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Abel-Jacobi Equivalence and a Variant of the

Beilinson-Hodge Conjecture

By James D. Lewis

Abstract. Let X/C be a smooth projective variety and CHr(X)
the Chow group of codimension r algebraic cycles modulo rational
equivalence. Let us assume the (conjectured) existence of the Bloch-
Beilinson filtration {F νCHr(X) ⊗ Q}rν=0 for all such X (and r). If
CHr

AJ(X) ⊂ CHr(X) is the subgroup of cycles Abel-Jacobi equivalent
to zero, then there is an inclusion F 2CHr(X) ⊗ Q ⊂ CHr

AJ(X) ⊗ Q.
Roughly speaking we show that this inclusion is an equality for all X
(and r) if and only if a certain variant of Beilinson-Hodge conjecture
holds for K1.

1. Introduction

Let X/C be a smooth projective variety and CHr(X; Q) the Chow

group of codimension r algebraic cycles modulo rational equivalence, ten-

sored with Q. The existence of a descending filtration {F νCHr(X; Q)}rν=0

on CHr(X; Q) whose graded pieces factor through the Grothendieck mo-

tive, is a consequence of the classical Hodge conjecture (HC), together

with a conjecture of Bloch and (independently) Beilinson (BBC) on the

injectivity of the Abel-Jacobi map for Chow groups of smooth projective

varieties over number fields. Assuming such a filtration, then one has

F 1CHr(X; Q) = CHr
hom(X; Q) (= the nullhomologous cycles) and an in-

clusion F 2CHr(X; Q) ⊂ CHr
AJ(X; Q), where the latter term are the cycles

that are Abel-Jacobi equivalent to zero. The question as to whether this

inclusion is (conjecturally) an equality, has generated some debate.

For a mixed Q-Hodge structure H, we put Γ(H) := homMHS(Q(0), H).

Evidently, by a mixed Hodge theory argument one can show that

Γ
(
H2r(C(X),Q(r))

)
= 0 for all smooth projective X/C and all r > 0 is
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equivalent to the statement of the classical Hodge conjecture. In this paper

we consider the candidate Bloch-Beilinson filtration {F νCHr(X; Q)}ν≥0 in-

troduced in [Lew1], and put Dr(X) :=
⋂

ν≥0 F
νCHr(X; Q). Evidently HC

+ BBC ⇒ Dr(X) = 0 (Theorem 4.1(vi)). Our main result is the following.

Theorem 1.1. Consider these two statements:

(i) Γ
(
H2r−1(C(X),Q(r))

)
= 0 for all all smooth projective X/C and all

r > 1.

(ii) F 2CHr(X; Q) = CHr
AJ(X; Q) for all smooth projective X/C, and all r.

If we assume the HC, then (i) ⇒ (ii). If we further assume that Dr(X) ⊂
N1CHr(X; Q), then (ii) ⇒ (i). (Here N1CHr(X; Q) is the subspace of

cycles homologous to zero on codimension ≥ 1 algebraic subsets of X.)

In section 5 we provide some evidence in support of the statement in

Theorem 1.1(i). In particular we arrive at:

Theorem 1.2. Let X/C be a smooth projective variety of dimension

d, and let r > 1.

(i) Suppose that CHr
AJ(X; Q) ⊂ N1CHr(X; Q) and either (i) d ≤ 4,

or (ii) r ∈ {2, d − 1}, or (iii) r, d arbitrary and the HC holds. Then

Γ
(
H2r−1(C(X),Q(r))

)
= 0. (The statement Γ

(
H2d−1(C(X),Q(d))

)
= 0

for d > 1 holds unconditionally.)

(ii) Let us further assume that X is a complete intersection with

H0(X,Ωd
X) = 0. Assume that either (i) d ≤ 4, or (ii) r ∈ {2, d − 1},

or (iii) r, d arbitrary and the HC holds. Then Γ
(
H2r−1(C(X),Q(r))

)
= 0.

(iii) Again let X be a complete intersection and assume the HC. Then for

all r with d �= 2r− 1 and Dr(X) ⊂ N1CHr(X; Q), we have Γ
(
H2r−1(C(X),

Q(r))
)

= 0.

For the convenience to the reader, we also relate the statement in The-

orem 1.1(ii) to the field of definition of the torsion locus of a cycle induced

normal function, a result which seems known only among experts ([K-P]).

Let CHr
alg(X; Q) be the subspace of cycles that are algebraically equiv-

alent to zero. As a result of Corollaries 4.9 & 5.1 below, we deduce the

following.
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Corollary 1.3. Let X/C be a smooth projective variety. Then:

(i)

Γ
(
H3(C(X),Q(2))

)
= 0 ⇒

{
F 2CH2(X; Q) = CH2

AJ(X; Q)

F 2CH2(X; Q) ⊂ CH2
alg(X; Q)

.

(ii) Conversely, if we further assume that X is either a complete inter-

section or an Abelian variety, and if D2(X) ⊂ CH2
alg(X; Q), then:

F 2CH2(X; Q) = CH2
AJ(X; Q) ⇒ Γ

(
H3(C(X),Q(2))

)
= 0.

(iii) For any smooth projective X/C satisfying CH2
AJ(X; Q) ⊂

CH2
alg(X; Q), we have Γ

(
H3(C(X),Q(2))

)
= 0. (This also follows from

Theorem 1.2(i), using the fact that N1CH2(X; Q) = CH2
alg(X; Q).)

