J. Math. Sci. Univ. Tokyo 17 (2010), 159–178.

Solvability of Difference Riccati Equations by Elementary Operations

By Seiji Nishioka

Abstract. We generalize Franke's generalized Liouvillian extension and Karr's $\Pi\Sigma$ -extension, and study solvability of difference Riccati equations. We define the difference field extensions of valuation ring type and prove the following. If a difference Riccati equation which does not turn out to be linear by iterations has a solution in some difference field extension of valuation ring type, then one of the iterated Riccati equations has an algebraic solution. Applying this theorem, we conclude unsolvability of the q-Airy equation and the q-Bessel equation.

1. Introduction

It is well-known that the Airy equation and the Bessel equation with the parameter ν satisfying $\nu - \frac{1}{2} \notin \mathbb{Z}$ are unsolvable. The *q*-analogues of them, *q*-Airy equation and *q*-Bessel equation respectively, are defined, but their unsolvability has not been investigated. In this paper, we obtain the following results: the *q*-Airy equation and *q*-Bessel equation with the parameter $\nu \in \mathbb{Q}$ are unsolvable.

Notation. Throughout the paper every field is of characteristic zero. When K is a field and τ is an isomorphism of K into itself, namely an injective endomorphism, the pair $\mathcal{K} = (K, \tau)$ is called a difference field. For $a \in K$ and $n \in \mathbb{Z}$, the element $\tau^n a \in K$ is called the *n*-th transform of aand is denoted by a_n if it exists. If $\tau K = K$, we say that \mathcal{K} is inversive. For difference fields $\mathcal{K} = (K, \tau)$ and $\mathcal{K}' = (K', \tau'), \mathcal{K}'/\mathcal{K}$ is called a difference field extension if K'/K is a field extension and $\tau'|_K = \tau$. In this case, \mathcal{K}' is called a difference overfield of \mathcal{K} and \mathcal{K} a difference subfield of \mathcal{K}' . A solution of a difference equation over \mathcal{K} is defined to be an element of some difference overfield of \mathcal{K} which satisfies the equation. There exists a

²⁰¹⁰ Mathematics Subject Classification. Primary 12H10; Secondary 39A05, 39A13.

difference overfield $\overline{\mathcal{K}} = (\overline{K}, \overline{\tau})$ of $\mathcal{K} = (K, \tau)$ such that \overline{K} is an algebraic closure of K. We call $\overline{\mathcal{K}}$ an algebraic closure of \mathcal{K} (cf. [2, 9]).

In [3, 4] Franke studied the solvability of linear homogeneous difference equations by elementary operations using the notion of qLE. A difference field extension \mathcal{N}/\mathcal{K} is called a qLE ($q \in \mathbb{Z}_{>0}$) if there exists a chain of inversive difference fields,

$$\mathcal{K} = \mathcal{K}_0 \subset \mathcal{K}_1 \subset \cdots \subset \mathcal{K}_n = \mathcal{N} = (N, \tau), \quad K_i = K_{i-1}(\{\tau^k a_i \, | \, k \in \mathbb{Z}\}),$$

where a_i satisfies one of the following.

- (i) $\tau^q a_i = a_i + \beta$ for some $\beta \in K_{i-1}$.
- (ii) $\tau^q a_i = \alpha a_i$ for some $\alpha \in K_{i-1}$.
- (iii) a_i is algebraic over K_{i-1} .

When q = 1, qLE is called a generalized Liouvillian extension (GLE). For any qLE $(N, \tau)/(K, \tau)$, the extension $(N, \tau^q)/(K, \tau^q)$ is a GLE (see [4]).

In [8] Karr defined $\Pi\Sigma$ -extensions, and obtained results on the computation of symbolic solutions to first order linear difference equations and an analogue to Liouville's theorem on elementary integrals. Any $\Pi\Sigma$ -extension is a difference subfield of a GLE.

Here we introduce a new notion of difference field extension.

DEFINITION 1 (difference field extensions of valuation ring type). Let \mathcal{N}/\mathcal{K} be a difference field extension, and $\mathcal{N} = (N, \tau)$. We say \mathcal{N}/\mathcal{K} is a difference field extension of valuation ring type if there is a chain of difference fields,

 $\mathcal{K} = \mathcal{K}_0 \subset \mathcal{K}_1 \subset \cdots \subset \mathcal{K}_{n-1} \subset \mathcal{K}_n = \mathcal{N},$

such that for each $1 \leq i \leq n$ the extension $\mathcal{K}_i/\mathcal{K}_{i-1}$ satisfies one of the following.

- (i) The extension K_i/K_{i-1} is algebraic.
- (ii) \mathcal{K}_i and \mathcal{K}_{i-1} are inversive, K_i/K_{i-1} is an algebraic function field of one variable, and there is a valuation ring \mathcal{O} of K_i/K_{i-1} such that $\tau^j \mathcal{O} \subset \mathcal{O}$ for some $j \in \mathbb{Z}_{>0}$.

The idea to use valuation rings for investigating differential equations originated with Rosenlicht (cf. [10]). For algebraic function fields of one variable, refer to [7, 11], for example. In section 3 we prove that any GLE is of valuation ring type.

If a difference equation has no solution in any qLE of \mathcal{K} , then we say that it is unsolvable over \mathcal{K} . Since qLE is of valuation ring type for τ^q , roughly speaking, nonexistence of solutions in a difference field extension of valuation ring type implies unsolvability of the difference equation.

In section 2 we prove

THEOREM 2. Let $\mathcal{K} = (K, \tau_K)$ be a difference field, and $a, b, c, d \in K$. Define

$$A = A_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad and \quad A_i = (\tau_K A_{i-1})A = \begin{pmatrix} a^{(i)} & b^{(i)} \\ c^{(i)} & d^{(i)} \end{pmatrix}, \quad i \ge 2.$$

Suppose $b^{(i)} \neq 0$ and $c^{(i)} \neq 0$ for all $i \geq 1$. Let $k \geq 1$, and suppose the equation over \mathcal{K} , $y_k(c^{(k)}y + d^{(k)}) = a^{(k)}y + b^{(k)}$ has a solution in a difference field extension \mathcal{N}/\mathcal{K} of valuation ring type. Let $\overline{\mathcal{N}}$ be an algebraic closure of \mathcal{N} and $\overline{\mathcal{K}}$ the algebraic closure of \mathcal{K} in $\overline{\mathcal{N}}$. Then there exists $i \geq 1$ such that the equation over \mathcal{K} , $y_{ki}(c^{(ki)}y + d^{(ki)}) = a^{(ki)}y + b^{(ki)}$, has a solution in $\overline{\mathcal{K}}$.

REMARK. We call equations of the form, $y_1(cy+d) = ay+b$, difference Riccati equations.

In section 3 we prove that the q-Airy equation and the q-Bessel equation with the parameter $\nu \in \mathbb{Q}$ have no algebraic solutions. Then, applying the theorem, we obtain unsolvability of these equations.

This work was supported by JSPS Research Fellowships for Young Scientists and KAKENHI $(20 \cdot 4941)$.

2. Proof of Theorem

The following lemma is easily proved by induction.

LEMMA 3. Let \mathcal{L}/\mathcal{K} be a difference field extension, $\mathcal{L} = (L, \tau)$, and $a, b, c, d \in K$. Define the matrices A_i as in Theorem 2. Let $k \geq 1$. Then we

have the following. (a) $A_i = (\tau^{i-1}A)(\tau^{i-2}A)\dots(\tau A)A$. (b) Define the matrices $B = B_1 = A_k$, $B_i = (\tau^k B_{i-1})B$ $(i \ge 2)$. Then $B_i = A_{ki}$. (c) Let $f \in \mathcal{L}$ be a solution of $y_k(c^{(k)}y + d^{(k)}) = a^{(k)}y + b^{(k)}$. Then $f \in \mathcal{L}$ is a solution of $y_{ki}(c^{(ki)}y + d^{(ki)}) = a^{(ki)}y + b^{(ki)}$ for all $i \ge 1$.

