Abel-Jacobi Equivalence and a Variant of the Beilinson-Hodge Conjecture

By James D. LEWIS

Abstract. Let X/\mathbb{C} be a smooth projective variety and $\operatorname{CH}^r(X)$ the Chow group of codimension r algebraic cycles modulo rational equivalence. Let us assume the (conjectured) existence of the Bloch-Beilinson filtration $\{F^{\nu}\operatorname{CH}^r(X) \otimes \mathbb{Q}\}_{\nu=0}^r$ for all such X (and r). If $\operatorname{CH}^r_{AJ}(X) \subset \operatorname{CH}^r(X)$ is the subgroup of cycles Abel-Jacobi equivalent to zero, then there is an inclusion $F^2\operatorname{CH}^r(X) \otimes \mathbb{Q} \subset \operatorname{CH}^r_{AJ}(X) \otimes \mathbb{Q}$. Roughly speaking we show that this inclusion is an equality for all X(and r) if and only if a certain variant of Beilinson-Hodge conjecture holds for K_1 .

1. Introduction

Let X/\mathbb{C} be a smooth projective variety and $\operatorname{CH}^r(X;\mathbb{Q})$ the Chow group of codimension r algebraic cycles modulo rational equivalence, tensored with \mathbb{Q} . The existence of a descending filtration $\{F^{\nu}\operatorname{CH}^r(X;\mathbb{Q})\}_{\nu=0}^r$ on $\operatorname{CH}^r(X;\mathbb{Q})$ whose graded pieces factor through the Grothendieck motive, is a consequence of the classical Hodge conjecture (HC), together with a conjecture of Bloch and (independently) Beilinson (BBC) on the injectivity of the Abel-Jacobi map for Chow groups of smooth projective varieties over number fields. Assuming such a filtration, then one has $F^1\operatorname{CH}^r(X;\mathbb{Q}) = \operatorname{CH}^r_{\mathrm{hom}}(X;\mathbb{Q})$ (= the nullhomologous cycles) and an inclusion $F^2\operatorname{CH}^r(X;\mathbb{Q}) \subset \operatorname{CH}^r_{AJ}(X;\mathbb{Q})$, where the latter term are the cycles that are Abel-Jacobi equivalent to zero. The question as to whether this inclusion is (conjecturally) an equality, has generated some debate.

For a mixed \mathbb{Q} -Hodge structure H, we put $\Gamma(H) := \hom_{\mathrm{MHS}}(\mathbb{Q}(0), H)$. Evidently, by a mixed Hodge theory argument one can show that $\Gamma(H^{2r}(\mathbb{C}(X),\mathbb{Q}(r))) = 0$ for all smooth projective X/\mathbb{C} and all r > 0 is

²⁰¹⁰ Mathematics Subject Classification. Primary 14C25; Secondary 14C30, 14C35. Key words: Bloch-Beilinson filtration, normal function, Chow group.

Partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

equivalent to the statement of the classical Hodge conjecture. In this paper we consider the candidate Bloch-Beilinson filtration $\{F^{\nu} CH^{r}(X; \mathbb{Q})\}_{\nu \geq 0}$ introduced in [Lew1], and put $D^{r}(X) := \bigcap_{\nu \geq 0} F^{\nu} CH^{r}(X; \mathbb{Q})$. Evidently HC $+ BBC \Rightarrow D^{r}(X) = 0$ (Theorem 4.1(vi)). Our main result is the following.

THEOREM 1.1. Consider these two statements:

(i) $\Gamma(H^{2r-1}(\mathbb{C}(X),\mathbb{Q}(r))) = 0$ for all all smooth projective X/\mathbb{C} and all r > 1.

(ii) $F^2 \operatorname{CH}^r(X; \mathbb{Q}) = \operatorname{CH}^r_{A,I}(X; \mathbb{Q})$ for all smooth projective X/\mathbb{C} , and all r.

If we assume the HC, then $(i) \Rightarrow (ii)$. If we further assume that $D^r(X) \subset N^1 CH^r(X; \mathbb{Q})$, then $(ii) \Rightarrow (i)$. (Here $N^1 CH^r(X; \mathbb{Q})$ is the subspace of cycles homologous to zero on codimension ≥ 1 algebraic subsets of X.)

In section 5 we provide some evidence in support of the statement in Theorem 1.1(i). In particular we arrive at:

THEOREM 1.2. Let X/\mathbb{C} be a smooth projective variety of dimension d, and let r > 1.

(i) Suppose that $\operatorname{CH}_{AJ}^{r}(X; \mathbb{Q}) \subset N^{1}\operatorname{CH}^{r}(X; \mathbb{Q})$ and either (i) $d \leq 4$, or (ii) $r \in \{2, d-1\}$, or (iii) r, d arbitrary and the HC holds. Then $\Gamma(H^{2r-1}(\mathbb{C}(X), \mathbb{Q}(r))) = 0$. (The statement $\Gamma(H^{2d-1}(\mathbb{C}(X), \mathbb{Q}(d))) = 0$ for d > 1 holds unconditionally.)

(ii) Let us further assume that X is a complete intersection with $H^0(X, \Omega^d_X) = 0$. Assume that either (i) $d \leq 4$, or (ii) $r \in \{2, d-1\}$, or (iii) r, d arbitrary and the HC holds. Then $\Gamma(H^{2r-1}(\mathbb{C}(X), \mathbb{Q}(r))) = 0$.

(iii) Again let X be a complete intersection and assume the HC. Then for all r with $d \neq 2r - 1$ and $D^r(X) \subset N^1 \operatorname{CH}^r(X; \mathbb{Q})$, we have $\Gamma(H^{2r-1}(\mathbb{C}(X), \mathbb{Q}(r))) = 0$.

For the convenience to the reader, we also relate the statement in Theorem 1.1(ii) to the field of definition of the torsion locus of a cycle induced normal function, a result which seems known only among experts ([K-P]).

Let $\operatorname{CH}^{r}_{\operatorname{alg}}(X;\mathbb{Q})$ be the subspace of cycles that are algebraically equivalent to zero. As a result of Corollaries 4.9 & 5.1 below, we deduce the following.

COROLLARY 1.3. Let X/\mathbb{C} be a smooth projective variety. Then: (i)

$$\Gamma(H^{3}(\mathbb{C}(X),\mathbb{Q}(2))) = 0 \Rightarrow \begin{cases} F^{2}\mathrm{CH}^{2}(X;\mathbb{Q}) = \mathrm{CH}^{2}_{AJ}(X;\mathbb{Q}) \\ F^{2}\mathrm{CH}^{2}(X;\mathbb{Q}) \subset \mathrm{CH}^{2}_{\mathrm{alg}}(X;\mathbb{Q}) \end{cases}$$

(ii) Conversely, if we further assume that X is either a complete intersection or an Abelian variety, and if $D^2(X) \subset \operatorname{CH}^2_{\operatorname{alg}}(X; \mathbb{Q})$, then:

$$F^{2}\mathrm{CH}^{2}(X;\mathbb{Q}) = \mathrm{CH}^{2}_{AJ}(X;\mathbb{Q}) \Rightarrow \Gamma\left(H^{3}(\mathbb{C}(X),\mathbb{Q}(2))\right) = 0.$$

(iii) For any smooth projective X/\mathbb{C} satisfying $\operatorname{CH}^2_{AJ}(X;\mathbb{Q}) \subset \operatorname{CH}^2_{\operatorname{alg}}(X;\mathbb{Q})$, we have $\Gamma(H^3(\mathbb{C}(X),\mathbb{Q}(2))) = 0$. (This also follows from Theorem 1.2(i), using the fact that $N^1\operatorname{CH}^2(X;\mathbb{Q}) = \operatorname{CH}^2_{\operatorname{alg}}(X;\mathbb{Q})$.)

We are grateful to the referee for doing a splendid job, and raising some interesting points.

2. Notation

(i) Throughout this paper we will assume that $k \subset \mathbb{C}$ is an algebraically closed subfield. Let \mathcal{V}_k be the category of smooth projective varieties over k.

(ii) $\mathbb{Q}(n) = (2\pi i)^n \mathbb{Q}$ = Tate twist (a pure HS on \mathbb{Q} of pure weight -2n (and Hodge type (-n, -n)).