We are grateful to the referee for doing a splendid job, and raising some

interesting points.

2. Notation

(i) Throughout this paper we will assume that k ⊂ C is an algebraically

closed subfield. Let Vk be the category of smooth projective varieties over

k.

(ii) Q(n) = (2πi)nQ = Tate twist (a pure HS on Q of pure weight −2n

(and Hodge type (−n,−n)).

(iii) For a mixed Hodge structure (MHS) H, we put

Γ(H) := homMHS(Q(0), H),

J(H) := Ext1MHS(Q(0), H).

(iv) For X ∈ Vk, H
i(X,Q) := H i(X(C),Q) (singular cohomology). For

X ∈ VC,

H i(C(X),Q) := lim
−→
U

H i(U,Q),

where the limit is taken over all non-empty Zariski open subsets U ⊂ X.
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(v) For X ∈ Vk, the coniveau filtration is given by

Nν
kH

i(X,Q) := ker

(
H i(X,Q) → lim

−→
Y⊂X/k,cdXY≥ν

H i(X\Y,Q)

)
.

(vi) The statement of the classical Hodge conjecture for all X ∈ VC,

will be abbreviated by HC. For X ∈ VC of dimension d, the hard Lefschetz

conjecture B(X) states that the inverse to the hard Lefschetz ismorphism

Ld−i
X : H i(X,Q)

∼−→ H2d−i(X,Q),

is algebraic cycle induced for all i ≤ d, where LX is the operation of cupping

with a hyperplane section of X.

(vii) Let CHr(X,m) be the higher Chow group introduced in [B]. We

put CHr(X,m; Q) := CHr(X,m) ⊗ Q. The classical Chow group is given

by CHr(X) = CHr(X, 0). The subgroup of cycles algebraically equivalent

to zero is denoted by CHr
alg(X) ⊂ CHr(X).

(viii) Let Y ⊂ X be a Zariski closed subset, where X ∈ Vk. If d = dimX,

we put CHd−r(X) = CHr(X). Likewise let CHr
Y (X) := CHd−r(Y ), and

CHr
Y,hom(X; Q) := ker

(
CHr

Y (X; Q) → H2r
Y (X,Q)

)
.

(ix) For X ∈ Vk, consider the Abel-Jacobi map

AJX : CHr
hom(X; Q) → J

(
H2r−1(X,Q(r))

)
.

We put CHr
AJ(X; Q) := kerAJX .

3. A Variant of the Hodge Conjecture for K1

We review some of the ideas in [K-L], some of which goes back to the

work of Jannsen ([Ja2]). Let X ∈ Vk be given with algebraic subset Y ⊂
X/k. The localization sequence yields a s.e.s. of MHS:

0 → H2r−1(X,Q(r))

H2r−1
Y (X,Q(r))

→ H2r−1(X\Y,Q(r)) → H2r
Y (X,Q(r))◦ → 0,

where

H2r
Y (X,Q(r))◦ := ker

(
H2r

Y (X,Q(r)) → H2r(X,Q(r))
)
.
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Note that H2r−1(X,Q(r))/H2r−1
Y (X,Q(r)) is a pure Hodge structure of

weight −1. Corresponding to this is a commutative diagram:

CHr(X\Y, 1; Q) → CHr
Y (X; Q)◦

β−→ CHr
hom(X; Q)

clr,1

� λ

� AJX

�
0 → Γ

(
H2r−1(X\Y,Q(r))

) α−→ Γ
(
H2r

Y (X,Q(r))◦
)

→ J

(
H2r−1(X,Q(r))

H2r−1
Y (X,Q(r))

)
,

(1)

where CHr
Y (X; Q)◦ are the cycles in CHr

Y (X; Q) that are homologous to

zero on X, and where AJX is the composite Abel-Jacobi map

CHr
hom(X; Q)

AJX−−−→ J
(
H2r−1(X,Q(r))

)
→ J

(
H2r−1(X,Q(r))

H2r−1
Y (X,Q(r))

)
.

Let us assume that λ is surjective. Such is the case if the HC1 holds for Y .

Then the serpent lemma gives:

ker
(
AJX

∣∣
Im(β)

)
β
(
kerλ

) 	 Γ
(
H2r−1(X\Y,Q(r))

)
clr,1

(
CHr(X\Y, 1; Q)

) .(2)

Let Ỹ
≈−→ Y be a desingularization. If we assume for the moment that the

Gysin map H2r−2cdXY−1(Ỹ ,Q) → H2r−1(X,Q) has a cycle induced right

inverse (as implied by the HC), then as argued in [K-L],

ker
(
AJX

∣∣
Im(β)

)
β
(
kerλ

) =
β
(
kerλ

)
+ ker

(
AJX

∣∣
Im(β)

)
β
(
kerλ

) .(3)

We recall that Bloch and Beilinson ([Be] 5.6) independently conjectured the

following:

Conjecture 3.1 (BBC = Bloch-Beilinson Conjecture). If k = Q,

then

AJX : CHr
hom(X/Q; Q) ↪→ J

(
H2r−1(X,Q(r))

)
,

1Homological version, see [Ja2](§7); or if the reader prefers, assume the HC holds for

a desingularization Ỹ .
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is injective.

