Abel-Jacobi Equivalence and a Variant of the Beilinson-Hodge Conjecture

By James D. Lewis

Abstract

Let X / \mathbb{C} be a smooth projective variety and $\mathrm{CH}^{r}(X)$ the Chow group of codimension r algebraic cycles modulo rational equivalence. Let us assume the (conjectured) existence of the BlochBeilinson filtration $\left\{F^{\nu} \mathrm{CH}^{r}(X) \otimes \mathbb{Q}\right\}_{\nu=0}^{r}$ for all such X (and r). If $\mathrm{CH}_{A J}^{r}(X) \subset \mathrm{CH}^{r}(X)$ is the subgroup of cycles Abel-Jacobi equivalent to zero, then there is an inclusion $F^{2} \mathrm{CH}^{r}(X) \otimes \mathbb{Q} \subset \mathrm{CH}_{A J}^{r}(X) \otimes \mathbb{Q}$. Roughly speaking we show that this inclusion is an equality for all X (and r) if and only if a certain variant of Beilinson-Hodge conjecture holds for K_{1}.

1. Introduction

Let X / \mathbb{C} be a smooth projective variety and $\mathrm{CH}^{r}(X ; \mathbb{Q})$ the Chow group of codimension r algebraic cycles modulo rational equivalence, tensored with \mathbb{Q}. The existence of a descending filtration $\left\{F^{\nu} \mathrm{CH}^{r}(X ; \mathbb{Q})\right\}_{\nu=0}^{r}$ on $\mathrm{CH}^{r}(X ; \mathbb{Q})$ whose graded pieces factor through the Grothendieck motive, is a consequence of the classical Hodge conjecture (HC), together with a conjecture of Bloch and (independently) Beilinson (BBC) on the injectivity of the Abel-Jacobi map for Chow groups of smooth projective varieties over number fields. Assuming such a filtration, then one has $F^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})=\mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q})(=$ the nullhomologous cycles $)$ and an inclusion $F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q}) \subset \mathrm{CH}_{A J}^{r}(X ; \mathbb{Q})$, where the latter term are the cycles that are Abel-Jacobi equivalent to zero. The question as to whether this inclusion is (conjecturally) an equality, has generated some debate.

For a mixed \mathbb{Q}-Hodge structure H, we put $\Gamma(H):=\operatorname{hom}_{\mathrm{MHS}}(\mathbb{Q}(0), H)$. Evidently, by a mixed Hodge theory argument one can show that $\Gamma\left(H^{2 r}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$ for all smooth projective X / \mathbb{C} and all $r>0$ is

[^0]equivalent to the statement of the classical Hodge conjecture. In this paper we consider the candidate Bloch-Beilinson filtration $\left\{F^{\nu} \mathrm{CH}^{r}(X ; \mathbb{Q})\right\}_{\nu \geq 0}$ introduced in [Lew1], and put $D^{r}(X):=\bigcap_{\nu>0} F^{\nu} \mathrm{CH}^{r}(X ; \mathbb{Q})$. Evidently HC $+\mathrm{BBC} \Rightarrow D^{r}(X)=0$ (Theorem 4.1(vi)). Our main result is the following.

Theorem 1.1. Consider these two statements:
(i) $\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$ for all all smooth projective X / \mathbb{C} and all $r>1$.
(ii) $F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q})=\mathrm{CH}_{A J}^{r}(X ; \mathbb{Q})$ for all smooth projective X / \mathbb{C}, and all r.

If we assume the $H C$, then (i) \Rightarrow (ii). If we further assume that $D^{r}(X) \subset$ $N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$, then (ii) \Rightarrow (i). (Here $N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$ is the subspace of cycles homologous to zero on codimension ≥ 1 algebraic subsets of X.)

In section 5 we provide some evidence in support of the statement in Theorem 1.1(i). In particular we arrive at:

Theorem 1.2. Let X / \mathbb{C} be a smooth projective variety of dimension d, and let $r>1$.
(i) Suppose that $\mathrm{CH}_{A J}^{r}(X ; \mathbb{Q}) \subset N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$ and either (i) $d \leq 4$, or (ii) $r \in\{2, d-1\}$, or (iii) r, d arbitrary and the $H C$ holds. Then $\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0 . \quad\left(\right.$ The statement $\Gamma\left(H^{2 d-1}(\mathbb{C}(X), \mathbb{Q}(d))\right)=0$ for $d>1$ holds unconditionally.)
(ii) Let us further assume that X is a complete intersection with $H^{0}\left(X, \Omega_{X}^{d}\right)=0$. Assume that either (i) $d \leq 4$, or (ii) $r \in\{2, d-1\}$, or (iii) r, d arbitrary and the HC holds. Then $\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$.
(iii) Again let X be a complete intersection and assume the HC. Then for all r with $d \neq 2 r-1$ and $D^{r}(X) \subset N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$, we have $\Gamma\left(H^{2 r-1}(\mathbb{C}(X)\right.$, $\mathbb{Q}(r)))=0$.

For the convenience to the reader, we also relate the statement in Theorem 1.1(ii) to the field of definition of the torsion locus of a cycle induced normal function, a result which seems known only among experts ([K-P]).

Let $\mathrm{CH}_{\mathrm{alg}}^{r}(X ; \mathbb{Q})$ be the subspace of cycles that are algebraically equivalent to zero. As a result of Corollaries $4.9 \& 5.1$ below, we deduce the following.

Corollary 1.3. Let X / \mathbb{C} be a smooth projective variety. Then:
(i)

$$
\Gamma\left(H^{3}(\mathbb{C}(X), \mathbb{Q}(2))\right)=0 \Rightarrow\left\{\begin{array}{l}
F^{2} \mathrm{CH}^{2}(X ; \mathbb{Q})=\mathrm{CH}_{A J}^{2}(X ; \mathbb{Q}) \\
F^{2} \mathrm{CH}^{2}(X ; \mathbb{Q}) \subset \mathrm{CH}_{\mathrm{alg}}^{2}(X ; \mathbb{Q})
\end{array}\right.
$$

(ii) Conversely, if we further assume that X is either a complete intersection or an Abelian variety, and if $D^{2}(X) \subset \mathrm{CH}_{\text {alg }}^{2}(X ; \mathbb{Q})$, then:

$$
F^{2} \mathrm{CH}^{2}(X ; \mathbb{Q})=\mathrm{CH}_{A J}^{2}(X ; \mathbb{Q}) \Rightarrow \Gamma\left(H^{3}(\mathbb{C}(X), \mathbb{Q}(2))\right)=0
$$

(iii) For any smooth projective X / \mathbb{C} satisfying $\mathrm{CH}_{A J}^{2}(X ; \mathbb{Q}) \subset$ $\mathrm{CH}_{\text {alg }}^{2}(X ; \mathbb{Q})$, we have $\Gamma\left(H^{3}(\mathbb{C}(X), \mathbb{Q}(2))\right)=0$. (This also follows from Theorem 1.2(i), using the fact that $N^{1} \mathrm{CH}^{2}(X ; \mathbb{Q})=\mathrm{CH}_{\text {alg }}^{2}(X ; \mathbb{Q})$.)

We are grateful to the referee for doing a splendid job, and raising some interesting points.

2. Notation

(i) Throughout this paper we will assume that $k \subset \mathbb{C}$ is an algebraically closed subfield. Let \mathcal{V}_{k} be the category of smooth projective varieties over k.
(ii) $\mathbb{Q}(n)=(2 \pi \mathrm{i})^{n} \mathbb{Q}=$ Tate twist (a pure HS on \mathbb{Q} of pure weight $-2 n$ (and Hodge type $(-n,-n)$).
(iii) For a mixed Hodge structure (MHS) H, we put

$$
\begin{aligned}
\Gamma(H) & :=\operatorname{hom}_{\mathrm{MHS}}(\mathbb{Q}(0), H), \\
J(H) & :=\operatorname{Ext}_{\mathrm{MHS}}^{1}(\mathbb{Q}(0), H) .
\end{aligned}
$$

(iv) For $X \in \mathcal{V}_{k}, H^{i}(X, \mathbb{Q}):=H^{i}(X(\mathbb{C}), \mathbb{Q})$ (singular cohomology). For $X \in \mathcal{V}_{\mathbb{C}}$,

$$
H^{i}(\mathbb{C}(X), \mathbb{Q}):=\lim _{\vec{U}} H^{i}(U, \mathbb{Q})
$$

where the limit is taken over all non-empty Zariski open subsets $U \subset X$.
(v) For $X \in \mathcal{V}_{k}$, the coniveau filtration is given by

$$
N_{k}^{\nu} H^{i}(X, \mathbb{Q}):=\operatorname{ker}\left(H^{i}(X, \mathbb{Q}) \rightarrow \underset{Y \subset X / k, \mathrm{~cd}_{X} Y \geq \nu}{\lim } H^{i}(X \backslash Y, \mathbb{Q})\right)
$$

