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Solvability of Difference Riccati Equations by

Elementary Operations

By Seiji Nishioka

Abstract. We generalize Franke’s generalized Liouvillian exten-
sion and Karr’s ΠΣ-extension, and study solvability of difference Ric-
cati equations. We define the difference field extensions of valuation
ring type and prove the following. If a difference Riccati equation
which does not turn out to be linear by iterations has a solution in
some difference field extension of valuation ring type, then one of the
iterated Riccati equations has an algebraic solution. Applying this
theorem, we conclude unsolvability of the q-Airy equation and the
q-Bessel equation.

1. Introduction

It is well-known that the Airy equation and the Bessel equation with

the parameter ν satisfying ν − 1
2 /∈ Z are unsolvable. The q-analogues

of them, q-Airy equation and q-Bessel equation respectively, are defined,

but their unsolvability has not been investigated. In this paper, we obtain

the following results: the q-Airy equation and q-Bessel equation with the

parameter ν ∈ Q are unsolvable.

Notation. Throughout the paper every field is of characteristic zero.

When K is a field and τ is an isomorphism of K into itself, namely an

injective endomorphism, the pair K = (K, τ) is called a difference field. For

a ∈ K and n ∈ Z, the element τna ∈ K is called the n-th transform of a

and is denoted by an if it exists. If τK = K, we say that K is inversive. For

difference fields K = (K, τ) and K′ = (K ′, τ ′), K′/K is called a difference

field extension if K ′/K is a field extension and τ ′|K = τ . In this case,

K′ is called a difference overfield of K and K a difference subfield of K′.
A solution of a difference equation over K is defined to be an element of

some difference overfield of K which satisfies the equation. There exists a
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difference overfield K = (K, τ) of K = (K, τ) such that K is an algebraic

closure of K. We call K an algebraic closure of K (cf. [2, 9]).

In [3, 4] Franke studied the solvability of linear homogeneous difference

equations by elementary operations using the notion of qLE. A difference

field extension N/K is called a qLE (q ∈ Z>0) if there exists a chain of

inversive difference fields,

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = N = (N, τ), Ki = Ki−1({τkai | k ∈ Z}),

where ai satisfies one of the following.

(i) τ qai = ai + β for some β ∈ Ki−1.

(ii) τ qai = αai for some α ∈ Ki−1.

(iii) ai is algebraic over Ki−1.

When q = 1, qLE is called a generalized Liouvillian extension (GLE). For

any qLE (N, τ)/(K, τ), the extension (N, τ q)/(K, τ q) is a GLE (see [4]).

In [8] Karr defined ΠΣ-extensions, and obtained results on the compu-

tation of symbolic solutions to first order linear difference equations and an

analogue to Liouville’s theorem on elementary integrals. Any ΠΣ-extension

is a difference subfield of a GLE.

Here we introduce a new notion of difference field extension.

Definition 1 (difference field extensions of valuation ring type). Let

N/K be a difference field extension, and N = (N, τ). We say N/K is a

difference field extension of valuation ring type if there is a chain of difference

fields,

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn−1 ⊂ Kn = N ,

such that for each 1 ≤ i ≤ n the extension Ki/Ki−1 satisfies one of the

following.

(i) The extension Ki/Ki−1 is algebraic.

(ii) Ki and Ki−1 are inversive, Ki/Ki−1 is an algebraic function field of

one variable, and there is a valuation ring O of Ki/Ki−1 such that

τ jO ⊂ O for some j ∈ Z>0.
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The idea to use valuation rings for investigating differential equations

originated with Rosenlicht (cf. [10]). For algebraic function fields of one

variable, refer to [7, 11], for example. In section 3 we prove that any GLE

is of valuation ring type.

If a difference equation has no solution in any qLE of K, then we say

that it is unsolvable over K. Since qLE is of valuation ring type for τ q,

roughly speaking, nonexistence of solutions in a difference field extension of

valuation ring type implies unsolvability of the difference equation.

In section 2 we prove

Theorem 2. Let K = (K, τK) be a difference field, and a, b, c, d ∈ K.

Define

A = A1 =

(
a b

c d

)
and Ai = (τKAi−1)A =

(
a(i) b(i)

c(i) d(i)

)
, i ≥ 2.

Suppose b(i) �= 0 and c(i) �= 0 for all i ≥ 1. Let k ≥ 1, and suppose the

equation over K, yk(c
(k)y+d(k)) = a(k)y+ b(k) has a solution in a difference

field extension N/K of valuation ring type. Let N be an algebraic closure

of N and K the algebraic closure of K in N . Then there exists i ≥ 1 such

that the equation over K, yki(c
(ki)y + d(ki)) = a(ki)y + b(ki), has a solution

in K.

Remark. We call equations of the form, y1(cy+d) = ay+b, difference

Riccati equations.

In section 3 we prove that the q-Airy equation and the q-Bessel equation

with the parameter ν ∈ Q have no algebraic solutions. Then, applying the

theorem, we obtain unsolvability of these equations.

This work was supported by JSPS Research Fellowships for Young Sci-

entists and KAKENHI (20 · 4941).

2. Proof of Theorem

The following lemma is easily proved by induction.