LEMMA 4. Let \mathcal{L}/\mathcal{K} be a difference field extension, both $\mathcal{L} = (L, \tau_L)$ and \mathcal{K} inversive, and L/K an algebraic function field of one variable. Suppose there exists a valuation ring \mathcal{O} of L/K such that $\tau_L^j \mathcal{O} \subset \mathcal{O}$ for some $j \in \mathbb{Z}_{>0}$. Let $\overline{\mathcal{L}} = (\overline{L}, \tau)$ be an algebraic closure of \mathcal{L} and $\overline{\mathcal{K}}$ the algebraic closure of \mathcal{K} in $\overline{\mathcal{L}}$. Let $a, b, c, d \in K$, and define the matrices A_i as in Lemma 3. Suppose $b^{(i)} \neq 0$ and $c^{(i)} \neq 0$ for all $i \geq 1$, and the equation over \mathcal{K} , $y_1(cy+d) = ay+b$, has a solution f in $\overline{\mathcal{L}}$. Then for some $i \geq 1$ the equation over \mathcal{K} , $y_i(c^{(i)}y + d^{(i)}) = a^{(i)}y + b^{(i)}$, has a solution in $\overline{\mathcal{K}}$.

PROOF. It is enough to prove this for $f \notin \overline{K}$. The additional assumption implies $cf + d \neq 0$, and so we obtain

$$f_1 = \frac{af+b}{cf+d}.$$

Put $\mathcal{M} = \mathcal{L}\langle f \rangle \subset \overline{\mathcal{L}}$, where the field of $\mathcal{L}\langle f \rangle$ is $L(f, f_1, f_2, ...)$. We find \mathcal{M} is inversive. In fact, since $cf_1 - a = 0$ implies $f = \tau^{-1}(a/c) \in K$, we have

$$f = -\frac{df_1 - b}{cf_1 - a} = \tau \left(-\frac{\tau^{-1}(d)f - \tau^{-1}b}{\tau^{-1}(c)f - \tau^{-1}a} \right) \in \tau M.$$

As a field, M = L(f) is an algebraic function field of one variable over K, and so $M\overline{K}$ is an algebraic function field of one variable over \overline{K} .

Choose $j \in \mathbb{Z}_{>0}$ such that $\tau^j \mathcal{O} \subset \mathcal{O}$, and choose valuation ring \mathcal{O}' of $M\overline{K}/\overline{K}$ such that $\mathcal{O}' \cap L = \mathcal{O}$. Note that $\tau^j \mathcal{O} \subset \mathcal{O}$ implies $\tau^j \mathcal{O} = \mathcal{O}$. Therefore for any $i \geq 0$ the following holds.

$$\tau^{ij}\mathcal{O}' \cap L = \tau^{ij}(\mathcal{O}' \cap L) = \tau^{ij}\mathcal{O} = \mathcal{O}.$$

From this we obtain $\#\{\tau^{ij}\mathcal{O}' \mid i \geq 0\} < \infty$, which implies $\tau^k\mathcal{O}' = \mathcal{O}'$ for some $k \geq 1$. Let v be the normalized discrete valuation associated with

 \mathcal{O}' , and $t \in M\overline{K}$ a prime element of \mathcal{O}' . Then we have $v(\tau^k t) = 1$, and so $v(\tau^k x) = v(x)$ for any $x \in M\overline{K}$.

By Lemma 3 we find that f satisfies

(1)
$$f_k(c^{(k)}f + d^{(k)}) = a^{(k)}f + b^{(k)},$$

which yields v(f) = 0. In fact, firstly assume v(f) > 0. Then we have $v(f_k) = v(f) > 0$. This contradicts $v(f_k) = -v(c^{(k)}f + d^{(k)}) \leq 0$ obtained from the above equation (1). Secondly assume v(f) < 0. Then $v(f_k) = v(f) < 0$ contradicts

$$v(f_k) = v(a^{(k)}f + b^{(k)}) - v(f) \ge 0.$$

Let ϕ be the embedding of $M\overline{K}$ into $\overline{K}((t))$, and express f and $\tau^k t$ as

$$\phi(f) = \sum_{i=0}^{\infty} h_i t^i, \quad h_i \in \overline{K}, \ h_0 \neq 0,$$

$$\phi(\tau^k t) = \sum_{i=1}^{\infty} e_i t^i, \quad e_i \in \overline{K}, \ e_1 \neq 0.$$

Then

$$\phi(f_k) = \sum_{i=0}^{\infty} \tau^k(h_i) \left(\sum_{l=1}^{\infty} e_l t^l\right)^i$$

Note that ϕ is a difference isomorphism of $(M\overline{K}, (\tau|_{M\overline{K}})^k)$ into $(\overline{K}((t)), \sigma)$, where σ sends $\sum_{i=0}^{\infty} \alpha_i t^i$ to $\sum_{i=0}^{\infty} \tau^k(\alpha_i) (\sum_{l=1}^{\infty} e_l t^l)^i$. Comparing the coefficients of t^0 of the equation (1), we obtain

$$\tau^k(h_0)(c^{(k)}h_0 + d^{(k)}) = a^{(k)}h_0 + b^{(k)}.$$

Therefore $h_0 \in \overline{\mathcal{K}}$ is a solution of the equation, $y_k(c^{(k)}y + d^{(k)}) = a^{(k)}y + b^{(k)}$. \Box

PROOF OF THEOREM 2. We prove this by induction on tr. deg N/K. When tr. deg N/K = 0, the equation, $y_k(c^{(k)}y + d^{(k)}) = a^{(k)}y + b^{(k)}$, has a solution in $\overline{\mathcal{K}}$. Suppose tr. deg $N/K \ge 1$, and the theorem is true for the transcendence degree < tr. deg N/K.

Let $\overline{\mathcal{N}} = (\overline{\mathcal{N}}, \tau)$. There is a chain of difference fields,

$$\mathcal{K} = \mathcal{K}_0 \subset \mathcal{K}_1 \subset \cdots \subset \mathcal{K}_{n-1} \subset \mathcal{K}_n = \mathcal{N}, \quad n \ge 1,$$

such that for each $1 \leq i \leq n$ the extension $\mathcal{K}_i/\mathcal{K}_{i-1}$ satisfies one of the conditions (i), (ii) in Definition 1. Put

$$n_0 = \min\{0 \le i \le n \mid K_n/K_i \text{ is algebraic}\}.$$

We find $n_0 \geq 1$, and that the extension $\mathcal{K}_{n_0}/\mathcal{K}_{n_0-1}$ satisfies the condition (ii). Choose a valuation ring \mathcal{O} of K_{n_0}/K_{n_0-1} such that $\tau^j \mathcal{O} \subset \mathcal{O}$ for some $j \in \mathbb{Z}_{>0}$. We have $(\tau^k)^j \mathcal{O} \subset \mathcal{O}$.