Two extreme cases comes to mind:

• If k = Q, then the HC + BBC ⇒ clr,1
(
CHr(X\Y, 1; Q)

)
= Γ

(
H2r−1(X\Y,

Q(r))
)
2.

• (Jannsen [Ja2]) If k = C and codimXY = r, then λ in (1) is an isomor-

phism, H2r−1
Y (X,Q(r)) = 0; moreover clr,1 is surjective ⇔ AJX is injective

on Im(β). This implies surjectivity in the case r = 1, by the theory of the

Picard variety; however for r > 1, AJX need not be injective (Mumford),

hence clr,1 need not be surjective.

A natural question is whether one can tweak the second scenario situa-

tion so that surjectivity is a possibility. As the higher Chow groups involve

numerator conditions in the definition, this appears to be the case if one

passes to the generic point. Namely:

Conjecture 3.2 ([K-L]).

clr,1 : CHr(C(X), 1; Q) � Γ
(
H2r−1(C(X),Q(r))

)
,

is surjective.

Here we wish to make it clear that CHr(C(X), 1; Q) :=

CHr(Spec(C(X)), 1; Q) and

H i(C(X),Q) := lim
−→

cdXY =1

H i(X\Y,Q).

Proposition 3.3. The following statements are equivalent:

(i) Γ
(
H2r−1(C(X),Q(r))

)
= 0 for all X ∈ VC and all r > 1.

(ii) Conjecture 3.2 holds for all X ∈ VC and all r.

Proof. First, we may assume that r > 1, as cl1,1 is surjective.

Secondly, for dimension reasons CHr(C(X), 1) = 0 for r > 1. Thirdly

2As originally shown by M. Saito ([MSa]), this statement generalizes to
CHr(X\Y,m; Q). A different proof of that generalization appears in [Ke-L].



Beilinson-Hodge Conjecture 185

Γ
(
H2r−1(C(X),Q(r))

)
= 0 implies clr,1 is obviously surjective. The propo-

sition follows from this. �

To see why Conjecture 3.2 is plausible3, observe that by passing to a

limit over all codimension 1 subvarieties of X, (2) becomes

ker

(
AJX : CHr

hom(X; Q) → J

(
H2r−1(X,Q(r))

N1H2r−1(X,Q(r))

))
N1CHr(X; Q)

(4)

	 Γ
(
H2r−1(C(X),Q(r))

)
clr,1

(
CHr(C(X), 1; Q)

) ,
where NpCHr(X; Q) ⊂ CHr(X; Q) is the subspace of cycles that are homol-

ogous to zero on algebraic subsets of codimension ≥ p in X, and

NpH i(X,Q) := Np
CH

i(X,Q) is the coniveau filtration. Then (3) translates

to

ker(AJX) + N1CHr(X; Q)

N1CHr(X; Q)
	 Γ

(
H2r−1(C(X),Q(r))

)
clr,1

(
CHr(C(X), 1; Q)

) .(5)

Remark 3.4. Note that the isomorphisms in (4) and (5) hinge on HC

assumptions. For instance, (4) requires λ in (1) to be surjective.

In the case r = d := dimX, the reader can easily check that the map

cld,1 in Conjecture 3.2 is unconditionally surjective. Further, according to

[Ja1], there is some evidence to suggest that ker(AJX) ⊂ N1CHr(X; Q).

Next, observe that CHr
alg(X; Q) = N r−1CHr(X; Q), and that the restricted

Abel-Jacobi map,

CHr
alg(X; Q) � J

(
N r−1H2r−1(X,Q(r))

)
,

is surjective. When r = 2 one can easily check that

CH2
alg(X; Q) + ker(AJX)

CH2
alg(X; Q)

	 Γ
(
H3(C(X),Q(2))

)
cl2,1

(
CH2(C(X), 1; Q)

)(6)

= Γ
(
H3(C(X),Q(2))

)
,

3Quite generally ([dJ-L]), we also conjecture that Γ
(
H2r−m(C(X),Q(r))

)
= 0 for all

X ∈ VC and r �= m, and clm,m : CHm(C(X),m) � Γ
(
Hm(X,Z(r))

)
is surjective. (Note:

The vanishing Γ
(
H2r−m(C(X),Q(r))

)
= 0 for r < m is a simple consequence of mixed

Hodge theory.)
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holds unconditionally.

4. A Descending Filtration

We recall the candidate Bloch-Beilinson (B-B) filtration constructed in

[Lew1].

Theorem 4.1. Let X ∈ VC be of dimension d. Then for all r, there is

a filtration

CHr(X; Q) = F 0 ⊃ F 1 ⊃ · · · ⊃ F ν ⊃ F ν+1 ⊃ · · · ⊃ F r ⊃ F r+1

= F r+2 = · · · ,

which satisfies the following

(i) F 1 = CHr
hom(X; Q).

(ii) F 2 ⊂ CHr
AJ(X; Q).

(iii) F ν1CHr1(X; Q) • F ν2CHr2(X; Q) ⊂ F ν1+ν2CHr1+r2(X; Q), where •
is the intersection product.

(iv) F ν is preserved under the action of correspondences between smooth

projective varieties in VC
(v) Let GrνF := F ν/F ν+1 and assume that the Künneth components

of the diagonal class [∆X ] = ⊕p+q=2d[∆X(p, q)] ∈ H2d(X × X,Q(d))) are

algebraic and defined over K. Then

∆X(2d− 2r + �, 2r − �)∗
∣∣
GrνF CHr(X;Q)

= δ�,ν · Identity.