(iii) For a mixed Hodge structure (MHS) H, we put

$$\Gamma(H) := \hom_{\mathrm{MHS}}(\mathbb{Q}(0), H),$$

$$J(H) := \operatorname{Ext}^{1}_{\operatorname{MHS}}(\mathbb{Q}(0), H).$$

(iv) For $X \in \mathcal{V}_k$, $H^i(X, \mathbb{Q}) := H^i(X(\mathbb{C}), \mathbb{Q})$ (singular cohomology). For $X \in \mathcal{V}_{\mathbb{C}}$,

$$H^{i}(\mathbb{C}(X),\mathbb{Q}) := \lim_{\overrightarrow{U}} H^{i}(U,\mathbb{Q}),$$

where the limit is taken over all non-empty Zariski open subsets $U \subset X$.

(v) For $X \in \mathcal{V}_k$, the conveau filtration is given by

$$N_k^{\nu} H^i(X, \mathbb{Q}) := \ker \bigg(H^i(X, \mathbb{Q}) \to \lim_{\substack{\to \\ Y \subset X/k, \operatorname{cd}_X Y \ge \nu}} H^i(X \backslash Y, \mathbb{Q}) \bigg).$$

(vi) The statement of the classical Hodge conjecture for all $X \in \mathcal{V}_{\mathbb{C}}$, will be abbreviated by HC. For $X \in \mathcal{V}_{\mathbb{C}}$ of dimension d, the hard Lefschetz conjecture B(X) states that the inverse to the hard Lefschetz ismorphism

$$L^{d-i}_X: H^i(X, \mathbb{Q}) \xrightarrow{\sim} H^{2d-i}(X, \mathbb{Q}),$$

is algebraic cycle induced for all $i \leq d$, where L_X is the operation of cupping with a hyperplane section of X.

(vii) Let $\operatorname{CH}^r(X,m)$ be the higher Chow group introduced in [B]. We put $\operatorname{CH}^r(X,m;\mathbb{Q}) := \operatorname{CH}^r(X,m) \otimes \mathbb{Q}$. The classical Chow group is given by $\operatorname{CH}^r(X) = \operatorname{CH}^r(X,0)$. The subgroup of cycles algebraically equivalent to zero is denoted by $\operatorname{CH}^r_{\operatorname{alg}}(X) \subset \operatorname{CH}^r(X)$.

(viii) Let $Y \subset X$ be a Zariski closed subset, where $X \in \mathcal{V}_k$. If $d = \dim X$, we put $\operatorname{CH}_{d-r}(X) = \operatorname{CH}^r(X)$. Likewise let $\operatorname{CH}^r_Y(X) := \operatorname{CH}_{d-r}(Y)$, and $\operatorname{CH}^r_{Y,\mathrm{hom}}(X;\mathbb{Q}) := \ker \left(\operatorname{CH}^r_Y(X;\mathbb{Q}) \to H^{2r}_Y(X,\mathbb{Q})\right)$.

(ix) For $X \in \mathcal{V}_k$, consider the Abel-Jacobi map

$$AJ_X : \operatorname{CH}^r_{\operatorname{hom}}(X; \mathbb{Q}) \to J(H^{2r-1}(X, \mathbb{Q}(r))).$$

We put $\operatorname{CH}^{r}_{AJ}(X; \mathbb{Q}) := \ker AJ_X.$

3. A Variant of the Hodge Conjecture for K_1

We review some of the ideas in [K-L], some of which goes back to the work of Jannsen ([Ja2]). Let $X \in \mathcal{V}_k$ be given with algebraic subset $Y \subset X/k$. The localization sequence yields a s.e.s. of MHS:

$$0 \to \frac{H^{2r-1}(X, \mathbb{Q}(r))}{H^{2r-1}_Y(X, \mathbb{Q}(r))} \to H^{2r-1}(X \setminus Y, \mathbb{Q}(r)) \to H^{2r}_Y(X, \mathbb{Q}(r))^\circ \to 0,$$

where

$$H_Y^{2r}(X,\mathbb{Q}(r))^\circ := \ker \left(H_Y^{2r}(X,\mathbb{Q}(r)) \to H^{2r}(X,\mathbb{Q}(r)) \right).$$

Note that $H^{2r-1}(X, \mathbb{Q}(r))/H_Y^{2r-1}(X, \mathbb{Q}(r))$ is a pure Hodge structure of weight -1. Corresponding to this is a commutative diagram:

$$\begin{array}{cccc} \operatorname{CH}^{r}(X \setminus Y, 1; \mathbb{Q}) & \to & \operatorname{CH}^{r}_{Y}(X; \mathbb{Q})^{\circ} & \xrightarrow{\beta} & \operatorname{CH}^{r}_{\operatorname{hom}}(X; \mathbb{Q}) \\ (1) & & cl_{r,1} \\ & & \lambda \\ & & \lambda \\ \end{array} & & & \lambda \\ & & & \Delta \\ & & & \int \left(\frac{AJ_{X}}{H_{Y}^{2r-1}(X, \mathbb{Q}(r))} \right) \xrightarrow{\alpha} & \Gamma\left(H_{Y}^{2r}(X, \mathbb{Q}(r))^{\circ}\right) & \to & J\left(\frac{H^{2r-1}(X, \mathbb{Q}(r))}{H_{Y}^{2r-1}(X, \mathbb{Q}(r))}\right) \end{array}$$

where $\operatorname{CH}^r_Y(X; \mathbb{Q})^\circ$ are the cycles in $\operatorname{CH}^r_Y(X; \mathbb{Q})$ that are homologous to zero on X, and where \underline{AJ}_X is the composite Abel-Jacobi map

$$\operatorname{CH}^{r}_{\operatorname{hom}}(X;\mathbb{Q}) \xrightarrow{AJ_{X}} J(H^{2r-1}(X,\mathbb{Q}(r))) \to J\left(\frac{H^{2r-1}(X,\mathbb{Q}(r))}{H^{2r-1}_{Y}(X,\mathbb{Q}(r))}\right)$$

Let us assume that λ is surjective. Such is the case if the HC¹ holds for Y. Then the serpent lemma gives:

(2)
$$\frac{\ker\left(\underline{AJ}_X\big|_{\operatorname{Im}(\beta)}\right)}{\beta\left(\ker\lambda\right)} \simeq \frac{\Gamma\left(H^{2r-1}(X\setminus Y, \mathbb{Q}(r))\right)}{\operatorname{cl}_{r,1}\left(\operatorname{CH}^r(X\setminus Y, 1; \mathbb{Q})\right)}$$

Let $\widetilde{Y} \xrightarrow{\approx} Y$ be a desingularization. If we assume for the moment that the Gysin map $H^{2r-2cd_XY-1}(\widetilde{Y}, \mathbb{Q}) \to H^{2r-1}(X, \mathbb{Q})$ has a cycle induced right inverse (as implied by the HC), then as argued in [K-L],

(3)
$$\frac{\ker\left(\underline{AJ}_X\big|_{\mathrm{Im}(\beta)}\right)}{\beta\left(\ker\lambda\right)} = \frac{\beta\left(\ker\lambda\right) + \ker\left(AJ_X\big|_{\mathrm{Im}(\beta)}\right)}{\beta\left(\ker\lambda\right)}.$$

We recall that Bloch and Beilinson ([Be] 5.6) independently conjectured the following:

CONJECTURE 3.1 (BBC = Bloch-Beilinson Conjecture). If $k = \overline{\mathbb{Q}}$, then

$$AJ_X : \operatorname{CH}^r_{\operatorname{hom}}(X/\overline{\mathbb{Q}}; \mathbb{Q}) \hookrightarrow J(H^{2r-1}(X, \mathbb{Q}(r))),$$

¹Homological version, see [Ja2](§7); or if the reader prefers, assume the HC holds for a desingularization \tilde{Y} .

is injective.

Two extreme cases comes to mind:

• If $k = \overline{\mathbb{Q}}$, then the HC + BBC \Rightarrow cl_{r,1}(CH^r(X\Y,1;\mathbb{Q})) = $\Gamma(H^{2r-1}(X \setminus Y, \mathbb{Q}))^2$.

• (Jannsen [Ja2]) If $k = \mathbb{C}$ and $\operatorname{codim}_X Y = r$, then λ in (1) is an isomorphism, $H_Y^{2r-1}(X, \mathbb{Q}(r)) = 0$; moreover $\operatorname{cl}_{r,1}$ is surjective $\Leftrightarrow AJ_X$ is injective on $\operatorname{Im}(\beta)$. This implies surjectivity in the case r = 1, by the theory of the Picard variety; however for r > 1, AJ_X need not be injective (Mumford), hence $\operatorname{cl}_{r,1}$ need not be surjective.