Let $\overline{\mathcal{K}}_{n_0-1}$ be the algebraic closure of \mathcal{K}_{n_0-1} in $\overline{\mathcal{N}}$, and put $\overline{\mathcal{N}}^{(k)} = (\overline{\mathcal{N}}, \tau^k)$, $\mathcal{K}_{n_0}^{(k)} = (K_{n_0}, \tau^k|_{K_{n_0}})$, $\mathcal{K}_{n_0-1}^{(k)} = (K_{n_0-1}, \tau^k|_{K_{n_0-1}})$ and $\overline{\mathcal{K}}_{n_0-1}^{(k)} = (\overline{K}_{n_0-1}, \tau^k|_{\overline{K}_{n_0-1}})$. By the hypothesis we find that the equation over $\mathcal{K}_{n_0}^{(k)}$, $y_1(c^{(k)}y + d^{(k)}) = a^{(k)}y + b^{(k)}$, has a solution in $\mathcal{N}^{(k)}$.

Define the matrices $B = B_1 = A_k$, $B_i = (\tau^k B_{i-1})B$ $(i \ge 2)$. By Lemma 3 we obtain $B_i = A_{ki}$. Therefore by Lemma 4 we find that there exists $i_0 \ge 1$ such that the equation over $\mathcal{K}_{n_0-1}^{(k)}$, $y_{i_0}(c^{(ki_0)}y + d^{(ki_0)}) = a^{(ki_0)}y + b^{(ki_0)}$, has a solution in $\overline{\mathcal{K}}_{n_0-1}^{(k)}$. Let $f \in \overline{\mathcal{K}}_{n_0-1}$ be such a solution. It satisfies

$$\tau^{ki_0}(f)(c^{(ki_0)}f + d^{(ki_0)}) = a^{(ki_0)}f + b^{(ki_0)},$$

which implies that the equation over \mathcal{K} , $y_{ki_0}(c^{(ki_0)}y+d^{(ki_0)})=a^{(ki_0)}y+b^{(ki_0)}$, has a solution in $\overline{\mathcal{K}}_{n_0-1}$.

Since $\overline{\mathcal{K}}_{n_0-1}/\mathcal{K}$ is a difference field extension of valuation ring type whose transcendence degree is less than tr. deg N/K, we find by the induction hypothesis that there exists $i_1 \geq 1$ such that the equation over \mathcal{K} , $y_{ki_0i_1}(c^{(ki_0i_1)}y + d^{(ki_0i_1)}) = a^{(ki_0i_1)}y + b^{(ki_0i_1)}$, has a solution in $\overline{\mathcal{K}}$. \Box

The following is concerned with the case that the matrix turns out to be triangular by iterations.

PROPOSITION 5. Let \mathcal{K} be an inversive difference field, and $a, b, c, d \in K$ satisfy $ad - bc \neq 0$. Define the matrices A_i as in Lemma 3, and suppose $b^{(k)} = 0$ or $c^{(k)} = 0$ for some $k \geq 1$. Let f be a solution transcendental over K of the equation over \mathcal{K} , $y_1(cy + d) = ay + b$, and put $\mathcal{L} = \mathcal{K}\langle f \rangle$. Then the following hold.

- (i) \mathcal{L} is inversive.
- (ii) L/K is an algebraic function field of one variable.
- (iii) There is a valuation ring \mathcal{O} of L/K such that $\tau^k \mathcal{O} \subset \mathcal{O}$.
- (iv) \mathcal{L}/\mathcal{K} is of valuation ring type.

PROOF. Let $\mathcal{L} = (L, \tau)$. Since $cf_1 - a = 0$ implies $f = \tau^{-1}(a/c) \in K$, we obtain

$$f = -\frac{df_1 - b}{cf_1 - a} = \tau \left(-\frac{\tau^{-1}(d)f - \tau^{-1}b}{\tau^{-1}(c)f - \tau^{-1}a} \right) \in \tau L.$$

Therefore \mathcal{L} is inversive, which is the result (i). Since cf + d = 0 implies $f = -d/c \in K$, we obtain $f_1 \in K(f)$, which yields L = K(f). This proves (ii).

By Lemma 3 we have $f_k(c^{(k)}f + d^{(k)}) = a^{(k)}f + b^{(k)}$. Put

$$g = \begin{cases} f & \text{if } c^{(k)} = 0, \\ 1/f & \text{if } c^{(k)} \neq 0. \end{cases}$$

We find that $g_k = \alpha g + \beta$ for some $\alpha, \beta \in K, \alpha \neq 0$. In fact, if $c^{(k)} = 0$, we have

$$g_k = f_k = \frac{a^{(k)}}{d^{(k)}}f + \frac{b^{(k)}}{d^{(k)}}.$$

Note that we obtain det $A_k \neq 0$ from det $A \neq 0$ by Lemma 3. If $c^{(k)} \neq 0$, we have $b^{(k)} = 0$ and

$$g_k = \frac{1}{f_k} = \frac{d^{(k)}}{a^{(k)}} \cdot \frac{1}{f} + \frac{c^{(k)}}{a^{(k)}}.$$

For the algebraic function field L = K(g) of one variable over K, let \mathcal{O} be the following valuation ring.

$$\mathcal{O} = \{ p/q \in L \mid p, q \in K[g], \deg q - \deg p \ge 0 \}.$$

For any $p \in K[g]$, the k-th transform $\tau^k p$ has the same degree as p. Therefore we obtain $\tau^k \mathcal{O} \subset \mathcal{O}$, which is the result (iii). (i),(ii) and (iii) yield (iv). \Box

As a corollary of this proposition, we find that if a difference Riccati equation turns out to be linear by iterations, then any solution is an element of a certain difference field extension of valuation ring type.

3. Application to Solvability

In this section C denotes an algebraically closed field.

3.1. Preliminaries

LEMMA 6. If \mathcal{L}/\mathcal{K} is a GLE, then \mathcal{L}/\mathcal{K} is of valuation ring type.

PROOF. We prove this by induction on the transcendence degree of \mathcal{L}/\mathcal{K} . There is nothing to prove in case tr. deg L/K = 0. Suppose tr. deg L/K > 0, and the lemma is true for the transcendence degree <tr. deg L/K. Let $\mathcal{L} = (L, \tau)$. There is a chain of inversive difference fields,

 $\mathcal{K} = \mathcal{K}_0 \subset \mathcal{K}_1 \subset \cdots \subset \mathcal{K}_n = \mathcal{L}, \quad K_i = K_{i-1}(\{\tau^k a_i \, | \, k \in \mathbb{Z}\}),$

such that a_i satisfies one of the following.

- (i) $\tau a_i = a_i + \beta$ for some $\beta \in K_{i-1}$.
- (ii) $\tau a_i = \alpha a_i$ for some $\alpha \in K_{i-1}$.
- (iii) a_i is algebraic over K_{i-1} .

Put $m = \min\{1 \le i \le n \mid \text{tr.} \deg K_i/K > 0\}$. The chain $\mathcal{K}_m \subset \cdots \subset \mathcal{K}_n = \mathcal{L}$ is a GLE and satisfies tr. $\deg L/K_m < \text{tr.} \deg L/K$. Therefore by the induction hypothesis we find that $\mathcal{L}/\mathcal{K}_m$ is of valuation ring type.