[If we assume the conjecture that homological and numerical equivalence

coincide, then (v) says that GrνF factors through the Grothendieck motive.]

(vi) Let Dr(X) :=
⋂

ν F
ν , and k = Q. If the BBC together with the HC

holds, Dr(X) = 0.4

Remark 4.2. The way this filtration is constructed is as follows. Con-

sider a Q-spread ρ : X → S, where ρ is smooth and proper morphism of

4The formulation in [Lew1] states that if the analog of the BBC holds for smooth
quasiprojective varieties defined over a number field, then Dr(X) = 0. That analog
however, is implied by the BBC + HC.



Beilinson-Hodge Conjecture 187

quasiprojective varieties, and K = Q(S). Let η be the generic point of S/Q,

and hence K := Q(η), with XK := Xη. Using the cycle class map into abso-

lute Hodge cohomology, CHr(X/Q; Q) → H2r
H (X,Q(r)), there is a decreas-

ing filtration FνCHr(X/Q; Q), with the property that GrνFCHr(X/Q; Q) ↪→
Eν,2r−ν

∞ (ρ), where Eν,2r−ν
∞ (ρ) is the ν-th graded piece of a Leray filtration

associated to ρ. The term Eν,2r−ν
∞ (ρ) fits in a short exact sequence:

0 → Eν,2r−ν
∞ (ρ) → Eν,2r−ν

∞ (ρ) → Eν,2r−ν
∞ (ρ) → 0,

where

Eν,2r−ν
∞ (ρ) = Γ

(
Hν(S(C), R2r−νρ∗Q(r))

)
,

Eν,2r−ν
∞ (ρ) =

J
(
W−1H

ν−1(S(C), R2r−νρ∗Q(r))
)

Γ
(
Gr0WHν−1(S(C), R2r−νρ∗Q(r))

)
⊂ J

(
Hν−1(S(C), R2r−νρ∗Q(r))

)
.

[Here the latter inclusion is a result of the s.e.s.:

W−1H
ν−1(S(C), R2r−νρ∗Q(r)) ↪→ W0H

ν−1(S(C), R2r−νρ∗Q(r))

� Gr0WHν−1(S(C), R2r−νρ∗Q(r)).]

One then has (by definition)

F νCHr(XK ; Q) = lim
→

U⊂S/Q

FνCHr(XU/Q; Q), XU := ρ−1(U).

Now put,

Eν,2r−ν
∞ (ηS) = lim

−→
U⊂S/Q

Eν,2r−ν
∞ (ρ)

and the same definition for Eν,2r−ν−m
∞ (ηS) and Eν,2r−ν

∞ (ηS). Specifically,

Eν,2r−ν
∞ (ηS) = Γ

(
Hν(ηS , R

2r−νρ∗Q(r))
)
,

Eν,2r−ν
∞ (ηS) = J

(
W−1H

ν−1(ηS , R
2r−νρ∗Q(r))

)
/Γ(Gr0W ).
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We have a s.e.s.:

0 → Eν,2r−ν
∞ (ηS) → Eν,2r−ν

∞ (ηS) → Eν,2r−ν
∞ (ηS) → 0,

and an injection:

GrνFCHr(XK ; Q) ↪→ Eν,2r−ν
∞ (ηS).

We then define

F νCHr(X/C; Q) = lim
→

K⊂C
F νCHr(XK ; Q),

over all finitely generated subfields K ⊂ C over Q, which becomes a candi-

date B-B filtration on CHr(XC; Q).

Now let σ ∈ Aut(C/Q). Then the action of σ on CHr(X/Q; Q) is the

identity; however in the limit, and after identifying K with its embedding

in C, we arrive at σ
(
F νCHr(XK ; Q) = F νCHr(XσK ; Q). In particular, we

deduce the following:

Proposition 4.3. Let σ ∈ Aut(C/Q), and X = X/C be a smooth

projective variety. Then

σ : F νCHr(X; Q)
∼−→ F νCHr(Xσ; Q),

is an isomorphism.

Now let us further assume that S is affine. Let V ⊂ S(C) be smooth,

irreducible, closed subvariety of dimension ν − 1 (note that S affine ⇒ V

affine). One has a commutative square

XV ↪→ X(C)

ρV ↓ ↓ ρ

V ↪→ S(C),
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and a commutative diagram

ξ ∈ GrνFCHr(X; Q) �→ GrνFCHr(XK ; Q)

↓

0 → Eν,2r−ν
∞ (ρ) → Eν,2r−ν

∞ (ρ) → Eν,2r−ν
∞ (ρ) → 0

↓ ↓ ↓

0 → Eν,2r−ν
∞ (ρV ) → Eν,2r−ν

∞ (ρV ) → Eν,2r−ν
∞ (ρV ) → 0

||

0

where Eν,2r−ν
∞ (ρV ) = 0 follows from the weak Lefschetz theorem for locally

constant systems over affine varieties (see for example [Ar], and the refer-

ences cited there). Thus for any ξ ∈ GrνFCHr(X/Q; Q), we have a “normal

function” νξ with the property that for any such smooth irreducible closed

V ⊂ S(C) of dimension ν − 1, we have a value νξ(V ) ∈ Eν,2r−ν
∞ (ρV ). Here

we think of V as a point on a suitable open subset of the Chow variety of

dimension ν − 1 subvarieties of S(C) and νξ defined on that subset. Note

that it is rather clear from this that F 2CHr(X; Q) ⊂ CHr
AJ(X; Q).