(vi) The statement of the classical Hodge conjecture for all $X \in \mathcal{V}_{\mathbb{C}}$, will be abbreviated by HC. For $X \in \mathcal{V}_{\mathbb{C}}$ of dimension d, the hard Lefschetz conjecture $B(X)$ states that the inverse to the hard Lefschetz ismorphism

$$
L_{X}^{d-i}: H^{i}(X, \mathbb{Q}) \xrightarrow{\sim} H^{2 d-i}(X, \mathbb{Q}),
$$

is algebraic cycle induced for all $i \leq d$, where L_{X} is the operation of cupping with a hyperplane section of X.
(vii) Let $\mathrm{CH}^{r}(X, m)$ be the higher Chow group introduced in $[\mathrm{B}]$. We put $\mathrm{CH}^{r}(X, m ; \mathbb{Q}):=\mathrm{CH}^{r}(X, m) \otimes \mathbb{Q}$. The classical Chow group is given by $\mathrm{CH}^{r}(X)=\mathrm{CH}^{r}(X, 0)$. The subgroup of cycles algebraically equivalent to zero is denoted by $\mathrm{CH}_{\text {alg }}^{r}(X) \subset \mathrm{CH}^{r}(X)$.
(viii) Let $Y \subset X$ be a Zariski closed subset, where $X \in \mathcal{V}_{k}$. If $d=\operatorname{dim} X$, we put $\mathrm{CH}_{d-r}(X)=\mathrm{CH}^{r}(X)$. Likewise let $\mathrm{CH}_{Y}^{r}(X):=\mathrm{CH}_{d-r}(Y)$, and $\mathrm{CH}_{Y, \text { hom }}^{r}(X ; \mathbb{Q}):=\operatorname{ker}\left(\mathrm{CH}_{Y}^{r}(X ; \mathbb{Q}) \rightarrow H_{Y}^{2 r}(X, \mathbb{Q})\right)$.
(ix) For $X \in \mathcal{V}_{k}$, consider the Abel-Jacobi map

$$
A J_{X}: \mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q}) \rightarrow J\left(H^{2 r-1}(X, \mathbb{Q}(r))\right)
$$

We put $\mathrm{CH}_{A J}^{r}(X ; \mathbb{Q}):=\operatorname{ker} A J_{X}$.

3. A Variant of the Hodge Conjecture for K_{1}

We review some of the ideas in [K-L], some of which goes back to the work of Jannsen ([Ja2]). Let $X \in \mathcal{V}_{k}$ be given with algebraic subset $Y \subset$ X / k. The localization sequence yields a s.e.s. of MHS:

$$
0 \rightarrow \frac{H^{2 r-1}(X, \mathbb{Q}(r))}{H_{Y}^{2 r-1}(X, \mathbb{Q}(r))} \rightarrow H^{2 r-1}(X \backslash Y, \mathbb{Q}(r)) \rightarrow H_{Y}^{2 r}(X, \mathbb{Q}(r))^{\circ} \rightarrow 0
$$

where

$$
H_{Y}^{2 r}(X, \mathbb{Q}(r))^{\circ}:=\operatorname{ker}\left(H_{Y}^{2 r}(X, \mathbb{Q}(r)) \rightarrow H^{2 r}(X, \mathbb{Q}(r))\right)
$$

Note that $H^{2 r-1}(X, \mathbb{Q}(r)) / H_{Y}^{2 r-1}(X, \mathbb{Q}(r))$ is a pure Hodge structure of weight -1 . Corresponding to this is a commutative diagram:

$$
\begin{array}{rlrl}
\mathrm{CH}^{r}(X \backslash Y, 1 ; \mathbb{Q}) & \rightarrow & \mathrm{CH}_{Y}^{r}(X ; \mathbb{Q})^{\circ} & \xrightarrow{\beta} \\
\mathrm{cl}_{r, 1} \downarrow & \mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q}) \tag{1}\\
\lambda \downarrow & \underline{A J} X \downarrow \\
0 \rightarrow \Gamma\left(H^{2 r-1}(X \backslash Y, \mathbb{Q}(r))\right) \xrightarrow{\alpha} \Gamma\left(H_{Y}^{2 r}(X, \mathbb{Q}(r))^{\circ}\right) & \rightarrow & J\left(\frac{H^{2 r-1}(X, \mathbb{Q}(r))}{H_{Y}^{2 r-1}(X, \mathbb{Q}(r))}\right),
\end{array}
$$

where $\mathrm{CH}_{Y}^{r}(X ; \mathbb{Q})^{\circ}$ are the cycles in $\mathrm{CH}_{Y}^{r}(X ; \mathbb{Q})$ that are homologous to zero on X, and where $\underline{A J}_{X}$ is the composite Abel-Jacobi map

$$
\mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q}) \xrightarrow{A J_{X}} J\left(H^{2 r-1}(X, \mathbb{Q}(r))\right) \rightarrow J\left(\frac{H^{2 r-1}(X, \mathbb{Q}(r))}{H_{Y}^{2 r-1}(X, \mathbb{Q}(r))}\right) .
$$

Let us assume that λ is surjective. Such is the case if the HC^{1} holds for Y. Then the serpent lemma gives:

$$
\begin{equation*}
\frac{\operatorname{ker}\left(\left.\underline{A J}_{X}\right|_{\operatorname{Im}(\beta)}\right)}{\beta(\operatorname{ker} \lambda)} \simeq \frac{\Gamma\left(H^{2 r-1}(X \backslash Y, \mathbb{Q}(r))\right)}{\operatorname{cl}_{r, 1}\left(\mathrm{CH}^{r}(X \backslash Y, 1 ; \mathbb{Q})\right)} \tag{2}
\end{equation*}
$$

Let $\widetilde{Y} \stackrel{\approx}{\rightarrow} Y$ be a desingularization. If we assume for the moment that the Gysin map $H^{2 r-2 \operatorname{cd}_{X} Y-1}(\widetilde{Y}, \mathbb{Q}) \rightarrow H^{2 r-1}(X, \mathbb{Q})$ has a cycle induced right inverse (as implied by the HC), then as argued in [K-L],

$$
\begin{equation*}
\frac{\operatorname{ker}\left(\left.\underline{A J} X\right|_{\operatorname{Im}(\beta)}\right)}{\beta(\operatorname{ker} \lambda)}=\frac{\beta(\operatorname{ker} \lambda)+\operatorname{ker}\left(\left.A J_{X}\right|_{\operatorname{Im}(\beta)}\right)}{\beta(\operatorname{ker} \lambda)} \tag{3}
\end{equation*}
$$

We recall that Bloch and Beilinson ([Be] 5.6) independently conjectured the following:

Conjecture 3.1 ($\mathrm{BBC}=$ Bloch-Beilinson Conjecture). If $k=\overline{\mathbb{Q}}$, then

$$
A J_{X}: \mathrm{CH}_{\mathrm{hom}}^{r}(X / \overline{\mathbb{Q}} ; \mathbb{Q}) \hookrightarrow J\left(H^{2 r-1}(X, \mathbb{Q}(r))\right)
$$

[^1]is injective.
Two extreme cases comes to mind:

- If $k=\overline{\mathbb{Q}}$, then the $\mathrm{HC}+\mathrm{BBC} \Rightarrow \operatorname{cl}_{r, 1}\left(\mathrm{CH}^{r}(X \backslash Y, 1 ; \mathbb{Q})\right)=\Gamma\left(H^{2 r-1}(X \backslash Y\right.$, $\mathbb{Q}(r)))^{2}$.
- (Jannsen [Ja2]) If $k=\mathbb{C}$ and $\operatorname{codim}_{X} Y=r$, then λ in (1) is an isomorphism, $H_{Y}^{2 r-1}(X, \mathbb{Q}(r))=0$; moreover $\mathrm{cl}_{r, 1}$ is surjective $\Leftrightarrow A J_{X}$ is injective on $\operatorname{Im}(\beta)$. This implies surjectivity in the case $r=1$, by the theory of the Picard variety; however for $r>1, A J_{X}$ need not be injective (Mumford), hence $\mathrm{cl}_{r, 1}$ need not be surjective.

A natural question is whether one can tweak the second scenario situation so that surjectivity is a possibility. As the higher Chow groups involve numerator conditions in the definition, this appears to be the case if one passes to the generic point. Namely:

Conjecture 3.2 ([K-L]).

$$
\mathrm{cl}_{r, 1}: \mathrm{CH}^{r}(\mathbb{C}(X), 1 ; \mathbb{Q}) \rightarrow \Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right),
$$

is surjective.
Here we wish to make it clear that $\mathrm{CH}^{r}(\mathbb{C}(X), 1 ; \mathbb{Q}) \quad:=$ $\mathrm{CH}^{r}(\operatorname{Spec}(\mathbb{C}(X)), 1 ; \mathbb{Q})$ and

$$
H^{i}(\mathbb{C}(X), \mathbb{Q}):=\lim _{\operatorname{cd}_{X} \vec{Y}=1} H^{i}(X \backslash Y, \mathbb{Q})
$$

Proposition 3.3. The following statements are equivalent:
(i) $\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$ for all $X \in \mathcal{V}_{\mathbb{C}}$ and all $r>1$.
(ii) Conjecture 3.2 holds for all $X \in \mathcal{V}_{\mathbb{C}}$ and all r.