Since a_m is transcendental over K_{m-1} because of tr. deg $K_{m-1}/K = 0$, there are $\alpha, \beta \in K_{m-1}, \alpha \neq 0$ such that $\tau a_m = \alpha a_m + \beta$. By Proposition 5 we find that $\mathcal{K}_{m-1}\langle a_m \rangle / \mathcal{K}_{m-1}$ is of valuation ring type. Note that we have $\mathcal{K}_m = \mathcal{K}_{m-1}\langle a_m \rangle$. Therefore the chain

$$\mathcal{K} \subset \mathcal{K}_{m-1} \subset \mathcal{K}_m \subset \mathcal{L}$$

implies \mathcal{L}/\mathcal{K} is of valuation ring type. \Box

PROPOSITION 7. Let \mathcal{K} be a inversive difference field, $a, b, c, d \in K$, and $q \in \mathbb{Z}_{>0}$. Define the matrices A_i as in Lemma 3. Suppose $b^{(qi)} \neq 0$ and $c^{(qi)} \neq 0$ for all $i \geq 1$, and the equation over \mathcal{K} , $y_1(cy+d) = ay+b$, has a solution f in a qLE \mathcal{L}/\mathcal{K} . Let $\overline{\mathcal{L}} = (\overline{L}, \tau)$ be an algebraic closure of \mathcal{L} , and $\overline{\mathcal{K}}$ be the algebraic closure of \mathcal{K} in $\overline{\mathcal{L}}$. Then there exists $i \geq 1$ such that the equation over \mathcal{K} , $y_{qi}(c^{(qi)}y + d^{(qi)}) = a^{(qi)}y + b^{(qi)}$, has a solution in $\overline{\mathcal{K}}$.

PROOF. Put $\overline{\mathcal{L}}^{(q)} = (\overline{L}, \tau^q), \ \mathcal{L}^{(q)} = (L, \tau^q|_L), \ \overline{\mathcal{K}}^{(q)} = (\overline{K}, \tau^q|_{\overline{K}}), \ \text{and} \ \mathcal{K}^{(q)} = (K, \tau^q|_K).$ Since \mathcal{L}/\mathcal{K} is a *q*LE, $\mathcal{L}^{(q)}/\mathcal{K}^{(q)}$ is a GLE. By Lemma 6 we find that $\mathcal{L}^{(q)}/\mathcal{K}^{(q)}$ is of valuation ring type.

Since we have $f_q(c^{(q)}f + d^{(q)}) = a^{(q)}f + b^{(q)}$ by Lemma 3, $f \in \overline{\mathcal{L}}^{(q)}$ is a solution of the equation over $\mathcal{K}^{(q)}$, $y_1(c^{(q)}y + d^{(q)}) = a^{(q)}y + b^{(q)}$. Therefore by Theorem 2 we conclude that there exists $i \ge 1$ such that the equation over $\mathcal{K}^{(q)}$, $y_i(c^{(qi)}y + d^{(qi)}) = a^{(qi)}y + b^{(qi)}$, has a solution g in $\overline{\mathcal{K}}^{(q)}$, which implies $g \in \overline{\mathcal{K}}$ is a solution of the equation over $\mathcal{K}, y_{qi}(c^{(qi)}y + d^{(qi)}) = a^{(qi)}y + b^{(qi)}$. \Box

LEMMA 8. Let $q \in C^{\times}$ be not a root of unity, t transcendental over C, F/C(t) a finite extension of degree n, and τ an isomorphism of F into F over C sending t to qt. Then F = C(x), $x^n = t$.

PROOF. Put \mathbb{P} and \mathbb{P}' be the sets of all prime divisors of C(t)/C and F/C respectively. As in [11] we identify a prime divisor with the maximal ideal of the valuation ring associated with it. Define the following valuation rings of C(t)/C,

$$\mathcal{O}_{\alpha} = \{ f/g \mid f, g \in C[t], t - \alpha \nmid g \} \text{ for each } \alpha \in C, \\ \mathcal{O}_{\infty} = \{ f/g \mid f, g \in C[t], \deg g - \deg f \ge 0 \},$$

and let $P_{\alpha} = \mathcal{O}_{\alpha} \setminus \mathcal{O}_{\alpha}^{\times}$ be the prime divisor associated with \mathcal{O}_{α} for each $\alpha \in C \cup \{\infty\}$.

We show that if $\alpha \in C^{\times}$ then P_{α} is unramified in F/C(t). Let $\alpha \in C^{\times}$ and assume that P_{α} is ramified in F/C(t). Then there is $P' \in \mathbb{P}'$ such that $e(P'|P_{\alpha}) > 1$, where $e(P'|P_{\alpha})$ is the ramification index of P' over P_{α} . Let \mathcal{O}' be the valuation ring associated with P'. We find that for any $i \in \mathbb{Z}_{\geq 0}$, $\tau^{i}P_{\alpha} = P_{\alpha/q^{i}} \in \mathbb{P}$ and $\tau^{i}P'$ is the prime divisor associated with the valuation ring $\tau^{i}\mathcal{O}'$ of $\tau^{i}F/C$. We also find that $e(\tau^{i}P'|\tau^{i}P_{\alpha}) > 1$ for all $i \geq 0$. For

any $i \geq 0$ there is $Q_i \in \mathbb{P}'$ such that $Q_i \cap \tau^i F = \tau^i P'$, and we have

$$e(Q_i|\tau^i P_\alpha) = e(Q_i|\tau^i P')e(\tau^i P'|\tau^i P_\alpha) \ge e(\tau^i P'|\tau^i P_\alpha) > 1,$$

which implies $\tau^i P_{\alpha} = P_{\alpha/q^i}$ is ramified in F/C(t) for any $i \ge 0$. Since $q \in C^{\times}$ is not a root of unity, the prime divisors P_{α/q^i} $(i \ge 0)$ are distinct, a contradiction. Therefore P_{α} is unramified in F/C(t).

Let g be the genus of F/C. By the Riemann-Hurwitz Genus Formula we obtain

$$2g - 2 = -2n + \sum_{\alpha = 0,\infty} \left(\sum_{P' \in \mathbb{P}', P' \cap C(t) = P_{\alpha}} (e(P'|P_{\alpha}) - 1) \right)$$

$$\leq -2n + 2(n - 1) = -2,$$

which implies g = 0. Therefore F = C(y) for some $y \in F$.

Again by the Riemann-Hurwitz Genus Formula we obtain

$$\sum_{\alpha=0,\infty} \left(\sum_{P' \in \mathbb{P}', P' \cap C(t)=P_{\alpha}} (e(P'|P_{\alpha}) - 1) \right) = 2(n-1),$$

which implies

$$\sum_{P' \in \mathbb{P}', P' \cap C(t) = P_{\alpha}} (e(P'|P_{\alpha}) - 1) = n - 1$$

for $\alpha = 0, \infty$. Therefore P_{α} ($\alpha = 0, \infty$) has only one extension P'_{α} in \mathbb{P}' , which satisfies $e(P'_{\alpha}|P_{\alpha}) = n$.

 $t \in C(y)$ yields the expression,

$$t = c \prod_{i=1}^{m} (y - \alpha_i)^{k_i}, \quad c \in C^{\times}, \ m \in \mathbb{Z}_{\geq 1}, \ \alpha_i \in C, \ k_i \in \mathbb{Z},$$

where α_i $(1 \leq i \leq m)$ are distinct. Let Q'_i be the prime divisor of C(y)/Cassociated with the prime element $y - \alpha_i$, and put $Q_i = Q'_i \cap C(t)$ for each $1 \leq i \leq m$. We obtain

$$k_{i} = v_{Q'_{i}}(t) = e(Q'_{i}|Q_{i})v_{Q_{i}}(t) = \begin{cases} 0 & \text{if } Q_{i} = P_{\alpha}, \ \alpha \in C^{\times}, \\ n & \text{if } Q_{i} = P_{0}, \\ -n & \text{if } Q_{i} = P_{\infty}, \end{cases}$$

where $v_{Q'_i}$ and v_{Q_i} are the normalized discrete valuations associated with Q'_i and Q_i respectively, which implies $n \mid k_i$ for all $1 \leq i \leq m$. Put $x = c^{1/n} \prod_{i=1}^m (y - \alpha_i)^{k_i/n} \in C(y)$. We have $x^n = t$, and so [C(t, x) : C(t)] = n, which implies F = C(t, x) = C(x). \Box

3.2. *q*-Airy equation

In their [6], Hamamoto, Kajiwara and Witte introduced that each of the basic hypergeometric solutions of the q-difference equation, y(qt) + ty(t) = y(t/q), has a limit to the Airy function. Let $f \in \mathcal{K}^{\times}$ be a solution of the equation over $(C(t), t \mapsto qt), y_2 + qty_1 - y = 0$, and put $g = f_1/f$. Then $g \in \mathcal{K}$ is a solution of the equation over $(C(t), t \mapsto qt), y_1y + qty - 1 = 0$, the object here.