A natural question is whether one can tweak the second scenario situation so that surjectivity is a possibility. As the higher Chow groups involve numerator conditions in the definition, this appears to be the case if one passes to the generic point. Namely:

Conjecture 3.2 ([K-L]).

$$\operatorname{cl}_{r,1}: \operatorname{CH}^r(\mathbb{C}(X), 1; \mathbb{Q}) \twoheadrightarrow \Gamma(H^{2r-1}(\mathbb{C}(X), \mathbb{Q}(r))),$$

is surjective.

Here we wish to make it clear that $\operatorname{CH}^r(\mathbb{C}(X), 1; \mathbb{Q}) := \operatorname{CH}^r(\operatorname{Spec}(\mathbb{C}(X)), 1; \mathbb{Q})$ and

$$H^{i}(\mathbb{C}(X),\mathbb{Q}) := \lim_{\substack{ cd_{X}Y=1 }} H^{i}(X \setminus Y,\mathbb{Q}).$$

PROPOSITION 3.3. The following statements are equivalent:

(i)
$$\Gamma(H^{2r-1}(\mathbb{C}(X),\mathbb{Q}(r))) = 0$$
 for all $X \in \mathcal{V}_{\mathbb{C}}$ and all $r > 1$.

(ii) Conjecture 3.2 holds for all $X \in \mathcal{V}_{\mathbb{C}}$ and all r.

PROOF. First, we may assume that r > 1, as $cl_{1,1}$ is surjective. Secondly, for dimension reasons $CH^r(\mathbb{C}(X), 1) = 0$ for r > 1. Thirdly

²As originally shown by M. Saito ([MSa]), this statement generalizes to $\operatorname{CH}^{r}(X \setminus Y, m; \mathbb{Q})$. A different proof of that generalization appears in [Ke-L].

 $\Gamma(H^{2r-1}(\mathbb{C}(X),\mathbb{Q}(r))) = 0$ implies $cl_{r,1}$ is obviously surjective. The proposition follows from this. \Box

To see why Conjecture 3.2 is plausible³, observe that by passing to a limit over all codimension 1 subvarieties of X, (2) becomes

(4)
$$\frac{\ker\left(\underline{AJ}_X: \mathrm{CH}^r_{\mathrm{hom}}(X; \mathbb{Q}) \to J\left(\frac{H^{2r-1}(X, \mathbb{Q}(r))}{N^1 \mathrm{H}^{2r-1}(X, \mathbb{Q}(r))}\right)\right)}{N^1 \mathrm{CH}^r(X; \mathbb{Q})} \\ \simeq \frac{\Gamma\left(H^{2r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)}{\mathrm{cl}_{r,1}\left(\mathrm{CH}^r(\mathbb{C}(X), 1; \mathbb{Q})\right)},$$

where $N^p \operatorname{CH}^r(X; \mathbb{Q}) \subset \operatorname{CH}^r(X; \mathbb{Q})$ is the subspace of cycles that are homologous to zero on algebraic subsets of codimension $\geq p$ in X, and $N^p H^i(X, \mathbb{Q}) := N^p_{\mathbb{C}} H^i(X, \mathbb{Q})$ is the coniveau filtration. Then (3) translates to

(5)
$$\frac{\ker(AJ_X) + N^1 \mathrm{CH}^r(X;\mathbb{Q})}{N^1 \mathrm{CH}^r(X;\mathbb{Q})} \simeq \frac{\Gamma(H^{2r-1}(\mathbb{C}(X),\mathbb{Q}(r)))}{\mathrm{cl}_{r,1}(\mathrm{CH}^r(\mathbb{C}(X),1;\mathbb{Q}))}.$$

REMARK 3.4. Note that the isomorphisms in (4) and (5) hinge on HC assumptions. For instance, (4) requires λ in (1) to be surjective.

In the case $r = d := \dim X$, the reader can easily check that the map $\operatorname{cl}_{d,1}$ in Conjecture 3.2 is unconditionally surjective. Further, according to [Ja1], there is some evidence to suggest that $\operatorname{ker}(AJ_X) \subset N^1\operatorname{CH}^r(X;\mathbb{Q})$. Next, observe that $\operatorname{CH}^r_{\operatorname{alg}}(X;\mathbb{Q}) = N^{r-1}\operatorname{CH}^r(X;\mathbb{Q})$, and that the restricted Abel-Jacobi map,

$$\operatorname{CH}^{r}_{\operatorname{alg}}(X; \mathbb{Q}) \twoheadrightarrow J(N^{r-1}H^{2r-1}(X, \mathbb{Q}(r))),$$

is surjective. When r = 2 one can easily check that

(6)
$$\frac{\operatorname{CH}^{2}_{\operatorname{alg}}(X;\mathbb{Q}) + \ker(AJ_{X})}{\operatorname{CH}^{2}_{\operatorname{alg}}(X;\mathbb{Q})} \simeq \frac{\Gamma(H^{3}(\mathbb{C}(X),\mathbb{Q}(2)))}{\operatorname{cl}_{2,1}(\operatorname{CH}^{2}(\mathbb{C}(X),1;\mathbb{Q}))} = \Gamma(H^{3}(\mathbb{C}(X),\mathbb{Q}(2))),$$

³Quite generally ([dJ-L]), we also conjecture that $\Gamma(H^{2r-m}(\mathbb{C}(X),\mathbb{Q}(r))) = 0$ for all $X \in \mathcal{V}_{\mathbb{C}}$ and $r \neq m$, and $\operatorname{cl}_{m,m} : \operatorname{CH}^{m}(\mathbb{C}(X),m) \twoheadrightarrow \Gamma(H^{m}(X,\mathbb{Z}(r)))$ is surjective. (Note: The vanishing $\Gamma(H^{2r-m}(\mathbb{C}(X),\mathbb{Q}(r))) = 0$ for r < m is a simple consequence of mixed Hodge theory.)

holds unconditionally.

4. A Descending Filtration

We recall the candidate Bloch-Beilinson (B-B) filtration constructed in [Lew1].

THEOREM 4.1. Let $X \in \mathcal{V}_{\mathbb{C}}$ be of dimension d. Then for all r, there is a filtration

$$\operatorname{CH}^{r}(X;\mathbb{Q}) = F^{0} \supset F^{1} \supset \cdots \supset F^{\nu} \supset F^{\nu+1} \supset \cdots \supset F^{r} \supset F^{r+1}$$
$$= F^{r+2} = \cdots,$$

which satisfies the following

- (i) $F^1 = \operatorname{CH}^r_{\operatorname{hom}}(X; \mathbb{Q}).$
- (ii) $F^2 \subset \operatorname{CH}^r_{A,I}(X; \mathbb{Q}).$

(iii) $F^{\nu_1} CH^{r_1}(X; \mathbb{Q}) \bullet F^{\nu_2} CH^{r_2}(X; \mathbb{Q}) \subset F^{\nu_1 + \nu_2} CH^{r_1 + r_2}(X; \mathbb{Q})$, where \bullet is the intersection product.

(iv) F^{ν} is preserved under the action of correspondences between smooth projective varieties in $\mathcal{V}_{\mathbb{C}}$

(v) Let $\operatorname{Gr}_F^{\nu} := F^{\nu}/F^{\nu+1}$ and assume that the Künneth components of the diagonal class $[\Delta_X] = \bigoplus_{p+q=2d} [\Delta_X(p,q)] \in H^{2d}(X \times X, \mathbb{Q}(d)))$ are algebraic and defined over K. Then

$$\Delta_X(2d-2r+\ell,2r-\ell)_*|_{\mathrm{Gr}^{\nu}_{\tau}\mathrm{CH}^r(X;\mathbb{O})} = \delta_{\ell,\nu} \cdot \mathrm{Identity}.$$

[If we assume the conjecture that homological and numerical equivalence coincide, then (v) says that $\operatorname{Gr}_{F}^{\nu}$ factors through the Grothendieck motive.]