Lemma 3. Let L/K be a difference field extension, L = (L, τ), and

a, b, c, d ∈ K. Define the matrices Ai as in Theorem 2. Let k ≥ 1. Then we
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have the following.

(a) Ai = (τ i−1A)(τ i−2A) . . . (τA)A.

(b) Define the matrices B = B1 = Ak, Bi = (τkBi−1)B (i ≥ 2). Then

Bi = Aki.

(c) Let f ∈ L be a solution of yk(c
(k)y + d(k)) = a(k)y + b(k). Then f ∈ L is

a solution of yki(c
(ki)y + d(ki)) = a(ki)y + b(ki) for all i ≥ 1.

Lemma 4. Let L/K be a difference field extension, both L = (L, τL)

and K inversive, and L/K an algebraic function field of one variable. Sup-

pose there exists a valuation ring O of L/K such that τ jLO ⊂ O for some

j ∈ Z>0. Let L = (L, τ) be an algebraic closure of L and K the algebraic

closure of K in L. Let a, b, c, d ∈ K, and define the matrices Ai as in Lemma

3. Suppose b(i) �= 0 and c(i) �= 0 for all i ≥ 1, and the equation over K,

y1(cy+d) = ay+b, has a solution f in L. Then for some i ≥ 1 the equation

over K, yi(c
(i)y + d(i)) = a(i)y + b(i), has a solution in K.

Proof. It is enough to prove this for f /∈ K. The additional assump-

tion implies cf + d �= 0, and so we obtain

f1 =
af + b

cf + d
.

Put M = L〈f〉 ⊂ L, where the field of L〈f〉 is L(f, f1, f2, . . . ). We find M
is inversive. In fact, since cf1 − a = 0 implies f = τ−1(a/c) ∈ K, we have

f = − df1 − b

cf1 − a
= τ

(
−τ−1(d)f − τ−1b

τ−1(c)f − τ−1a

)
∈ τM.

As a field, M = L(f) is an algebraic function field of one variable over K,

and so MK is an algebraic function field of one variable over K.

Choose j ∈ Z>0 such that τ jO ⊂ O, and choose valuation ring O′ of

MK/K such that O′ ∩ L = O. Note that τ jO ⊂ O implies τ jO = O.

Therefore for any i ≥ 0 the following holds.

τ ijO′ ∩ L = τ ij(O′ ∩ L) = τ ijO = O.

From this we obtain #{τ ijO′ | i ≥ 0} < ∞, which implies τkO′ = O′ for

some k ≥ 1. Let v be the normalized discrete valuation associated with
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O′, and t ∈ MK a prime element of O′. Then we have v(τkt) = 1, and so

v(τkx) = v(x) for any x ∈ MK.

By Lemma 3 we find that f satisfies

fk(c
(k)f + d(k)) = a(k)f + b(k),(1)

which yields v(f) = 0. In fact, firstly assume v(f) > 0. Then we have

v(fk) = v(f) > 0. This contradicts v(fk) = −v(c(k)f + d(k)) ≤ 0 obtained

from the above equation (1). Secondly assume v(f) < 0. Then v(fk) =

v(f) < 0 contradicts

v(fk) = v(a(k)f + b(k)) − v(f) ≥ 0.

Let φ be the embedding of MK into K((t)), and express f and τkt as

φ(f) =
∞∑
i=0

hit
i, hi ∈ K, h0 �= 0,

φ(τkt) =

∞∑
i=1

eit
i, ei ∈ K, e1 �= 0.

Then

φ(fk) =

∞∑
i=0

τk(hi)

( ∞∑
l=1

elt
l

)i

.

Note that φ is a difference isomorphism of (MK, (τ |MK)k) into (K((t)), σ),

where σ sends
∑∞

i=0 αit
i to

∑∞
i=0 τ

k(αi)(
∑∞

l=1 elt
l)i. Comparing the coeffi-

cients of t0 of the equation (1), we obtain

τk(h0)(c
(k)h0 + d(k)) = a(k)h0 + b(k).

Therefore h0 ∈ K is a solution of the equation, yk(c
(k)y + d(k)) = a(k)y +

b(k). �

Proof of Theorem 2. We prove this by induction on tr. degN/K.

When tr. degN/K = 0, the equation, yk(c
(k)y + d(k)) = a(k)y + b(k), has a

solution in K. Suppose tr. degN/K ≥ 1, and the theorem is true for the

transcendence degree < tr. degN/K.
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Let N = (N, τ). There is a chain of difference fields,

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn−1 ⊂ Kn = N , n ≥ 1,

such that for each 1 ≤ i ≤ n the extension Ki/Ki−1 satisfies one of the

conditions (i), (ii) in Definition 1. Put

n0 = min{0 ≤ i ≤ n | Kn/Ki is algebraic}.

We find n0 ≥ 1, and that the extension Kn0/Kn0−1 satisfies the condition

(ii). Choose a valuation ring O of Kn0/Kn0−1 such that τ jO ⊂ O for some

j ∈ Z>0. We have (τk)jO ⊂ O.

Let Kn0−1 be the algebraic closure of Kn0−1 in N , and put N (k)
=

(N, τk), K(k)
n0 = (Kn0 , τ

k|Kn0
), K(k)

n0−1 = (Kn0−1, τ
k|Kn0−1) and K(k)

n0−1 =

(Kn0−1, τ
k|Kn0−1

). By the hypothesis we find that the equation over K(k)
n0 ,

y1(c
(k)y + d(k)) = a(k)y + b(k), has a solution in N (k).