The outline of the proof of the unsolvability of the above equation is the following. Step 1. Define the matrices A_i as in Lemma 3, and show that they are not triangular. Step 2. Prove that there is no algebraic solution of the equation associated with A_i for all $i \geq 1$. Step 3. Apply Proposition 7.

PROPOSITION 9. Let $q \in C$ be transcendental over \mathbb{Q} , and t transcendental over C. Put $\mathcal{K} = (C(t), t \mapsto qt)$, and let $\overline{\mathcal{K}} = (\overline{C(t)}, \tau)$ be an algebraic closure of \mathcal{K} . Put a = -qt, b = 1, c = 1 and d = 0, and define the matrices A_i as in Lemma 3. Then the following hold.

- (i) $b^{(i)} \neq 0$ and $c^{(i)} \neq 0$ for all $i \geq 1$.
- (ii) For any $i \ge 1$ the equation over \mathcal{K} , $y_i(c^{(i)}y + d^{(i)}) = a^{(i)}y + b^{(i)}$, has no solution in $\overline{\mathcal{K}}$.

PROOF. We have

$$A = \begin{pmatrix} -qt & 1\\ 1 & 0 \end{pmatrix}, \quad A_2 = (\tau A)A = \begin{pmatrix} q^3t^2 + 1 & -q^2t\\ -qt & 1 \end{pmatrix},$$

and for any $i \geq 2$,

$$A_{i} = (\tau A_{i-1})A = \begin{pmatrix} -qta_{1}^{(i-1)} + b_{1}^{(i-1)} & a_{1}^{(i-1)} \\ -qtc_{1}^{(i-1)} + d_{1}^{(i-1)} & c_{1}^{(i-1)} \end{pmatrix},$$

$$A_{i} = (\tau^{i-1}A)A_{i-1} = \begin{pmatrix} -q^{i}ta^{(i-1)} + c^{(i-1)} & -q^{i}tb^{(i-1)} + d^{(i-1)} \\ a^{(i-1)} & b^{(i-1)} \end{pmatrix},$$

which imply $b^{(i)} = a_1^{(i-1)}$ and $c^{(i)} = a^{(i-1)}$ for all $i \ge 2$, and $d^{(i)} = a_1^{(i-2)}$ for all $i \ge 3$. From these we obtain

$$a^{(i)} = -q^i t a^{(i-1)} + c^{(i-1)} = -q^i t a^{(i-1)} + a^{(i-2)}, \text{ for any } i \ge 3.$$

Note $A_i \in M_2(C[t])$. We find

(2)
$$a^{(i)} = (-1)^{i} q^{\frac{i(i+1)}{2}} t^{i} + (a \text{ polynomial of deg} \le i-2)$$

by induction, and so deg $a^{(i)} = i$. This implies $a^{(i)} \neq 0$, by which we conclude $b^{(i)} \neq 0$ and $c^{(i)} \neq 0$ for all $i \ge 1$, the result (i).

Assume that there exists $i_0 \geq 1$ such that the equation over \mathcal{K} , $y_{i_0}(c^{(i_0)}y + d^{(i_0)}) = a^{(i_0)}y + b^{(i_0)}$, has a solution f in $\overline{\mathcal{K}}$. Put $k = 3i_0 \geq 3$. By Lemma 3, $f \in \overline{\mathcal{K}}$ is a solution of the equation over \mathcal{K} , $y_k(c^{(k)}y + d^{(k)}) = a^{(k)}y + b^{(k)}$. Put $\mathcal{L} = \mathcal{K}\langle f \rangle \subset \overline{\mathcal{K}}$. Since both of the assumptions, $c^{(k)}f_k - a^{(k)} = 0$ and $c^{(k)}f + d^{(k)} = 0$, yield det $A_k = 0$, which contradicts det A = -1 by Lemma 3, we find that \mathcal{L} is inversive, and $L = C(t)(f, f_1, \ldots, f_{k-1})$. Put $n = [L : C(t)] < \infty$. Then from Lemma 8 we obtain L = C(x) with $x^n = t$. Note that x is transcendental over C, $f \in C(x), A_i \in M_2(C[x^n])$, and $(\frac{\tau x}{x})^n = q \in C$, which implies $\frac{\tau x}{x} \in C$. Put $r = \frac{\tau x}{x} \in C^{\times}$.

Express f = P/Q, where $P, Q \in C[x]$ are relatively prime. The equation $f_k(c^{(k)}f + d^{(k)}) = a^{(k)}f + b^{(k)}$ yields

(3)
$$P_k(c^{(k)}P + d^{(k)}Q) = Q_k(a^{(k)}P + b^{(k)}Q) \quad (\neq 0),$$

where both sides of this are not equal to 0. We find by induction that $a^{(i)}P + b^{(i)}Q$ and $c^{(i)}P + d^{(i)}Q$ are relatively prime. In fact we obtain that aP + bQ = -qtP + Q and cP + dQ = P are relatively prime from the hypothesis, P and Q are relatively prime, the case i = 1. Let $i \ge 2$ and suppose the statement is true for i - 1. Since we have

$$\begin{aligned} a^{(i)}P + b^{(i)}Q &= (-q^{i}ta^{(i-1)} + c^{(i-1)})P + (-q^{i}tb^{(i-1)} + d^{(i-1)})Q \\ &= -q^{i}t(a^{(i-1)}P + b^{(i-1)}Q) + (c^{(i-1)}P + d^{(i-1)}Q) \end{aligned}$$

and $a^{(i-1)}P + b^{(i-1)}Q = c^{(i)}P + d^{(i)}Q$, we conclude that $a^{(i)}P + b^{(i)}Q$ and $c^{(i)}P + d^{(i)}Q$ are relatively prime by the induction hypothesis.

Therefore $a^{(k)}P + b^{(k)}Q$ and $c^{(k)}P + d^{(k)}Q$ are relatively prime. From the equation (3) we obtain $\deg_x(a^{(k)}P + b^{(k)}Q) = \deg_x P_k = \deg_x P$. Since $\deg_x a^{(k)}P = nk + \deg_x P > \deg_x P$, we find $\deg_x a^{(k)}P = \deg_x b^{(k)}Q$, which implies $\deg_x Q - \deg_x P = n$.