Proof. First, we may assume that $r>1$, as $\mathrm{cl}_{1,1}$ is surjective. Secondly, for dimension reasons $\mathrm{CH}^{r}(\mathbb{C}(X), 1)=0$ for $r>1$. Thirdly

[^2]$\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$ implies $c_{r, 1}$ is obviously surjective. The proposition follows from this.

To see why Conjecture 3.2 is plausible ${ }^{3}$, observe that by passing to a limit over all codimension 1 subvarieties of $X,(2)$ becomes

$$
\begin{gather*}
\left.\frac{\operatorname{ker}(\underline{A J} X}{}: \mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q}) \rightarrow J\left(\frac{H^{2 r-1}(X, \mathbb{Q}(r))}{N^{1} H^{2 r-1}(X, \mathbb{Q}(r))}\right)\right) \tag{4}\\
N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q}) \\
\simeq \frac{\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)}{\mathrm{cl}_{r, 1}\left(\mathrm{CH}^{r}(\mathbb{C}(X), 1 ; \mathbb{Q})\right)},
\end{gather*}
$$

where $N^{p} \mathrm{CH}^{r}(X ; \mathbb{Q}) \subset \mathrm{CH}^{r}(X ; \mathbb{Q})$ is the subspace of cycles that are homologous to zero on algebraic subsets of codimension $\geq p$ in X, and $N^{p} H^{i}(X, \mathbb{Q}):=N_{\mathbb{C}}^{p} H^{i}(X, \mathbb{Q})$ is the coniveau filtration. Then (3) translates to

$$
\begin{equation*}
\frac{\operatorname{ker}\left(A J_{X}\right)+N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})}{N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})} \simeq \frac{\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)}{\operatorname{cl}_{r, 1}\left(\mathrm{CH}^{r}(\mathbb{C}(X), 1 ; \mathbb{Q})\right)} \tag{5}
\end{equation*}
$$

Remark 3.4. Note that the isomorphisms in (4) and (5) hinge on HC assumptions. For instance, (4) requires λ in (1) to be surjective.

In the case $r=d:=\operatorname{dim} X$, the reader can easily check that the map $\mathrm{cl}_{d, 1}$ in Conjecture 3.2 is unconditionally surjective. Further, according to [Ja1], there is some evidence to suggest that $\operatorname{ker}\left(A J_{X}\right) \subset N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$. Next, observe that $\mathrm{CH}_{\text {alg }}^{r}(X ; \mathbb{Q})=N^{r-1} \mathrm{CH}^{r}(X ; \mathbb{Q})$, and that the restricted Abel-Jacobi map,

$$
\mathrm{CH}_{\text {alg }}^{r}(X ; \mathbb{Q}) \rightarrow J\left(N^{r-1} H^{2 r-1}(X, \mathbb{Q}(r))\right)
$$

is surjective. When $r=2$ one can easily check that

$$
\begin{gather*}
\frac{\mathrm{CH}_{\text {alg }}^{2}(X ; \mathbb{Q})+\operatorname{ker}\left(A J_{X}\right)}{\mathrm{CH}_{\text {alg }}^{2}(X ; \mathbb{Q})} \simeq \frac{\Gamma\left(H^{3}(\mathbb{C}(X), \mathbb{Q}(2))\right)}{\mathrm{cl}_{2,1}\left(\mathrm{CH}^{2}(\mathbb{C}(X), 1 ; \mathbb{Q})\right)} \tag{6}\\
=\Gamma\left(H^{3}(\mathbb{C}(X), \mathbb{Q}(2))\right)
\end{gather*}
$$

[^3]holds unconditionally.

4. A Descending Filtration

We recall the candidate Bloch-Beilinson (B-B) filtration constructed in [Lew1].

Theorem 4.1. Let $X \in \mathcal{V}_{\mathbb{C}}$ be of dimension d. Then for all r, there is a filtration

$$
\begin{aligned}
\mathrm{CH}^{r}(X ; \mathbb{Q})=F^{0} \supset F^{1} \supset \cdots \supset F^{\nu} \supset F^{\nu+1} \supset \cdots \supset F^{r} \supset F^{r+1} & \\
& =F^{r+2}=\cdots
\end{aligned}
$$

which satisfies the following
(i) $F^{1}=\mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q})$.
(ii) $F^{2} \subset \mathrm{CH}_{A J}^{r}(X ; \mathbb{Q})$.
(iii) $F^{\nu_{1}} \mathrm{CH}^{r_{1}}(X ; \mathbb{Q}) \bullet F^{\nu_{2}} \mathrm{CH}^{r_{2}}(X ; \mathbb{Q}) \subset F^{\nu_{1}+\nu_{2}} \mathrm{CH}^{r_{1}+r_{2}}(X ; \mathbb{Q})$, where is the intersection product.
(iv) F^{ν} is preserved under the action of correspondences between smooth projective varieties in $\mathcal{V}_{\mathbb{C}}$
(v) Let $\mathrm{Gr}_{F}^{\nu}:=F^{\nu} / F^{\nu+1}$ and assume that the Künneth components of the diagonal class $\left.\left[\Delta_{X}\right]=\oplus_{p+q=2 d}\left[\Delta_{X}(p, q)\right] \in H^{2 d}(X \times X, \mathbb{Q}(d))\right)$ are algebraic and defined over K. Then

$$
\left.\Delta_{X}(2 d-2 r+\ell, 2 r-\ell)_{*}\right|_{\operatorname{Gr}_{F}^{\nu} \mathrm{CH}^{r}(X ; \mathbb{Q})}=\delta_{\ell, \nu} \cdot \text { Identity. }
$$

[If we assume the conjecture that homological and numerical equivalence coincide, then (v) says that Gr_{F}^{ν} factors through the Grothendieck motive.]
(vi) Let $D^{r}(X):=\bigcap_{\nu} F^{\nu}$, and $k=\overline{\mathbb{Q}}$. If the $B B C$ together with the $H C$ holds, $D^{r}(X)=0 .{ }^{4}$

Remark 4.2. The way this filtration is constructed is as follows. Consider a $\overline{\mathbb{Q}}$-spread $\rho: \mathcal{X} \rightarrow \mathcal{S}$, where ρ is smooth and proper morphism of

[^4]quasiprojective varieties, and $K=\overline{\mathbb{Q}}(\mathcal{S})$. Let η be the generic point of $\mathcal{S} / \overline{\mathbb{Q}}$, and hence $K:=\overline{\mathbb{Q}}(\eta)$, with $X_{K}:=X_{\eta}$. Using the cycle class map into absolute Hodge cohomology, $\mathrm{CH}^{r}(X / \overline{\mathbb{Q}} ; \mathbb{Q}) \rightarrow H_{\mathcal{H}}^{2 r}(X, \mathbb{Q}(r))$, there is a decreasing filtration $\mathcal{F}^{\nu} \mathrm{CH}^{r}(\mathcal{X} / \overline{\mathbb{Q}} ; \mathbb{Q})$, with the property that $\operatorname{Gr}_{\mathcal{F}}^{\nu} \mathrm{CH}^{r}(X / \overline{\mathbb{Q}} ; \mathbb{Q}) \hookrightarrow$ $E_{\infty}^{\nu, 2 r-\nu}(\rho)$, where $E_{\infty}^{\nu, 2 r-\nu}(\rho)$ is the ν-th graded piece of a Leray filtration associated to ρ. The term $E_{\infty}^{\nu, 2 r-\nu}(\rho)$ fits in a short exact sequence:
$$
0 \rightarrow \underline{E}_{\infty}^{\nu, 2 r-\nu}(\rho) \rightarrow E_{\infty}^{\nu, 2 r-\nu}(\rho) \rightarrow \underline{\underline{E}}_{\infty}^{\nu, 2 r-\nu}(\rho) \rightarrow 0
$$
where
\[

$$
\begin{gathered}
\underline{\underline{E}}_{\infty}^{\nu, 2 r-\nu}(\rho)=\Gamma\left(H^{\nu}\left(\mathcal{S}(\mathbb{C}), R^{2 r-\nu} \rho_{*} \mathbb{Q}(r)\right)\right) \\
\underline{E}_{\infty}^{\nu, 2 r-\nu}(\rho)=\frac{J\left(W_{-1} H^{\nu-1}\left(\mathcal{S}(\mathbb{C}), R^{2 r-\nu} \rho_{*} \mathbb{Q}(r)\right)\right)}{\Gamma\left(\operatorname{Gr}_{W}^{0} H^{\nu-1}\left(\mathcal{S}(\mathbb{C}), R^{2 r-\nu} \rho_{*} \mathbb{Q}(r)\right)\right)} \\
\subset J\left(H^{\nu-1}\left(\mathcal{S}(\mathbb{C}), R^{2 r-\nu} \rho_{*} \mathbb{Q}(r)\right)\right)
\end{gathered}
$$
\]