Define the matrices B = B1 = Ak, Bi = (τkBi−1)B (i ≥ 2). By Lemma

3 we obtain Bi = Aki. Therefore by Lemma 4 we find that there exists i0 ≥ 1

such that the equation over K(k)
n0−1, yi0(c

(ki0)y+d(ki0)) = a(ki0)y+ b(ki0), has

a solution in K(k)
n0−1. Let f ∈ Kn0−1 be such a solution. It satisfies

τki0(f)(c(ki0)f + d(ki0)) = a(ki0)f + b(ki0),

which implies that the equation over K, yki0(c
(ki0)y+d(ki0)) = a(ki0)y+b(ki0),

has a solution in Kn0−1.

Since Kn0−1/K is a difference field extension of valuation ring type

whose transcendence degree is less than tr. degN/K, we find by the in-

duction hypothesis that there exists i1 ≥ 1 such that the equation over K,

yki0i1(c
(ki0i1)y + d(ki0i1)) = a(ki0i1)y + b(ki0i1), has a solution in K. �

The following is concerned with the case that the matrix turns out to

be triangular by iterations.

Proposition 5. Let K be an inversive difference field, and a, b, c, d ∈
K satisfy ad− bc �= 0. Define the matrices Ai as in Lemma 3, and suppose

b(k) = 0 or c(k) = 0 for some k ≥ 1. Let f be a solution transcendental over

K of the equation over K, y1(cy + d) = ay + b, and put L = K〈f〉. Then

the following hold.
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(i) L is inversive.

(ii) L/K is an algebraic function field of one variable.

(iii) There is a valuation ring O of L/K such that τkO ⊂ O.

(iv) L/K is of valuation ring type.

Proof. Let L = (L, τ). Since cf1 − a = 0 implies f = τ−1(a/c) ∈ K,

we obtain

f = − df1 − b

cf1 − a
= τ

(
−τ−1(d)f − τ−1b

τ−1(c)f − τ−1a

)
∈ τL.

Therefore L is inversive, which is the result (i). Since cf + d = 0 implies

f = −d/c ∈ K, we obtain f1 ∈ K(f), which yields L = K(f). This proves

(ii).

By Lemma 3 we have fk(c
(k)f + d(k)) = a(k)f + b(k). Put

g =

{
f if c(k) = 0,

1/f if c(k) �= 0.

We find that gk = αg + β for some α, β ∈ K, α �= 0. In fact, if c(k) = 0, we

have

gk = fk =
a(k)

d(k)
f +

b(k)

d(k)
.

Note that we obtain detAk �= 0 from detA �= 0 by Lemma 3. If c(k) �= 0,

we have b(k) = 0 and

gk =
1

fk
=

d(k)

a(k)
· 1

f
+

c(k)

a(k)
.

For the algebraic function field L = K(g) of one variable over K, let O
be the following valuation ring.

O = {p/q ∈ L | p, q ∈ K[g], deg q − deg p ≥ 0} .

For any p ∈ K[g], the k-th transform τkp has the same degree as p. There-

fore we obtain τkO ⊂ O, which is the result (iii).



166 Seiji Nishioka

(i),(ii) and (iii) yield (iv). �

As a corollary of this proposition, we find that if a difference Riccati

equation turns out to be linear by iterations, then any solution is an element

of a certain difference field extension of valuation ring type.

3. Application to Solvability

In this section C denotes an algebraically closed field.

3.1. Preliminaries

Lemma 6. If L/K is a GLE, then L/K is of valuation ring type.

Proof. We prove this by induction on the transcendence degree

of L/K. There is nothing to prove in case tr. degL/K = 0. Suppose

tr. degL/K > 0, and the lemma is true for the transcendence degree <

tr. degL/K. Let L = (L, τ). There is a chain of inversive difference fields,

K = K0 ⊂ K1 ⊂ · · · ⊂ Kn = L, Ki = Ki−1({τkai | k ∈ Z}),

such that ai satisfies one of the following.

(i) τai = ai + β for some β ∈ Ki−1.

(ii) τai = αai for some α ∈ Ki−1.

(iii) ai is algebraic over Ki−1.

Put m = min{1 ≤ i ≤ n | tr. degKi/K > 0}. The chain Km ⊂ · · · ⊂
Kn = L is a GLE and satisfies tr. degL/Km < tr. degL/K. Therefore by

the induction hypothesis we find that L/Km is of valuation ring type.

Since am is transcendental over Km−1 because of tr. degKm−1/K = 0,

there are α, β ∈ Km−1, α �= 0 such that τam = αam + β. By Proposition 5

we find that Km−1〈am〉/Km−1 is of valuation ring type. Note that we have

Km = Km−1〈am〉. Therefore the chain

K ⊂ Km−1 ⊂ Km ⊂ L

implies L/K is of valuation ring type. �
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Proposition 7. Let K be a inversive difference field, a, b, c, d ∈ K,

and q ∈ Z>0. Define the matrices Ai as in Lemma 3. Suppose b(qi) �= 0 and

c(qi) �= 0 for all i ≥ 1, and the equation over K, y1(cy + d) = ay + b, has a

solution f in a qLE L/K. Let L = (L, τ) be an algebraic closure of L, and

K be the algebraic closure of K in L. Then there exists i ≥ 1 such that the

equation over K, yqi(c
(qi)y + d(qi)) = a(qi)y + b(qi), has a solution in K.