Express

$$f = \sum_{i=n}^{\infty} e_i \left(\frac{1}{x}\right)^i, \quad e_i \in C, \ e_n \neq 0.$$

We will show $f \in C(t)$. Assume there exists $i \ge n$ such that $n \nmid i$ and $e_i \ne 0$, and put ln + m (0 < m < n) be the minimum number of them. Note

$$\deg_x a^{(k)} = kn, \quad \deg_x b^{(k)} = \deg_x c^{(k)} = (k-1)n, \quad \deg_x d^{(k)} = (k-2)n.$$

The first term of

$$a^{(k)}f + b^{(k)} = a^{(k)} \left(e_n \left(\frac{1}{x}\right)^n + \dots + e_{ln} \left(\frac{1}{x}\right)^{ln} + e_{ln+m} \left(\frac{1}{x}\right)^{ln+m} + \dots \right) + b^{(k)}$$

whose exponent is not divisible by n has the exponent, -kn + (ln+m). The first term of

$$f_k(c^{(k)}f + d^{(k)}) = \left\{ \frac{e_n}{r^{kn}} \left(\frac{1}{x}\right)^n + \dots + \frac{e_{ln}}{r^{kln}} \left(\frac{1}{x}\right)^{ln} + \frac{e_{ln+m}}{r^{k(ln+m)}} \left(\frac{1}{x}\right)^{ln+m} + \dots \right\}$$
$$\times \left\{ c^{(k)} \left(e_n \left(\frac{1}{x}\right)^n + \dots + e_{ln} \left(\frac{1}{x}\right)^{ln} + e_{ln+m} \left(\frac{1}{x}\right)^{ln+m} + \dots \right) + d^{(k)} \right\}$$

whose exponent is not divisible by n has the exponent $\geq (2-k)n + (ln+m)$, which is impossible. Therefore we obtain $f = \sum_{i=1}^{\infty} e_{ni}(1/x^n)^i$, and so $f \in C(1/x^n) = C(t)$.

Then we have $L = C(t)(f, f_1, \ldots, f_{k-1}) \subset C(t)$, which implies n = [L : C(t)] = 1, x = t and r = q. We find $a^{(i)} \in \mathbb{Z}[q, t]$ by induction, and so $b^{(i)}, c^{(i)}, d^{(i)} \in \mathbb{Z}[q, t]$. We will show $e_j \in \mathbb{Z}[q, 1/q]$ for any $j \geq 1$ by induction. We have

(4)
$$f_k(c^{(k)}f + d^{(k)}) = \left(\sum_{i=1}^{\infty} \frac{e_i}{q^{ki}} \left(\frac{1}{t}\right)^i\right) \left(c^{(k)} \sum_{i=1}^{\infty} e_i \left(\frac{1}{t}\right)^i + d^{(k)}\right)$$

and

(5)
$$a^{(k)}f + b^{(k)} = a^{(k)}\sum_{i=1}^{\infty} e_i \left(\frac{1}{t}\right)^i + b^{(k)}.$$

Note that the equation (2) yields

$$a^{(k)} = (-1)^k q^{\frac{k(k+1)}{2}} t^k + (\text{a polynomial of deg} \le k-2),$$

$$b^{(k)} = a_1^{(k-1)} = (-1)^{k-1} q^{\frac{(k-1)(k+2)}{2}} t^{k-1} + (\text{a polynomial of deg} \le k-3).$$

Comparing the terms of exponent -k + 1 of the equation (4) = (5), we obtain

$$0 = (-1)^{k} q^{\frac{k(k+1)}{2}} e_1 + (-1)^{k-1} q^{\frac{(k-1)(k+2)}{2}},$$

which implies $e_1 = q^{-1} \in \mathbb{Z}[q, 1/q].$

Let $j \ge 2$ and suppose the statement is true for the numbers $\le j - 1$. On the one hand the term of exponent -k + j of (5) has the coefficient,

$$(-1)^{k} q^{\frac{k(k+1)}{2}} e_{j} + (\text{an element of } \mathbb{Z}[q][e_{1}, e_{2}, \dots, e_{j-1}])$$

$$\in (-1)^{k} q^{\frac{k(k+1)}{2}} e_{j} + \mathbb{Z}[q, 1/q].$$

On the other hand the term of exponent -k + j of (4) is the same one of

$$\left(\sum_{i=1}^{j-1} \frac{e_i}{q^{ki}} \left(\frac{1}{t}\right)^i\right) \left(c^{(k)} \sum_{i=1}^{j-1} e_i \left(\frac{1}{t}\right)^i + d^{(k)}\right) \in \mathbb{Z}[q, 1/q]((1/t)) \subset C((1/t)).$$

Therefore we obtain

$$(-1)^k q^{\frac{k(k+1)}{2}} e_j \in \mathbb{Z}[q, 1/q],$$

which implies $e_j \in \mathbb{Z}[q, 1/q]$.

Let $\phi: \mathbb{Q}[q, 1/q] \mapsto \mathbb{Q}$ be a ring homomorphism sending q to 1, and extend it to the ring homomorphism $\overline{\phi}: \mathbb{Q}[q, 1/q]((1/t)) \mapsto C((1/t))$ sending $\sum_{i=m}^{\infty} h_i(1/t)^i$ to $\sum_{i=m}^{\infty} \phi(h_i)(1/t)^i$. This $\overline{\phi}$ is a difference homomorphism of $(\mathbb{Q}[q, 1/q]((1/t)), t \mapsto qt)$ to (C((1/t)), id), and so we obtain

$$\overline{\phi}(f)(\overline{\phi}(c^{(k)})\overline{\phi}(f) + \overline{\phi}(d^{(k)})) = \overline{\phi}(a^{(k)})\overline{\phi}(f) + \overline{\phi}(b^{(k)}).$$

We find $\overline{\phi}(f) \in C(t)$. In fact since $f \in C(1/t)$, there are $s \in \mathbb{Z}_{\geq 0}$ and $m_0 \in \mathbb{Z}_{\geq 0}$ such that $F_f(m, s) = 0$ for all $m \geq m_0$, where $F_f(m, s)$ is the Hankel determinant $\det(e_{m+i+j})_{0\leq i,j\leq s}$ of f (refer to [1] for the Hankel determinant). Therefore for any $m \geq m_0$ we obtain

$$F_{\overline{\phi}(f)}(m,s) = \det(\phi(e_{m+i+j}))_{0 \le i,j \le s} = \phi(\det(e_{m+i+j})_{0 \le i,j \le s})$$
$$= \phi(F_f(m,s)) = 0,$$

which implies $\overline{\phi}(f) \in C(1/t) = C(t)$.

Express $\overline{\phi}(f) = P'/Q'$, where $P', Q' \in C[t]$ are relatively prime, and put $a' = \overline{\phi}(a^{(k)}), b' = \overline{\phi}(b^{(k)}), c' = \overline{\phi}(c^{(k)})$ and $d' = \overline{\phi}(d^{(k)})$. Note

$$\begin{aligned} c' &= \overline{\phi}(c^{(k)}) = \overline{\phi}(a^{(k-1)}) = \overline{\phi}(a^{(k-1)}) = \overline{\phi}(b^{(k)}) = b', \\ d' &= \overline{\phi}(d^{(k)}) = \overline{\phi}(a^{(k-2)}) = \overline{\phi}(a^{(k-2)}) = \overline{\phi}(a^{(k)} + q^k t a^{(k-1)}) = a' + tb', \end{aligned}$$

and $b' = (-1)^{k-1}t^{k-1} + (a \text{ polynomial of deg} \le k-3) \ne 0$. Then we obtain the following from P'(c'P' + d'Q') = Q'(a'P' + b'Q'),

(6)
$$P'^2 + tP'Q' = Q'^2.$$

This equation yields $P' \mid Q'^2$ and $Q' \mid P'^2$, which imply deg $P' = \deg Q' = 0$. Comparing the degree of the equation (6), we find 1 = 0, a contradiction. Therefore we obtain (ii). \Box

COROLLARY 10. Let $q \in C$ be transcendental over \mathbb{Q} , t transcendental over C, $\mathcal{K} = (C(t), t \mapsto qt)$, and $k \in \mathbb{Z}_{>0}$. Then the equation over \mathcal{K} , $y_1y + qty - 1 = 0$, has no solution in any kLE of \mathcal{K} .