[Here the latter inclusion is a result of the s.e.s.:

$$
\begin{aligned}
W_{-1} H^{\nu-1}(\mathcal{S}(\mathbb{C}) & \left., R^{2 r-\nu} \rho_{*} \mathbb{Q}(r)\right) \hookrightarrow W_{0} H^{\nu-1}\left(\mathcal{S}(\mathbb{C}), R^{2 r-\nu} \rho_{*} \mathbb{Q}(r)\right) \\
& \left.\rightarrow \operatorname{Gr}_{W}^{0} H^{\nu-1}\left(\mathcal{S}(\mathbb{C}), R^{2 r-\nu} \rho_{*} \mathbb{Q}(r)\right) .\right]
\end{aligned}
$$

One then has (by definition)

$$
F^{\nu} \mathrm{CH}^{r}\left(X_{K} ; \mathbb{Q}\right)=\lim _{U \subset S / \mathbb{Q}} \mathcal{F}^{\nu} \mathrm{CH}^{r}\left(X_{U} / \overline{\mathbb{Q}} ; \mathbb{Q}\right), \quad X_{U}:=\rho^{-1}(U)
$$

Now put,

$$
E_{\infty}^{\nu, 2 r-\nu}\left(\eta_{\mathcal{S}}\right)=\lim _{U \subset \overrightarrow{\mathcal{S}} / \mathbb{Q}} E_{\infty}^{\nu, 2 r-\nu}(\rho)
$$

and the same definition for $\underline{E}_{\infty}^{\nu, 2 r-\nu-m}\left(\eta_{\mathcal{S}}\right)$ and $\underline{\underline{E}}_{\infty}^{\nu, 2 r-\nu}\left(\eta_{\mathcal{S}}\right)$. Specifically,

$$
\begin{gathered}
\underline{\underline{E}}_{\infty}^{\nu, 2 r-\nu}\left(\eta_{\mathcal{S}}\right)=\Gamma\left(H^{\nu}\left(\eta_{\mathcal{S}}, R^{2 r-\nu} \rho_{*} \mathbb{Q}(r)\right)\right), \\
\underline{E}_{\infty}^{\nu, 2 r-\nu}\left(\eta_{\mathcal{S}}\right)=J\left(W_{-1} H^{\nu-1}\left(\eta_{\mathcal{S}}, R^{2 r-\nu} \rho_{*} \mathbb{Q}(r)\right)\right) / \Gamma\left(\operatorname{Gr}_{W}^{0}\right) .
\end{gathered}
$$

We have a s.e.s.:

$$
0 \rightarrow \underline{E}_{\infty}^{\nu, 2 r-\nu}\left(\eta_{\mathcal{S}}\right) \rightarrow E_{\infty}^{\nu, 2 r-\nu}\left(\eta_{\mathcal{S}}\right) \rightarrow \underline{\underline{E}}_{\infty}^{\nu, 2 r-\nu}\left(\eta_{\mathcal{S}}\right) \rightarrow 0
$$

and an injection:

$$
\operatorname{Gr}_{F}^{\nu} \mathrm{CH}^{r}\left(X_{K} ; \mathbb{Q}\right) \hookrightarrow E_{\infty}^{\nu, 2 r-\nu}\left(\eta_{\mathcal{S}}\right)
$$

We then define

$$
F^{\nu} \mathrm{CH}^{r}(X / \mathbb{C} ; \mathbb{Q})=\lim _{\overrightarrow{K \subset} \mathbb{C}} F^{\nu} \mathrm{CH}^{r}\left(X_{K} ; \mathbb{Q}\right)
$$

over all finitely generated subfields $K \subset \mathbb{C}$ over $\overline{\mathbb{Q}}$, which becomes a candidate B-B filtration on $\mathrm{CH}^{r}\left(X_{\mathbb{C}} ; \mathbb{Q}\right)$.

Now let $\sigma \in \operatorname{Aut}(\mathbb{C} / \overline{\mathbb{Q}})$. Then the action of σ on $\mathrm{CH}^{r}(\mathcal{X} / \overline{\mathbb{Q}} ; \mathbb{Q})$ is the identity; however in the limit, and after identifying K with its embedding in \mathbb{C}, we arrive at $\sigma\left(F^{\nu} \mathrm{CH}^{r}\left(X_{K} ; \mathbb{Q}\right)=F^{\nu} \mathrm{CH}^{r}\left(X_{\sigma K} ; \mathbb{Q}\right)\right.$. In particular, we deduce the following:

Proposition 4.3. Let $\sigma \in \operatorname{Aut}(\mathbb{C} / \overline{\mathbb{Q}})$, and $X=X / \mathbb{C}$ be a smooth projective variety. Then

$$
\sigma: F^{\nu} \mathrm{CH}^{r}(X ; \mathbb{Q}) \xrightarrow{\sim} F^{\nu} \mathrm{CH}^{r}\left(X_{\sigma} ; \mathbb{Q}\right),
$$

is an isomorphism.

Now let us further assume that \mathcal{S} is affine. Let $V \subset \mathcal{S}(\mathbb{C})$ be smooth, irreducible, closed subvariety of dimension $\nu-1$ (note that \mathcal{S} affine $\Rightarrow V$ affine). One has a commutative square

$$
\begin{array}{rrr}
X_{V} & \hookrightarrow & X(\mathbb{C}) \\
\rho_{V} \downarrow & & \downarrow \rho \\
V & & \hookrightarrow \\
& & \mathcal{S}(\mathbb{C})
\end{array}
$$

and a commutative diagram

where $\underline{\underline{E}}^{\nu, 2 r-\nu}\left(\rho_{V}\right)=0$ follows from the weak Lefschetz theorem for locally constant systems over affine varieties (see for example [Ar], and the references cited there). Thus for any $\xi \in \operatorname{Gr}_{\mathcal{F}}^{\nu} \mathrm{CH}^{r}(X / \overline{\mathbb{Q}} ; \mathbb{Q})$, we have a "normal function" ν_{ξ} with the property that for any such smooth irreducible closed $V \subset S(\mathbb{C})$ of dimension $\nu-1$, we have a value $\nu_{\xi}(V) \in \underline{E}_{\infty}^{\nu, 2 r-\nu}\left(\rho_{V}\right)$. Here we think of V as a point on a suitable open subset of the Chow variety of dimension $\nu-1$ subvarieties of $\mathcal{S}(\mathbb{C})$ and ν_{ξ} defined on that subset. Note that it is rather clear from this that $F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q}) \subset \mathrm{CH}_{A J}^{r}(X ; \mathbb{Q})$.

Definition 4.4 ([Ke-L]). ν_{ξ} is called an arithmetic normal function.
An important observation which seems to be acknowledged only among experts (see [K-P], Prop. 86 for their version of all of this), is the following:

Proposition 4.5. The following statements are equivalent:
(i) $F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q})=\mathrm{CH}_{A J}^{r}(X ; \mathbb{Q})$ for all $X \in \mathcal{V}_{\mathbb{C}}$.
(ii) For any smooth and proper morphism $\rho: \mathcal{X} \rightarrow \mathcal{S}$ of smooth quasiprojective varieties over $\overline{\mathbb{Q}}$, and cycle induced normal function

$$
\nu_{\xi}: \mathcal{S}(\mathbb{C}) \rightarrow \coprod_{t \in \mathcal{S}(\mathbb{C})} J\left(H^{2 r-1}\left(X_{t}, \mathbb{Q}(r)\right)\right)
$$

$\xi \in \mathcal{F}^{1} \mathrm{CH}^{r}(X / \overline{\mathbb{Q}} ; \mathbb{Q})$, the zero locus (equiv. torsion locus of a corresponding integrally defined normal function) $\mathcal{Z}\left(\nu_{\xi}\right)$ of ν_{ξ} is a countable union of algebraic subvarieties over $\overline{\mathbb{Q}}$.
(iii) For any smooth and proper morphism $\rho_{V}: X_{V} \rightarrow V$ of smooth quasiprojective varieties over a subfield $L \subset \mathbb{C}$ finitely generated over $\overline{\mathbb{Q}}$, and cycle induced normal function

$$
\nu_{\xi}: V(\mathbb{C}) \rightarrow \coprod_{t \in V(\mathbb{C})} J\left(H^{2 r-1}\left(X_{t}, \mathbb{Q}(r)\right)\right),
$$

$\xi \in \mathcal{F}^{1} \mathrm{CH}^{r}\left(X_{V} / L ; \mathbb{Q}\right)\left(=\right.$ relatively homologous to zero with respect to $\left.\rho_{V}\right)$, the zero locus $\mathcal{Z}\left(\nu_{\xi}\right)$ of ν_{ξ} is a countable union of algebraic subvarieties over \bar{L}.