Proof. Put L(q)
= (L, τ q), L(q) = (L, τ q|L), K(q)

= (K, τ q|K), and

K(q) = (K, τ q|K). Since L/K is a qLE, L(q)/K(q) is a GLE. By Lemma 6 we

find that L(q)/K(q) is of valuation ring type.

Since we have fq(c
(q)f+d(q)) = a(q)f+b(q) by Lemma 3, f ∈ L(q)

is a so-

lution of the equation over K(q), y1(c
(q)y+ d(q)) = a(q)y+ b(q). Therefore by

Theorem 2 we conclude that there exists i ≥ 1 such that the equation over

K(q), yi(c
(qi)y+ d(qi)) = a(qi)y+ b(qi), has a solution g in K(q)

, which implies

g ∈ K is a solution of the equation over K, yqi(c
(qi)y+d(qi)) = a(qi)y+b(qi). �

Lemma 8. Let q ∈ C× be not a root of unity, t transcendental over C,

F/C(t) a finite extension of degree n, and τ an isomorphism of F into F

over C sending t to qt. Then F = C(x), xn = t.

Proof. Put P and P′ be the sets of all prime divisors of C(t)/C and

F/C respectively. As in [11] we identify a prime divisor with the maximal

ideal of the valuation ring associated with it. Define the following valuation

rings of C(t)/C,

Oα = {f/g | f, g ∈ C[t], t− α � g} for each α ∈ C,

O∞ = {f/g | f, g ∈ C[t], deg g − deg f ≥ 0},

and let Pα = Oα \ O×
α be the prime divisor associated with Oα for each

α ∈ C ∪ {∞}.
We show that if α ∈ C× then Pα is unramified in F/C(t). Let α ∈ C×

and assume that Pα is ramified in F/C(t). Then there is P ′ ∈ P′ such that

e(P ′|Pα) > 1, where e(P ′|Pα) is the ramification index of P ′ over Pα. Let

O′ be the valuation ring associated with P ′. We find that for any i ∈ Z≥0,

τ iPα = Pα/qi ∈ P and τ iP ′ is the prime divisor associated with the valuation

ring τ iO′ of τ iF/C. We also find that e(τ iP ′|τ iPα) > 1 for all i ≥ 0. For
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any i ≥ 0 there is Qi ∈ P′ such that Qi ∩ τ iF = τ iP ′, and we have

e(Qi|τ iPα) = e(Qi|τ iP ′)e(τ iP ′|τ iPα) ≥ e(τ iP ′|τ iPα) > 1,

which implies τ iPα = Pα/qi is ramified in F/C(t) for any i ≥ 0. Since

q ∈ C× is not a root of unity, the prime divisors Pα/qi (i ≥ 0) are distinct,

a contradiction. Therefore Pα is unramified in F/C(t).

Let g be the genus of F/C. By the Riemann-Hurwitz Genus Formula

we obtain

2g − 2 = −2n +
∑

α=0,∞


 ∑

P ′∈P′, P ′∩C(t)=Pα

(e(P ′|Pα) − 1)




≤ −2n + 2(n− 1) = −2,

which implies g = 0. Therefore F = C(y) for some y ∈ F .

Again by the Riemann-Hurwitz Genus Formula we obtain

∑
α=0,∞


 ∑

P ′∈P′, P ′∩C(t)=Pα

(e(P ′|Pα) − 1)


 = 2(n− 1),

which implies ∑
P ′∈P′, P ′∩C(t)=Pα

(e(P ′|Pα) − 1) = n− 1

for α = 0,∞. Therefore Pα (α = 0,∞) has only one extension P ′
α in P′,

which satisfies e(P ′
α|Pα) = n.

t ∈ C(y) yields the expression,

t = c
m∏
i=1

(y − αi)
ki , c ∈ C×, m ∈ Z≥1, αi ∈ C, ki ∈ Z,

where αi (1 ≤ i ≤ m) are distinct. Let Q′
i be the prime divisor of C(y)/C

associated with the prime element y − αi, and put Qi = Q′
i ∩ C(t) for each

1 ≤ i ≤ m. We obtain

ki = vQ′
i
(t) = e(Q′

i|Qi)vQi(t) =




0 if Qi = Pα, α ∈ C×,

n if Qi = P0,

−n if Qi = P∞,
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where vQ′
i

and vQi are the normalized discrete valuations associated with

Q′
i and Qi respectively, which implies n | ki for all 1 ≤ i ≤ m. Put x =

c1/n
∏m

i=1(y − αi)
ki/n ∈ C(y). We have xn = t, and so [C(t, x) : C(t)] = n,

which implies F = C(t, x) = C(x). �

3.2. q-Airy equation

In their [6], Hamamoto, Kajiwara and Witte introduced that each of the

basic hypergeometric solutions of the q-difference equation, y(qt) + ty(t) =

y(t/q), has a limit to the Airy function. Let f ∈ K× be a solution of the

equation over (C(t), t �→ qt), y2 + qty1 − y = 0, and put g = f1/f . Then

g ∈ K is a solution of the equation over (C(t), t �→ qt), y1y + qty − 1 = 0,

the object here.