(vi) Let $D^r(X) := \bigcap_{\nu} F^{\nu}$, and $k = \overline{\mathbb{Q}}$. If the BBC together with the HC holds, $D^r(X) = 0.^4$

REMARK 4.2. The way this filtration is constructed is as follows. Consider a $\overline{\mathbb{Q}}$ -spread $\rho : \mathfrak{X} \to \mathcal{S}$, where ρ is smooth and proper morphism of

⁴The formulation in [Lew1] states that if the analog of the BBC holds for smooth quasiprojective varieties defined over a number field, then $D^{r}(X) = 0$. That analog however, is implied by the BBC + HC.

quasiprojective varieties, and $K = \overline{\mathbb{Q}}(S)$. Let η be the generic point of $S/\overline{\mathbb{Q}}$, and hence $K := \overline{\mathbb{Q}}(\eta)$, with $X_K := \mathfrak{X}_{\eta}$. Using the cycle class map into absolute Hodge cohomology, $\operatorname{CH}^r(\mathfrak{X}/\overline{\mathbb{Q}};\mathbb{Q}) \to H^{2r}_{\mathcal{H}}(\mathfrak{X},\mathbb{Q}(r))$, there is a decreasing filtration $\mathcal{F}^{\nu}\operatorname{CH}^r(\mathfrak{X}/\overline{\mathbb{Q}};\mathbb{Q})$, with the property that $\operatorname{Gr}^{\nu}_{\mathcal{F}}\operatorname{CH}^r(\mathfrak{X}/\overline{\mathbb{Q}};\mathbb{Q}) \hookrightarrow E^{\nu,2r-\nu}_{\infty}(\rho)$, where $E^{\nu,2r-\nu}_{\infty}(\rho)$ is the ν -th graded piece of a Leray filtration associated to ρ . The term $E^{\nu,2r-\nu}_{\infty}(\rho)$ fits in a short exact sequence:

$$0 \to \underline{E}_{\infty}^{\nu,2r-\nu}(\rho) \to E_{\infty}^{\nu,2r-\nu}(\rho) \to \underline{\underline{E}}_{\infty}^{\nu,2r-\nu}(\rho) \to 0,$$

where

$$\underline{\underline{E}}_{\infty}^{\nu,2r-\nu}(\rho) = \Gamma\big(H^{\nu}(\mathcal{S}(\mathbb{C}), R^{2r-\nu}\rho_*\mathbb{Q}(r))\big),$$

$$\underline{E}_{\infty}^{\nu,2r-\nu}(\rho) = \frac{J\left(W_{-1}H^{\nu-1}(\mathcal{S}(\mathbb{C}), R^{2r-\nu}\rho_*\mathbb{Q}(r))\right)}{\Gamma\left(\mathrm{Gr}_W^0 H^{\nu-1}(\mathcal{S}(\mathbb{C}), R^{2r-\nu}\rho_*\mathbb{Q}(r))\right)} \subset J\left(H^{\nu-1}(\mathcal{S}(\mathbb{C}), R^{2r-\nu}\rho_*\mathbb{Q}(r))\right).$$

[Here the latter inclusion is a result of the s.e.s.:

$$W_{-1}H^{\nu-1}(\mathcal{S}(\mathbb{C}), R^{2r-\nu}\rho_*\mathbb{Q}(r)) \hookrightarrow W_0H^{\nu-1}(\mathcal{S}(\mathbb{C}), R^{2r-\nu}\rho_*\mathbb{Q}(r))$$

$$\twoheadrightarrow \operatorname{Gr}^0_W H^{\nu-1}(\mathcal{S}(\mathbb{C}), R^{2r-\nu}\rho_*\mathbb{Q}(r)).]$$

One then has (by definition)

$$F^{\nu}\mathrm{CH}^{r}(X_{K};\mathbb{Q}) = \lim_{\stackrel{\rightarrow}{U \subset S/\mathbb{Q}}} \mathcal{F}^{\nu}\mathrm{CH}^{r}(\mathfrak{X}_{U}/\overline{\mathbb{Q}};\mathbb{Q}), \quad \mathfrak{X}_{U} := \rho^{-1}(U).$$

Now put,

$$E_{\infty}^{\nu,2r-\nu}(\eta_{\mathcal{S}}) = \lim_{\substack{\longrightarrow\\ U\subset \mathcal{S}/\overline{\mathbb{Q}}}} E_{\infty}^{\nu,2r-\nu}(\rho)$$

and the same definition for $\underline{E}_{\infty}^{\nu,2r-\nu-m}(\eta_{\mathcal{S}})$ and $\underline{\underline{E}}_{\infty}^{\nu,2r-\nu}(\eta_{\mathcal{S}})$. Specifically,

$$\underline{\underline{E}}_{\infty}^{\nu,2r-\nu}(\eta_{\mathcal{S}}) = \Gamma\left(H^{\nu}(\eta_{\mathcal{S}}, R^{2r-\nu}\rho_{*}\mathbb{Q}(r))\right),$$
$$\underline{\underline{E}}_{\infty}^{\nu,2r-\nu}(\eta_{\mathcal{S}}) = J\left(W_{-1}H^{\nu-1}(\eta_{\mathcal{S}}, R^{2r-\nu}\rho_{*}\mathbb{Q}(r))\right)/\Gamma(\mathrm{Gr}_{W}^{0}).$$

James D. LEWIS

We have a s.e.s.:

$$0 \to \underline{E}_{\infty}^{\nu,2r-\nu}(\eta_{\mathcal{S}}) \to E_{\infty}^{\nu,2r-\nu}(\eta_{\mathcal{S}}) \to \underline{\underline{E}}_{\infty}^{\nu,2r-\nu}(\eta_{\mathcal{S}}) \to 0,$$

and an injection:

$$\operatorname{Gr}_{F}^{\nu}\operatorname{CH}^{r}(X_{K};\mathbb{Q}) \hookrightarrow E_{\infty}^{\nu,2r-\nu}(\eta_{\mathcal{S}}).$$

We then define

$$F^{\nu}\mathrm{CH}^{r}(X/\mathbb{C};\mathbb{Q}) = \lim_{\substack{\to\\K\subset\mathbb{C}}} F^{\nu}\mathrm{CH}^{r}(X_{K};\mathbb{Q}),$$

over all finitely generated subfields $K \subset \mathbb{C}$ over $\overline{\mathbb{Q}}$, which becomes a candidate B-B filtration on $\operatorname{CH}^r(X_{\mathbb{C}}; \mathbb{Q})$.

Now let $\sigma \in \operatorname{Aut}(\mathbb{C}/\overline{\mathbb{Q}})$. Then the action of σ on $\operatorname{CH}^r(\mathfrak{X}/\overline{\mathbb{Q}};\mathbb{Q})$ is the identity; however in the limit, and after identifying K with its embedding in \mathbb{C} , we arrive at $\sigma(F^{\nu}\operatorname{CH}^r(X_K;\mathbb{Q}) = F^{\nu}\operatorname{CH}^r(X_{\sigma K};\mathbb{Q}))$. In particular, we deduce the following:

PROPOSITION 4.3. Let $\sigma \in \operatorname{Aut}(\mathbb{C}/\overline{\mathbb{Q}})$, and $X = X/\mathbb{C}$ be a smooth projective variety. Then

$$\sigma: F^{\nu} \mathrm{CH}^{r}(X; \mathbb{Q}) \xrightarrow{\sim} F^{\nu} \mathrm{CH}^{r}(X_{\sigma}; \mathbb{Q}),$$

is an isomorphism.

Now let us further assume that S is affine. Let $V \subset S(\mathbb{C})$ be smooth, irreducible, closed subvariety of dimension $\nu - 1$ (note that S affine $\Rightarrow V$ affine). One has a commutative square

$$\begin{array}{rccc} \chi_V & \hookrightarrow & \chi(\mathbb{C}) \\ \rho_V \downarrow & & \downarrow \rho \\ V & \hookrightarrow & \mathcal{S}(\mathbb{C}), \end{array}$$

and a commutative diagram

where $\underline{\underline{E}}_{\infty}^{\nu,2r-\nu}(\rho_V) = 0$ follows from the weak Lefschetz theorem for locally constant systems over affine varieties (see for example [Ar], and the references cited there). Thus for any $\xi \in \operatorname{Gr}_{\mathcal{F}}^{\nu}\operatorname{CH}^{r}(\mathfrak{X}/\overline{\mathbb{Q}};\mathbb{Q})$, we have a "normal function" ν_{ξ} with the property that for any such smooth irreducible closed $V \subset S(\mathbb{C})$ of dimension $\nu - 1$, we have a value $\nu_{\xi}(V) \in \underline{E}_{\infty}^{\nu,2r-\nu}(\rho_{V})$. Here we think of V as a point on a suitable open subset of the Chow variety of dimension $\nu - 1$ subvarieties of $\mathcal{S}(\mathbb{C})$ and ν_{ξ} defined on that subset. Note that it is rather clear from this that $F^2\operatorname{CH}^r(X;\mathbb{Q}) \subset \operatorname{CH}_{AJ}^r(X;\mathbb{Q})$.