PROOF. Assume the equation has a solution in a $k \text{LE } \mathcal{N}/\mathcal{K}$. Put a = -qt, b = c = 1 and d = 0. Define the matrices A_i as in Lemma 3. By Proposition 9 we have $b^{(i)} \neq 0$ and $c^{(i)} \neq 0$ for all $i \geq 1$.

Let $\overline{\mathcal{N}}$ be an algebraic closure of \mathcal{N} , and $\overline{\mathcal{K}}$ the algebraic closure of \mathcal{K} in $\overline{\mathcal{N}}$. By Proposition 7 we find that there exists $i \geq 1$ such that the equation over \mathcal{K} , $y_{ki}(c^{(ki)}y + d^{(ki)}) = a^{(ki)}y + b^{(ki)}$, has a solution in $\overline{\mathcal{K}}$, which contradicts Proposition 9. \Box

3.3. *q*-Bessel equation

Seeing [5], we find one of the q-Bessel functions, $J_{\nu}^{(3)}(x;q)$, and the equation,

$$g_{\nu}(qx) + (x^2/4 - q^{\nu} - q^{-\nu})g_{\nu}(x) + g_{\nu}(xq^{-1}) = 0,$$

where $g_{\nu}(x) = J_{\nu}^{(3)}(xq^{\nu/2};q^2)$. This section deals with the Riccati equation associated with it.

PROPOSITION 11. Let $q \in C$ be transcendental over \mathbb{Q} , and t transcendental over C. Put $\mathcal{K} = (C(t), t \mapsto qt)$, and let $\overline{\mathcal{K}} = (\overline{C(t)}, \tau)$ be an algebraic closure of \mathcal{K} . Put $a = -(t^2/4 - q^{\nu} - q^{-\nu})$, b = -1, c = 1 and d = 0, where $\nu \in \mathbb{Q}$, and define the matrices A_i as in Lemma 3. Then the following hold.

- (i) $b^{(i)} \neq 0$ and $c^{(i)} \neq 0$ for all $i \ge 1$.
- (ii) For any $i \ge 1$ the equation over \mathcal{K} , $y_i(c^{(i)}y + d^{(i)}) = a^{(i)}y + b^{(i)}$, has no solution in $\overline{\mathcal{K}}$.

PROOF. Put $p = q^{\nu} + q^{-\nu} \in C$. We have

$$A = \begin{pmatrix} a & -1 \\ 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} a_1a - 1 & -a_1 \\ a & -1 \end{pmatrix},$$

and for any $i \geq 2$,

$$A_{i} = (\tau A_{i-1})A = \begin{pmatrix} aa_{1}^{(i-1)} + b_{1}^{(i-1)} & -a_{1}^{(i-1)} \\ ac_{1}^{(i-1)} + d_{1}^{(i-1)} & -c_{1}^{(i-1)} \end{pmatrix},$$

$$A_{i} = (\tau^{i-1}A)A_{i-1} = \begin{pmatrix} a_{i-1}a^{(i-1)} - c^{(i-1)} & a_{i-1}b^{(i-1)} - d^{(i-1)} \\ a^{(i-1)} & b^{(i-1)} \end{pmatrix},$$

which imply $b^{(i)} = -a_1^{(i-1)}$ and $c^{(i)} = a^{(i-1)}$ for all $i \ge 2$, and $d^{(i)} = -a_1^{(i-2)}$ for all $i \ge 3$. From these we obtain

$$a^{(i)} = a_{i-1}a^{(i-1)} - c^{(i-1)} = a_{i-1}a^{(i-1)} - a^{(i-2)}, \text{ for any } i \ge 3.$$

Note $A_i \in M_2(C[t])$. We find

(7)
$$a^{(i)} = (-1)^i \frac{q^{(i-1)i}}{4^i} t^{2i} + (a \text{ polynomial of deg} \le 2i - 2)$$

by induction, and so deg $a^{(i)} = 2i$. This implies $a^{(i)} \neq 0$, by which we conclude $b^{(i)} \neq 0$ and $c^{(i)} \neq 0$ for all $i \ge 1$, the result (i).

Assume that there exists $i_0 \geq 1$ such that the equation over \mathcal{K} , $y_{i_0}(c^{(i_0)}y + d^{(i_0)}) = a^{(i_0)}y + b^{(i_0)}$, has a solution f in $\overline{\mathcal{K}}$. Put $k = 3i_0 \geq 3$. By Lemma 3, $f \in \overline{\mathcal{K}}$ is a solution of the equation over \mathcal{K} , $y_k(c^{(k)}y + d^{(k)}) = a^{(k)}y + b^{(k)}$. Put $\mathcal{L} = \mathcal{K}\langle f \rangle \subset \overline{\mathcal{K}}$. We find that \mathcal{L} is inversive, and $L = C(t)(f, f_1, \ldots, f_{k-1})$. Put $n = [L : C(t)] < \infty$. Then from Lemma 8 we obtain L = C(x) with $x^n = t$. Note that x is transcendental over C, $f \in C(x), A_i \in M_2(C[x^n])$, and $(\frac{\tau x}{x})^n = q \in C$, which implies $\frac{\tau x}{x} \in C$. Put $r = \frac{\tau x}{x} \in C^{\times}$.

Express f = P/Q, where $P, Q \in C[x]$ are relatively prime. The equation $f_k(c^{(k)}f + d^{(k)}) = a^{(k)}f + b^{(k)}$ yields

(8)
$$P_k(c^{(k)}P + d^{(k)}Q) = Q_k(a^{(k)}P + b^{(k)}Q) \quad (\neq 0).$$

We find by induction that $a^{(i)}P + b^{(i)}Q$ and $c^{(i)}P + d^{(i)}Q$ are relatively prime. In fact we obtain that aP + bQ = aP - Q and cP + dQ = P are relatively prime, the case i = 1. Let $i \ge 2$ and suppose the statement is true for i - 1. Since we have

$$a^{(i)}P + b^{(i)}Q = (a_{i-1}a^{(i-1)} - c^{(i-1)})P + (a_{i-1}b^{(i-1)} - d^{(i-1)})Q$$

= $a_{i-1}(a^{(i-1)}P + b^{(i-1)}Q) - (c^{(i-1)}P + d^{(i-1)}Q)$

and $a^{(i-1)}P + b^{(i-1)}Q = c^{(i)}P + d^{(i)}Q$, we conclude that $a^{(i)}P + b^{(i)}Q$ and $c^{(i)}P + d^{(i)}Q$ are relatively prime by the induction hypothesis.

Therefore $a^{(k)}P + b^{(k)}Q$ and $c^{(k)}P + d^{(k)}Q$ are relatively prime. From the equation (8) we obtain $\deg_x(a^{(k)}P + b^{(k)}Q) = \deg_x P_k = \deg_x P$. Since $\deg_x a^{(k)}P = 2kn + \deg_x P > \deg_x P$, we find that $\deg_x a^{(k)}P = \deg_x b^{(k)}Q$, which implies $\deg_x Q - \deg_x P = 2n$.