The outline of the proof of the unsolvability of the above equation is the

following. Step 1. Define the matrices Ai as in Lemma 3, and show that

they are not triangular. Step 2. Prove that there is no algebraic solution of

the equation associated with Ai for all i ≥ 1. Step 3. Apply Proposition 7.

Proposition 9. Let q ∈ C be transcendental over Q, and t transcen-

dental over C. Put K = (C(t), t �→ qt), and let K = (C(t), τ) be an algebraic

closure of K. Put a = −qt, b = 1, c = 1 and d = 0, and define the matrices

Ai as in Lemma 3. Then the following hold.

(i) b(i) �= 0 and c(i) �= 0 for all i ≥ 1.

(ii) For any i ≥ 1 the equation over K, yi(c
(i)y + d(i)) = a(i)y + b(i), has

no solution in K.

Proof. We have

A =

(
−qt 1

1 0

)
, A2 = (τA)A =

(
q3t2 + 1 −q2t

−qt 1

)
,

and for any i ≥ 2,

Ai = (τAi−1)A =

(
−qta

(i−1)
1 + b

(i−1)
1 a

(i−1)
1

−qtc
(i−1)
1 + d

(i−1)
1 c

(i−1)
1

)
,

Ai = (τ i−1A)Ai−1 =

(
−qita(i−1) + c(i−1) −qitb(i−1) + d(i−1)

a(i−1) b(i−1)

)
,
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which imply b(i) = a
(i−1)
1 and c(i) = a(i−1) for all i ≥ 2, and d(i) = a

(i−2)
1 for

all i ≥ 3. From these we obtain

a(i) = −qita(i−1) + c(i−1) = −qita(i−1) + a(i−2), for any i ≥ 3.

Note Ai ∈ M2(C[t]). We find

a(i) = (−1)iq
i(i+1)

2 ti + (a polynomial of deg ≤ i− 2)(2)

by induction, and so deg a(i) = i. This implies a(i) �= 0, by which we

conclude b(i) �= 0 and c(i) �= 0 for all i ≥ 1, the result (i).

Assume that there exists i0 ≥ 1 such that the equation over K,

yi0(c
(i0)y + d(i0)) = a(i0)y + b(i0), has a solution f in K. Put k = 3i0 ≥ 3.

By Lemma 3, f ∈ K is a solution of the equation over K, yk(c
(k)y +

d(k)) = a(k)y + b(k). Put L = K〈f〉 ⊂ K. Since both of the assump-

tions, c(k)fk − a(k) = 0 and c(k)f + d(k) = 0, yield detAk = 0, which

contradicts detA = −1 by Lemma 3, we find that L is inversive, and

L = C(t)(f, f1, . . . , fk−1). Put n = [L : C(t)] < ∞. Then from Lemma

8 we obtain L = C(x) with xn = t. Note that x is transcendental over C,

f ∈ C(x), Ai ∈ M2(C[xn]), and ( τxx )n = q ∈ C, which implies τx
x ∈ C. Put

r = τx
x ∈ C×.

Express f = P/Q, where P,Q ∈ C[x] are relatively prime. The equation

fk(c
(k)f + d(k)) = a(k)f + b(k) yields

Pk(c
(k)P + d(k)Q) = Qk(a

(k)P + b(k)Q) (�= 0),(3)

where both sides of this are not equal to 0. We find by induction that

a(i)P + b(i)Q and c(i)P + d(i)Q are relatively prime. In fact we obtain that

aP + bQ = −qtP + Q and cP + dQ = P are relatively prime from the

hypothesis, P and Q are relatively prime, the case i = 1. Let i ≥ 2 and

suppose the statement is true for i− 1. Since we have

a(i)P + b(i)Q = (−qita(i−1) + c(i−1))P + (−qitb(i−1) + d(i−1))Q

= −qit(a(i−1)P + b(i−1)Q) + (c(i−1)P + d(i−1)Q)

and a(i−1)P + b(i−1)Q = c(i)P + d(i)Q, we conclude that a(i)P + b(i)Q and

c(i)P + d(i)Q are relatively prime by the induction hypothesis.

Therefore a(k)P + b(k)Q and c(k)P + d(k)Q are relatively prime. From

the equation (3) we obtain degx(a
(k)P + b(k)Q) = degx Pk = degx P . Since
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degx a
(k)P = nk+degx P > degx P , we find degx a

(k)P = degx b
(k)Q, which

implies degxQ− degx P = n.

Express

f =
∞∑
i=n

ei

(
1

x

)i

, ei ∈ C, en �= 0.

We will show f ∈ C(t). Assume there exists i ≥ n such that n � i and ei �= 0,

and put ln + m (0 < m < n) be the minimum number of them. Note

degx a
(k) = kn, degx b

(k) = degx c
(k) = (k − 1)n, degx d

(k) = (k − 2)n.