DEFINITION 4.4 ([Ke-L]). ν_{ξ} is called an arithmetic normal function.

An important observation which seems to be acknowledged only among experts (see [K-P], Prop. 86 for their version of all of this), is the following:

PROPOSITION 4.5. The following statements are equivalent:

(i) $F^2 CH^r(X; \mathbb{Q}) = CH^r_{A,I}(X; \mathbb{Q})$ for all $X \in \mathcal{V}_{\mathbb{C}}$.

(ii) For any smooth and proper morphism $\rho : \mathfrak{X} \to \mathcal{S}$ of smooth quasiprojective varieties over $\overline{\mathbb{Q}}$, and cycle induced normal function

$$\nu_{\xi}: \mathcal{S}(\mathbb{C}) \to \coprod_{t \in \mathcal{S}(\mathbb{C})} J(H^{2r-1}(X_t, \mathbb{Q}(r))),$$

 $\xi \in \mathcal{F}^1 \mathrm{CH}^r(\mathfrak{X}/\overline{\mathbb{Q}};\mathbb{Q})$, the zero locus (equiv. torsion locus of a corresponding integrally defined normal function) $\mathcal{Z}(\nu_{\xi})$ of ν_{ξ} is a countable union of algebraic subvarieties over $\overline{\mathbb{Q}}$.

(iii) For any smooth and proper morphism $\rho_V : \mathfrak{X}_V \to V$ of smooth quasiprojective varieties over a subfield $L \subset \mathbb{C}$ finitely generated over $\overline{\mathbb{Q}}$, and cycle induced normal function

$$\nu_{\xi}: V(\mathbb{C}) \to \coprod_{t \in V(\mathbb{C})} J\big(H^{2r-1}(X_t, \mathbb{Q}(r))\big),$$

 $\xi \in \mathcal{F}^1 \mathrm{CH}^r(\mathfrak{X}_V/L; \mathbb{Q})$ (= relatively homologous to zero with respect to ρ_V), the zero locus $\mathcal{Z}(\nu_{\xi})$ of ν_{ξ} is a countable union of algebraic subvarieties over \overline{L} .

PROOF. The implication (ii) \Rightarrow (i) is easy and left to the reader. Going the other way, we know that $\mathcal{Z}(\nu_{\xi})$ is a countable union of analytic varieties. For any $p \in \mathcal{Z}(\nu_{\xi})$, the $\overline{\mathbb{Q}}$ closure $\overline{\{p\}} \subset \mathcal{S}/\overline{\mathbb{Q}}$ defines a subfamily $\mathfrak{X}_{\overline{\{p\}}} \to \overline{\{p\}}$, whose generic fiber satisfies $F^2 \operatorname{CH}^r(\mathfrak{X}_{\overline{\{p\}},\eta}; \mathbb{Q}) = \operatorname{CH}^r_{AJ}(\mathfrak{X}_{\overline{\{p\}},\eta}; \mathbb{Q})$. Thus ν_{ξ} vanishes on $\overline{\{p\}}$. Thus $\overline{\{p\}} \subset \mathcal{Z}(\nu_{\xi})$. Since the set of all $\overline{\mathbb{Q}}$ subvarieties of $\mathcal{S}/\overline{\mathbb{Q}}$ is countable, likewise $\mathcal{Z}(\nu_{\xi})$ is a countable union of varieties over $\overline{\mathbb{Q}}$. To show (ii) \Rightarrow (iii), consider $\rho_V : \mathfrak{X}_V \to V$ defined over L. Let $\mathcal{S} \to \mathcal{T}$ be a $\overline{\mathbb{Q}}$ -spread of V, with generic points $\eta \in \mathcal{S}/\overline{\mathbb{Q}}$ and $\eta_{\mathcal{T}} \in \mathcal{T}/\overline{\mathbb{Q}}$, and where we have $L = \overline{\mathbb{Q}}(\eta_{\mathcal{T}}), V/L = \mathcal{S}_{\eta_{\mathcal{T}}}, \mathfrak{X}_V = \mathfrak{X}_{\eta_{\mathcal{T}}}$. Correspondingly we have a $\overline{\mathbb{Q}}$ -spread $\mathfrak{X} \to \mathcal{S}$ with $\mathfrak{X}_{\eta} = \mathfrak{X}_{\eta_V}$. Note that $\xi \in \mathcal{F}^1 \operatorname{CH}^r(\mathfrak{X}_V/L; \mathbb{Q})$ is the restriction of a spread cycle $\tilde{\xi} \in \mathcal{F}^1 \operatorname{CH}^r(\mathfrak{X}/\overline{\mathbb{Q}}; \mathbb{Q})$, and if $\Sigma \subset \mathcal{S}/\overline{\mathbb{Q}}$ is an irreducible component of the torsion locus of $\nu_{\tilde{\xi}}$, then $\Sigma_{\eta_{\mathcal{T}}}$ corresponds to a component of the locus of ν_{ξ} over \overline{L} in V/\overline{L} . Finally, the converse (iii) \Rightarrow (ii) is obvious. \Box

It is instructive to give a direct proof of the following result, which can be deduced from [Ja1] (Thm 6.1). We will need this result in the sections to follow. Recall dim X = d, and the statement B(X) of the hard Lefschetz conjecture for X.

PROPOSITION 4.6. Let us assume B(X) and that $D^r(X) \subset N^{\nu-1}CH^r(X;\mathbb{Q})$. Then

$$F^{\nu}\mathrm{CH}^{r}(X;\mathbb{Q}) \subset N^{\nu-1}\mathrm{CH}^{r}(X;\mathbb{Q}),$$

for $\nu \geq 1$.

PROOF. For simplicity, we will assume that $D^r(X) = 0$, keeping in mind that the situation $D^r(X) \subset N^{\nu-1} \operatorname{CH}^r(X; \mathbb{Q})$ is similar. According to Theorem 4.1, and under the above assumptions,

$$\operatorname{Gr}_{F}^{\nu}\operatorname{CH}^{r}(X/\mathbb{C};\mathbb{Q}) \simeq \Delta_{X}(2d-2r+\nu,2r-\nu)_{*}\operatorname{CH}^{r}(X/\mathbb{C};\mathbb{Q}),$$

and $F^{r+1}\operatorname{CH}^r(X/\mathbb{C};\mathbb{Q}) = 0$. Let $\xi \in F^{\nu}\operatorname{CH}^r(X/\mathbb{C};\mathbb{Q})$ be given. By writing $\xi = \Delta_X(2d - 2r + \nu, 2r - \nu)_*\xi + (\xi - \Delta_X(2d - 2r + \nu, 2r - \nu)_*\xi)$, observing that $(\xi - \Delta_X(2d - 2r + \nu, 2r - \nu)_*\xi) \in F^{\nu+1}\operatorname{CH}^r(X;\mathbb{Q})$, and applying downward induction on ν , we can replace ξ by $\Delta_X(2d - 2r + \nu, 2r - \nu)_*\xi$. If $2r - \nu < d$, then $H^{2r-\nu}(X,\mathbb{Q}(r)) \hookrightarrow H^{2r-\nu}(Y,\mathbb{Q}(r))$ for any smooth hypersurface $Y \subset X$. Then B(X) implies a cycle induced right inverse $[w]_*: H^{2r-\nu}(Y,\mathbb{Q}(r)) \twoheadrightarrow H^{2r-\nu}(X,\mathbb{Q}(r))$. Hence $w_*: \operatorname{Gr}_F^{\nu}\operatorname{CH}^r(Y;\mathbb{Q}) \twoheadrightarrow$ $\operatorname{Gr}_F^{\nu}\operatorname{CH}^r(X;\mathbb{Q})$ is surjective and $w_*(N^{\nu-1}\operatorname{CH}^r(Y;\mathbb{Q})) \subset N^{\nu-1}\operatorname{CH}^r(X;\mathbb{Q})$. So by induction on dimension, we are done in this case. So let us assume that $2r-\nu \ge d$, and put $\underline{r} = d-r$. Then $d \ge 2\underline{r}+\nu = 2\underline{r}+m+1$, where $m = \nu-1$. According to [Ja1] (Prop. 4.8(b)), based on a corresponding result of Nori, there exists a smooth complete intersection $Y \subset X$ of codimension $m = \nu-1$ such that ξ is in the image of $\operatorname{CH}_{\underline{r},\hom}(Y;\mathbb{Q}) \to \operatorname{CH}_{\underline{r}}(X;\mathbb{Q}) = \operatorname{CH}^r(X;\mathbb{Q})$. Thus $\xi \in N^{\nu-1}\operatorname{CH}^r(X;\mathbb{Q})$ and we are done. \Box

Recall that $N^{r-1}CH^r(X;\mathbb{Q}) = CH^r_{alg}(X;\mathbb{Q})$, and hence (and as also pointed out in [Ja1]), under the assumptions in Proposition 4.6, $F^rCH^r(X;\mathbb{Q}) \subset CH^r_{alg}(X;\mathbb{Q})$. However it is worthwhile noting that:

PROPOSITION 4.7. Suppose that $X/\mathbb{C} = X_0 \times \mathbb{C}$, where $X_0 = X_0/\overline{\mathbb{Q}}$. Assume that the BBC holds. Then $F^2 \mathrm{CH}^r(X/\mathbb{C};\mathbb{Q}) \subset \mathrm{CH}^r_{\mathrm{alg}}(X/\mathbb{C};\mathbb{Q})$.