Express

$$f = \sum_{i=2n}^{\infty} e_i \left(\frac{1}{x}\right)^i, \quad e_i \in C, \ e_{2n} \neq 0.$$

We obtain $f \in C(t)$ by the same way as in the proof of Proposition 9, and so L = C(t), n = 1, x = t and r = q. Note $a^{(i)}, b^{(i)}, c^{(i)}, d^{(i)} \in \mathbb{Q}[q, p, t]$. We will show $e_j \in \mathbb{Q}[q, 1/q, p]$ for any $j \ge 2$ by induction. We have

(9)
$$f_k(c^{(k)}f + d^{(k)}) = \left(\sum_{i=2}^{\infty} \frac{e_i}{q^{ki}} \left(\frac{1}{t}\right)^i\right) \left(c^{(k)} \sum_{i=2}^{\infty} e_i \left(\frac{1}{t}\right)^i + d^{(k)}\right)$$

and

(10)
$$a^{(k)}f + b^{(k)} = a^{(k)}\sum_{i=2}^{\infty} e_i \left(\frac{1}{t}\right)^i + b^{(k)}.$$

The equation (7) yields

$$a^{(k)} = (-1)^k \frac{q^{(k-1)k}}{4^k} t^{2k} + (a \text{ polynomial of deg} \le 2k - 2),$$

$$b^{(k)} = (-1)^k \frac{q^{(k-1)k}}{4^{k-1}} t^{2(k-1)} + (a \text{ polynomial of deg} \le 2k - 4).$$

Comparing the terms of exponent -2k + 2 of the equation (9) = (10), we obtain

$$0 = (-1)^k \frac{q^{(k-1)k}}{4^k} e_2 + (-1)^k \frac{q^{(k-1)k}}{4^{k-1}},$$

which implies $e_2 = -4$.

Let $j \ge 3$ and suppose the statement is true for the numbers $\le j - 1$. On the one hand the term of exponent -2k + j of (10) has the coefficient,

$$(-1)^{k} \frac{q^{(k-1)k}}{4^{k}} e_{j} + (\text{an element of } \mathbb{Q}[q, p, e_{2}, e_{3}, \dots, e_{j-1}])$$

$$\in (-1)^{k} \frac{q^{(k-1)k}}{4^{k}} e_{j} + \mathbb{Q}[q, 1/q, p].$$

On the other hand the term of exponent -2k + j of (9) is the same one of

$$\left(\sum_{i=2}^{j-1} \frac{e_i}{q^{ki}} \left(\frac{1}{t}\right)^i\right) \left(c^{(k)} \sum_{i=2}^{j-1} e_i \left(\frac{1}{t}\right)^i + d^{(k)}\right) \in \mathbb{Q}[q, 1/q, p]((1/t)) \subset C((1/t)).$$

Therefore we obtain

$$(-1)^k \frac{q^{(k-1)k}}{4^k} e_j \in \mathbb{Q}[q, 1/q, p],$$

which implies $e_j \in \mathbb{Q}[q, 1/q, p]$.

Let $\nu = \nu_1/\nu_2$, where $\nu_1 \in \mathbb{Z}$ and $\nu_2 \in \mathbb{Z}_{>0}$ are relatively prime. Then we have

$$\mathbb{Q}[q,1/q,p] \subset \mathbb{Q}[q^{\frac{1}{\nu_2}},1/q^{\frac{1}{\nu_2}}].$$

Let $\phi: \mathbb{Q}[q^{(1/\nu_2)}, 1/q^{(1/\nu_2)}] \mapsto \mathbb{Q}$ be a ring homomorphism sending $q^{(1/\nu_2)}$ to 1, and extend it to the ring homomorphism $\overline{\phi}: \mathbb{Q}[q^{(1/\nu_2)}, 1/q^{(1/\nu_2)}]((1/t)) \mapsto \mathbb{Q}((1/t))$ sending $\sum_{i=m}^{\infty} h_i(1/t)^i$ to $\sum_{i=m}^{\infty} \phi(h_i)(1/t)^i$. This $\overline{\phi}$ is a difference homomorphism of $(\mathbb{Q}[q^{(1/\nu_2)}, 1/q^{(1/\nu_2)}]((1/t)), t \mapsto qt)$ to $(\mathbb{Q}((1/t)), id)$, and so we obtain

$$\overline{\phi}(f)(\overline{\phi}(c^{(k)})\overline{\phi}(f) + \overline{\phi}(d^{(k)})) = \overline{\phi}(a^{(k)})\overline{\phi}(f) + \overline{\phi}(b^{(k)}).$$

We find $\overline{\phi}(f) \in C(t)$ by seeing the Hankel determinant. Express $\overline{\phi}(f) = P'/Q'$, where $P', Q' \in C[t]$ are relatively prime, and put $a' = \overline{\phi}(a^{(k)}), b' = \overline{\phi}(b^{(k)}), c' = \overline{\phi}(c^{(k)})$ and $d' = \overline{\phi}(d^{(k)})$. Note

$$c' = \overline{\phi}(c^{(k)}) = \overline{\phi}(a^{(k-1)}) = \overline{\phi}(a_1^{(k-1)}) = -\overline{\phi}(b^{(k)}) = -b',$$

$$\begin{aligned} d' &= \overline{\phi}(d^{(k)}) = \overline{\phi}(-a_1^{(k-2)}) = \overline{\phi}(-a^{(k-2)}) = \overline{\phi}(a^{(k)} - a_{k-1}a^{(k-1)}) \\ &= a' + \left(-\frac{t^2}{4} + 2\right)b', \end{aligned}$$

and $b' \neq 0$. Then we obtain the following from P'(c'P' + d'Q') = Q'(a'P' + b'Q'),

(11)
$$-P'^2 + \left(-\frac{t^2}{4} + 2\right)P'Q' = Q'^2$$

This equation yields $P' \mid Q'^2$ and $Q' \mid P'^2$, which imply deg $P' = \deg Q' = 0$. Comparing the degree of the equation (11), we find 2 = 0, a contradiction. Therefore we obtain (ii). \Box

COROLLARY 12. Let $q \in C$ be transcendental over \mathbb{Q} , t transcendental over C, $\mathcal{K} = (C(t), t \mapsto qt)$, and $k \in \mathbb{Z}_{>0}$. Then the equation over \mathcal{K} , $y_1y = -(t^2/4 - q^{\nu} - q^{-\nu})y - 1$, where $\nu \in \mathbb{Q}$, has no solution in any kLE of \mathcal{K} .

References

- [1] Cassels, J. W. S., *Local Fields*, Cambridge University Press, 1986.
- [2] Cohn, R. M., Difference Algebra, Interscience, New York, 1965.

- [3] Franke, C. H., Picard-Vessiot Theory of Linear Homogeneous Difference Equations, Trans. Amer. Math. Soc. **108**, No. 3 (1963), 491–515.
- [4] Franke, C. H., Solvability of Linear Homogeneous Difference Equations by Elementary Operations, Proc. Amer. Math. Soc. 17, No. 1 (1966), 240–246.
- [5] Gasper, G. and M. Rahman, Basic Hypergeometric Series 2nd edn., Cambridge University Press, 2004.
- [6] Hamamoto, T., Kajiwara, K. and N. S. Witte, Hypergeometric Solutions to the q-Painlevé Equation of Type $(A_1 + A'_1)^{(1)}$, Int. Math. Res. Not. **2006** (2006), Article ID 84619.
- [7] Iwasawa, K., Algebraic Functions, American Mathematical Society, 1993.
- [8] Karr, M., Summation in Finite Terms, J. of the Association for Computing Machinery 28, No. 2 (1981), 305–350.
- [9] Levin, A., Difference Algebra, Springer Science+Business Media B.V., 2008.
- [10] Rosenlicht, M., An Analogue of L'Hospital's Rule, Proc. Amer. Math. Soc. 37, No. 2 (1973), 369–373.
- [11] Stichtenoth, H., Algebraic function fields and codes, Springer-Verlag, 1993.

(Received August 12, 2009) (Revised April 26, 2010)

> Research Fellow of the Japan Society for the Promotion of Science Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan E-mail: nishioka@ms.u-tokyo.ac.jp