The first term of

a(k)f + b(k)

= a(k)

(
en

(
1

x

)n

+ · · · + eln

(
1

x

)ln

+ eln+m

(
1

x

)ln+m

+ · · ·
)

+ b(k)

whose exponent is not divisible by n has the exponent, −kn+(ln+m). The

first term of

fk(c
(k)f + d(k))

=

{
en
rkn

(
1

x

)n

+ · · · + eln
rkln

(
1

x

)ln

+
eln+m

rk(ln+m)

(
1

x

)ln+m

+ · · ·
}

×
{
c(k)

(
en

(
1

x

)n

+ · · · + eln

(
1

x

)ln

+ eln+m

(
1

x

)ln+m

+ · · ·
)

+ d(k)

}

whose exponent is not divisible by n has the exponent ≥ (2−k)n+(ln+m),

which is impossible. Therefore we obtain f =
∑∞

i=1 eni(1/x
n)i, and so

f ∈ C(1/xn) = C(t).

Then we have L = C(t)(f, f1, . . . , fk−1) ⊂ C(t), which implies n = [L :

C(t)] = 1, x = t and r = q. We find a(i) ∈ Z[q, t] by induction, and

so b(i), c(i), d(i) ∈ Z[q, t]. We will show ej ∈ Z[q, 1/q] for any j ≥ 1 by

induction. We have

fk(c
(k)f + d(k)) =

( ∞∑
i=1

ei
qki

(
1

t

)i
)(

c(k)
∞∑
i=1

ei

(
1

t

)i

+ d(k)

)
(4)
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and

a(k)f + b(k) = a(k)
∞∑
i=1

ei

(
1

t

)i

+ b(k).(5)

Note that the equation (2) yields

a(k) = (−1)kq
k(k+1)

2 tk + (a polynomial of deg ≤ k − 2),

b(k) = a
(k−1)
1 = (−1)k−1q

(k−1)(k+2)
2 tk−1 + (a polynomial of deg ≤ k − 3).

Comparing the terms of exponent −k + 1 of the equation (4) = (5), we

obtain

0 = (−1)kq
k(k+1)

2 e1 + (−1)k−1q
(k−1)(k+2)

2 ,

which implies e1 = q−1 ∈ Z[q, 1/q].

Let j ≥ 2 and suppose the statement is true for the numbers ≤ j − 1.

On the one hand the term of exponent −k + j of (5) has the coefficient,

(−1)kq
k(k+1)

2 ej + (an element of Z[q][e1, e2, . . . , ej−1])

∈ (−1)kq
k(k+1)

2 ej + Z[q, 1/q].

On the other hand the term of exponent −k + j of (4) is the same one of(
j−1∑
i=1

ei
qki

(
1

t

)i
)(

c(k)
j−1∑
i=1

ei

(
1

t

)i

+ d(k)

)
∈ Z[q, 1/q]((1/t)) ⊂ C((1/t)).

Therefore we obtain

(−1)kq
k(k+1)

2 ej ∈ Z[q, 1/q],

which implies ej ∈ Z[q, 1/q].

Let φ : Q[q, 1/q] �→ Q be a ring homomorphism sending q to 1, and

extend it to the ring homomorphism φ : Q[q, 1/q]((1/t)) �→ C((1/t)) sending∑∞
i=m hi(1/t)

i to
∑∞

i=m φ(hi)(1/t)
i. This φ is a difference homomorphism

of (Q[q, 1/q]((1/t)), t �→ qt) to (C((1/t)), id), and so we obtain

φ(f)(φ(c(k))φ(f) + φ(d(k))) = φ(a(k))φ(f) + φ(b(k)).
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We find φ(f) ∈ C(t). In fact since f ∈ C(1/t), there are s ∈ Z≥0

and m0 ∈ Z≥0 such that Ff (m, s) = 0 for all m ≥ m0, where Ff (m, s) is

the Hankel determinant det(em+i+j)0≤i,j≤s of f (refer to [1] for the Hankel

determinant). Therefore for any m ≥ m0 we obtain

Fφ(f)(m, s) = det(φ(em+i+j))0≤i,j≤s = φ(det(em+i+j)0≤i,j≤s)

= φ(Ff (m, s)) = 0,

which implies φ(f) ∈ C(1/t) = C(t).

Express φ(f) = P ′/Q′, where P ′, Q′ ∈ C[t] are relatively prime, and put

a′ = φ(a(k)), b′ = φ(b(k)), c′ = φ(c(k)) and d′ = φ(d(k)). Note

c′ = φ(c(k)) = φ(a(k−1)) = φ(a
(k−1)
1 ) = φ(b(k)) = b′,

d′ = φ(d(k)) = φ(a
(k−2)
1 ) = φ(a(k−2)) = φ(a(k) + qkta(k−1)) = a′ + tb′,

and b′ = (−1)k−1tk−1 +(a polynomial of deg ≤ k − 3) �= 0. Then we obtain

the following from P ′(c′P ′ + d′Q′) = Q′(a′P ′ + b′Q′),

P ′2 + tP ′Q′ = Q′2.(6)

This equation yields P ′ | Q′2 and Q′ | P ′2, which imply degP ′ = degQ′ = 0.

Comparing the degree of the equation (6), we find 1 = 0, a contradiction.