Proof. The implication (ii) \Rightarrow (i) is easy and left to the reader. Going the other way, we know that $\mathcal{Z}\left(\nu_{\xi}\right)$ is a countable union of analytic varieties. For any $p \in \mathcal{Z}\left(\nu_{\xi}\right)$, the $\overline{\mathbb{Q}}$ closure $\overline{\{p\}} \subset \mathcal{S} / \overline{\mathbb{Q}}$ defines a subfamily $X_{\overline{\{p\}}} \rightarrow \overline{\{p\}}$, whose generic fiber satisfies $F^{2} \mathrm{CH}^{r}\left(\mathcal{X}_{\overline{\{p\}}, \eta} ; \mathbb{Q}\right)=\mathrm{CH}_{A J}^{r}\left(\mathcal{X}_{\overline{\{p\}}, \eta} ; \mathbb{Q}\right)$. Thus ν_{ξ} vanishes on $\overline{\{p\}}$. Thus $\overline{\{p\}} \subset \mathcal{Z}\left(\nu_{\xi}\right)$. Since the set of all $\overline{\mathbb{Q}}$ subvarieties of $\mathcal{S} / \overline{\mathbb{Q}}$ is countable, likewise $\mathcal{Z}\left(\nu_{\xi}\right)$ is a countable union of varieties over $\overline{\mathbb{Q}}$. To show (ii) \Rightarrow (iii), consider $\rho_{V}: X_{V} \rightarrow V$ defined over L. Let $\mathcal{S} \rightarrow \mathcal{T}$ be a $\overline{\mathbb{Q}}$-spread of V, with generic points $\eta \in \mathcal{S} / \overline{\mathbb{Q}}$ and $\eta_{\mathcal{T}} \in \mathcal{T} / \overline{\mathbb{Q}}$, and where we have $L=\overline{\mathbb{Q}}\left(\eta_{\mathcal{T}}\right), V / L=\mathcal{S}_{\eta_{\mathcal{T}}}, X_{V}=X_{\eta_{\mathcal{T}}}$. Correspondingly we have a $\overline{\mathbb{Q}}$-spread $X \rightarrow \mathcal{S}$ with $X_{\eta}=X_{\eta_{V}}$. Note that $\xi \in \mathcal{F}^{1} \mathrm{CH}^{r}\left(X_{V} / L ; \mathbb{Q}\right)$ is the restriction of a spread cycle $\tilde{\xi} \in \mathcal{F}^{1} \mathrm{CH}^{r}(\mathcal{X} / \overline{\mathbb{Q}} ; \mathbb{Q})$, and if $\Sigma \subset \mathcal{S} / \overline{\mathbb{Q}}$ is an irreducible component of the torsion locus of $\nu_{\tilde{\xi}}$, then $\Sigma_{\eta_{\mathcal{T}}}$ corresponds to a component of the locus of ν_{ξ} over \bar{L} in V / \bar{L}. Finally, the converse (iii) \Rightarrow (ii) is obvious.

It is instructive to give a direct proof of the following result, which can be deduced from [Ja1] (Thm 6.1). We will need this result in the sections to follow. Recall $\operatorname{dim} X=d$, and the statement $B(X)$ of the hard Lefschetz conjecture for X.

Proposition 4.6. Let us assume $B(X)$ and that $D^{r}(X) \subset$ $N^{\nu-1} \mathrm{CH}^{r}(X ; \mathbb{Q})$. Then

$$
F^{\nu} \mathrm{CH}^{r}(X ; \mathbb{Q}) \subset N^{\nu-1} \mathrm{CH}^{r}(X ; \mathbb{Q}),
$$

for $\nu \geq 1$.
Proof. For simplicity, we will assume that $D^{r}(X)=0$, keeping in mind that the situation $D^{r}(X) \subset N^{\nu-1} \mathrm{CH}^{r}(X ; \mathbb{Q})$ is similar. According to Theorem 4.1, and under the above assumptions,

$$
\operatorname{Gr}_{F}^{\nu} \mathrm{CH}^{r}(X / \mathbb{C} ; \mathbb{Q}) \simeq \Delta_{X}(2 d-2 r+\nu, 2 r-\nu)_{*} \mathrm{CH}^{r}(X / \mathbb{C} ; \mathbb{Q}),
$$

and $F^{r+1} \mathrm{CH}^{r}(X / \mathbb{C} ; \mathbb{Q})=0$. Let $\xi \in F^{\nu} \mathrm{CH}^{r}(X / \mathbb{C} ; \mathbb{Q})$ be given. By writing $\xi=\Delta_{X}(2 d-2 r+\nu, 2 r-\nu)_{*} \xi+\left(\xi-\Delta_{X}(2 d-2 r+\nu, 2 r-\nu)_{*} \xi\right)$, observing that $\left(\xi-\Delta_{X}(2 d-2 r+\nu, 2 r-\nu)_{*} \xi\right) \in F^{\nu+1} \mathrm{CH}^{r}(X ; \mathbb{Q})$, and applying downward induction on ν, we can replace ξ by $\Delta_{X}(2 d-2 r+\nu, 2 r-\nu)_{*} \xi$. If $2 r-\nu<d$, then $H^{2 r-\nu}(X, \mathbb{Q}(r)) \hookrightarrow H^{2 r-\nu}(Y, \mathbb{Q}(r))$ for any smooth hypersurface $Y \subset X$. Then $B(X)$ implies a cycle induced right inverse $[w]_{*}: H^{2 r-\nu}(Y, \mathbb{Q}(r)) \rightarrow H^{2 r-\nu}(X, \mathbb{Q}(r))$. Hence $w_{*}: \operatorname{Gr}_{F}^{\nu} \mathrm{CH}^{r}(Y ; \mathbb{Q}) \rightarrow$ $\operatorname{Gr}_{F}^{\nu} \mathrm{CH}^{r}(X ; \mathbb{Q})$ is surjective and $w_{*}\left(N^{\nu-1} \mathrm{CH}^{r}(Y ; \mathbb{Q})\right) \subset N^{\nu-1} \mathrm{CH}^{r}(X ; \mathbb{Q})$. So by induction on dimension, we are done in this case. So let us assume that $2 r-\nu \geq d$, and put $\underline{r}=d-r$. Then $d \geq 2 \underline{r}+\nu=2 \underline{r}+m+1$, where $m=\nu-1$. According to [Ja1] (Prop. 4.8(b)), based on a corresponding result of Nori, there exists a smooth complete intersection $Y \subset X$ of codimension $m=\nu-1$ such that ξ is in the image of $\mathrm{CH}_{\underline{r}, \text { hom }}(Y ; \mathbb{Q}) \rightarrow \mathrm{CH}_{\underline{r}}(X ; \mathbb{Q})=\mathrm{CH}^{r}(X ; \mathbb{Q})$. Thus $\xi \in N^{\nu-1} \mathrm{CH}^{r}(X ; \mathbb{Q})$ and we are done.

Recall that $N^{r-1} \mathrm{CH}^{r}(X ; \mathbb{Q})=\mathrm{CH}_{\text {alg }}^{r}(X ; \mathbb{Q})$, and hence (and as also pointed out in [Ja1]), under the assumptions in Proposition 4.6, $F^{r} \mathrm{CH}^{r}(X ; \mathbb{Q}) \subset \mathrm{CH}_{\text {alg }}^{r}(X ; \mathbb{Q})$. However it is worthwhile noting that:

Proposition 4.7. Suppose that $X / \mathbb{C}=X_{0} \times \mathbb{C}$, where $X_{0}=X_{0} / \overline{\mathbb{Q}}$. Assume that the $B B C$ holds. Then $F^{2} \mathrm{CH}^{r}(X / \mathbb{C} ; \mathbb{Q}) \subset \mathrm{CH}_{\text {alg }}^{r}(X / \mathbb{C} ; \mathbb{Q})$.

Proof. Let $\xi \in \mathrm{CH}^{r}(X / \mathbb{C} ; \mathbb{Q})$. Then there exists a smooth quasiprojective variety $S / \overline{\mathbb{Q}}$ and cycle $\tilde{\xi} \in \mathrm{CH}^{r}\left(S \times_{\mathbb{Q}} X_{0} ; \mathbb{Q}\right)$ such that $\xi=\widetilde{\xi}_{\eta}$ in $\mathrm{CH}^{r}(X / \mathbb{C} ; \mathbb{Q})$, where η is the generic point of $S / \overline{\mathbb{Q}}$, with appropriate embedding $\overline{\mathbb{Q}}(\eta) \hookrightarrow \mathbb{C}$. Since $S(\overline{\mathbb{Q}}) \neq \emptyset$ (Nullstellensatz), we can choose $p \in S(\overline{\mathbb{Q}})$, and set $\xi_{0}=\tilde{\xi}_{p} \in \mathrm{CH}^{r}\left(X_{0} ; \mathbb{Q}\right)$. Note that $\xi-\xi_{0} \in \mathrm{CH}_{\text {alg }}^{r}(X / \mathbb{C} ; \mathbb{Q})$. Now assume that $\xi \in F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q})$. Then $\xi_{0} \in \mathrm{CH}_{\text {hom }}^{r}\left(X_{0} ; \mathbb{Q}\right)$ and $A J_{X}\left(\xi_{0}\right)=$ $A J_{X}\left(\xi_{0}-\xi\right) \in J_{\text {alg }}^{r}(X(\mathbb{C}))_{\mathbb{Q}}$, where $J_{\text {alg }}^{r}(X(\mathbb{C})):=A J_{X}\left(\mathrm{CH}_{\text {alg }}^{r}(X / \mathbb{C})\right)$. Note
that $J_{\text {alg }}^{r}(X)$ has an underlying $\overline{\mathbb{Q}}$-structure given by $A J_{X}\left(\mathrm{CH}^{r}\left(X_{0} / \overline{\mathbb{Q}}\right)\right)$; moreover the action of $\operatorname{Aut}(\mathbb{C} / \overline{\mathbb{Q}})$ is compatible with

$$
\left.A J_{X}\right|_{\mathrm{CH}_{\mathrm{alg}}^{r}(X / \mathbb{C} ; \mathbb{Q})}: \mathrm{CH}_{\mathrm{alg}}^{r}(X / \mathbb{C} ; \mathbb{Q}) \rightarrow J_{\mathrm{alg}}^{r}(X(\mathbb{C}))_{\mathbb{Q}}
$$