Definition 4.4 ([Ke-L]). νξ is called an arithmetic normal function.

An important observation which seems to be acknowledged only among

experts (see [K-P], Prop. 86 for their version of all of this), is the following:

Proposition 4.5. The following statements are equivalent:

(i) F 2CHr(X; Q) = CHr
AJ(X; Q) for all X ∈ VC.

(ii) For any smooth and proper morphism ρ : X → S of smooth quasipro-

jective varieties over Q, and cycle induced normal function

νξ : S(C) →
∐

t∈S(C)

J
(
H2r−1(Xt,Q(r))

)
,
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ξ ∈ F1CHr(X/Q; Q), the zero locus (equiv. torsion locus of a correspond-

ing integrally defined normal function) Z(νξ) of νξ is a countable union of

algebraic subvarieties over Q.

(iii) For any smooth and proper morphism ρV : XV → V of smooth

quasiprojective varieties over a subfield L ⊂ C finitely generated over Q,

and cycle induced normal function

νξ : V (C) →
∐

t∈V (C)

J
(
H2r−1(Xt,Q(r))

)
,

ξ ∈ F1CHr(XV /L; Q) (= relatively homologous to zero with respect to ρV ),

the zero locus Z(νξ) of νξ is a countable union of algebraic subvarieties over

L.

Proof. The implication (ii) ⇒ (i) is easy and left to the reader. Going

the other way, we know that Z(νξ) is a countable union of analytic varieties.

For any p ∈ Z(νξ), the Q closure {p} ⊂ S/Q defines a subfamily X{p} → {p},
whose generic fiber satisfies F 2CHr(X{p},η; Q) = CHr

AJ(X{p},η; Q). Thus νξ

vanishes on {p}. Thus {p} ⊂ Z(νξ). Since the set of all Q subvarieties of

S/Q is countable, likewise Z(νξ) is a countable union of varieties over Q.

To show (ii) ⇒ (iii), consider ρV : XV → V defined over L. Let S → T be

a Q-spread of V , with generic points η ∈ S/Q and ηT ∈ T /Q, and where

we have L = Q(ηT ), V/L = SηT , XV = XηT . Correspondingly we have a

Q-spread X → S with Xη = XηV . Note that ξ ∈ F1CHr(XV /L; Q) is the

restriction of a spread cycle ξ̃ ∈ F1CHr(X/Q; Q), and if Σ ⊂ S/Q is an

irreducible component of the torsion locus of νξ̃, then ΣηT corresponds to a

component of the locus of νξ over L in V/L. Finally, the converse (iii) ⇒
(ii) is obvious. �

It is instructive to give a direct proof of the following result, which can

be deduced from [Ja1] (Thm 6.1). We will need this result in the sections

to follow. Recall dimX = d, and the statement B(X) of the hard Lefschetz

conjecture for X.

Proposition 4.6. Let us assume B(X) and that Dr(X) ⊂
Nν−1CHr(X; Q). Then

F νCHr(X; Q) ⊂ Nν−1CHr(X; Q),



Beilinson-Hodge Conjecture 191

for ν ≥ 1.

Proof. For simplicity, we will assume that Dr(X) = 0, keeping in

mind that the situation Dr(X) ⊂ Nν−1CHr(X; Q) is similar. According to

Theorem 4.1, and under the above assumptions,

GrνFCHr(X/C; Q) 	 ∆X(2d− 2r + ν, 2r − ν)∗CHr(X/C; Q),

and F r+1CHr(X/C; Q) = 0. Let ξ ∈ F νCHr(X/C; Q) be given. By writing

ξ = ∆X(2d− 2r + ν, 2r− ν)∗ξ +
(
ξ −∆X(2d− 2r + ν, 2r− ν)∗ξ

)
, observing

that
(
ξ − ∆X(2d − 2r + ν, 2r − ν)∗ξ

)
∈ F ν+1CHr(X; Q), and applying

downward induction on ν, we can replace ξ by ∆X(2d − 2r + ν, 2r − ν)∗ξ.
If 2r − ν < d, then H2r−ν(X,Q(r)) ↪→ H2r−ν(Y,Q(r)) for any smooth

hypersurface Y ⊂ X. Then B(X) implies a cycle induced right inverse

[w]∗ : H2r−ν(Y,Q(r)) � H2r−ν(X,Q(r)). Hence w∗ : GrνFCHr(Y ; Q) �
GrνFCHr(X; Q) is surjective and w∗(Nν−1CHr(Y ; Q)

)
⊂ Nν−1CHr(X; Q).

So by induction on dimension, we are done in this case. So let us assume that

2r−ν ≥ d, and put r = d−r. Then d ≥ 2r+ν = 2r+m+1, where m = ν−1.

According to [Ja1] (Prop. 4.8(b)), based on a corresponding result of Nori,

there exists a smooth complete intersection Y ⊂ X of codimension m = ν−1

such that ξ is in the image of CHr,hom(Y ; Q) → CHr(X; Q) = CHr(X; Q).