PROOF. Let $\xi \in \operatorname{CH}^r(X/\mathbb{C};\mathbb{Q})$. Then there exists a smooth quasiprojective variety $S/\overline{\mathbb{Q}}$ and cycle $\tilde{\xi} \in \operatorname{CH}^r(S \times_{\overline{\mathbb{Q}}} X_0;\mathbb{Q})$ such that $\xi = \tilde{\xi}_{\eta}$ in $\operatorname{CH}^r(X/\mathbb{C};\mathbb{Q})$, where η is the generic point of $S/\overline{\mathbb{Q}}$, with appropriate embedding $\overline{\mathbb{Q}}(\eta) \hookrightarrow \mathbb{C}$. Since $S(\overline{\mathbb{Q}}) \neq \emptyset$ (Nullstellensatz), we can choose $p \in S(\overline{\mathbb{Q}})$, and set $\xi_0 = \tilde{\xi}_p \in \operatorname{CH}^r(X_0;\mathbb{Q})$. Note that $\xi - \xi_0 \in \operatorname{CH}^r_{\operatorname{alg}}(X/\mathbb{C};\mathbb{Q})$. Now assume that $\xi \in F^2\operatorname{CH}^r(X;\mathbb{Q})$. Then $\xi_0 \in \operatorname{CH}^r_{\operatorname{hom}}(X_0;\mathbb{Q})$ and $AJ_X(\xi_0) =$ $AJ_X(\xi_0 - \xi) \in J^r_{\operatorname{alg}}(X(\mathbb{C}))_{\mathbb{Q}}$, where $J^r_{\operatorname{alg}}(X(\mathbb{C})) := AJ_X(\operatorname{CH}^r_{\operatorname{alg}}(X/\mathbb{C}))$. Note that $J^r_{\text{alg}}(X)$ has an underlying $\overline{\mathbb{Q}}$ -structure given by $AJ_X(\operatorname{CH}^r(X_0/\overline{\mathbb{Q}}))$; moreover the action of $\operatorname{Aut}(\mathbb{C}/\overline{\mathbb{Q}})$ is compatible with

$$AJ_X|_{\operatorname{CH}^r_{\operatorname{alg}}(X/\mathbb{C};\mathbb{Q})} : \operatorname{CH}^r_{\operatorname{alg}}(X/\mathbb{C};\mathbb{Q}) \twoheadrightarrow J^r_{\operatorname{alg}}(X(\mathbb{C}))_{\mathbb{Q}}.$$

For any $\sigma \in \operatorname{Aut}(\mathbb{C}/\overline{\mathbb{Q}})$, we have

$$\sigma(AJ_X(\xi_0)) = \sigma(AJ_X(\xi_0 - \xi)) = AJ_X((\xi_0 - \xi)^{\sigma})$$
$$= AJ_X(\xi_0^{\sigma} - \xi^{\sigma}) = AJ_X(\xi_0^{\sigma}) = AJ_X(\xi_0),$$

using $\xi^{\sigma} \in F^2 \operatorname{CH}^r(X; \mathbb{Q}) \subset \operatorname{CH}^r_{AJ}(X; \mathbb{Q})$. Hence $AJ_X(\xi_0) \in J^r_{\operatorname{alg}}(X_0(\overline{\mathbb{Q}}))_{\mathbb{Q}}$, and so there exists $\xi'_0 \in \operatorname{CH}^r_{\operatorname{alg}}(X_0/\overline{\mathbb{Q}}; \mathbb{Q})$ such that $AJ(\xi_0) = AJ_X(\xi'_0)$. By the BBC, $\xi_0 = \xi'_0 \in \operatorname{CH}^r_{\operatorname{alg}}(X_0/\overline{\mathbb{Q}}; \mathbb{Q})$. Thus $\xi \in \operatorname{CH}^r_{\operatorname{alg}}(X/\mathbb{C}; \mathbb{Q})$. \Box

REMARK 4.8. Recall $X \in \mathcal{V}_{\mathbb{C}}$. As pointed out in [K-P] (Theorem 88), and based on a similar argument and result in [S], we have

$$F^{2} \bigcap \operatorname{CH}_{\operatorname{alg}}^{r}(X; \mathbb{Q})$$

= ker $\left(AJ_{X} \Big|_{\operatorname{CH}_{\operatorname{alg}}^{r}(X; \mathbb{Q})} : \operatorname{CH}_{\operatorname{alg}}^{r}(X; \mathbb{Q}) \to J \left(H^{2r-1}(X, \mathbb{Q}(r)) \right) \right).$

[This really stems from the fact that $AJ_X(CH^r_{alg}(X))$ is an Abelian variety defined over the same field of definition as X.] Then with regard to the expression in (6), we have:

COROLLARY 4.9. (i)

$$\Gamma(H^3(\mathbb{C}(X),\mathbb{Q}(2))) = 0 \Rightarrow F^2 \mathrm{CH}^2(X;\mathbb{Q}) = \mathrm{CH}^2_{AJ}(X;\mathbb{Q}).$$

(ii) Conversely, if B(X) holds and $D^2(X) \subset CH^2_{alg}(X; \mathbb{Q})$, then

$$F^{2}\mathrm{CH}^{2}(X;\mathbb{Q}) = \mathrm{CH}^{2}_{AJ}(X;\mathbb{Q}) \Rightarrow \Gamma(H^{3}(\mathbb{C}(X),\mathbb{Q}(2))) = 0.$$

5. Some Evidence for Conjecture 3.2

Let $X \in \mathcal{V}_{\mathbb{C}}$ be given with dim X = d. Recall that $\Gamma(H^{2d-1}(\mathbb{C}(X), \mathbb{Q}(d))) = 0$ for d > 1. Our next piece of evidence is an immediate consequence of (6) above.

COROLLARY 5.1. Let $X \in \mathcal{V}_{\mathbb{C}}$ be given such that $\operatorname{CH}^2_{AJ}(X;\mathbb{Q}) \subset \operatorname{CH}^2_{\operatorname{alg}}(X;\mathbb{Q})$. Then $\Gamma(H^3(\mathbb{C}(X),\mathbb{Q}(2))) = 0$.

Quite generally, if one considers (4) and Remark 3.4 above, then we deduce⁵:

COROLLARY 5.2. Let $X \in \mathcal{V}_{\mathbb{C}}$, dim X = d, r > 1 be given such that $\operatorname{CH}^{r}_{AJ}(X;\mathbb{Q}) \subset N^{1}\operatorname{CH}^{r}(X;\mathbb{Q})$. Let us further assume either (i) $d \leq 4$, or (ii) $r \in \{2, d-1\}$, or (iii) r, d arbitrary and the HC holds. Then $\Gamma(H^{2r-1}(\mathbb{C}(X),\mathbb{Q}(r))) = 0$.

We also have:

THEOREM 5.3. (i) Let X be a smooth complete intersection of dimension d with $H^0(X, \Omega_X^d) = 0$. Assume r > 1 and that either (i) $d \le 4$, or (ii) $r \in \{2, d-1\}$, or (iii) r, d arbitrary and the HC holds. Then $\Gamma(H^{2r-1}(\mathbb{C}(X), \mathbb{Q}(r))) = 0$.