For any $\sigma \in \operatorname{Aut}(\mathbb{C} / \overline{\mathbb{Q}})$, we have

$$
\begin{gathered}
\sigma\left(A J_{X}\left(\xi_{0}\right)\right)=\sigma\left(A J_{X}\left(\xi_{0}-\xi\right)\right)=A J_{X}\left(\left(\xi_{0}-\xi\right)^{\sigma}\right) \\
\quad=A J_{X}\left(\xi_{0}^{\sigma}-\xi^{\sigma}\right)=A J_{X}\left(\xi_{0}^{\sigma}\right)=A J_{X}\left(\xi_{0}\right)
\end{gathered}
$$

using $\xi^{\sigma} \in F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q}) \subset \mathrm{CH}_{A J}^{r}(X ; \mathbb{Q})$. Hence $A J_{X}\left(\xi_{0}\right) \in J_{\text {alg }}^{r}\left(X_{0}(\overline{\mathbb{Q}})\right)_{\mathbb{Q}}$, and so there exists $\xi_{0}^{\prime} \in \mathrm{CH}_{\text {alg }}^{r}\left(X_{0} / \overline{\mathbb{Q}} ; \mathbb{Q}\right)$ such that $A J\left(\xi_{0}\right)=A J_{X}\left(\xi_{0}^{\prime}\right)$. By the $\mathrm{BBC}, \xi_{0}=\xi_{0}^{\prime} \in \mathrm{CH}_{\text {alg }}^{r}\left(X_{0} / \overline{\mathbb{Q}} ; \mathbb{Q}\right)$. Thus $\xi \in \mathrm{CH}_{\text {alg }}^{r}(X / \mathbb{C} ; \mathbb{Q})$.

Remark 4.8. Recall $X \in \mathcal{V}_{\mathbb{C}}$. As pointed out in [K-P] (Theorem 88), and based on a similar argument and result in $[\mathrm{S}]$, we have

$$
\begin{aligned}
F^{2} \bigcap & \mathrm{CH}_{\mathrm{alg}}^{r}(X ; \mathbb{Q}) \\
& =\operatorname{ker}\left(\left.A J_{X}\right|_{\mathrm{CH}_{\mathrm{alg}}^{r}(X ; \mathbb{Q})}: \mathrm{CH}_{\mathrm{alg}}^{r}(X ; \mathbb{Q}) \rightarrow J\left(H^{2 r-1}(X, \mathbb{Q}(r))\right)\right) .
\end{aligned}
$$

[This really stems from the fact that $A J_{X}\left(\mathrm{CH}_{\text {alg }}^{r}(X)\right)$ is an Abelian variety defined over the same field of definition as X.] Then with regard to the expression in (6), we have:

Corollary 4.9. (i)

$$
\Gamma\left(H^{3}(\mathbb{C}(X), \mathbb{Q}(2))\right)=0 \Rightarrow F^{2} \mathrm{CH}^{2}(X ; \mathbb{Q})=\mathrm{CH}_{A J}^{2}(X ; \mathbb{Q})
$$

(ii) Conversely, if $B(X)$ holds and $D^{2}(X) \subset \mathrm{CH}_{\text {alg }}^{2}(X ; \mathbb{Q})$, then

$$
F^{2} \mathrm{CH}^{2}(X ; \mathbb{Q})=\mathrm{CH}_{A J}^{2}(X ; \mathbb{Q}) \Rightarrow \Gamma\left(H^{3}(\mathbb{C}(X), \mathbb{Q}(2))\right)=0
$$

5. Some Evidence for Conjecture 3.2

Let $X \in \mathcal{V}_{\mathbb{C}}$ be given with $\operatorname{dim} X=d$. Recall that $\Gamma\left(H^{2 d-1}(\mathbb{C}(X)\right.$, $\mathbb{Q}(d)))=0$ for $d>1$. Our next piece of evidence is an immediate consequence of (6) above.

Corollary 5.1. Let $X \in \mathcal{V}_{\mathbb{C}}$ be given such that $\mathrm{CH}_{A J}^{2}(X ; \mathbb{Q}) \subset$ $\mathrm{CH}_{\text {alg }}^{2}(X ; \mathbb{Q})$. Then $\Gamma\left(H^{3}(\mathbb{C}(X), \mathbb{Q}(2))\right)=0$.

Quite generally, if one considers (4) and Remark 3.4 above, then we deduce ${ }^{5}$:

Corollary 5.2. Let $X \in \mathcal{V}_{\mathbb{C}}, \operatorname{dim} X=d, r>1$ be given such that $\mathrm{CH}_{A J}^{r}(X ; \mathbb{Q}) \subset N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$. Let us further assume either (i) $d \leq 4$, or (ii) $r \in\{2, d-1\}$, or (iii) r, d arbitrary and the HC holds. Then $\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$.

We also have:
THEOREM 5.3. (i) Let X be a smooth complete intersection of dimension d with $H^{0}\left(X, \Omega_{X}^{d}\right)=0$. Assume $r>1$ and that either (i) $d \leq 4$, or (ii) $r \in\{2, d-1\}$, or (iii) r, d arbitrary and the HC holds. Then $\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$.
(ii) Let X be a smooth complete intersection of dimension d. Let us assume the $H C$. Then for all $r>1$ with $d \neq 2 r-1$ and $D^{r}(X) \subset$ $N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$, we have $\Gamma\left(H^{2 r-1}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$.

Proof. Both parts rely on showing that $\mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q})=$ $N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$, using (4), and whatever is required to ensure that λ in (1) is surjective.

Part (i). According to $[\mathrm{Ro}], \mathrm{CH}_{0}(X) \simeq \mathbb{Z}$. Thus by a standard diagonal argument due to J.-L. Colliot-Thélène/S. Bloch, we have

$$
N \cdot \Delta_{X} \sim_{\mathrm{rat}} \Gamma_{1}+\Gamma_{2}
$$

where $\left|\Gamma_{1}\right| \subset X \times D,\left|\Gamma_{2}\right| \subset p \times X, \operatorname{codim}_{X} D=1, p \in X$ a point, for some $N \in \mathbb{N}$. Thus

$$
\begin{gathered}
\mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q})=N \cdot \Delta_{X, *} \mathrm{CH}_{\text {hom }}^{r}(X ; \mathbb{Q}) \\
=\Gamma_{1, *} \mathrm{CH}_{\text {hom }}^{r}(X ; \mathbb{Q})+\Gamma_{2, *} \mathrm{CH}_{\text {hom }}^{r}(X ; \mathbb{Q}) \subset N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q}) .
\end{gathered}
$$

Then (i) follows from (4) and Remark 3.4.

[^5]Part (ii). By the Lefschetz theorems, one can choose a decomposition of the diagonal class

$$
\Delta_{X}=\bigoplus_{p+q=2 d} \Delta_{X}(p, q), \quad\left[\Delta_{X}(p, q)\right] \in H^{p}(X, \mathbb{Q}) \otimes H^{q}(X, \mathbb{Q})
$$

such that $\Delta_{X}(p, q)_{*} \mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q}) \subset N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$ for $(p, q) \neq(d, d)$. So it suffices to show that $\Delta_{X}(d, d)_{*} \mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q}) \subset N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$ as well. But $d=2 r-\nu$ for some $\nu \in \mathbb{Z}$, and $\operatorname{Gr}_{F}^{\nu} \mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q}) \simeq \Delta_{X}(d, d)_{*} \mathrm{CH}_{\mathrm{hom}}^{r}(X ; \mathbb{Q})$. This is zero modulo $D^{r}(X)$ if $\nu \leq 0$. For $\nu \geq 2$, we apply Proposition 4.6. Finally the case $\nu=1$ is excluded.

6. Main Theorem

Theorem 6.1. Consider these two statements:
(i) Conjecture 3.2 holds for all $X \in \mathcal{V}_{\mathbb{C}}$, (and all r).
(ii) $F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q})=\mathrm{CH}_{A J}^{r}(X ; \mathbb{Q})$ for all $X \in \mathcal{V}_{\mathbb{C}}$, (and all $\left.r\right)$.

If we assume the $H C$, then (i) \Rightarrow (ii). If we further assume that $D^{r}(X) \subset$ $N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$, then (ii) \Rightarrow (i).