Thus ξ ∈ Nν−1CHr(X; Q) and we are done. �

Recall that N r−1CHr(X; Q) = CHr
alg(X; Q), and hence (and as also

pointed out in [Ja1]), under the assumptions in Proposition 4.6,

F rCHr(X; Q) ⊂ CHr
alg(X; Q). However it is worthwhile noting that:

Proposition 4.7. Suppose that X/C = X0 × C, where X0 = X0/Q.

Assume that the BBC holds. Then F 2CHr(X/C; Q) ⊂ CHr
alg(X/C; Q).

Proof. Let ξ ∈ CHr(X/C; Q). Then there exists a smooth quasipro-

jective variety S/Q and cycle ξ̃ ∈ CHr(S ×Q X0; Q) such that ξ = ξ̃η in

CHr(X/C; Q), where η is the generic point of S/Q, with appropriate embed-

ding Q(η) ↪→ C. Since S(Q) �= ∅ (Nullstellensatz), we can choose p ∈ S(Q),

and set ξ0 = ξ̃p ∈ CHr(X0; Q). Note that ξ − ξ0 ∈ CHr
alg(X/C; Q). Now

assume that ξ ∈ F 2CHr(X; Q). Then ξ0 ∈ CHr
hom(X0; Q) and AJX(ξ0) =

AJX(ξ0 − ξ) ∈ Jr
alg(X(C))Q, where Jr

alg(X(C)) := AJX(CHr
alg(X/C)). Note
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that Jr
alg(X) has an underlying Q-structure given by AJX(CHr(X0/Q));

moreover the action of Aut(C/Q) is compatible with

AJX
∣∣
CHr

alg(X/C;Q)
: CHr

alg(X/C; Q) � Jr
alg(X(C))Q.

For any σ ∈ Aut(C/Q), we have

σ
(
AJX(ξ0)

)
= σ

(
AJX(ξ0 − ξ)

)
= AJX((ξ0 − ξ)σ)

= AJX(ξσ0 − ξσ) = AJX(ξσ0 ) = AJX(ξ0),

using ξσ ∈ F 2CHr(X; Q) ⊂ CHr
AJ(X; Q). Hence AJX(ξ0) ∈ Jr

alg(X0(Q))Q,

and so there exists ξ′0 ∈ CHr
alg(X0/Q; Q) such that AJ(ξ0) = AJX(ξ′0). By

the BBC, ξ0 = ξ′0 ∈ CHr
alg(X0/Q; Q). Thus ξ ∈ CHr

alg(X/C; Q). �

Remark 4.8. Recall X ∈ VC. As pointed out in [K-P] (Theorem 88),

and based on a similar argument and result in [S], we have

F 2
⋂

CHr
alg(X; Q)

= ker
(
AJX

∣∣
CHr

alg(X;Q)
: CHr

alg(X; Q) → J
(
H2r−1(X,Q(r))

))
.

[This really stems from the fact that AJX(CHr
alg(X)) is an Abelian variety

defined over the same field of definition as X.] Then with regard to the

expression in (6), we have:

Corollary 4.9. (i)

Γ
(
H3(C(X),Q(2))

)
= 0 ⇒ F 2CH2(X; Q) = CH2

AJ(X; Q).

(ii) Conversely, if B(X) holds and D2(X) ⊂ CH2
alg(X; Q), then

F 2CH2(X; Q) = CH2
AJ(X; Q) ⇒ Γ

(
H3(C(X),Q(2))

)
= 0.

5. Some Evidence for Conjecture 3.2

Let X ∈ VC be given with dimX = d. Recall that Γ
(
H2d−1(C(X),

Q(d))
)

= 0 for d > 1. Our next piece of evidence is an immediate conse-

quence of (6) above.
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Corollary 5.1. Let X ∈ VC be given such that CH2
AJ(X; Q) ⊂

CH2
alg(X; Q). Then Γ

(
H3(C(X),Q(2))

)
= 0.

Quite generally, if one considers (4) and Remark 3.4 above, then we

deduce5:

Corollary 5.2. Let X ∈ VC, dimX = d, r > 1 be given such that

CHr
AJ(X; Q) ⊂ N1CHr(X; Q). Let us further assume either (i) d ≤ 4,

or (ii) r ∈ {2, d − 1}, or (iii) r, d arbitrary and the HC holds. Then

Γ
(
H2r−1(C(X),Q(r))

)
= 0.

We also have:

Theorem 5.3. (i) Let X be a smooth complete intersection of dimen-

sion d with H0(X,Ωd
X) = 0. Assume r > 1 and that either (i) d ≤ 4,

or (ii) r ∈ {2, d − 1}, or (iii) r, d arbitrary and the HC holds. Then

Γ
(
H2r−1(C(X),Q(r))

)
= 0.

(ii) Let X be a smooth complete intersection of dimension d. Let us

assume the HC. Then for all r > 1 with d �= 2r − 1 and Dr(X) ⊂
N1CHr(X; Q), we have Γ

(
H2r−1(C(X),Q(r))

)
= 0.

Proof. Both parts rely on showing that CHr
hom(X; Q) =

N1CHr(X; Q), using (4), and whatever is required to ensure that λ in (1)

is surjective.

Part (i). According to [Ro], CH0(X) 	 Z. Thus by a standard diagonal

argument due to J.-L. Colliot-Thélène/S. Bloch, we have

N · ∆X ∼rat Γ1 + Γ2,

where |Γ1| ⊂ X ×D, |Γ2| ⊂ p×X, codimXD = 1, p ∈ X a point, for some

N ∈ N. Thus

CHr
hom(X; Q) = N · ∆X,∗CHr

hom(X; Q)

= Γ1,∗CHr
hom(X; Q) + Γ2,∗CHr

hom(X; Q) ⊂ N1CHr(X; Q).