(ii) Let X be a smooth complete intersection of dimension d. Let us assume the HC. Then for all r > 1 with $d \neq 2r - 1$ and $D^r(X) \subset N^1 \operatorname{CH}^r(X; \mathbb{Q})$, we have $\Gamma(H^{2r-1}(\mathbb{C}(X), \mathbb{Q}(r))) = 0$.

PROOF. Both parts rely on showing that $\operatorname{CH}^{r}_{\operatorname{hom}}(X;\mathbb{Q}) = N^{1}\operatorname{CH}^{r}(X;\mathbb{Q})$, using (4), and whatever is required to ensure that λ in (1) is surjective.

Part (i). According to [Ro], $CH_0(X) \simeq \mathbb{Z}$. Thus by a standard diagonal argument due to J.-L. Colliot-Thélène/S. Bloch, we have

$$N \cdot \Delta_X \sim_{\mathrm{rat}} \Gamma_1 + \Gamma_2,$$

where $|\Gamma_1| \subset X \times D$, $|\Gamma_2| \subset p \times X$, $\operatorname{codim}_X D = 1$, $p \in X$ a point, for some $N \in \mathbb{N}$. Thus

$$\operatorname{CH}^{r}_{\operatorname{hom}}(X;\mathbb{Q}) = N \cdot \Delta_{X,*}\operatorname{CH}^{r}_{\operatorname{hom}}(X;\mathbb{Q})$$
$$= \Gamma_{1,*}\operatorname{CH}^{r}_{\operatorname{hom}}(X;\mathbb{Q}) + \Gamma_{2,*}\operatorname{CH}^{r}_{\operatorname{hom}}(X;\mathbb{Q}) \subset N^{1}\operatorname{CH}^{r}(X;\mathbb{Q}).$$

Then (i) follows from (4) and Remark 3.4.

⁵This can also be deduced from [K-L].

Part (ii). By the Lefschetz theorems, one can choose a decomposition of the diagonal class

$$\Delta_X = \bigoplus_{p+q=2d} \Delta_X(p,q), \quad \left[\Delta_X(p,q)\right] \in H^p(X,\mathbb{Q}) \otimes H^q(X,\mathbb{Q}),$$

such that $\Delta_X(p,q)_* \operatorname{CH}^r_{\operatorname{hom}}(X;\mathbb{Q}) \subset N^1 \operatorname{CH}^r(X;\mathbb{Q})$ for $(p,q) \neq (d,d)$. So it suffices to show that $\Delta_X(d,d)_* \operatorname{CH}^r_{\operatorname{hom}}(X;\mathbb{Q}) \subset N^1 \operatorname{CH}^r(X;\mathbb{Q})$ as well. But $d = 2r - \nu$ for some $\nu \in \mathbb{Z}$, and $\operatorname{Gr}^{\nu}_F \operatorname{CH}^r_{\operatorname{hom}}(X;\mathbb{Q}) \simeq \Delta_X(d,d)_* \operatorname{CH}^r_{\operatorname{hom}}(X;\mathbb{Q})$. This is zero modulo $D^r(X)$ if $\nu \leq 0$. For $\nu \geq 2$, we apply Proposition 4.6. Finally the case $\nu = 1$ is excluded. \Box

6. Main Theorem

THEOREM 6.1. Consider these two statements:

(i) Conjecture 3.2 holds for all $X \in \mathcal{V}_{\mathbb{C}}$, (and all r).

(ii) $F^2 \operatorname{CH}^r(X; \mathbb{Q}) = \operatorname{CH}^r_{A,I}(X; \mathbb{Q})$ for all $X \in \mathcal{V}_{\mathbb{C}}$, (and all r).

If we assume the HC, then $(i) \Rightarrow (ii)$. If we further assume that $D^r(X) \subset N^1 \operatorname{CH}^r(X; \mathbb{Q})$, then $(ii) \Rightarrow (i)$.

REMARK 6.2. (1) Although statement (i) is no more accessible than (ii), the evidence in support of (i) is more apparent, in light of the results and remarks in [K-L], [Ja1], and the previous section.

(ii) The proof of this theorem relies only on the *properties* of the filtration in Theorem 4.1.

PROOF. (of theorem) (ii) \Rightarrow (i): Under the given assumptions and according to Proposition 4.6, $F^2 \operatorname{CH}^r(X; \mathbb{Q}) \subset N^1 \operatorname{CH}^r(X; \mathbb{Q})$. Thus (ii) \Rightarrow (i) is immediate from (5). Thus we need only show that (i) \Rightarrow (ii). Since $F^2 \operatorname{CH}^r(X; \mathbb{Q}) \subset \ker(AJ_X)$, it suffices to prove the reverse inclusion $\ker(AJ_X) \subset F^2 \operatorname{CH}^r(X; \mathbb{Q})$. Let $\xi \in \ker(AJ_X)$. Since we are assuming Conjecture 3.2, it follows from (5) that $\xi \in N^1 \operatorname{CH}^r(X; \mathbb{Q})$. Thus ξ is homologous to zero on some pure codimension one algebraic subset $Y \subset X$. We need the following ingredient.

LEMMA 6.3. Let us assume the HC and let Y be a pure codimension one subvariety of a smooth projective variety X. Then there is a smooth

variety \widetilde{Y} of [pure] dim \widetilde{Y} = dim Y, and a morphism $\widetilde{Y} \to Y$ such that

$$\operatorname{CH}^{\bullet}_{\operatorname{hom}}(Y;\mathbb{Q}) \twoheadrightarrow \operatorname{CH}^{\bullet}_{\operatorname{hom}}(Y;\mathbb{Q}),$$

is surjective.

REMARK 6.4. (i) This lemma seems to be related to a statement in Remark 5.13 in [Ja1]. More precisely, and in our notation, is the following statement:

If $f : \tilde{Z} \to Z$ is a surjective, generically finite morphism of irreducible projective varieties, with \tilde{Z} smooth, then $f_* : \operatorname{CH}^{\bullet}_{\operatorname{hom}}(\tilde{Z}; \mathbb{Q}) \to \operatorname{CH}^{\bullet}_{\operatorname{hom}}(Z; \mathbb{Q})$ is surjective.

From a conjectural standpoint, we expect that this statement is true.

(ii) The assumption that Y has codimension one in the lemma is only used to simplify the proof. We leave it to the reader to generalize the statement of the lemma for arbitrary codimension Y; one possibility being aforementioned statement in (i) above, under the assumption of the HC.

PROOF. (of the lemma.) Let $\rho_X : X' \xrightarrow{\approx} X$ be a proper modification of X for which $Y' := \rho_X^{-1}(Y)$ is a NCD, with inclusions $j : Y \hookrightarrow X$, $j' : Y' \hookrightarrow X'$, and morphism $\rho_Y := \rho_X|_{Y'}$, and where $X' \setminus Y' \simeq X \setminus Y$. This observation, together with the localization sequences associated to jand j' and the cohomology of blow-ups, leads to the commutative diagram:

Now let $\xi_0 \in \operatorname{CH}_{\operatorname{hom}}^{r-1}(Y;\mathbb{Q})$. Then using $X \setminus Y \simeq X' \setminus Y'$ together with the localization sequence for Chow groups associated to the pairs (X', Y') and (X, Y), there exists $\xi_1 \in \operatorname{CH}^{r-1}(Y';\mathbb{Q})$ for which $j'_*(\xi_1) = \rho^*_X(j_*(\xi_0))$ and $\rho_{Y,*}(\xi_1) = \xi_0$. This is accomplished with the aid of the diagram below.

Note that

$$\operatorname{CH}^{r}(X';\mathbb{Q}) = \rho_{X}^{*}\operatorname{CH}^{r}(X;\mathbb{Q}) \bigoplus \ker \left\{ \rho_{X,*} : \operatorname{CH}^{r}(X';\mathbb{Q}) \to \operatorname{CH}^{r}(X;\mathbb{Q}) \right\}.$$

$$H^{2r}(X',\mathbb{Q}) = \rho_X^* H^{2r}(X,\mathbb{Q}) \bigoplus \ker \rho_{X,*}$$

Then on cohomology $[\xi_1] \in \ker \rho_{Y,*}$ in (7), and yet by construction $[\xi_1] \mapsto 0 \in \ker \rho_{X,*}$. Thus by diagram (7), $\xi_1 \in \operatorname{CH}^{r-1}_{\operatorname{hom}}(Y';\mathbb{Q})$ and hence $\rho_{Y,*}$: $\operatorname{CH}^{r-1}_{\operatorname{hom}}(Y';\mathbb{Q}) \twoheadrightarrow \operatorname{CH}^{r-1}_{\operatorname{hom}}Y;\mathbb{Q})$ is surjective⁶ for all r. Write $Y' = \bigcup_{i=1}^{N} Y'_{i}$,

⁶Quite generally, this result can be deduced from the s.e.s. $0 \to \operatorname{CH}_{Y}^{r}(X, m; \mathbb{Q}) \to \operatorname{CH}_{Y'}^{r}(X', m; \mathbb{Q}) \bigoplus \operatorname{CH}^{r}(X, m; \mathbb{Q}) \to \operatorname{CH}^{r}(X', m; \mathbb{Q}) \to 0$, together with a corresponding s.e.s. on cohomology, given in [Lew2]. In this generalization, Y is any proper closed subset of X, with Y' a NCD in X'.