REmARK 6.2. (1) Although statement (i) is no more accessible than (ii), the evidence in support of (i) is more apparent, in light of the results and remarks in [K-L], [Ja1], and the previous section.
(ii) The proof of this theorem relies only on the properties of the filtration in Theorem 4.1.

Proof. (of theorem) (ii) \Rightarrow (i): Under the given assumptions and according to Proposition 4.6, $F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q}) \subset N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$. Thus (ii) \Rightarrow (i) is immediate from (5). Thus we need only show that (i) \Rightarrow (ii). Since $F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q}) \subset \operatorname{ker}\left(A J_{X}\right)$, it suffices to prove the reverse inclusion $\operatorname{ker}\left(A J_{X}\right) \subset F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q})$. Let $\xi \in \operatorname{ker}\left(A J_{X}\right)$. Since we are assuming Conjecture 3.2, it follows from (5) that $\xi \in N^{1} \mathrm{CH}^{r}(X ; \mathbb{Q})$. Thus ξ is homologous to zero on some pure codimension one algebraic subset $Y \subset X$. We need the following ingredient.

Lemma 6.3. Let us assume the $H C$ and let Y be a pure codimension one subvariety of a smooth projective variety X. Then there is a smooth
variety \tilde{Y} of [pure] $\operatorname{dim} \tilde{Y}=\operatorname{dim} Y$, and a morphism $\tilde{Y} \rightarrow Y$ such that

$$
\mathrm{CH}_{\mathrm{hom}}^{\bullet}(\tilde{Y} ; \mathbb{Q}) \rightarrow \mathrm{CH}_{\mathrm{hom}}^{\bullet}(Y ; \mathbb{Q}),
$$

is surjective.

Remark 6.4. (i) This lemma seems to be related to a statement in Remark 5.13 in [Ja1]. More precisely, and in our notation, is the following statement:

If $f: \tilde{Z} \rightarrow Z$ is a surjective, generically finite morphism of irreducible projective varieties, with \tilde{Z} smooth, then $f_{*}: \mathrm{CH}_{\text {hom }}^{\bullet}(\tilde{Z} ; \mathbb{Q}) \rightarrow \mathrm{CH}_{\text {hom }}^{\bullet}(Z ; \mathbb{Q})$ is surjective.

From a conjectural standpoint, we expect that this statement is true.
(ii) The assumption that Y has codimension one in the lemma is only used to simplify the proof. We leave it to the reader to generalize the statement of the lemma for arbitrary codimension Y; one possibility being aforementioned statement in (i) above, under the assumption of the HC.

Proof. (of the lemma.) Let $\rho_{X}: X^{\prime} \xrightarrow{\approx} X$ be a proper modification of X for which $Y^{\prime}:=\rho_{X}^{-1}(Y)$ is a NCD, with inclusions $j: Y \hookrightarrow X$, $j^{\prime}: Y^{\prime} \hookrightarrow X^{\prime}$, and morphism $\rho_{Y}:=\left.\rho_{X}\right|_{Y^{\prime}}$, and where $X^{\prime} \backslash Y^{\prime} \simeq X \backslash Y$. This observation, together with the localization sequences associated to j and j^{\prime} and the cohomology of blow-ups, leads to the commutative diagram:

$$
\begin{array}{ccc}
\mathrm{CH}_{Y^{\prime}}^{r}\left(X^{\prime} ; \mathbb{Q}\right) & \xrightarrow{\rho_{Y}} & \mathrm{CH}_{Y}^{r}(X, ; \mathbb{Q}) \\
\downarrow & & \downarrow
\end{array}
$$

$$
\begin{array}{cccc}
\operatorname{ker} \rho_{Y, *} & \hookrightarrow & H_{Y^{\prime}}^{2 r}\left(X^{\prime}, \mathbb{Q}\right) & \xrightarrow{\rho_{Y, *}} \tag{7}
\end{array} H_{Y}^{2 r}(X, \mathbb{Q})
$$

Now let $\xi_{0} \in \mathrm{CH}_{\mathrm{hom}}^{r-1}(Y ; \mathbb{Q})$. Then using $X \backslash Y \simeq X^{\prime} \backslash Y^{\prime}$ together with the localization sequence for Chow groups associated to the pairs $\left(X^{\prime}, Y^{\prime}\right)$ and (X, Y), there exists $\xi_{1} \in \mathrm{CH}^{r-1}\left(Y^{\prime} ; \mathbb{Q}\right)$ for which $j_{*}^{\prime}\left(\xi_{1}\right)=\rho_{X}^{*}\left(j_{*}\left(\xi_{0}\right)\right)$ and $\rho_{Y, *}\left(\xi_{1}\right)=\xi_{0}$. This is accomplished with the aid of the diagram below.

Note that
$\mathrm{CH}^{r}\left(X^{\prime} ; \mathbb{Q}\right)=\rho_{X}^{*} \mathrm{CH}^{r}(X ; \mathbb{Q}) \bigoplus \operatorname{ker}\left\{\rho_{X, *}: \mathrm{CH}^{r}\left(X^{\prime} ; \mathbb{Q}\right) \rightarrow \mathrm{CH}^{r}(X ; \mathbb{Q})\right\}$.

$$
H^{2 r}\left(X^{\prime}, \mathbb{Q}\right)=\rho_{X}^{*} H^{2 r}(X, \mathbb{Q}) \bigoplus \operatorname{ker} \rho_{X, *}
$$

Then on cohomology $\left[\xi_{1}\right] \in \operatorname{ker} \rho_{Y, *}$ in (7), and yet by construction $\left[\xi_{1}\right] \mapsto$ $0 \in \operatorname{ker} \rho_{X, *}$. Thus by diagram (7), $\xi_{1} \in \mathrm{CH}_{\text {hom }}^{r-1}\left(Y^{\prime} ; \mathbb{Q}\right)$ and hence $\rho_{Y, *}$: $\left.\mathrm{CH}_{\mathrm{hom}}^{r-1}\left(Y^{\prime} ; \mathbb{Q}\right) \rightarrow \mathrm{CH}_{\mathrm{hom}}^{r-1} Y ; \mathbb{Q}\right)$ is surjective ${ }^{6}$ for all r. Write $Y^{\prime}=\bigcup_{i=1}^{N} Y_{j}^{\prime}$,

[^6]$Y_{[1]}^{\prime}=\coprod_{i=1}^{N} Y_{j}$. For $I=\left\{i_{1}<\cdots<i_{\ell}\right\}$, put $Y_{I}^{\prime}=\bigcap_{j=1}^{\ell} Y_{i_{j}}^{\prime}, Y_{[\ell]}^{\prime}=\coprod_{|I|=\ell} Y_{I}^{\prime}$.
From the simplicial complex $Y_{[\bullet]}^{\prime} \rightarrow Y^{\prime}$, we arrive at:
$$
\mathrm{CH}^{r}\left(Y^{\prime}\right) \simeq \frac{z^{r}\left(Y_{[1]}^{\prime}\right)}{\operatorname{Gy}\left(z^{r-1}\left(Y_{[2]}^{\prime}\right)\right)+z_{\mathrm{rat}}^{r}\left(Y_{[1]}^{\prime}\right)} \simeq \frac{\mathrm{CH}^{r}\left(Y_{[1]}^{\prime}\right)}{\mathrm{Gy}\left(\mathrm{CH}^{r-1}\left(Y_{[2]}^{\prime}\right)\right)},
$$
where Gy is the (signed) Gysin map. Further, relating this to a corresponding cohomological complex, together with the HC , we arrive at:
$$
\frac{\mathrm{CH}^{r}\left(Y^{\prime} ; \mathbb{Q}\right)}{\mathrm{CH}_{\mathrm{hom}}^{r}\left(Y^{\prime} ; \mathbb{Q}\right)} \simeq \frac{H_{\mathrm{alg}}^{2 r}\left(Y_{[1]}^{\prime} ; \mathbb{Q}\right)}{\mathrm{Gy}\left(H_{\mathrm{alg}}^{2 r-2}\left(Y_{[2]}^{\prime}, \mathbb{Q}\right)\right)},
$$
where $H_{\mathrm{alg}}^{2 p}(W, \mathbb{Q}) \subset H^{2 p}(W, \mathbb{Q})$ is the subspace of of algebraic cocycles, for $W \in \mathcal{V}_{\mathbb{C}}$. Now put $\widetilde{Y}=Y_{[1]}^{\prime}$. With the aid of the diagram,
\[

$$
\begin{array}{ccc}
\mathrm{CH}^{r-1}\left(Y_{[2]}^{\prime} ; \mathbb{Q}\right) & \rightarrow & H_{\mathrm{alg}}^{2 r-2}\left(Y_{[2]}^{\prime}, \mathbb{Q}\right) \\
\mathrm{Gy} \mid & & \downarrow \mathrm{Gy} \\
\mathrm{CH}^{r}\left(Y_{[1]}^{\prime} ; \mathbb{Q}\right) & \rightarrow & H_{\mathrm{alg}}^{2 r}\left(Y_{[1]}^{\prime}, \mathbb{Q}\right) \\
\downarrow & & \downarrow \\
\mathrm{CH}^{r}\left(Y^{\prime} ; \mathbb{Q}\right) & \rightarrow & H_{\mathrm{alg}}^{2 r}\left(Y_{[1]}^{\prime}, \mathbb{Q}\right) / \operatorname{Gy}\left(H_{\mathrm{alg}}^{2 r-2}\left(Y_{[2]}^{\prime}, \mathbb{Q}\right)\right),
\end{array}
$$
\]

it follows that the induced proper pushforward $\mathrm{CH}_{\mathrm{hom}}^{\bullet}(\tilde{Y} ; \mathbb{Q}) \rightarrow$ $\mathrm{CH}_{\text {hom }}^{\bullet}(Y ; \mathbb{Q})$ is surjective.