Then (i) follows from (4) and Remark 3.4.

5This can also be deduced from [K-L].
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Part (ii). By the Lefschetz theorems, one can choose a decomposition of

the diagonal class

∆X =
⊕

p+q=2d

∆X(p, q),
[
∆X(p, q)

]
∈ Hp(X,Q) ⊗Hq(X,Q),

such that ∆X(p, q)∗CHr
hom(X; Q) ⊂ N1CHr(X; Q) for (p, q) �= (d, d). So it

suffices to show that ∆X(d, d)∗CHr
hom(X; Q) ⊂ N1CHr(X; Q) as well. But

d = 2r−ν for some ν ∈ Z, and GrνFCHr
hom(X; Q) 	 ∆X(d, d)∗CHr

hom(X; Q).

This is zero modulo Dr(X) if ν ≤ 0. For ν ≥ 2, we apply Proposition 4.6.

Finally the case ν = 1 is excluded. �

6. Main Theorem

Theorem 6.1. Consider these two statements:

(i) Conjecture 3.2 holds for all X ∈ VC, (and all r).

(ii) F 2CHr(X; Q) = CHr
AJ(X; Q) for all X ∈ VC, (and all r).

If we assume the HC, then (i) ⇒ (ii). If we further assume that Dr(X) ⊂
N1CHr(X; Q), then (ii) ⇒ (i).

Remark 6.2. (1) Although statement (i) is no more accessible than

(ii), the evidence in support of (i) is more apparent, in light of the results

and remarks in [K-L], [Ja1], and the previous section.

(ii) The proof of this theorem relies only on the properties of the filtration

in Theorem 4.1.

Proof. (of theorem) (ii) ⇒ (i): Under the given assumptions and

according to Proposition 4.6, F 2CHr(X; Q) ⊂ N1CHr(X; Q). Thus (ii)

⇒ (i) is immediate from (5). Thus we need only show that (i) ⇒ (ii).

Since F 2CHr(X; Q) ⊂ ker(AJX), it suffices to prove the reverse inclusion

ker(AJX) ⊂ F 2CHr(X; Q). Let ξ ∈ ker(AJX). Since we are assuming Con-

jecture 3.2, it follows from (5) that ξ ∈ N1CHr(X; Q). Thus ξ is homologous

to zero on some pure codimension one algebraic subset Y ⊂ X. We need

the following ingredient.

Lemma 6.3. Let us assume the HC and let Y be a pure codimension

one subvariety of a smooth projective variety X. Then there is a smooth
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variety Ỹ of [pure] dim Ỹ = dimY , and a morphism Ỹ → Y such that

CH•
hom(Ỹ ; Q) � CH•

hom(Y ; Q),

is surjective.

Remark 6.4. (i) This lemma seems to be related to a statement in

Remark 5.13 in [Ja1]. More precisely, and in our notation, is the following

statement:

If f : Z̃ → Z is a surjective, generically finite morphism of irreducible

projective varieties, with Z̃ smooth, then f∗ : CH•
hom(Z̃; Q) � CH•

hom(Z; Q)

is surjective.

From a conjectural standpoint, we expect that this statement is true.

(ii) The assumption that Y has codimension one in the lemma is only

used to simplify the proof. We leave it to the reader to generalize the

statement of the lemma for arbitrary codimension Y ; one possibility being

aforementioned statement in (i) above, under the assumption of the HC.

Proof. (of the lemma.) Let ρX : X ′ ≈−→ X be a proper modification

of X for which Y ′ := ρ−1
X (Y ) is a NCD, with inclusions j : Y ↪→ X,

j′ : Y ′ ↪→ X ′, and morphism ρY := ρX
∣∣
Y ′ , and where X ′\Y ′ 	 X\Y .

This observation, together with the localization sequences associated to j

and j′ and the cohomology of blow-ups, leads to the commutative diagram:

CHr
Y ′(X ′; Q)

ρY� CHr
Y (X, ; Q)� �

ker ρY,∗ ↪→ H2r
Y ′(X ′,Q)

ρY,∗−−→ H2r
Y (X,Q)

∣∣∣∣� � �
ker ρX,∗ ↪→ H2r(X ′,Q)

ρX,∗−−→ H2r(X,Q)

(7)
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Now let ξ0 ∈ CHr−1
hom(Y ; Q). Then using X\Y 	 X ′\Y ′ together with the

localization sequence for Chow groups associated to the pairs (X ′, Y ′) and

(X,Y ), there exists ξ1 ∈ CHr−1(Y ′; Q) for which j′∗(ξ1) = ρ∗X(j∗(ξ0)) and

ρY,∗(ξ1) = ξ0. This is accomplished with the aid of the diagram below.

CHr(X ′\Y ′, 1; Q) === CHr(X\Y, 1; Q)� �
ξ1 ∈ CHr−1(Y ′; Q)

ρY,∗−−→ CHr−1(Y ; Q) � ξ0

↓ j′∗

� �j∗ ↓

ρ∗X(j∗(ξ0)) ∈ CHr(X ′; Q)

ρX,∗−−→
ρ∗X←−−

CHr(X; Q) � j∗(ξ0)

↓
� � ↓

0 ∈ CHr(X ′\Y ′; Q) === CHr(X\Y ; Q) � 0

Note that

CHr(X ′; Q) = ρ∗XCHr(X; Q)
⊕

ker
{
ρX,∗ : CHr(X ′; Q) → CHr(X; Q)

}
.