 $Y'_{[1]} = \coprod_{i=1}^{N} Y_j$. For $I = \{i_1 < \cdots < i_\ell\}$, put $Y'_I = \bigcap_{j=1}^{\ell} Y'_{i_j}$, $Y'_{[\ell]} = \coprod_{|I|=\ell} Y'_I$. From the simplicial complex $Y'_{[\bullet]} \to Y'$, we arrive at:

$$CH^{r}(Y') \simeq \frac{z^{r}(Y'_{[1]})}{Gy(z^{r-1}(Y'_{[2]})) + z^{r}_{rat}(Y'_{[1]})} \simeq \frac{CH^{r}(Y'_{[1]})}{Gy(CH^{r-1}(Y'_{[2]}))},$$

where Gy is the (signed) Gysin map. Further, relating this to a corresponding cohomological complex, together with the HC, we arrive at:

$$\frac{\mathrm{CH}^{r}(Y';\mathbb{Q})}{\mathrm{CH}^{r}_{\mathrm{hom}}(Y';\mathbb{Q})} \simeq \frac{H^{2r}_{\mathrm{alg}}(Y'_{[1]};\mathbb{Q})}{\mathrm{Gy}\big(H^{2r-2}_{\mathrm{alg}}(Y'_{[2]},\mathbb{Q})\big)},$$

where $H^{2p}_{\text{alg}}(W, \mathbb{Q}) \subset H^{2p}(W, \mathbb{Q})$ is the subspace of algebraic cocycles, for $W \in \mathcal{V}_{\mathbb{C}}$. Now put $\widetilde{Y} = Y'_{[1]}$. With the aid of the diagram,

it follows that the induced proper pushforward $\operatorname{CH}^{\bullet}_{\operatorname{hom}}(\widetilde{Y}; \mathbb{Q}) \twoheadrightarrow \operatorname{CH}^{\bullet}_{\operatorname{hom}}(Y; \mathbb{Q})$ is surjective. \Box

Now returning to the proof of Theorem 6.1, consider the composite map $\sigma: \widetilde{Y} \to Y \hookrightarrow X$. By the lemma there exists $\xi_0 \in F^1 \operatorname{CH}^{r-1}(\widetilde{Y}; \mathbb{Q})$ for which $\sigma_*(\xi_0) = \xi \in \ker(AJ_X)$. The graph of σ determines a fundamental class $[\sigma] \in H^{2d}(\widetilde{Y} \times X, \mathbb{Q})$, where $d = \dim X$. Let $[\sigma]_0 \in H^{2d-2r+1}(\widetilde{Y}, \mathbb{Q}) \otimes$ $H^{2r-1}(X, \mathbb{Q})$ be the corresponding Künneth component. Let σ_0 be any algebraic cycle with $[\sigma_0] = [\sigma]_0$. Then as a class $[]_1 \in \operatorname{Gr}^1_F \operatorname{CH}^{\bullet}, [\xi]_1 = [\sigma_{0,*}(\xi_0)]_1$. In particular

$$\sigma_{0,*}(\xi_0) - \xi \in F^2 \mathrm{CH}^r(X; \mathbb{Q}).$$

James D. LEWIS

The key issue is the *choice* of representative σ_0 of $[\sigma]_0$. Choose a subHS $V \subset H^{2r-3}(\widetilde{Y}, \mathbb{Q})$ such that

$$[\sigma]_{0,*}\big|_V:V\xrightarrow{\sim} [\sigma]_{0,*}\big(H^{2r-3}(\widetilde{Y},\mathbb{Q})\big)\subset H^{2r-1}(X,\mathbb{Q}),$$

is an isomorphism. By the HC, there exists $w \in \operatorname{CH}^{d-1}(X \times \widetilde{Y}; \mathbb{Q})$, with $[w] \in \{[\sigma]_{0,*}(H^{2r-3}(\widetilde{Y}, \mathbb{Q}))\}^{\vee} \otimes V$, where $\{[\sigma]_{0,*}(H^{2r-3}(\widetilde{Y}, \mathbb{Q}))\}^{\vee} \otimes V$ is a subquotient of $H^{2d-2r+1}(X, \mathbb{Q}) \otimes H^{2r-3}(\widetilde{Y}, \mathbb{Q})$, (which we can regard as an inclusion by semi-simplicity of polarized Hodge structures over \mathbb{Q}), such that

$$[\sigma]_{0,*} \circ [w]_* \big|_{\operatorname{Im}([\sigma]_{0,*})} = \operatorname{Id}_{\operatorname{Im}([\sigma]_{0,*})}.$$

Now by construction, $\sigma_{0,*} \circ w_* \circ \sigma_*(\xi_0) = \sigma_{0,*} \circ w_*(\xi)$; moreover $w_*(\xi) \in \ker(AJ_{\widetilde{Y}})$ by functoriality of the Abel-Jacobi map. By induction on dimension, $\ker(AJ_{\widetilde{Y}}) = F^2 \operatorname{CH}^{r-1}(\widetilde{Y}; \mathbb{Q})$. Since $\xi - \sigma_{0,*} \circ w_*(\xi) \in F^2 \operatorname{CH}^r(X; \mathbb{Q})$, and $\sigma_{0,*} \circ w_*(\xi) \in F^2 \operatorname{CH}^r(X; \mathbb{Q})$, it follows that $\xi \in F^2 \operatorname{CH}^r(X; \mathbb{Q})$. \Box

References

- [Ar] Arapura, D., The Leray spectral sequence is motivic, Invent. Math. 160 (2005), 567–589.
- [Be] Beilinson, A., Height pairings between algebraic cycles, Springer Lecture Notes 1289, (1987), 1–26.
- [B] Bloch, S., Algebraic cycles and higher K-theory, Advances in Math. 61 (1986), 267–304.
- [dJ-L] de Jeu, R. and J. D. Lewis, Work in progress.
- [Ja1] Jannsen, U., Equivalence relations on algebraic cycles, in Proceedings of the NATO Advanced Study Institute on the Arithmetic and Geometry of Algebraic Cycles Vol. 548, (Lewis, Yui, Gordon, Müller-Stach, S. Saito, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, (2000), 225–260.
- [Ja2] Jannsen, U., Mixed Motives and Algebraic K-Theory, Lecture Notes in Mathematics 1400, (1988).
- [K-L] Kang, S.-J. and J. D. Lewis, Beilinson's Hodge conjecture for K_1 revisited, To appear in the Proceedings of the International Colloquium on Cycles, Motives and Shimura Varieties (Mumbai, 2008).
- [Ke-L] Kerr, M. and J. D. Lewis, The Abel-Jacobi map for higher Chow groups II, Invent. Math. 170 (2), (2007), 355–420.

- [K-P] Kerr, M. and G. Pearlstein, An exponential history of functions with logarithmic growth, Proceedings of the MSRI workshop on the topology of stratified spaces, September 2008.
- [Lew1] Lewis, J. D., A filtration on the Chow group of a complex projective variety, Compositio Math. **128** (2001), 299–322.
- [Lew2] Lewis, J. D., (Co-)Homological models for higher Chow groups, Preprint.
- [Ro] Roitman, A. A., The torsion group of 0-cycles modulo rational equivalence, Ann. of Math. **111** (1980), 553–569.
- [S] Saito, S., Motives and filtrations on Chow groups, Invent. Math. 125 (1996), 149–196.
- [MSa] Saito, M., Hodge-type conjecture for higher Chow groups, arXiv:math. AG/0201113 v4.

(Received December 10, 2009) (Revised July 7, 2010)

> 632 Central Academic Building University of Alberta Edmonton, Alberta T6G 2G1, CANADA E-mail: lewisjd@ualberta.ca