Now returning to the proof of Theorem 6.1, consider the composite map $\sigma: \widetilde{Y} \rightarrow Y \hookrightarrow X$. By the lemma there exists $\xi_{0} \in F^{1} \mathrm{CH}^{r-1}(\widetilde{Y} ; \mathbb{Q})$ for which $\sigma_{*}\left(\xi_{0}\right)=\xi \in \operatorname{ker}\left(A J_{X}\right)$. The graph of σ determines a fundamental class $[\sigma] \in H^{2 d}(\widetilde{Y} \times X, \mathbb{Q})$, where $d=\operatorname{dim} X$. Let $[\sigma]_{0} \in H^{2 d-2 r+1}(\tilde{Y}, \mathbb{Q}) \otimes$ $H^{2 r-1}(X, \mathbb{Q})$ be the corresponding Künneth component. Let σ_{0} be any algebraic cycle with $\left[\sigma_{0}\right]=[\sigma]_{0}$. Then as a class []$_{1} \in \operatorname{Gr}_{F}^{1} \mathrm{CH}^{\bullet},[\xi]_{1}=$ $\left[\sigma_{0, *}\left(\xi_{0}\right)\right]_{1}$. In particular

$$
\sigma_{0, *}\left(\xi_{0}\right)-\xi \in F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q})
$$

The key issue is the choice of representative σ_{0} of $[\sigma]_{0}$. Choose a subHS $V \subset H^{2 r-3}(\tilde{Y}, \mathbb{Q})$ such that

$$
\left.[\sigma]_{0, *}\right|_{V}: V \xrightarrow{\sim}[\sigma]_{0, *}\left(H^{2 r-3}(\widetilde{Y}, \mathbb{Q})\right) \subset H^{2 r-1}(X, \mathbb{Q}),
$$

is an isomorphism. By the HC , there exists $w \in \mathrm{CH}^{d-1}(X \times \tilde{Y} ; \mathbb{Q})$, with $[w] \in\left\{[\sigma]_{0, *}\left(H^{2 r-3}(\widetilde{Y}, \mathbb{Q})\right)\right\}^{\vee} \otimes V$, where $\left\{[\sigma]_{0, *}\left(H^{2 r-3}(\widetilde{Y}, \mathbb{Q})\right)\right\}^{\vee} \otimes V$ is a subquotient of $H^{2 d-2 r+1}(X, \mathbb{Q}) \otimes H^{2 r-3}(\widetilde{Y}, \mathbb{Q})$, (which we can regard as an inclusion by semi-simplicity of polarized Hodge structures over \mathbb{Q}), such that

$$
\left.[\sigma]_{0, *} \circ[w]_{*}\right|_{\operatorname{Im}\left([\sigma]_{0, *}\right)}=\operatorname{Id}_{\operatorname{Im}\left([\sigma]_{0, *}\right)}
$$

Now by construction, $\sigma_{0, *} \circ w_{*} \circ \sigma_{*}\left(\xi_{0}\right)=\sigma_{0, *} \circ w_{*}(\xi)$; moreover $w_{*}(\xi) \in$ $\operatorname{ker}\left(A J_{\tilde{Y}}\right)$ by functoriality of the Abel-Jacobi map. By induction on dimension, $\operatorname{ker}\left(A J_{\tilde{Y}}\right)=F^{2} \mathrm{CH}^{r-1}(\tilde{Y} ; \mathbb{Q})$. Since $\xi-\sigma_{0, *} \circ w_{*}(\xi) \in F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q})$, and $\sigma_{0, *} \circ w_{*}(\xi) \in F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q})$, it follows that $\xi \in F^{2} \mathrm{CH}^{r}(X ; \mathbb{Q})$.

References

[Ar] Arapura, D., The Leray spectral sequence is motivic, Invent. Math. 160 (2005), 567-589.
[Be] Beilinson, A., Height pairings between algebraic cycles, Springer Lecture Notes 1289, (1987), 1-26.
[B] Bloch, S., Algebraic cycles and higher K-theory, Advances in Math. 61 (1986), 267-304.
[dJ-L] de Jeu, R. and J. D. Lewis, Work in progress.
[Ja1] Jannsen, U., Equivalence relations on algebraic cycles, in Proceedings of the NATO Advanced Study Institute on the Arithmetic and Geometry of Algebraic Cycles Vol. 548, (Lewis, Yui, Gordon, Müller-Stach, S. Saito, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, (2000), 225-260.
[Ja2] Jannsen, U., Mixed Motives and Algebraic K-Theory, Lecture Notes in Mathematics 1400, (1988).
[K-L] Kang, S.-J. and J. D. Lewis, Beilinson's Hodge conjecture for K_{1} revisited, To appear in the Proceedings of the International Colloquium on Cycles, Motives and Shimura Varieties (Mumbai, 2008).
[Ke-L] Kerr, M. and J. D. Lewis, The Abel-Jacobi map for higher Chow groups II, Invent. Math. 170 (2), (2007), 355-420.
[K-P] Kerr, M. and G. Pearlstein, An exponential history of functions with logarithmic growth, Proceedings of the MSRI workshop on the topology of stratified spaces, September 2008.
[Lew1] Lewis, J. D., A filtration on the Chow group of a complex projective variety, Compositio Math. 128 (2001), 299-322.
[Lew2] Lewis, J. D., (Co-)Homological models for higher Chow groups, Preprint.
[Ro] Roitman, A. A., The torsion group of 0-cycles modulo rational equivalence, Ann. of Math. 111 (1980), 553-569.
[S] Saito, S., Motives and filtrations on Chow groups, Invent. Math. 125 (1996), 149-196.
[MSa] Saito, M., Hodge-type conjecture for higher Chow groups, arXiv:math. AG/0201113 v4.
(Received December 10, 2009)
(Revised July 7, 2010)
632 Central Academic Building
University of Alberta
Edmonton, Alberta T6G 2G1, CANADA
E-mail: lewisjd@ualberta.ca

[^0]: 2010 Mathematics Subject Classification. Primary 14C25; Secondary 14C30, 14C35. Key words: Bloch-Beilinson filtration, normal function, Chow group.
 Partially supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

[^1]: ${ }^{1}$ Homological version, see [Ja2](%C2%A77); or if the reader prefers, assume the HC holds for a desingularization \widetilde{Y}.

[^2]: ${ }^{2} \mathrm{As}$ originally shown by M . Saito ([MSa]), this statement generalizes to $\mathrm{CH}^{r}(X \backslash Y, m ; \mathbb{Q})$. A different proof of that generalization appears in [Ke-L].

[^3]: ${ }^{3}$ Quite generally ([dJ-L]), we also conjecture that $\Gamma\left(H^{2 r-m}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$ for all $X \in \mathcal{V}_{\mathbb{C}}$ and $r \neq m$, and $\operatorname{cl}_{m, m}: \mathrm{CH}^{m}(\mathbb{C}(X), m) \rightarrow \Gamma\left(H^{m}(X, \mathbb{Z}(r))\right)$ is surjective. (Note: The vanishing $\Gamma\left(H^{2 r-m}(\mathbb{C}(X), \mathbb{Q}(r))\right)=0$ for $r<m$ is a simple consequence of mixed Hodge theory.)

[^4]: ${ }^{4}$ The formulation in [Lew1] states that if the analog of the BBC holds for smooth quasiprojective varieties defined over a number field, then $D^{r}(X)=0$. That analog however, is implied by the $\mathrm{BBC}+\mathrm{HC}$.

[^5]: ${ }^{5}$ This can also be deduced from $[\mathrm{K}-\mathrm{L}]$.

[^6]: ${ }^{6}$ Quite generally, this result can be deduced from the s.e.s. $0 \rightarrow \mathrm{CH}_{Y}^{r}(X, m ; \mathbb{Q}) \rightarrow$ $\mathrm{CH}_{Y^{\prime}}^{r}\left(X^{\prime}, m ; \mathbb{Q}\right) \oplus \mathrm{CH}^{r}(X, m ; \mathbb{Q}) \rightarrow \mathrm{CH}^{r}\left(X^{\prime}, m ; \mathbb{Q}\right) \rightarrow 0$, together with a corresponding s.e.s. on cohomology, given in [Lew2]. In this generalization, Y is any proper closed subset of X, with Y^{\prime} a NCD in X^{\prime}.