H2r(X ′,Q) = ρ∗XH2r(X,Q)
⊕

ker ρX,∗.

Then on cohomology [ξ1] ∈ ker ρY,∗ in (7), and yet by construction [ξ1] �→
0 ∈ ker ρX,∗. Thus by diagram (7), ξ1 ∈ CHr−1

hom(Y ′; Q) and hence ρY,∗ :

CHr−1
hom(Y ′; Q) � CHr−1

homY ; Q) is surjective6 for all r. Write Y ′ =
⋃N

i=1 Y
′
j ,

6Quite generally, this result can be deduced from the s.e.s. 0 → CHr
Y (X,m; Q) →

CHr
Y ′(X ′,m; Q)

⊕
CHr(X,m; Q) → CHr(X ′,m; Q) → 0, together with a corresponding

s.e.s. on cohomology, given in [Lew2]. In this generalization, Y is any proper closed subset
of X, with Y ′ a NCD in X ′.
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Y ′
[1] =

∐N
i=1 Yj . For I = {i1 < · · · < i�}, put Y ′

I =
⋂�

j=1 Y
′
ij

, Y ′
[�] =

∐
|I|=� Y

′
I .

From the simplicial complex Y ′
[•] → Y ′, we arrive at:

CHr(Y ′) 	
zr(Y ′

[1])

Gy
(
zr−1(Y ′

[2])
)

+ zrrat(Y
′
[1])

	
CHr(Y ′

[1])

Gy
(
CHr−1(Y ′

[2])
) ,

where Gy is the (signed) Gysin map. Further, relating this to a correspond-

ing cohomological complex, together with the HC, we arrive at:

CHr(Y ′; Q)

CHr
hom(Y ′; Q)

	
H2r

alg(Y
′
[1]; Q)

Gy
(
H2r−2

alg (Y ′
[2],Q)

) ,
where H2p

alg(W,Q) ⊂ H2p(W,Q) is the subspace of of algebraic cocycles, for

W ∈ VC. Now put Ỹ = Y ′
[1]. With the aid of the diagram,

CHr−1(Y ′
[2]; Q) � H2r−2

alg (Y ′
[2],Q)

Gy

� �Gy

CHr(Y ′
[1]; Q) � H2r

alg(Y
′
[1],Q)� �

CHr(Y ′; Q) � H2r
alg(Y

′
[1],Q)

/
Gy

(
H2r−2

alg (Y ′
[2],Q)

)
,

it follows that the induced proper pushforward CH•
hom(Ỹ ; Q) �

CH•
hom(Y ; Q) is surjective. �

Now returning to the proof of Theorem 6.1, consider the composite map

σ : Ỹ → Y ↪→ X. By the lemma there exists ξ0 ∈ F 1CHr−1(Ỹ ; Q) for

which σ∗(ξ0) = ξ ∈ ker(AJX). The graph of σ determines a fundamental

class [σ] ∈ H2d(Ỹ ×X,Q), where d = dimX. Let [σ]0 ∈ H2d−2r+1(Ỹ ,Q) ⊗
H2r−1(X,Q) be the corresponding Künneth component. Let σ0 be any

algebraic cycle with [σ0] = [σ]0. Then as a class [ ]1 ∈ Gr1FCH•, [ξ]1 =

[σ0,∗(ξ0)]1. In particular

σ0,∗(ξ0) − ξ ∈ F 2CHr(X; Q).
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The key issue is the choice of representative σ0 of [σ]0. Choose a subHS

V ⊂ H2r−3(Ỹ ,Q) such that

[σ]0,∗
∣∣
V

: V
∼−→ [σ]0,∗

(
H2r−3(Ỹ ,Q)

)
⊂ H2r−1(X,Q),

is an isomorphism. By the HC, there exists w ∈ CHd−1(X × Ỹ ; Q), with

[w] ∈
{
[σ]0,∗

(
H2r−3(Ỹ ,Q)

)}∨ ⊗ V , where
{
[σ]0,∗

(
H2r−3(Ỹ ,Q)

)}∨ ⊗ V is

a subquotient of H2d−2r+1(X,Q) ⊗ H2r−3(Ỹ ,Q), (which we can regard as

an inclusion by semi-simplicity of polarized Hodge structures over Q), such

that

[σ]0,∗ ◦ [w]∗
∣∣
Im([σ]0,∗)

= IdIm([σ]0,∗).

Now by construction, σ0,∗ ◦ w∗ ◦ σ∗(ξ0) = σ0,∗ ◦ w∗(ξ); moreover w∗(ξ) ∈
ker(AJ

Ỹ
) by functoriality of the Abel-Jacobi map. By induction on dimen-

sion, ker(AJ
Ỹ

) = F 2CHr−1(Ỹ ; Q). Since ξ − σ0,∗ ◦ w∗(ξ) ∈ F 2CHr(X; Q),

and σ0,∗ ◦ w∗(ξ) ∈ F 2CHr(X; Q), it follows that ξ ∈ F 2CHr(X; Q). �
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