γ ⊂
Γn ∪ Γn+δ by Boundary Condition Lemma (Lemma 4.1).

Let X be the connected component of D ∩ Γn which contains Brd(D ∩
Γn). Since the tangle is tiny and cellular, X is the only one connected

component of D ∩ Γn which intersects ∂D.

Suppose that (In(D ∩ Γn) −X) ∩ Γn �= ∅. Let G be a connected com-

ponent of In(X) ∩ Γn. Then G ∩ ∂D = ∅. Since G does not contain any

crossing, G is not a ring. Further G is not a hoop by Lemma 4.3. Further-

more G is not a free edge by Assumption 3. Thus w(G) > 0. Let N be a

regular neighbourhood of G∪ In(G) in D. Then (N ∩Γ, N) is an NS-tangle

of label n + δ. This contradicts Theorem 3.5.

Thus (In(D∩Γn)−X)∩Γn = ∅. Since (D∩Γ, D) is tiny, D is a regular

neighbourhood of Cl(In(D∩Γn)). Hence we have D∩Γn = X. Thus D∩Γn

is connected. �

Lemma 5.3. Let (D ∩ Γ, D) be a tiny cellular T2-tangle of label n in

a k-minimal chart Γ. If the T2-tangle possesses exceptional arcs, then it

possesses at least two non-essential exceptional arcs.
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Proof. Since the T2-tangle possesses an exceptional arc, there exists

an integer δ ∈ {+1,−1} with ∂D ∩ Γ ⊂ Γn ∪ Γn+δ. Thus we have D ∩ Γ ⊂
Γn ∪ Γn+δ by Boundary Condition Lemma (Lemma 4.1).

Now D ∩Γn is connected by Lemma 5.2. Let p be the number of excep-

tional arcs of the T2-tangle. If p ≤ 1, then (D ∩Γ, D) is an NS-tangle. This

contradicts Theorem 3.5. Thus we have p ≥ 2.

We must show that p− ε(D ∩ Γ, D) ≥ 2.

Since the tangle is cellular, Brd(D ∩ Γn) is a simple closed curve. Let

e1, e2, · · · , es be the edges of Brd(D∩Γn) and w1, w2, · · · , ws white vertices

such that

(1) ∂ei = {wi, wi+1} (i = 1, 2, · · · , s), where we assume ws+1 = w1.

Let
ε0 = ε(D ∩ Γ, D),

m0 = m(D ∩ Γ, D), and

t0 = t(D ∩ Γ, D).

Let e∗1, e
∗
2, · · · , e∗t be the terminal edges of label n or the exceptional arcs

in the annulus Cl(D − D′). Then t = t0 + p. For each i = 1, 2, · · · , t let

wbi = e∗i ∩D′. Since (D ∩ Γ, D) is tiny, we can assume that (see Fig. 10)

(2) 1 = b1 < b2 < · · · < bt ≤ s, and

Fig. 10.
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(3) for each i = 1, 2, · · · , t and for each j = bi + 1, bi + 2, · · · , bi+1 − 1,

there exists an arc e′j of label n± 1 connecting wj and a point in ∂D,

here we assume the cyclic order bt+1 = b1 and ws+i = wi.

Suppose that p − ε(D ∩ Γ, D) = 0. The exceptional arcs are essential.

Thus D ∩ Γ ⊂ Γn ∪ Γn+δ implies that (e∗i , ebi , ebi+1, · · · , ebi+1−1, e
∗
i+1) is an

m&m path for each i = 1, 2, · · · , t. Since for each i = 1, 2, · · · , t there exists

a middle arc of label n ± 1 situated between the two arcs e∗i and e∗i+1 by

Lemma 5.1. Since each e∗i and e∗i+1 contains a middle arc, the middle of

label n ± 1 arc intersects neither e∗i nor e∗i+1. Thus there exist at least t

middle arcs of label n±1 in D−In(D∩Γn) each of which does not intersect

any exceptional arc. Thus we have m0 ≥ t. Since ε0 = p, we have

m0 + 2 ≥ t + 2 = t0 + p + 2 = t0 + ε0 + 2 > t0 + ε0.

Since D ∩ Γn is connected, the above inequality contradicts Lemma 4.7.

Suppose that p − ε(D ∩ Γ, D) = 1. Then all the exceptional arcs are

essential except one. Without loss of generality we can assume that e∗1 is

the non-essential exceptional arc. Then e∗i contains a middle arc at wbi for

each i = 2, 3, · · · , t. Since for each i = 2, 3, · · · , t− 1, there exists a middle

arcs of label n± 1 situated between e∗i and e∗i+1 by Lemma 5.1. Since each

of e∗i and e∗i+1 contains a middle arc, the middle arc of label n± 1 intersects

neither e∗i nor e∗i+1. Thus there exist t − 2 middle arcs of label n ± 1 in

D− In(D ∩Γn) each of which does not intersect any exceptional arc. Thus

we have m0 ≥ t− 2. Since ε0 = p− 1, we have

m0 + 2 ≥ t− 2 + 2 = t = t0 + p = t0 + ε0 + 1 > t0 + ε0.

Since D ∩ Γn is connected, the above inequality contradicts Lemma 4.7.

Thus p − ε(D ∩ Γ, D) ≥ 2. Hence the T2-tangle possesses at least two

non-essential exceptional arcs. �

Theorem 5.4. Let (D∩Γ, D) be a tiny cellular T2-tangle of label n in

a k-minimal chart Γ which possesses exceptional arcs.

(1) The tangle possesses at least two exceptional arcs.

(2) If the tangle possesses exactly two exceptional arcs, then D contains

at least two terminal edges of label n.
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(3) If the tangle possesses exactly three exceptional arcs, then D contains

at least one terminal edge of label n.

Proof. Lemma 5.3 implies Statement (1).

Now D ∩ Γn is connected by Lemma 5.2. By Lemma 4.7 we have

m(D ∩ Γ, D) + 2 ≤ t(D ∩ Γ, D) + ε(D ∩ Γ, D).

Suppose that the T2-tangle possesses exactly two exceptional arcs. Then

the exceptional arcs are non-essential by Lemma 5.3. Hence ε(D∩Γ, D) = 0.

Thus the above inequality implies that

m(D ∩ Γ, D) + 2 ≤ t(D ∩ Γ, D).

Since m(D ∩ Γ, D) ≥ 0, we have 2 ≤ t(D ∩ Γ, D).

Suppose that the T2-tangle possesses exactly three exceptional arcs.

Since there exist at least two non-essential exceptional arcs by Lemma 5.3,

there exists at most one essential exceptional arc. Namely ε(D ∩Γ, D) ≤ 1.

Thus we have

m(D ∩ Γ, D) + 2 ≤ t(D ∩ Γ, D) + 1.

Thus we have 1 ≤ t(D ∩ Γ, D). �
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