Therefore we obtain (ii). �

Corollary 10. Let q ∈ C be transcendental over Q, t transcendental

over C, K = (C(t), t �→ qt), and k ∈ Z>0. Then the equation over K,

y1y + qty − 1 = 0, has no solution in any kLE of K.

Proof. Assume the equation has a solution in a kLE N/K. Put a =

−qt, b = c = 1 and d = 0. Define the matrices Ai as in Lemma 3. By

Proposition 9 we have b(i) �= 0 and c(i) �= 0 for all i ≥ 1.

Let N be an algebraic closure of N , and K the algebraic closure of

K in N . By Proposition 7 we find that there exists i ≥ 1 such that the

equation over K, yki(c
(ki)y + d(ki)) = a(ki)y + b(ki), has a solution in K,

which contradicts Proposition 9. �
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3.3. q-Bessel equation

Seeing [5], we find one of the q-Bessel functions, J
(3)
ν (x; q), and the

equation,

gν(qx) + (x2/4 − qν − q−ν)gν(x) + gν(xq
−1) = 0,

where gν(x) = J
(3)
ν (xqν/2; q2). This section deals with the Riccati equation

associated with it.

Proposition 11. Let q ∈ C be transcendental over Q, and t transcen-

dental over C. Put K = (C(t), t �→ qt), and let K = (C(t), τ) be an algebraic

closure of K. Put a = −(t2/4 − qν − q−ν), b = −1, c = 1 and d = 0, where

ν ∈ Q, and define the matrices Ai as in Lemma 3. Then the following hold.

(i) b(i) �= 0 and c(i) �= 0 for all i ≥ 1.

(ii) For any i ≥ 1 the equation over K, yi(c
(i)y + d(i)) = a(i)y + b(i), has

no solution in K.

Proof. Put p = qν + q−ν ∈ C. We have

A =

(
a −1

1 0

)
, A2 =

(
a1a− 1 −a1

a −1

)
,

and for any i ≥ 2,

Ai = (τAi−1)A =

(
aa

(i−1)
1 + b

(i−1)
1 −a

(i−1)
1

ac
(i−1)
1 + d

(i−1)
1 −c

(i−1)
1

)
,

Ai = (τ i−1A)Ai−1 =

(
ai−1a

(i−1) − c(i−1) ai−1b
(i−1) − d(i−1)

a(i−1) b(i−1)

)
,

which imply b(i) = −a
(i−1)
1 and c(i) = a(i−1) for all i ≥ 2, and d(i) = −a

(i−2)
1

for all i ≥ 3. From these we obtain

a(i) = ai−1a
(i−1) − c(i−1) = ai−1a

(i−1) − a(i−2), for any i ≥ 3.

Note Ai ∈ M2(C[t]). We find

a(i) = (−1)i
q(i−1)i

4i
t2i + (a polynomial of deg ≤ 2i− 2)(7)
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by induction, and so deg a(i) = 2i. This implies a(i) �= 0, by which we

conclude b(i) �= 0 and c(i) �= 0 for all i ≥ 1, the result (i).

Assume that there exists i0 ≥ 1 such that the equation over K,

yi0(c
(i0)y + d(i0)) = a(i0)y + b(i0), has a solution f in K. Put k = 3i0 ≥ 3.

By Lemma 3, f ∈ K is a solution of the equation over K, yk(c
(k)y + d(k)) =

a(k)y + b(k). Put L = K〈f〉 ⊂ K. We find that L is inversive, and

L = C(t)(f, f1, . . . , fk−1). Put n = [L : C(t)] < ∞. Then from Lemma

8 we obtain L = C(x) with xn = t. Note that x is transcendental over C,

f ∈ C(x), Ai ∈ M2(C[xn]), and ( τxx )n = q ∈ C, which implies τx
x ∈ C. Put

r = τx
x ∈ C×.

Express f = P/Q, where P,Q ∈ C[x] are relatively prime. The equation

fk(c
(k)f + d(k)) = a(k)f + b(k) yields

Pk(c
(k)P + d(k)Q) = Qk(a

(k)P + b(k)Q) (�= 0).(8)

We find by induction that a(i)P+b(i)Q and c(i)P+d(i)Q are relatively prime.

In fact we obtain that aP + bQ = aP −Q and cP + dQ = P are relatively

prime, the case i = 1. Let i ≥ 2 and suppose the statement is true for i− 1.

Since we have

a(i)P + b(i)Q = (ai−1a
(i−1) − c(i−1))P + (ai−1b

(i−1) − d(i−1))Q

= ai−1(a
(i−1)P + b(i−1)Q) − (c(i−1)P + d(i−1)Q)

and a(i−1)P + b(i−1)Q = c(i)P + d(i)Q, we conclude that a(i)P + b(i)Q and

c(i)P + d(i)Q are relatively prime by the induction hypothesis.

Therefore a(k)P + b(k)Q and c(k)P + d(k)Q are relatively prime. From

the equation (8) we obtain degx(a
(k)P + b(k)Q) = degx Pk = degx P . Since

degx a
(k)P = 2kn+ degx P > degx P , we find that degx a

(k)P = degx b
(k)Q,

which implies degxQ− degx P = 2n.

Express

f =
∞∑

i=2n

ei

(
1

x

)i

, ei ∈ C, e2n �= 0.

We obtain f ∈ C(t) by the same way as in the proof of Proposition 9, and

so L = C(t), n = 1, x = t and r = q. Note a(i), b(i), c(i), d(i) ∈ Q[q, p, t]. We

will show ej ∈ Q[q, 1/q, p] for any j ≥ 2 by induction. We have

fk(c
(k)f + d(k)) =

( ∞∑
i=2

ei
qki

(
1

t

)i
)(

c(k)
∞∑
i=2

ei

(
1

t

)i

+ d(k)

)
(9)
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and

a(k)f + b(k) = a(k)
∞∑
i=2

ei

(
1

t

)i

+ b(k).(10)

The equation (7) yields

a(k) = (−1)k
q(k−1)k

4k
t2k + (a polynomial of deg ≤ 2k − 2),

b(k) = (−1)k
q(k−1)k

4k−1
t2(k−1) + (a polynomial of deg ≤ 2k − 4).

Comparing the terms of exponent −2k + 2 of the equation (9) = (10), we

obtain

0 = (−1)k
q(k−1)k

4k
e2 + (−1)k

q(k−1)k

4k−1
,

which implies e2 = −4.

Let j ≥ 3 and suppose the statement is true for the numbers ≤ j − 1.

On the one hand the term of exponent −2k + j of (10) has the coefficient,

(−1)k
q(k−1)k

4k
ej + (an element of Q[q, p, e2, e3, . . . , ej−1])

∈ (−1)k
q(k−1)k

4k
ej + Q[q, 1/q, p].

On the other hand the term of exponent −2k + j of (9) is the same one of(
j−1∑
i=2

ei
qki

(
1

t

)i
)(

c(k)
j−1∑
i=2

ei

(
1

t

)i

+ d(k)

)
∈ Q[q, 1/q, p]((1/t)) ⊂ C((1/t)).

Therefore we obtain

(−1)k
q(k−1)k

4k
ej ∈ Q[q, 1/q, p],

which implies ej ∈ Q[q, 1/q, p].

Let ν = ν1/ν2, where ν1 ∈ Z and ν2 ∈ Z>0 are relatively prime. Then

we have

Q[q, 1/q, p] ⊂ Q[q
1
ν2 , 1/q

1
ν2 ].
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Let φ : Q[q(1/ν2), 1/q(1/ν2)] �→ Q be a ring homomorphism sending q(1/ν2) to

1, and extend it to the ring homomorphism φ : Q[q(1/ν2), 1/q(1/ν2)]((1/t)) �→
Q((1/t)) sending

∑∞
i=m hi(1/t)

i to
∑∞

i=m φ(hi)(1/t)
i. This φ is a difference

homomorphism of (Q[q(1/ν2), 1/q(1/ν2)]((1/t)), t �→ qt) to (Q((1/t)), id), and

so we obtain

φ(f)(φ(c(k))φ(f) + φ(d(k))) = φ(a(k))φ(f) + φ(b(k)).

We find φ(f) ∈ C(t) by seeing the Hankel determinant. Express φ(f) =

P ′/Q′, where P ′, Q′ ∈ C[t] are relatively prime, and put a′ = φ(a(k)), b′ =

φ(b(k)), c′ = φ(c(k)) and d′ = φ(d(k)). Note

c′ = φ(c(k)) = φ(a(k−1)) = φ(a
(k−1)
1 ) = −φ(b(k)) = −b′,

d′ = φ(d(k)) = φ(−a
(k−2)
1 ) = φ(−a(k−2)) = φ(a(k) − ak−1a

(k−1))

= a′ +

(
− t2

4
+ 2

)
b′,

and b′ �= 0. Then we obtain the following from P ′(c′P ′ + d′Q′) = Q′(a′P ′ +
b′Q′),

−P ′2 +

(
− t2

4
+ 2

)
P ′Q′ = Q′2.(11)

This equation yields P ′ | Q′2 and Q′ | P ′2, which imply degP ′ = degQ′ = 0.

Comparing the degree of the equation (11), we find 2 = 0, a contradiction.

Therefore we obtain (ii). �

Corollary 12. Let q ∈ C be transcendental over Q, t transcendental

over C, K = (C(t), t �→ qt), and k ∈ Z>0. Then the equation over K,

y1y = −(t2/4− qν − q−ν)y− 1, where ν ∈ Q, has no solution in any kLE of

K.
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the q-Painlevé Equation of Type (A1 + A′

1)
(1), Int. Math. Res. Not. 2006

(2006), Article ID 84619.
[7] Iwasawa, K., Algebraic Functions, American Mathematical Society, 1993.
[8] Karr, M., Summation in Finite Terms, J. of the Association for Computing

Machinery 28, No. 2 (1981), 305–350.
[9] Levin, A., Difference Algebra, Springer Science+Business Media B.V., 2008.
[10] Rosenlicht, M., An Analogue of L’Hospital’s Rule, Proc. Amer. Math. Soc.

37, No. 2 (1973), 369–373.
[11] Stichtenoth, H., Algebraic function fields and codes, Springer-Verlag, 1993.

(Received August 12, 2009)
(Revised April 26, 2010)

Research Fellow of the Japan Society
for the Promotion of Science
Graduate School of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo
153-8914, Japan
E-mail: nishioka@ms.u-tokyo.ac.jp


